Chapter 4 Kinetics of a system of particles
Jump to first page
Centre of mass ■
Fi = external force
: f i i th particle Fi ri
O
f i = internal force
o t
a
∴
t
F l
i
F
=
m
a
i
+
i
For the whole system :
f =
■
i
(force exerted on ith particle by all the other particles in the system) i
■
total Fi = ∑ Fi + (∑ f i ) = ∑ mi ai
∑ i
∴∑ i
i
Fi = ∑ mi ai i
i
i
0
Jump to first page
Centre of mass :
a1
rG O
C.M .
m m2 a2
a3
∴∑ i
m1 aG
m3
rG ≡
∑
mi ri
m = ∑ mi
i
m i ∑i mi ri m1r1 + m2 r2 + ..... = ∑ mi m1 + m2 + ..... i
mi ri ∑ mi ai ∑ i i Then rG = = m m mi ai = m rG = m aG ⇒ ∑ Fi = m aG i
Jump to first page
Momentum : ■
The total momentum of a system of particles :
G = ∑ mi vi i
■
Now,
∑ i
■
Also
∑
mi ri = m rG
∴∑
mi ri = m rG
i
∴ G = m rG = m vG Fi = G = m vG = m aG
i
Newton second law for a system of particles.
t2 ∴ ∆G = ∫ t1
∑
Fi dt
i
Jump to first page
■ ■
■
Usually: When then :
∑
∆G = 0
i
Fi = or 0 t2-t1 is extremely small,
∴ G1 = G2 (conservation of linear momentum of a system of particles.)
■
where
G1 = ∑ i
mi ri 1
G2 = ∑ mi ri i 2
Jump to first page
Kinetic energy : ri = rG + riG ; ri = rG + riG G r iG The total kinetic energy of the system rG
O
■
ri
mi
of particles : 1 2 T =∑ mi ri ; 2 i
r 2 =r ⋅ r i i i
1 2 = ∑ mi ( rG + riG ) 2 i 1 2 2 = ∑ mi ( rG + riG + 2rG ⋅ riG ) 2 i 1 1 2 2 = ∑mi vG + ∑ mi viG + rG ⋅∑mi riG 2 i 2 i i Jump to first page
■
For the last term :
d ∑i mi riG = dt ∑i mi riG = 0
1 1 1 2 2 2 ∴T = m vG + ∑ mi viG = ∑ mi ri 2 i 2 i 2 K.E. of the centre of mass
Total K.E. of individual particles w.r.t. the centre of mass
Jump to first page
Angular Momentum of a system of particles rP O
P
riP = ri − rP
ri
mi
■
The angular momentum particle i about P :
of
H iP = mi ri P × ri P = mi ( ri − rP ) × ( ri − rP ) ■
Take differentiation :
H i p = mi ( ri − rp ) × ( ri − rP ) + mi ( ri − rp ) × ( ri − rp ) ⇑
0 ∴ H i p = ( ri − rp ) × ( mi ri ) − mi ( ri − rp ) × rp Jump to first page
■
Here
mi ri = mi ai = Fi + f i External force
Internal force
∴ H i p = ( ri − rp ) × Fi + ( ri − rp ) × f i − mi ( ri − rp ) × rp ■
The change in total angular momentum per unit time : (about p)
H p = ∑ Hi p i
=∑ i
( ri − rp ) × Fi + ∑ ( ri − rp ) × f i − ∑ mi ( ri − rp ) × rp i
i
Jump to first page
■
(i) The external torque about point P :
M p = ∑ ( ri − rp ) × Fi i
■
■
(ii) (iii)
∑ i
( ri − rp ) × fi = 0
∑i mi ( ri − rp ) × rp = ∑ mi ri × rp − ∑ mi rp × rp i i = m rG × rp − m rp × rp = m( rG − rp ) × rp
∴ H p = M p − m( rG − rp ) × rp Jump to first page
■ ■ ■
■
(a) rp = 0 (b) rGthat p is just the centre of mass G = rmeans p (c) The acceleration of P is in the direction of
Either (rGone − rofp )the above
⇒
Hp = Mp
t2 ∴ ∆H p = ∫ M p dt t1
Exercises : 1,2,5,7,10 Due Date : 14/11/00 (Tue.) Jump to first page
m
Example shore
B
xB
shore
d
10m
xB '
x g'
before ■
B (d-2)
after
The centre of mass of both the boat and the girl will remain unchanged since there is no external force to this system. mg = 20 kg , mB = 80 kg
xB' = x g' − ( d − 2 )
xB = 10 − d ; ∴
mg ×10 + mB xB m g + mB
=
mg x g' + mB xB' m g + mB
∴
x g' + 4( xB' − xB ) = 10
∴
x g' + 4( x g' − (d − 2) − (10 − d )) = 10
∴
x g' = 8.4 m
#
Jump to first page
Another approach : Shore
mB x = m g ( 2 − x ) ∴ ∴
C.M .
B
before
10m B x
80 x = 20(2 − x) x = 0.4m
■
The girl will be away from the shore by m - (2 - x) = 10 - 2 + 0.4 = 8.4 m #
■
(6)
■
■
after 2-x
Jump to first page
= 10
Exampl e
v = 7500 m s
v
payload
booster (2000kg) … …
(3000 kg )
7500 + ∆vP
...
7500 + ∆vB ■
■
There is no external force to the whole system, so the linear momentum is conserved. ∆ G=0
∴ 3000 × 7500 + 2000 × 7500 = 3000 × (7500 + ∆vP ) + 2000 × (7500 + ∆vB ) Jump to first page
⇒ ■ ■
∆vB = −1.5∆vP
6 x 400J x 0.4 = Mechanical energy added to the system. By conservation of energy : (Mechanical)
1 1 2 × 3000 × (7500 + ∆vP ) + × 2000 × (7500 × ∆vB ) 2 2 2 1 1 2 = × 3000 × 7500 + × 2000 × 7500 2 + 6 × 400 × 0.4 2 2
∴
∆vP = 0.506 m s #
∴
∆vB = −0.759 m s # Jump to first page
Exam ple
4.5 × 10 −3 kg
u
Find u.
rest
2kg
rest
v µ = 0 .2
1.8m
There is no external force to the system of the bullet and the block. ∴∆G =0
i.e. 4.5 x 10 u = (4.5 x 10 + 2) v -3
-3
Lost of K.E. :
1 × (4.5 ×10 −3 + 2)v 2 = (4.5 ×10 −3 + 2) × 9.8 × 0.2 ×1.8 2
∴ v = 7.06(m s ) 2
2
⇒ u = 1184 m s# Jump to first page