Kunci Sbmptn - Prediksi Dan Pembahasan Soal Hots Sbmptn 2019.pdf

  • Uploaded by: Mega Silviana Ritonga
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Kunci Sbmptn - Prediksi Dan Pembahasan Soal Hots Sbmptn 2019.pdf as PDF for free.

More details

  • Words: 1,860
  • Pages: 71
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

√π‘₯ 2 + 4π‘₯ ≀ 2√3 π‘₯ > √10π‘₯ βˆ’ 25

𝐷1 𝐷2 𝐷1

𝐷2

𝐷1 βˆͺ 𝐷2 = {π‘₯ ∈ ℝ ∣ π‘₯ β‰₯ 0} 𝐷1 ∩ 𝐷2 = βˆ… 𝐷1 βŠ† 𝐷2 𝐷2 βŠ† 𝐷1 5 ∈ 𝐷1 βˆͺ 𝐷2

π‘₯ 2 + 4π‘₯ ≀ 12 π‘₯ 2 + 4π‘₯ βˆ’ 12 ≀ 0 (π‘₯ + 6)(π‘₯ βˆ’ 2) ≀ 0 {π‘₯ ∈ ℝ ∣ βˆ’6 ≀ π‘₯ ≀ 2} π‘₯ 2 + 4π‘₯ β‰₯ 0 π‘₯(π‘₯ + 4) β‰₯ 0 {π‘₯ ∈ ℝ ∣ π‘₯ ≀ βˆ’4} βˆͺ {π‘₯ ∈ ℝ ∣ π‘₯ β‰₯ 0} 𝐷1 𝐷1 = {π‘₯ ∈ ℝ ∣ βˆ’6 ≀ π‘₯ ≀ βˆ’4} βˆͺ {π‘₯ ∈ ℝ ∣ 0 ≀ π‘₯ ≀ 2} π‘₯ 2 > 10π‘₯ βˆ’ 25 π‘₯ 2 βˆ’ 10π‘₯ + 25 > 0 (π‘₯ βˆ’ 5)2 > 0 {π‘₯ ∈ ℝ ∣ π‘₯ β‰  5} 10π‘₯ βˆ’ 25 β‰₯ 0 25 π‘₯β‰₯ 10 5 {π‘₯ ∈ ℝ ∣ π‘₯ β‰₯ 2}

𝐷2 5

𝐷2 = {π‘₯ ∈ ℝ ∣ π‘₯ β‰₯ 2} βˆͺ {π‘₯ ∈ ℝ ∣ π‘₯ β‰  5} 𝐷1 ∩ 𝐷2 = βˆ…

18

π‘₯βˆˆβ„

cot(2π‘₯) =

π‘₯βˆˆβ„

cot(π‘₯) =

π‘₯βˆˆβ„

(cos(π‘₯)βˆ’sin(π‘₯))2 sin(2π‘₯)

+1

cos(π‘₯) sin(π‘₯)

sin(π‘₯)

1

tan(π‘₯) = cos(π‘₯)

cot(π‘₯) = tan(π‘₯)

cot(π‘₯) =

cos(π‘₯) sin(π‘₯)

cos(2π‘₯) cos2 (π‘₯) βˆ’ sin2 (π‘₯) (cos(π‘₯) + sin(π‘₯))(cos(π‘₯) βˆ’ sin(π‘₯)) cot(2π‘₯) = = = sin(2π‘₯) 2 sin(π‘₯) cos(π‘₯) 2 sin(π‘₯) cos(π‘₯)

𝑓(π‘₯) = 3π‘₯ βˆ’ 1 𝑓(3) + β‹― + 𝑓(50) = 3.575 3.675 3.775 3.875 3.975

π‘₯

𝑓(1) + 𝑓(2) +

𝑓(1) = 3 β‹… 1 βˆ’ 1 = 2 𝑓(2) = 3 β‹… 2 βˆ’ 1 = 5 𝑓(3) = 3 β‹… 3 βˆ’ 1 = 8 𝑓(1), 𝑓(2), 𝑓(3), β‹― π‘Ž = 𝑓(1) = 2 50 𝑒50 = 𝑓(50) = 3 β‹… 50 βˆ’ 1 = 50 50 (π‘Ž + 𝑒50 ) = 25 β‹… (2 + 149) = 3.775 𝑆50 = 2

149

𝑦 = π‘Žπ‘₯ 2 + 𝑏π‘₯ π‘Ž+𝑏 =

(4,4)

4 2 1 βˆ’2 βˆ’4

19

5

π‘₯=4 𝑦 β€² = 2π‘Žπ‘₯ + 𝑏 𝑦 β€² (4) = 5 = 2π‘Ž β‹… 4 + 𝑏 8π‘Ž + 𝑏 = 5 𝑏 = 5 βˆ’ 8π‘Ž (4,4) 4 = π‘Ž β‹… 16 + 𝑏 β‹… 4 4π‘Ž + 𝑏 = 1 4π‘Ž + (5 βˆ’ 8π‘Ž) = 1 βˆ’4π‘Ž = βˆ’4 π‘Ž=1 𝑏 = 5 βˆ’ 8 = βˆ’3 π‘Ž + 𝑏 = 1 βˆ’ 3 = βˆ’2

π‘₯βˆˆβ„ π‘₯

π‘₯

2 ≀3 2βˆ’π‘₯ ≀ 3π‘₯ 2βˆ’π‘₯ ≀ 3βˆ’π‘₯ 2π‘₯ ≀ 3βˆ’π‘₯

π‘₯βˆˆβ„

π‘₯β‰₯0

2π‘₯ ≀ 3π‘₯ log(2π‘₯ ) ≀ log(3π‘₯ ) π‘₯ log(2) ≀ π‘₯ log(3) π‘₯(log(2) βˆ’ log(3)) ≀ 0 log(2) βˆ’ log(3) < 0

6

5π‘₯ 2 βˆ’ π‘₯ βˆ’ 5 = 0 π‘₯1 < π‘₯2

1βˆ’π‘₯

βˆ’5 βˆ’

1 5

1 20

2π‘₯2

1 +π‘₯2

π‘₯1

π‘₯2

2π‘₯ ≀ 3π‘₯

1 5

5

2π‘₯2 π‘₯1 + π‘₯2 βˆ’ 2π‘₯2 π‘₯1 βˆ’ π‘₯2 = = π‘₯1 + π‘₯2 π‘₯1 + π‘₯2 π‘₯1 + π‘₯2 π‘₯1 < π‘₯2 π‘₯1 βˆ’ π‘₯2 = βˆ’|π‘₯1 βˆ’ π‘₯2 | βˆ’1 1 π‘₯1 + π‘₯2 = βˆ’ = 5 5 √(βˆ’1)2 βˆ’ 4 β‹… 5 β‹… (βˆ’ 6) √25 √𝐷 5 π‘₯1 βˆ’ π‘₯2 = βˆ’|π‘₯1 βˆ’ π‘₯2 | = βˆ’ =βˆ’ =βˆ’ = βˆ’1 5 5 5 1βˆ’

π‘₯1 βˆ’ π‘₯2 βˆ’1 = = βˆ’5 1 π‘₯1 + π‘₯2 5

π‘₯ log(𝑏) 1 log(π‘Ž) log(2π‘Ž βˆ’ 2) ( )=( ) log(π‘Ž) 1 log(𝑏 βˆ’ 4) 1 35 6

6 37 6 41 6 43 6

log(2π‘Ž βˆ’ 2) = 1 2π‘Ž βˆ’ 2 = 10 π‘Ž=6 log(𝑏 βˆ’ 4) = log(6) π‘βˆ’4=6 𝑏 = 10 π‘₯

log(6) = log(10) 21

1

π‘₯βˆ’π‘₯ =

π‘₯

1

1

π‘₯βˆ’π‘₯ = 6βˆ’6 =

log(6) = 1 π‘₯=6

35 6

4

5

5 36 7 36 8 36 9 36 11 36

(1,3), (3,1), (2,2) 4 (1,4), (2,3), (3,2), (4,1)

3 5 𝑃=

𝑛

4

3 4 7 + = 36 36 36

𝑓(π‘₯) = π‘₯ 𝑛 + π‘₯ π‘›βˆ’1 + π‘₯ π‘›βˆ’2 + β‹― + π‘₯ 2 + π‘₯ + 1

𝑓 (𝑛) (π‘₯) =

𝑛! 0 𝑛𝑛 (𝑛 βˆ’ 1)𝑛 π‘₯ 𝑛! π‘₯

𝑓 β€² (π‘₯) = 𝑛π‘₯ π‘›βˆ’1 + (𝑛 βˆ’ 1)π‘₯ π‘›βˆ’2 + β‹― + 3π‘₯ 2 + 2π‘₯ + 1 𝑓 β€²β€² (π‘₯) = 𝑛(𝑛 βˆ’ 1)π‘₯ π‘›βˆ’2 + (𝑛 βˆ’ 1)(𝑛 βˆ’ 2)π‘₯ π‘›βˆ’3 + β‹― + 4 β‹… 3 β‹… π‘₯ 2 + 3 β‹… 2 β‹… π‘₯ + 2 β‹… 1 𝑓 β€²β€²β€² (π‘₯) = 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2)π‘₯ π‘›βˆ’3 + (𝑛 βˆ’ 1)(𝑛 βˆ’ 2)(𝑛 βˆ’ 3)π‘₯ π‘›βˆ’4 + β‹― + 5 β‹… 4 β‹… 3 β‹… π‘₯ 2 +4β‹…3β‹…2β‹…π‘₯+3β‹…2β‹…1 𝑛 𝑛 𝑓 (𝑛) (π‘₯) = 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2) β‹― 3 β‹… 2 β‹… 1 β‹… π‘₯ 0 = 𝑛!

22

(2π‘₯ + 𝑦 βˆ’ 4)(π‘₯ + 2𝑦 βˆ’ 5) ≀ 0 { π‘₯β‰₯0 𝑦β‰₯0 (1,2) 𝑓1 (π‘₯, 𝑦) = 3π‘₯ + 2𝑦 𝑓2 (π‘₯, 𝑦) = π‘₯ + 2𝑦 𝑓3 (π‘₯, 𝑦) = 5π‘₯ + 𝑦 𝑓4 (π‘₯, 𝑦) = π‘₯ + 𝑦

(0,4) (0; 2,5) (1,2) (2,0)

(5,0)

(1,2)

23

24

25

26

27

28

29

3 t 4 4 t 5 5 t 6 6 t 7 7 t 8

W ο€½Q %

V2 t ο€½ mcT R t ο€½ mcT

R %V 2

t ο€½ 1 4200  70 ο€­ 10 

R  70 οƒΆ  οƒ·100  100 οƒΈ

t ο€½ 3600 R

t2 ο€½ mcT

R %V 2

t2 ο€½ 1 4200  70 ο€­ 10  t2 ο€½ 3150 R 7 t2 ο€½ t 8

Ξ·

30

R  80 οƒΆ  οƒ·100  100 οƒΈ

1  2 2  3 3  4 4  5 5  6

𝑄2 ) 𝑄1 1500 = (1 βˆ’ ) 2500 = 0,4

πœ‚1 = (1 βˆ’

𝑄2 ) 𝑄1 1750 = (1 βˆ’ ) 2500 = 0,3 3 3 πœ‚2 = πœ‚1 = πœ‚ 4 4 πœ‚2 = (1 βˆ’

1 vmaks 4

1 4 1 4 1 4 1 4 1 4

15 A 15 A 15 A 15 A 15 A

31

vmaks ο€½ A v ο€½  A2 ο€­ y 2 1 vmaks ο€½  A2 ο€­ y 2 4 1 A  ο€½  A2 ο€­ y 2 4 2



1 οƒΆ 2 2  Aοƒ· ο€½ A ο€­ y 4 οƒΈ 1 2 A ο€½ A2 ο€­ y 2 16 1 y 2 ο€½ A2 ο€­ A2 16 15 y 2 ο€½ A2 16 15 yο€½ A 16 1 yο€½ 15 A 4

32



2

1 1 1 1 3  2 1 6 ο€½   ο€½ ο€½ ο€½1 Rp 2 3 6 6 6 1 ο€½1 Rp R p ο€½ 1 Iο€½

I1 : I 2 : I 3 ο€½

V 12 ο€½ ο€½ 12 A R 1 1 1 1 1 1 1 : : ο€½ : : R1 R2 R3 2 3 6

I1 : I 2 : I 3 ο€½ 3: 2 :1

3 12 ο€½ 6 A 6 2 I 2 ο€½ 12  ο€½ 4 A 6 1 I3 ο€½ 12  ο€½ 2 A 6 I1 ο€½

33

o i BQ 2 aQ ο€½ o i BP 2 aP BQ BP

ο€½

BQ ο€½

oi 2 aP oi 2 aQ aP 2 BP ο€½ B ο€½ 2 B aQ 1

ο‚· o o ο‚· o ο‚·

πœƒ1 = 0

34

ο‚· ο‚· ο‚·

ο‚·

35

fp ο€½

v ο‚± vp v vs

36

fs

37

38

56 96 14 16

[𝐻+]

10βˆ’1

π‘Ž

2

𝑀1 𝑉1

0,05𝑀 π‘₯ 1π‘šπ‘™

𝑉2

100 π‘šπ‘™

39

οƒ 

οƒ 

𝑃π‘₯𝑉 𝑅π‘₯𝑇

2 π‘Žπ‘‘π‘š π‘₯ 0,5 π‘™π‘–π‘‘π‘’π‘Ÿ 0,082 𝑙

π‘Žπ‘‘π‘š 𝐾π‘₯ π‘šπ‘œπ‘™

303 𝐾

π‘šπ‘Žπ‘ π‘ π‘Ž

4,16 π‘”π‘Ÿπ‘Žπ‘š

𝑛

0,04 π‘šπ‘œπ‘™

40

0,5 π‘šπ‘šπ‘œπ‘™ 100 π‘šπ‘™

οƒ 

βˆšπΎπ‘ π‘

√10βˆ’10 10βˆ’5

2 π‘šπ‘šπ‘œπ‘™ 100 π‘šπ‘™ 2,5 π‘šπ‘šπ‘œπ‘™ 100 π‘šπ‘™

41

οƒ  οƒ  οƒ  οƒ 

οƒ  οƒ  𝑒𝑖𝑑

65 π‘₯ 0,75π‘₯ 321π‘₯60 2

96.500

96.500

42

43

2πœ‹ 3

2πœ‹

οƒ˜

𝑃 2πœ‹ 2πœ‹β„ 3

οƒ˜

π‘βˆ’0

οƒ˜

π‘Žβˆ’ 0

= βˆ’2

οƒ˜ βˆ’1 ) βˆ’5

οƒ˜ οƒ˜

( βˆ’1 ) βˆ’5

(

βˆ’π‘ βˆ’ 5

οƒ˜

π‘Žβˆ’ 1

οƒ˜ 44

=3

√30 √2 √34 √38 H

G

E

οƒ˜ οƒ˜

√𝐻𝐷2

+

𝐻𝑃 = √𝐻𝐷2 + (𝐷𝐴2 + 𝐴𝑃2 ) 𝐻𝑃 = √42 + (42 + 22 ) = 6

οƒ˜ οƒ˜

D

C

𝑃𝑄 = βˆšπ‘ƒπ΅ 2 + 𝐡𝑄 2 = 2√2 A 2

√34

sin(3π‘₯ βˆ’ 12)

π‘₯ β†’ 4 4 βˆ’ √20 βˆ’ π‘₯

lim

sin(3π‘₯ βˆ’ 12)

π‘₯ β†’ 4 4 βˆ’ √20 βˆ’ π‘₯

β¨―

4 + √20 βˆ’ π‘₯ 4 + √20 βˆ’ π‘₯

Q

R

𝐻𝑅 = βˆšπ»π‘ƒ2 βˆ’ 𝑃𝑅 2 = √62 βˆ’ (√2)

lim

F

𝐷𝑃2

lim

(sin(3π‘₯ βˆ’ 12))(4 + √20 βˆ’ π‘₯)

16 βˆ’ (20 βˆ’ π‘₯) π‘₯β†’4 (sin 3(π‘₯ βˆ’ 4))(4 + √20 βˆ’ π‘₯)

lim

π‘₯–4

π‘₯β†’4

3(4 + √20 βˆ’ 4) = 24

45

P

B

Ξ±

3

Ξ±

2

√3 √3 √3 √3 √3

οƒ˜

Ξ±

3

Ξ±

2 π‘ˆ2

οƒ˜

π‘ˆ1 3

Ξ±

Ξ±

Ξ± Ξ±

Ξ±

Ξ± Ξ±

1

Ξ±

2 1

Ξ±

2

1

√3 2

√3 π‘Ž(π‘Ÿ 𝑛 βˆ’ 1)

οƒ˜

π‘Ÿβˆ’ 1 8 1 ((√3) 2

βˆ’ 1)

√3 βˆ’ 1 1 (81 βˆ’ 1) 2

3βˆ’1

Γ—

√3 + 1 √3 + 1

(√3 + 1)

√3

160 3 260 3 290 3 320 3 640 3

π‘ˆ2

Ξ± Ξ±

οƒ˜

π‘ˆ3

Ξ±

2

Ξ±

Ξ±

=

πœ‹ πœ‹ πœ‹ πœ‹ πœ‹ 46

1

π‘ˆ2

2

π‘ˆ1

οƒ˜ 2

οƒ˜

𝑉 = πœ‹ ∫0 {(9 βˆ’ π‘₯ 2 )2 βˆ’ (1 + π‘₯ 2 )2 } 𝑑π‘₯

οƒ˜

𝑉 = πœ‹ ∫0 (80 βˆ’ 20π‘₯ 2 ) 𝑑π‘₯ = πœ‹ (80π‘₯ βˆ’

2

Y y = 1 + x2

y = 9 – x2 X 2

οƒ˜ οƒ˜ οƒ˜ οƒ˜

β¨― β¨― β¨― β¨―

47

20 3

2 π‘₯ 3 )| = πœ‹ (80(2) βˆ’ 0

20 3

(2)3 ) =

320 3

√5

1

οƒ˜

√ 𝐴2 + 4 1

√ 𝐴2 + 4 5 4

1 4

4

(2𝐴)2 βˆ’ 𝐢

(2𝐴)2 βˆ’ 𝐢

𝐴2 βˆ’ 𝐢 = 25

𝐴2 =

𝐢 + 25 5⁄ 4 1

οƒ˜

√ 𝐴2 + 4 1

√ 𝐴2 + 4 10 4

1 4

(3𝐴)2 βˆ’ 𝐢

√5

𝐴2 βˆ’ 𝐢 = 45

𝐴2 = οƒ˜

1

𝐢 + 45 10⁄ 4 𝐢 + 25 𝐢 + 45 = 10⁄ 5⁄ 4 4

οƒ˜

48

1 4

(3𝐴)2 βˆ’ 𝐢

√5

οƒ˜

οƒ˜

1

3

3

2

2 3 2 3 1 2 1 6 2 3

οƒ˜

οƒ˜ οƒ˜ 9 6

=1

1

3

5

3 1

2 3

6 4

3

2

6

1 2

49

50

51

ο‚· ο‚· ο‚· ο‚· ο‚·

52

-

53

54

55

A. B. C. D. E.

A. B. C. D. E.

56

57

58

59

60

61

ο‚· ο‚· ο‚·

62

63

ο‚· ο‚· ο‚· ο‚·

64

ο‚· ο‚· ο‚·

65

A. B. C. D. E.

66

67

68

69

ο‚·

ο‚·

70

71

Related Documents


More Documents from "Mona Yunita"