Kotpolyv

  • Uploaded by: LeRoy Kottke
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Kotpolyv as PDF for free.

More details

  • Words: 394
  • Pages: 1
i := −1

Kottke binomial coefficient functions Fourth degree example--written for 5 point  −1 − i   − .5 − .5⋅ i    x :=  0 + 0⋅ i   .5 + .5⋅ i     1+ i 

interpolation funtion. <--Discrete, equally spaced x values Corresponding y values-->

a := 4

( y0 − 4⋅ y1 + 6⋅ y2 − 4⋅ y3 + y4)  x 4 − 4⋅ x 4 + 6⋅ x 4 − 4⋅ x 4 + x 4 ( 1) ( 2) ( 3 ) ( 4)  ( 0)

 0 + i⋅ 0   .25 + .25⋅ i    y :=  1 + i   .25 + .25⋅ i     0 + 0⋅ i 

y − 3⋅ y + 3⋅ y − y − a ⋅  x 4 − 3⋅ x 4 + 3⋅ x 4 − x 4 ( 1) ( 2) ( 3)  1 2 3 4 ( 0) 0 a := 3

( x0) 3 − 3⋅( x1) 3 + 3⋅( x2) 3 − ( x3) 3

y − 2⋅ y + y − a ⋅  x 3 − 2⋅ x 3 + x 3 − a ⋅  x 4 − 2⋅ x 4 + x 4 ( 1) ( 2)  4 ( 0) ( 1) ( 2)  1 2 3 ( 0) 0 a := 2

( x0) 2 − 2⋅ ( x1) 2 + ( x2) 2

y − y − a ⋅  x 2 − x 2 − a ⋅  x 3 − x 3 − a ⋅  x 4 − x 4  0 1 2 ( 0) ( 1)  3 ( 0) ( 1)  4 ( 0) ( 1)  a := 1 x −x 0

1

( 0) 2 − a3⋅ ( x0) 3 − a4⋅ ( x0) 4

a := y − a ⋅ x − a ⋅ x 0

0

The Coefficients====>

1 0

2

1+ i     0   a =  −1.833 + 1.833i   0    −0.667 − 0.667i

Interpolation values 4

Interpolation function:

f ( x) :=



n =0

 a ⋅ xn  n 

Related Documents

Kotpolyv
June 2020 2

More Documents from "LeRoy Kottke"