Koreksi Atmosfer: Lalu Muhamad Jaelani, Ph.d

  • Uploaded by: Chandra Prawira Sulistiyo Pratama
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Koreksi Atmosfer: Lalu Muhamad Jaelani, Ph.d as PDF for free.

More details

  • Words: 816
  • Pages: 18
Koreksi Atmosfer Lalu Muhamad Jaelani, Ph.D LMJaelani.com

Mengapa Koreksi Atmosfer diperlukan?

Sun

ρtoa

Data yg diperoleh

Thermosphere



Altitude (km)

No atmosphere 100 90 80 70 60 50 40 30 20 10

sensor

Mesosphere

ρr

Stratosphere O3, N2, (NH4)2SO4

Troposphere O2, H2O

0

Water

+ ρa + ρ

w



Data yg diinginkan 2

Apa yang dimaksud dengan Koreksi Atmosfer? = menghilangkan efek atmosfer dari data yang direkam oleh sensor

0.05

Data yang diperoleh (direkam oleh sensor) 0.04

0.03

0.02

Efek Atmosfer

Remote Sensing Reflectance (sr-1)

Lake Kasumigaura

Data yang diinginkan

0.01

0 413

443

490

510

560

620

Wavelength (nm)

665

681

709

754 3

Teori Dasar TOA reflectance

Aerosol scattering

Water leaving reflectance

toa ( )  r ( )   A ( )  t ( )  w ( ) Rayleigh scattering

Dari data satellite

transmittance

Dapat dihitung dari model 2 unknowns

4

Koreksi Atmosfer di Air Jernih Dapat diasumsikan bahwa ρw pada kanal NIR (779 nm and 865 nm) = 0.0

Air Jernih ρw(NIR) ≈ 0.0

NASA Ocean Biology Processing Group

Near Infra Red (NIR) 5

Mendapatkan Aerosol Scattering untuk kanal NIR di air jernih

toa ( NIR)  r ( NIR)   A ( NIR)  t ( NIR)  w ( NIR)

toa ( NIR)   r ( NIR)   A ( NIR)

zero

One unknown

NIR bands = 779 and 865 nm 6

Proses Koreksi Atmosfer di Air Jernih ρA(779) ρA(865) Multiple scattering

LUT

ρa(779) ρa(865)

 a (779)   (779,865)  a (865)

Single scattering

Aerosol type/model

at other wavelengths

 w(  ) 

ρa(λ)

 ( ,865)

at other wavelengths

Extent epsilon to other wavelengths

LUT

ρA(λ)

toa(  )   r (  )   A(  ) t(  )

Atmospheric corrected reflectance

Remote Sensing Reflectance (sr-1)

Koreksi Atmosfer di Air Keruh (Turbid Water) 0.02

Lake Kasumigaura The spectral value at near infrared wavelength≠ 0

0.015

0.01

two unknowns

0.005

0 412 443 490 510 560 620 665 681 709 754 762 779 865 885 900

Wavelength (nm)

Near Infra Red (NIR)

toa ( )  r ( )   A ( )  t ( )  w ( ) 8

Masalah Koreksi Atmosfer di Air Keruh

toa ( )  r ( )   A ( )  t ( )  w ( ) One equation has two unknowns. How to solve this problem ?

Several approaches to solve the above problem toa ( )   r ( )   A ( )  t ( )  w ( ) 1. Directly predict the aerosol reflectance different assumption Twousing unknowns [Ruddick et. al. (2000); Hu et. al. (2000); Wang and Shi (2007); Guanter et. al. (2007, 2010)] 2. Estimate water leaving reflectance firstly, and then estimate aerosol reflectance [Stumpf et. al. (2003); Bailey et. al (2010); Wang et. al. (2012)] 3. Estimate water leaving reflectance and aerosol reflectance simultaneously [Schroeder et. al. (2007); Doerffer & Schiller (2007,2008); Kuchinke et al. (2009a, 2009b)] 10

Koreksi Atmosfer Sederhana • Metode DOS (Dark Object Substraction) • Metode Radiative Transfer 6SV (Second Simulation of a Satellite Signal in the Solar Spectrum – Vector)

DOS • Data dalam format Reflektan-Sensor (ρtoa) • Nilai Pixel Minimum (NPM) dari citra harusnya adalah NOL • Cari NPM minimum (> nol) • Semua Pixel dikurangi NPM • Hasil akhir berupa reflektan-permukaan (ρboa)

6SV • Data dalam format radian, • Citra dikoreksi dengan menggunakan rumus:

• acrλ=yλ/(1.+xcλ*yλ) • yλ=xaλ*( Lλ)-xbλ;

• acrλ adalah reflektan-permukaan, Lλ adalah radian. • Parameter koreksi diperoleh dengan menjalankan perangkat lunak 6SV berbasis web yang ada di http://6s.ltdri.org/. • Untuk mendifinisikan konsentrasi dari aerosol, digunakan parameter meteorologi berupa horizontal visibility yang dapat dimasukkan secara langsung dalam 6SV.

6S input for ALOS-VNIR2 • Geometrical conditions

6S input for ALOS-VNIR2 • Geometrical conditions – Month =9 (year=2010) – Day=1 – Solar Zenith Angle =90-Solar Elevation Angle=9061.88=28.12 – Solar Azimuth Angle=57.37 – Sensor Zenith Angle = 0 (Img_PointingAngle) – Sensor Azimuth Angle =12 (Img_SceneCenterOrientation)

Visibility • http://www.wunderground.com/history/airpo rt/WARR/2010/9/1/DailyHistory.html?req_city =Surabaya&req_state=&req_statename=Indon esia&reqdb.zip=00000&reqdb.magic=9&reqd b.wmo=96933 • Total second 9660 > jam 9.40 • 5.0 km

Band 1 • • • • • • • • • •

atmospheric correction result * * ----------------------------* * input apparent reflectance : 0.100 * * measured radiance [w/m2/sr/mic] : 52.386 * * atmospherically corrected reflectance * * Lambertian case : -0.00674 * * BRDF case : -0.00674 * * coefficients xa xb xc : 0.00603 0.32266 0.14326 * * y=xa*(measured radiance)-xb; acr=y/(1.+xc*y)

Band 1 • • • • • • • • • •

atmospheric correction result * * ----------------------------* * input apparent reflectance : 0.100 * * measured radiance [w/m2/sr/mic] : 52.386 * * atmospherically corrected reflectance * * Lambertian case : -0.00674 * * BRDF case : -0.00674 * * coefficients xa xb xc : 0.00603 0.32266 0.14326 * * y=xa*(measured radiance)-xb; acr=y/(1.+xc*y)

Related Documents

Phd
November 2019 33
Phd
November 2019 36
Phd
November 2019 20
Phd
June 2020 1
Phd
June 2020 17

More Documents from ""