Lab Math 01

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Lab Math 01 as PDF for free.

More details

  • Words: 1,470
  • Pages: 3
LAB MATH 001

(d) (1z1)z(1z1) + (1♣2) + (2z0) (e) (2♣2) × (2z5) L 7. Si K H = K+H+1 H+1 ; entonces calcular: L (a) 4 2 L L (b) (2 1) 2

Prof. Rensso Chung [email protected] Trujillo-Per´ u-Enero 2009 1. Calcular:

(c)

L

2L5 5 2

(a) 22 + 32 + 42 + 52

(d) (2

(b) 32 + 40 + 52

(e) (1

2

5

(c) 7 + 2 + 3

3

L L

2)2 + 2 L L 5) (5 2)

8. Si F (x) = x2 + x + 1; entonces calcular:

2. Si A?B = A2 +B 3 +(A+B)2 ; entonces calcular:

(a) F (2) + F (1)

(a) 3 ? 2

(b) F (3) + F (0) + 2

(b) (2 ? 2) + (2 ? 3)

(c) F (3) − F (2)

(c) (4 ? 2)2 + (3 ? 0)

9. Si X −→ Y = (Y + X)2 + X 2 ) + Y 3 ; entonces calcular:

3. Si a¥b = (a + b) × (a − b); entonces calcular:

(a) (3 −→ 2) −→ 1

(a) (7¥3) + (5¥2)

(b) (2 −→ 2) −→ (2 −→ 3)

(b) (2¥1)2 × (2¥1)3

(c) (2 −→ 4)2 + (3 −→ 0)

(c) (5¥2) ÷ (3¥1)

(d)

(d) (5¥1)3 − (2¥1)2

(e)

4. Si p ° q = (p + q + 1) × (p − q); entonces calcular:

5−→2 4−→2 2−→0 2−→2

+

1−→2 4−→2

10. Resolver 5x + 5 = 30.

(a) (5 ° 2)2 + 1

11. Resolver (22 )x − 4 = 12.

(b) (4 ° 2) ° 1

12. Resolver 100y + 200 = 400.

(c) (3 ° 2) ° (2 ° 1)

13. Resolver 7z − 9 = 49.

5. Si xNy = xy + x + 1; entonces calcular:

14. Encontrar el conjunto soluci´on de:

(a) 2N2

(a) 2x + 1 < 3

(b) (3N2) × (4N2) + 2

(b) 4x + 5 > 13

2

(c) (4N2) + (1N2) + (9N0)

(c) 7x − 7 ≥ 14

6. Si Y♣Z = Y 2 + Z 2 + 2Y + 2Z y YzZ = (Y + Z + 1) + (Y + Z)2 ; entonces calcular:

(d) 10y + 5 > 15 (e) 12z − 2 > 10

(a) (2z2) + (3♣2)

(f) 2 + 6z ≤ 14

(b) (2♣2)z2

(g) 14x + 10 > 38

(c) (3z2)♣(2♣3) + (2z2)2

(h) 10x + 10 > 110 1

(l) (Y ∩ Y ) − (X ∪ Y )

15. Si A = {2; 5; 7; 8; 10} y B = {2; 3; 7; 12}; entonces encontrar:

(m) (X ∪ ∅) ∩ (Y ∩ ∅) (n) (X ∪ Y ) ∩ (Y ∪ X) ∪ (X ∩ Y )

(a) (A ∩ B) ∪ A (b) (B ∪ A) ∩ (A − B)

19. Sea G = {1; 3; 5; 7} y H = {2; 4; 5}. Encontrar:

(c) (A − B) ∩ (B − A)

(a) n(G)

16. Si M = {a; b; c; d; e} y N = {a; b; f ; h}; entonces encontrar:

(b) n(H) (c) P (G)

(a) M − N

(d) P (H)

(b) N − M

(e) n(G ∪ H)

(c) (M ∪ N ) ∩ (N − M )

(f) n(G ∩ H)

(d) (M ∩ N ) − M

(g) P (G ∩ H) (h) P (G ∪ H)

17. Si P = {x ∈ N : 2 < x < 8} y Q = {x ∈ N : 2 ≤ x ≤ 5}; entonces encontrar:

20. Sea V = {x ∈ N : 3 < x ≤ 6} y W = {x ∈ N : 3 ≤ x ≤ 5}. Encontrar:

(a) P ∪ Q

(a) n(V )

(b) P ∩ Q

(b) n(W )

(c) P − Q

(c) P (V )

(d) Q − P

(d) P (W )

(e) (P − Q) ∪ (Q − P )

(e) n(V ∪ W )

(f) (P − Q) ∩ (Q − P )

(f) n(V ∩ W )

(g) (P ∪ Q) − (P ∩ Q)

(g) P (V ∪ W ) (h) n(V − W )

18. Si X = {N; ¥; ¨} y Y = {N; F; ¨}; entonces encontrar:

(i) n(W − V ) (j) P (W − V ) N L J N 21. Sea O = { ; } y L = { , }. Encontrar:

(a) X ∪ Y (b) X ∩ Y (c) X − Y

(a) n(O) + n(L) + n(L ∪ O)

(d) Y − X

(b) n(P (O)) + n(P (L))

(e) (X ∪ Y ) − (Y ∩ X)

(c) n(L ∪ O) + n(L − O)

(f) (X ∩ Y ) − (Y ∪ X)

(d) n(L − O) + n(L ∪ O) + n(O ∩ L) + n(P (L))

(g) (X − Y ) ∪ (Y − X)

(e) [n(O)]2 + n(L)

(h) X ∪ (Y ∩ X)

(f) [n(L)]2 − [n(O)]2 + 1

(i) X − (X ∪ Y )

(g) [n(P (L))]2 + n(O) + n(L − O)

(j) Y − (X ∩ Y )

(h) n(L∪O)+n(L∩O)+n(L−O)+[n(L−O)]3

(k) (X ∪ Y ) ∪ (X ∪ X)

(i) n[L − (O ∪ L)] + n[O ∪ (L ∩ O)] + [n(O)]2 2

22. Sea A = {1; 2; 3}, B = {2; 3} y C = {2; 3; 5}. Encontrar:

25. Sean los conjuntos: J = { 21 ; 45 ; − 21 ; − 45 },

(a) A ∪ B ∪ C

I = { 54 ; − 12 ; 59 ; 57 }, y

(b) A ∩ B ∩ C (c) (A ∪ C) ∩ B

L = {− 21 ; 25 ; − 52 }.

(d) (A − B) ∪ (B − C)

Encontrar:

(e) (A ∪ B) ∩ (B − C) ∪ (A − C) (f) A ∪ (B ∩ C) − (A ∩ B ∩ C)

(a) [n(J) + n(L) + n(I)]3

(g) P (A) ∩ P (B) ∩ P (C)

(b) n[P (I)] + n(L) + n[P (J)]

(h) P (A ∪ B ∪ C)

(c) n(L ∩ I ∩ J)

(i) n(A ∩ B ∩ C) + n(A ∪ B ∪ C)

(d) n[(L ∩ J) − (I ∪ L)]

(j) n(A − C) + n(B − C) + n(A − B)

(e) n[(L − J) ∩ (I − L)] (f) n[L ∪ (I − J)] + n[P (I)] + n(I)

23. Sean los conjuntos X = {x ∈ N : 1 < x < 4}, Y = {x ∈ N : 1 ≤ x ≤ 3}, y Z = {x ∈ N : 1 ≤ x < 5}. Encontrar:

(g) [n(L ∪ I)]2 + n(L − J) (h) n(L − J) + n(J − L) + n(I − L) + n(I − J) (i) n(I ∪ L) + n(J ∩ L) + n(J ∩ I) 26. Sean los conjuntos:

(a) n(X) + n(Y ) + n(Z)

√ √ √ D = { 2; − 2; 3},

(b) n[P (X)] + n[P (Y )] + n[P (Z)] (c) X ∪ Y ∪ Z

√ √ √ E = {− 2; 3; − 3} y

(d) X ∪ (Z − Y )

√ √ F={- 2; 3}.

(e) (X − Y ) ∩ (Y − Z) (f) Z ∪ X ∪ Y

Encontrar:

(g) (X ∩ Y ) ∪ (Z ∩ X) ∩ (Y ∪ Z)

(a) n(D − F ) + n(E − F ) + n(E − D)

(h) (X ∪ Y ∪ Z) − (X ∩ Y )

(b) n(D ∩ E ∩ F ) + n[P (F )]

24. Sean los conjuntos S = {−1; 0; 1; 2}, Q = {−2; −1; 0} y K = {−1; 1, 2}. Encontrar:

(c) n(E ∩ F ) + n(F ∩ D) + n(E ∪ F ) (d) n[F ∪ (E ∩ D)] (e) n[P (E)] + n(F ∪ D) + n(E ∩ D)

(a) [n(S) + n(Q) + n(K)]2

(f) n[(E − F ) ∪ (F − D)]

(b) n[P (Q)] + n[P (S)] + n[P (K)]

(g) [n(E ∪ D)]2 + [n(F − E)]2

(c) n(S ∩ Q ∩ K)

(h) n[P (E)] + [n(F ∪ D)]2

(d) n(S ∩ Q ∩ K) + n(S ∪ Q ∪ K)

(i) [n(E ∩ F )]3 + [n(E ∪ F )]3

(e) n(S − Q) + n(K − S) + n(Q − S)

(j) [n(E − D)]4 + [n(F − D)]3 + [n(D − E)]2

(f) n[S ∩ (K ∪ Q)] + n[P (S)] + n[P (S ∩ Q ∩ K)]

(k) [n(F ∪ D)]2 + n[P (E)] + n(E)

(g) n(S ∩ Q ∩ K) + n(S − Q) + n(K − Q) 3

Related Documents

Lab Math 01
June 2020 2
Math Lab
May 2020 4
Lab 01
July 2020 5
Lab 01
November 2019 10
Lab Math 05
June 2020 3
Lab 08 Math 03
June 2020 7