Koreksi Atmosfer Lalu Muhamad Jaelani, Ph.D LMJaelani.com
Mengapa Koreksi Atmosfer diperlukan?
Sun
ρtoa
Data yg diperoleh
Thermosphere
≈
Altitude (km)
No atmosphere 100 90 80 70 60 50 40 30 20 10
sensor
Mesosphere
ρr
Stratosphere O3, N2, (NH4)2SO4
Troposphere O2, H2O
0
Water
+ ρa + ρ
w
≠
Data yg diinginkan 2
Apa yang dimaksud dengan Koreksi Atmosfer? = menghilangkan efek atmosfer dari data yang direkam oleh sensor
0.05
Data yang diperoleh (direkam oleh sensor) 0.04
0.03
0.02
Efek Atmosfer
Remote Sensing Reflectance (sr-1)
Lake Kasumigaura
Data yang diinginkan
0.01
0 413
443
490
510
560
620
Wavelength (nm)
665
681
709
754 3
Teori Dasar TOA reflectance
Aerosol scattering
Water leaving reflectance
toa ( ) r ( ) A ( ) t ( ) w ( ) Rayleigh scattering
Dari data satellite
transmittance
Dapat dihitung dari model 2 unknowns
4
Koreksi Atmosfer di Air Jernih Dapat diasumsikan bahwa ρw pada kanal NIR (779 nm and 865 nm) = 0.0
Air Jernih ρw(NIR) ≈ 0.0
NASA Ocean Biology Processing Group
Near Infra Red (NIR) 5
Mendapatkan Aerosol Scattering untuk kanal NIR di air jernih
toa ( NIR) r ( NIR) A ( NIR) t ( NIR) w ( NIR)
toa ( NIR) r ( NIR) A ( NIR)
zero
One unknown
NIR bands = 779 and 865 nm 6
Proses Koreksi Atmosfer di Air Jernih ρA(779) ρA(865) Multiple scattering
LUT
ρa(779) ρa(865)
a (779) (779,865) a (865)
Single scattering
Aerosol type/model
at other wavelengths
w( )
ρa(λ)
( ,865)
at other wavelengths
Extent epsilon to other wavelengths
LUT
ρA(λ)
toa( ) r ( ) A( ) t( )
Atmospheric corrected reflectance
Remote Sensing Reflectance (sr-1)
Koreksi Atmosfer di Air Keruh (Turbid Water) 0.02
Lake Kasumigaura The spectral value at near infrared wavelength≠ 0
0.015
0.01
two unknowns
0.005
0 412 443 490 510 560 620 665 681 709 754 762 779 865 885 900
Wavelength (nm)
Near Infra Red (NIR)
toa ( ) r ( ) A ( ) t ( ) w ( ) 8
Masalah Koreksi Atmosfer di Air Keruh
toa ( ) r ( ) A ( ) t ( ) w ( ) One equation has two unknowns. How to solve this problem ?
Several approaches to solve the above problem toa ( ) r ( ) A ( ) t ( ) w ( ) 1. Directly predict the aerosol reflectance different assumption Twousing unknowns [Ruddick et. al. (2000); Hu et. al. (2000); Wang and Shi (2007); Guanter et. al. (2007, 2010)] 2. Estimate water leaving reflectance firstly, and then estimate aerosol reflectance [Stumpf et. al. (2003); Bailey et. al (2010); Wang et. al. (2012)] 3. Estimate water leaving reflectance and aerosol reflectance simultaneously [Schroeder et. al. (2007); Doerffer & Schiller (2007,2008); Kuchinke et al. (2009a, 2009b)] 10
Koreksi Atmosfer Sederhana • Metode DOS (Dark Object Substraction) • Metode Radiative Transfer 6SV (Second Simulation of a Satellite Signal in the Solar Spectrum – Vector)
DOS • Data dalam format Reflektan-Sensor (ρtoa) • Nilai Pixel Minimum (NPM) dari citra harusnya adalah NOL • Cari NPM minimum (> nol) • Semua Pixel dikurangi NPM • Hasil akhir berupa reflektan-permukaan (ρboa)
6SV • Data dalam format radian, • Citra dikoreksi dengan menggunakan rumus:
• acrλ=yλ/(1.+xcλ*yλ) • yλ=xaλ*( Lλ)-xbλ;
• acrλ adalah reflektan-permukaan, Lλ adalah radian. • Parameter koreksi diperoleh dengan menjalankan perangkat lunak 6SV berbasis web yang ada di http://6s.ltdri.org/. • Untuk mendifinisikan konsentrasi dari aerosol, digunakan parameter meteorologi berupa horizontal visibility yang dapat dimasukkan secara langsung dalam 6SV.
6S input for ALOS-VNIR2 • Geometrical conditions
6S input for ALOS-VNIR2 • Geometrical conditions – Month =9 (year=2010) – Day=1 – Solar Zenith Angle =90-Solar Elevation Angle=9061.88=28.12 – Solar Azimuth Angle=57.37 – Sensor Zenith Angle = 0 (Img_PointingAngle) – Sensor Azimuth Angle =12 (Img_SceneCenterOrientation)
Visibility • http://www.wunderground.com/history/airpo rt/WARR/2010/9/1/DailyHistory.html?req_city =Surabaya&req_state=&req_statename=Indon esia&reqdb.zip=00000&reqdb.magic=9&reqd b.wmo=96933 • Total second 9660 > jam 9.40 • 5.0 km
Band 1 • • • • • • • • • •
atmospheric correction result * * ----------------------------* * input apparent reflectance : 0.100 * * measured radiance [w/m2/sr/mic] : 52.386 * * atmospherically corrected reflectance * * Lambertian case : -0.00674 * * BRDF case : -0.00674 * * coefficients xa xb xc : 0.00603 0.32266 0.14326 * * y=xa*(measured radiance)-xb; acr=y/(1.+xc*y)
Band 1 • • • • • • • • • •
atmospheric correction result * * ----------------------------* * input apparent reflectance : 0.100 * * measured radiance [w/m2/sr/mic] : 52.386 * * atmospherically corrected reflectance * * Lambertian case : -0.00674 * * BRDF case : -0.00674 * * coefficients xa xb xc : 0.00603 0.32266 0.14326 * * y=xa*(measured radiance)-xb; acr=y/(1.+xc*y)