Kuliah 04 - Pengembangan Model Matematik 1.ppt

  • Uploaded by: Luffy01
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Kuliah 04 - Pengembangan Model Matematik 1.ppt as PDF for free.

More details

  • Words: 1,650
  • Pages: 24
PENGEMBANGAN MODEL MATEMATIK SIMULASI RESERVOIR

Jadwal No Tgl

Topik

Sub topik

1

07/2

Pendahuluan

Tujuan & isi kuliah, referensi, evaluasi

2

17/2

Sejarah pemodelan reservoir

Model analog, fisik, analitik, numerik

24/2

Pengembangan model matematik

Sifat fisik batuan & fluida reservoir Persamaan aliran dalam media berpori

03/2

Pengembangan model matematik

Persamaan diffusifitas & aliran fluida dlm media berpori, model 1, 2, 3 fasa, model komposisi Review calculus, pembagian reservoir dlm grid, sistem matrik model reservoir Metoda langsung & iterative

3

4

5

10/3

Penyelesaian model matematik dgn metoda numerik

6

17/3

Metoda penyelesaian persamaan aljabar linear

7

24/3

8

31/3

-”UTS

-”-

PEMBAHASAN ► Persamaan

diffusifitas & aliran fluida dlm media berpori, ► Model aliran fluida 1, 2, & 3 fasa, Model komposisi

HUKUM KEKEKALAN MASSA

(mass in – mass out)c + (sink/source)c = (mass accumulated)c

Kekekalan Massa 1 Fasa 1 Dimensi qm

Flow in

Flow out

x

x 2

x

x 2

x

mi | wi |

x x 2

x x 2

mo |

x x 2

t  wo |

 ms | x  ma

x x 2

t  qm Vb t  Vb mv |t  t mv |t 

Kekekalan Massa 1 Fasa 1 Dimensi     mx | x mx | x  Ax t  qm t  Vb  mv |t t mv |t  x x 2 2    mx | x mx | x  x x  m | mv |t   2 2   Ax x  qm  Vb  v t t    x  t    

    mx Vb  qm  Vb  mv  x t 

q    mx    mv   m x t Vb

qm      u x      x t Vb

Multi Dimensi   mi  m x Ax | x  m y Ay | y  m z Az | z  t x y z 2 2 2     mo  m x Ax | x  m y Ay | y  m z Az | z  t x y z 2 2 2        u x Vb  u y Vb  u z Vb  Vb    Vb qm x y z t

  ulx    uly    ulz                x  Bl  y  Bl  z  Bl  t  Bl Bl = lsc/l qm = scqsc

   qlsc 

 ul          B    t   B    qlsc l  l   

Persamaan Aliran Multifasa ► Black

Bo 

Oil Model [Vo  Vdg ]RC [Vo ]STC

 f ( po )

[Vw ]RC Bw   f ( pw ) [Vw ]STC Bg 

[Vg ]RC [Vg ]STC

 f ( pg )

Vdg  Rs     f ( po )  Vo  STC

1  o   o   dg   oSTC  Rs  gSTC  Bo 1  wSTC  w  Bw 1  gSTC  g  Bg

Persamaan Aliran Multifasa ► Multifasa

 dalam pori-pori batuan terdapat lebih dari satu fasa

So  S w  S g  1 ► Persamaan

Kekekalan massa

  l   ml   qlm    m t

Persamaan Aliran Multifasa ► OIL

 o   ou o m mo   oS o

qo 

qom

 oSTC

 1   1      u o    So   qo  Bo  t  Bo 

Persamaan Aliran Multifasa ► WATER

 w   wu w m mw   wS w  1   1      u w    S w   qw  Bw  t  Bw 

Persamaan Aliran Multifasa ► GAS

 g   g u g   dg u o m

mg    g S g   dg So 

qom

 g  qmfg  qom Rs   o

   qmfg  qo Rs  gSTC  STC

 Rs     Rs  1 1     uo  u g     So  S g    q fg  Rs qo B  t   B  B B  o g o g     

Persamaan Darcy u

k



ul  

p  Z 

k rl k

l

pl   l Z 

Satu fasa

Multifasa

Persamaan Diffusifitas 

 u x      x t

Untuk slightly compressible fluid

u

k p  x

   exp c f  p  p

1  dV  1 d   c    V  dp T  dp

o

o



Definisi formation volume factor

 Bo 1 2 o o o 2   exp c f  p  p   1  c f  p  p   c f  p  p    o  B 2! Bo B 1  c f p  po





   o 1  cr  p  p o 

   u x     x t k p u  x 1  dV  1 d   c    V  dp T  dp

  k p           x   x  t k  2 p k p      2  x  x x t

k  2 p k  p    p      2  x   x  p p t 2

 2 p c p  2 x k t

Persamaan Diffusifitas 1-D

 2 p c p  2 x k t

2-D

 2 p  2 p c p  2  2 x y k t

radial

1   p  c p   r r  r  k t

Gas Flow pM  ZRT

   u x      qm x t

 pM k    pM     p       qm t  ZRT   ZRT   p1     p  RT 1    p   qm   Z   k t  Z  M k p1     p  RT 1    p   qm   Z   k t  Z  M k 2 pp  p 2

d 2Z   p  2ZRT  2 2  p  2 ln( Z ) (p )  qm   dp k t  Z  M k 2

2

Gas Flow   p  pc p   t  Z  Z t 1 d c  dp

 p  2

2

T

1 1 dp   p Z dZ

c p 2 k

2ZRT   qm t M k

Persamaan Aliran Multifasa   So    qo   o po   oz    t  Bo    S w    qw   w pw   wz    t  Bw     Rs So S g     Rs o po   oz   g p g   g z       q fg  Rs qo  t   Bo Bg  





So  S w  S g  1

Pcow  po  pw Pcog  p g  po

Model Komposisi  ko  o  kg g k  w w   Coj po   oz   C gj p g   g z  Cwj pw   wz       o g w     S o  oCoj  S g  g C gj  S w  wCwj  t





 3 ki  i   3      Cij pi   i z     Si i Cij    i 1 i  t  i 1

Kondisi Awal + Batas ► Kondisi

Awal

 Diperlukan pada persamaan yang berubah terhadap waktu  Suatu harga pada saat t = 0 ► Kondisi

Batas Batas luar Batas dalam

Kondisi Awal + Batas ► Kondisi

Batas

 Dirichlet problem  tekanan di batas p = pe

p = pe

p = pe p = pwf

p = pe

Kondisi Awal + Batas ► Kondisi

Batas

 Neumann problem  gradien tekanan di batas

No flow

No flow

2rw kh p q  r r rw

No flow

p q  r r  rw 2rw kh No flow

Kondisi Awal + Batas ► Gabungan

p = pe

p = pe

p = pe p = pwf No flow No flow

No flow

Related Documents


More Documents from ""

Bop System.pptx
December 2019 39
Bab 01.pdf
December 2019 16
Kelompok I.docx
December 2019 11
Combination Of Logging.docx
December 2019 14