1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
βπ₯ 2 + 4π₯ β€ 2β3 π₯ > β10π₯ β 25
π·1 π·2 π·1
π·2
π·1 βͺ π·2 = {π₯ β β β£ π₯ β₯ 0} π·1 β© π·2 = β
π·1 β π·2 π·2 β π·1 5 β π·1 βͺ π·2
π₯ 2 + 4π₯ β€ 12 π₯ 2 + 4π₯ β 12 β€ 0 (π₯ + 6)(π₯ β 2) β€ 0 {π₯ β β β£ β6 β€ π₯ β€ 2} π₯ 2 + 4π₯ β₯ 0 π₯(π₯ + 4) β₯ 0 {π₯ β β β£ π₯ β€ β4} βͺ {π₯ β β β£ π₯ β₯ 0} π·1 π·1 = {π₯ β β β£ β6 β€ π₯ β€ β4} βͺ {π₯ β β β£ 0 β€ π₯ β€ 2} π₯ 2 > 10π₯ β 25 π₯ 2 β 10π₯ + 25 > 0 (π₯ β 5)2 > 0 {π₯ β β β£ π₯ β 5} 10π₯ β 25 β₯ 0 25 π₯β₯ 10 5 {π₯ β β β£ π₯ β₯ 2}
π·2 5
π·2 = {π₯ β β β£ π₯ β₯ 2} βͺ {π₯ β β β£ π₯ β 5} π·1 β© π·2 = β
18
π₯ββ
cot(2π₯) =
π₯ββ
cot(π₯) =
π₯ββ
(cos(π₯)βsin(π₯))2 sin(2π₯)
+1
cos(π₯) sin(π₯)
sin(π₯)
1
tan(π₯) = cos(π₯)
cot(π₯) = tan(π₯)
cot(π₯) =
cos(π₯) sin(π₯)
cos(2π₯) cos2 (π₯) β sin2 (π₯) (cos(π₯) + sin(π₯))(cos(π₯) β sin(π₯)) cot(2π₯) = = = sin(2π₯) 2 sin(π₯) cos(π₯) 2 sin(π₯) cos(π₯)
π(π₯) = 3π₯ β 1 π(3) + β― + π(50) = 3.575 3.675 3.775 3.875 3.975
π₯
π(1) + π(2) +
π(1) = 3 β
1 β 1 = 2 π(2) = 3 β
2 β 1 = 5 π(3) = 3 β
3 β 1 = 8 π(1), π(2), π(3), β― π = π(1) = 2 50 π’50 = π(50) = 3 β
50 β 1 = 50 50 (π + π’50 ) = 25 β
(2 + 149) = 3.775 π50 = 2
149
π¦ = ππ₯ 2 + ππ₯ π+π =
(4,4)
4 2 1 β2 β4
19
5
π₯=4 π¦ β² = 2ππ₯ + π π¦ β² (4) = 5 = 2π β
4 + π 8π + π = 5 π = 5 β 8π (4,4) 4 = π β
16 + π β
4 4π + π = 1 4π + (5 β 8π) = 1 β4π = β4 π=1 π = 5 β 8 = β3 π + π = 1 β 3 = β2
π₯ββ π₯
π₯
2 β€3 2βπ₯ β€ 3π₯ 2βπ₯ β€ 3βπ₯ 2π₯ β€ 3βπ₯
π₯ββ
π₯β₯0
2π₯ β€ 3π₯ log(2π₯ ) β€ log(3π₯ ) π₯ log(2) β€ π₯ log(3) π₯(log(2) β log(3)) β€ 0 log(2) β log(3) < 0
6
5π₯ 2 β π₯ β 5 = 0 π₯1 < π₯2
1βπ₯
β5 β
1 5
1 20
2π₯2
1 +π₯2
π₯1
π₯2
2π₯ β€ 3π₯
1 5
5
2π₯2 π₯1 + π₯2 β 2π₯2 π₯1 β π₯2 = = π₯1 + π₯2 π₯1 + π₯2 π₯1 + π₯2 π₯1 < π₯2 π₯1 β π₯2 = β|π₯1 β π₯2 | β1 1 π₯1 + π₯2 = β = 5 5 β(β1)2 β 4 β
5 β
(β 6) β25 βπ· 5 π₯1 β π₯2 = β|π₯1 β π₯2 | = β =β =β = β1 5 5 5 1β
π₯1 β π₯2 β1 = = β5 1 π₯1 + π₯2 5
π₯ log(π) 1 log(π) log(2π β 2) ( )=( ) log(π) 1 log(π β 4) 1 35 6
6 37 6 41 6 43 6
log(2π β 2) = 1 2π β 2 = 10 π=6 log(π β 4) = log(6) πβ4=6 π = 10 π₯
log(6) = log(10) 21
1
π₯βπ₯ =
π₯
1
1
π₯βπ₯ = 6β6 =
log(6) = 1 π₯=6
35 6
4
5
5 36 7 36 8 36 9 36 11 36
(1,3), (3,1), (2,2) 4 (1,4), (2,3), (3,2), (4,1)
3 5 π=
π
4
3 4 7 + = 36 36 36
π(π₯) = π₯ π + π₯ πβ1 + π₯ πβ2 + β― + π₯ 2 + π₯ + 1
π (π) (π₯) =
π! 0 ππ (π β 1)π π₯ π! π₯
π β² (π₯) = ππ₯ πβ1 + (π β 1)π₯ πβ2 + β― + 3π₯ 2 + 2π₯ + 1 π β²β² (π₯) = π(π β 1)π₯ πβ2 + (π β 1)(π β 2)π₯ πβ3 + β― + 4 β
3 β
π₯ 2 + 3 β
2 β
π₯ + 2 β
1 π β²β²β² (π₯) = π(π β 1)(π β 2)π₯ πβ3 + (π β 1)(π β 2)(π β 3)π₯ πβ4 + β― + 5 β
4 β
3 β
π₯ 2 +4β
3β
2β
π₯+3β
2β
1 π π π (π) (π₯) = π(π β 1)(π β 2) β― 3 β
2 β
1 β
π₯ 0 = π!
22
(2π₯ + π¦ β 4)(π₯ + 2π¦ β 5) β€ 0 { π₯β₯0 π¦β₯0 (1,2) π1 (π₯, π¦) = 3π₯ + 2π¦ π2 (π₯, π¦) = π₯ + 2π¦ π3 (π₯, π¦) = 5π₯ + π¦ π4 (π₯, π¦) = π₯ + π¦
(0,4) (0; 2,5) (1,2) (2,0)
(5,0)
(1,2)
23
24
25
26
27
28
29
3 t 4 4 t 5 5 t 6 6 t 7 7 t 8
W ο½Q %
V2 t ο½ mcοT R t ο½ mcοT
R %V 2
t ο½ ο¨1ο©ο¨ 4200 ο©ο¨ 70 ο 10 ο©
R ο¦ 70 οΆ ο§ ο·100 ο¨ 100 οΈ
t ο½ 3600 R
t2 ο½ mcοT
R %V 2
t2 ο½ ο¨1ο©ο¨ 4200 ο©ο¨ 70 ο 10 ο© t2 ο½ 3150 R 7 t2 ο½ t 8
Ξ·
30
R ο¦ 80 οΆ ο§ ο·100 ο¨ 100 οΈ
1 ο¨ 2 2 ο¨ 3 3 ο¨ 4 4 ο¨ 5 5 ο¨ 6
π2 ) π1 1500 = (1 β ) 2500 = 0,4
π1 = (1 β
π2 ) π1 1750 = (1 β ) 2500 = 0,3 3 3 π2 = π1 = π 4 4 π2 = (1 β
1 vmaks 4
1 4 1 4 1 4 1 4 1 4
15 A 15 A 15 A 15 A 15 A
31
vmaks ο½ Aο· v ο½ ο· A2 ο y 2 1 vmaks ο½ ο· A2 ο y 2 4 1 A ο· ο½ ο· A2 ο y 2 4 2
ο¨
ο¦1 οΆ 2 2 ο§ Aο· ο½ A ο y ο¨4 οΈ 1 2 A ο½ A2 ο y 2 16 1 y 2 ο½ A2 ο A2 16 15 y 2 ο½ A2 16 15 yο½ A 16 1 yο½ 15 A 4
32
ο©
2
1 1 1 1 3 ο« 2 ο«1 6 ο½ ο« ο« ο½ ο½ ο½1 Rp 2 3 6 6 6 1 ο½1 Rp R p ο½ 1ο Iο½
I1 : I 2 : I 3 ο½
V 12 ο½ ο½ 12 A R 1 1 1 1 1 1 1 : : ο½ : : R1 R2 R3 2 3 6
I1 : I 2 : I 3 ο½ 3: 2 :1
3 ο¨12ο© ο½ 6 A 6 2 I 2 ο½ ο¨12 ο© ο½ 4 A 6 1 I3 ο½ ο¨12 ο© ο½ 2 A 6 I1 ο½
33
οo i BQ 2ο° aQ ο½ οo i BP 2ο° aP BQ BP
ο½
BQ ο½
οoi 2ο° aP οoi 2ο° aQ aP 2 BP ο½ B ο½ 2 B aQ 1
ο· o o ο· o ο·
π1 = 0
34
ο· ο· ο·
ο·
35
fp ο½
v ο± vp v vs
36
fs
37
38
56 96 14 16
[π»+]
10β1
π
2
π1 π1
0,05π π₯ 1ππ
π2
100 ππ
39
ο
ο
ππ₯π π
π₯π
2 ππ‘π π₯ 0,5 πππ‘ππ 0,082 π
ππ‘π πΎπ₯ πππ
303 πΎ
πππ π π
4,16 ππππ
π
0,04 πππ
40
0,5 ππππ 100 ππ
ο
βπΎπ π
β10β10 10β5
2 ππππ 100 ππ 2,5 ππππ 100 ππ
41
ο ο ο ο
ο ο πππ‘
65 π₯ 0,75π₯ 321π₯60 2
96.500
96.500
42
43
2π 3
2π
ο
π 2π 2πβ 3
ο
πβ0
ο
πβ 0
= β2
ο β1 ) β5
ο ο
( β1 ) β5
(
βπ β 5
ο
πβ 1
ο 44
=3
β30 β2 β34 β38 H
G
E
ο ο
βπ»π·2
+
π»π = βπ»π·2 + (π·π΄2 + π΄π2 ) π»π = β42 + (42 + 22 ) = 6
ο ο
D
C
ππ = βππ΅ 2 + π΅π 2 = 2β2 A 2
β34
sin(3π₯ β 12)
π₯ β 4 4 β β20 β π₯
lim
sin(3π₯ β 12)
π₯ β 4 4 β β20 β π₯
β¨―
4 + β20 β π₯ 4 + β20 β π₯
Q
R
π»π
= βπ»π2 β ππ
2 = β62 β (β2)
lim
F
π·π2
lim
(sin(3π₯ β 12))(4 + β20 β π₯)
16 β (20 β π₯) π₯β4 (sin 3(π₯ β 4))(4 + β20 β π₯)
lim
π₯β4
π₯β4
3(4 + β20 β 4) = 24
45
P
B
Ξ±
3
Ξ±
2
β3 β3 β3 β3 β3
ο
Ξ±
3
Ξ±
2 π2
ο
π1 3
Ξ±
Ξ±
Ξ± Ξ±
Ξ±
Ξ± Ξ±
1
Ξ±
2 1
Ξ±
2
1
β3 2
β3 π(π π β 1)
ο
πβ 1 8 1 ((β3) 2
β 1)
β3 β 1 1 (81 β 1) 2
3β1
Γ
β3 + 1 β3 + 1
(β3 + 1)
β3
160 3 260 3 290 3 320 3 640 3
π2
Ξ± Ξ±
ο
π3
Ξ±
2
Ξ±
Ξ±
=
π π π π π 46
1
π2
2
π1
ο 2
ο
π = π β«0 {(9 β π₯ 2 )2 β (1 + π₯ 2 )2 } ππ₯
ο
π = π β«0 (80 β 20π₯ 2 ) ππ₯ = π (80π₯ β
2
Y y = 1 + x2
y = 9 β x2 X 2
ο ο ο ο
β¨― β¨― β¨― β¨―
47
20 3
2 π₯ 3 )| = π (80(2) β 0
20 3
(2)3 ) =
320 3
β5
1
ο
β π΄2 + 4 1
β π΄2 + 4 5 4
1 4
4
(2π΄)2 β πΆ
(2π΄)2 β πΆ
π΄2 β πΆ = 25
π΄2 =
πΆ + 25 5β 4 1
ο
β π΄2 + 4 1
β π΄2 + 4 10 4
1 4
(3π΄)2 β πΆ
β5
π΄2 β πΆ = 45
π΄2 = ο
1
πΆ + 45 10β 4 πΆ + 25 πΆ + 45 = 10β 5β 4 4
ο
48
1 4
(3π΄)2 β πΆ
β5
ο
ο
1
3
3
2
2 3 2 3 1 2 1 6 2 3
ο
ο ο 9 6
=1
1
3
5
3 1
2 3
6 4
3
2
6
1 2
49
50
51
ο· ο· ο· ο· ο·
52
-
53
54
55
A. B. C. D. E.
A. B. C. D. E.
56
57
58
59
60
61
ο· ο· ο·
62
63
ο· ο· ο· ο·
64
ο· ο· ο·
65
A. B. C. D. E.
66
67
68
69
ο·
ο·
70
71