Kinetics Of A System Of Particles

  • Uploaded by: zoom^2
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Kinetics Of A System Of Particles as PDF for free.

More details

  • Words: 1,522
  • Pages: 16
Chapter 4 Kinetics of a system of particles

Jump to first page

Centre of mass ■

 Fi = external force

 : f i i th particle   Fi ri

O

 f i = internal force

o t

a





t

F l 

i

F

 =

m

a

i

+

i

For the whole system :

f  =



i

(force exerted on ith particle by all the other particles in the system) i



 total   Fi = ∑ Fi + (∑ f i ) = ∑ mi ai

∑ i

∴∑ i

i

  Fi = ∑ mi ai i

i



i

0

Jump to first page

Centre of mass :

 a1

 rG O

C.M .

m m2 a2

 a3

∴∑ i

 m1 aG

m3

 rG ≡



 mi ri

m = ∑ mi

i

m i  ∑i mi ri m1r1 + m2 r2 + ..... = ∑ mi m1 + m2 + ..... i

    mi ri ∑ mi ai ∑  i i   Then rG = = m m        mi ai = m rG = m aG ⇒ ∑ Fi = m aG i

Jump to first page

Momentum : ■

The total momentum of a system of particles :

  G = ∑ mi vi i



Now,

∑ i



Also



  mi ri = m rG

∴∑

   mi ri = m rG

i

    ∴ G = m rG = m vG       Fi = G = m vG = m aG

i

Newton second law for a system of particles.

 t2 ∴ ∆G = ∫ t1



 Fi dt

i

Jump to first page

■ ■



Usually: When then :



 ∆G = 0

i

 Fi = or 0 t2-t1 is extremely small,

  ∴ G1 = G2 (conservation of linear momentum of a system of particles.)



where  

G1 =  ∑  i

   mi ri  1

    G2 =  ∑ mi ri   i 2

Jump to first page

Kinetic energy :       ri = rG + riG ; ri = rG + riG  G r iG  The total kinetic energy of the system rG

O



 ri

mi

of particles : 1  2  T =∑ mi ri ; 2 i

 r 2 =r  ⋅ r  i i i

1 2     = ∑ mi ( rG + riG ) 2 i 1     2 2    = ∑ mi ( rG + riG + 2rG ⋅ riG ) 2 i 1 1  2   2  =  ∑mi  vG + ∑ mi viG + rG ⋅∑mi riG 2 i 2 i i  Jump to first page



For the last term :

d      ∑i mi riG = dt  ∑i mi riG  = 0

1 1 1  2 2 2 ∴T = m vG + ∑ mi viG = ∑ mi ri 2 i 2 i 2 K.E. of the centre of mass

Total K.E. of individual particles w.r.t. the centre of mass

Jump to first page

Angular Momentum of a system of particles  rP O

P   

riP = ri − rP

 ri

mi



The angular momentum particle i about P :

of

         H iP = mi ri P × ri P = mi ( ri − rP ) × ( ri − rP ) ■

Take differentiation :

                H i p = mi ( ri − rp ) × ( ri − rP ) + mi ( ri − rp ) × ( ri − rp ) ⇑

0           ∴ H i p = ( ri − rp ) × ( mi ri ) − mi ( ri − rp ) × rp Jump to first page



Here

    mi ri = mi ai = Fi + f i External force

Internal force

           ∴ H i p = ( ri − rp ) × Fi + ( ri − rp ) × f i − mi ( ri − rp ) × rp ■

The change in total angular momentum per unit time : (about p)

    H p = ∑ Hi p i

=∑ i

         ( ri − rp ) × Fi + ∑ ( ri − rp ) × f i − ∑ mi ( ri − rp ) × rp i

i

Jump to first page



(i) The external torque about point P :

    M p = ∑ ( ri − rp ) × Fi i





(ii) (iii)

∑ i

   ( ri − rp ) × fi = 0

           ∑i mi ( ri − rp ) × rp =  ∑ mi ri  × rp −  ∑ mi  rp × rp  i   i       = m rG × rp − m rp × rp    = m( rG − rp ) × rp

      ∴ H p = M p − m( rG − rp ) × rp Jump to first page

■ ■ ■



  (a) rp = 0   (b) rGthat p is just the centre of mass G = rmeans p (c) The acceleration of P is in the direction of

  Either (rGone − rofp )the above



   Hp = Mp

 t2  ∴ ∆H p = ∫ M p dt t1

Exercises : 1,2,5,7,10 Due Date : 14/11/00 (Tue.) Jump to first page

m

Example shore

B

xB

shore

d

10m

xB '

x g'

before ■

B (d-2)

after

The centre of mass of both the boat and the girl will remain unchanged since there is no external force to this system. mg = 20 kg , mB = 80 kg

xB' = x g' − ( d − 2 )

xB = 10 − d ; ∴

mg ×10 + mB xB m g + mB

=

mg x g' + mB xB' m g + mB



x g' + 4( xB' − xB ) = 10



x g' + 4( x g' − (d − 2) − (10 − d )) = 10



x g' = 8.4 m

#

Jump to first page

Another approach : Shore

mB x = m g ( 2 − x ) ∴ ∴

C.M .

B

before

10m B x

80 x = 20(2 − x) x = 0.4m



The girl will be away from the shore by m - (2 - x) = 10 - 2 + 0.4 = 8.4 m #



(6)





after 2-x

Jump to first page

= 10

Exampl e

v = 7500 m s

v

payload

booster (2000kg) … …

(3000 kg )

7500 + ∆vP

...

7500 + ∆vB ■



There is no external force to the whole system, so the linear momentum is conserved. ∆ G=0

∴ 3000 × 7500 + 2000 × 7500 = 3000 × (7500 + ∆vP ) + 2000 × (7500 + ∆vB ) Jump to first page

⇒ ■ ■

∆vB = −1.5∆vP

6 x 400J x 0.4 = Mechanical energy added to the system. By conservation of energy : (Mechanical)

1 1 2 × 3000 × (7500 + ∆vP ) + × 2000 × (7500 × ∆vB ) 2 2 2 1 1 2 = × 3000 × 7500 + × 2000 × 7500 2 + 6 × 400 × 0.4 2 2



∆vP = 0.506 m s #



∆vB = −0.759 m s # Jump to first page

Exam ple

4.5 × 10 −3 kg

u

Find u.

rest

2kg

rest

v µ = 0 .2

1.8m

There is no external force to the system of  the bullet and the block. ∴∆G =0

i.e. 4.5 x 10 u = (4.5 x 10 + 2) v -3

-3

Lost of K.E. :

1 × (4.5 ×10 −3 + 2)v 2 = (4.5 ×10 −3 + 2) × 9.8 × 0.2 ×1.8 2

∴ v = 7.06(m s ) 2

2

⇒ u = 1184 m s# Jump to first page

Related Documents