Ketidaksejajaran & Ketidakberimpitan

  • Uploaded by: Ade Setiawan
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ketidaksejajaran & Ketidakberimpitan as PDF for free.

More details

  • Words: 1,957
  • Pages: 12
UJIAN TENGAH SEMESTER

KETIDAKSEJAJARAN & KETIDAKBERIMPITAN

PENGAJAR: TOTO WARSA, IR., MS.

Oleh Ade Setiawan 1502 2006 0003

ILMU TANAH PERTANIAN

PROGRAM PASCASARJANA UNIVERSITAS PADJADJARAN UNPAD 2007 1

DATA No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MALES Y X 17.1 0.301 14.3 0.301 21.6 0.301 24.5 0.602 20.6 0.602 23.8 0.602 27.7 0.903 31.0 0.903 29.4 0.903 30.1 1.204 28.6 1.204 34.2 1.204 37.3 1.204 33.3 1.505 31.8 1.505 40.2 1.505

FEMALES Y X 18.5 0.301 22.1 0.301 15.3 0.301 23.6 0.602 26.9 0.602 20.2 0.602 24.3 0.903 27.1 0.903 30.1 0.903 28.1 0.903 30.3 1.204 33.0 1.204 35.8 1.204 32.6 1.505 36.1 1.505 30.5 1.505

Soal: a. b. c. d. e.

Determine the dose-response straight lines separately for each sex and plot them on the same graph! Test Whether the slopes for males and females are diferent Find a 99% confidence interval for the true difference between the male and female slopes Test for coincidence of the two straight lines Jika Anda menggunakan variabel boneka (dummy), tulislah rincian prosedur untuk menjawab pertanyaan b dan d.

2

Jawab: No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Jumlah Rataan

Y 17.1 14.3 21.6 24.5 20.6 23.8 27.7 31 29.4 30.1 28.6 34.2 37.3 33.3 31.8 40.2 445.5 27.84375

X 0.301 0.301 0.301 0.602 0.602 0.602 0.903 0.903 0.903 1.204 1.204 1.204 1.204 1.505 1.505 1.505 14.749 0.921813

y -10.7438 -13.5438 -6.24375 -3.34375 -7.24375 -4.04375 -0.14375 3.15625 1.55625 2.25625 0.75625 6.35625 9.45625 5.45625 3.95625 12.35625 0 6.66E-16

MALES x -0.62081 -0.62081 -0.62081 -0.31981 -0.31981 -0.31981 -0.01881 -0.01881 -0.01881 0.282188 0.282188 0.282188 0.282188 0.583188 0.583188 0.583188 0 1.39E-17

y2 115.4282 183.4332 38.98441 11.18066 52.47191 16.35191 0.020664 9.961914 2.421914 5.090664 0.571914 40.40191 89.42066 29.77066 15.65191 152.6769 763.8394 47.73996

x2 0.385408 0.385408 0.385408 0.10228 0.10228 0.10228 0.000354 0.000354 0.000354 0.07963 0.07963 0.07963 0.07963 0.340108 0.340108 0.340108 2.802968 0.175186

xy 6.669854 8.408129 3.876198 1.069373 2.316642 1.293242 0.002704 -0.05938 -0.02928 0.636686 0.213404 1.793654 2.668436 3.182017 2.307236 7.206011 41.55493 2.597183

Y 18.5 22.1 15.3 23.6 26.9 20.2 24.3 27.1 30.1 28.1 30.3 33 35.8 32.6 36.1 30.5 434.5 27.15625

X 0.301 0.301 0.301 0.602 0.602 0.602 0.903 0.903 0.903 0.903 1.204 1.204 1.204 1.505 1.505 1.505 14.448 0.903

y -8.65625 -5.05625 -11.8563 -3.55625 -0.25625 -6.95625 -2.85625 -0.05625 2.94375 0.94375 3.14375 5.84375 8.64375 5.44375 8.94375 3.34375 -6E-14 -3.8E-15

FEMALES x y2 -0.602 74.93066 -0.602 25.56566 -0.602 140.5707 -0.301 12.64691 -0.301 0.065664 -0.301 48.38941 0 8.158164 0 0.003164 0 8.665664 0 0.890664 0.301 9.883164 0.301 34.14941 0.301 74.71441 0.602 29.63441 0.602 79.99066 0.602 11.18066 2E-15 559.4394 1.25E-16 34.96496

x2 0.362404 0.362404 0.362404 0.090601 0.090601 0.090601 0 0 0 0 0.090601 0.090601 0.090601 0.362404 0.362404 0.362404 2.71803 0.169877

xy 5.211063 3.043863 7.137463 1.070431 0.077131 2.093831 0 0 0 0 0.946269 1.758969 2.601769 3.277138 5.384138 2.012938 34.615 2.163438

3

Dari tabel di atas diperoleh: Male

Female

n

16

16

X

0.921813

0.903

Y

27.84375

27.15625

Σx2

2.802968438

2.71803

Σxy

41.55493125

34.615

Σy2

763.839375

559.439375

b

a

Σxy Σx 2 41.55493 = 2.802968 = 14.82533

b=

a = Y − bX = 27.84375 - (14.82533)(0.921813)

a = Y − bX = 27.15625 - (12.73533)(0.903)

= 14.17758 JK Residu

S2yx

Σxy Σx 2 34.615 = 2.71803 = 12.73533

b=

(Σxy ) 2 Σx 2 (41.55493) 2 = 763.8394 2.802968 = 147.7738

= 15.65625 (Σxy ) 2 Σx 2 (34.615) 2 = 559.4394 2.71803 = 118.606

= Σy 2 −

= Σy 2 −

10.55527273

8.471860119

a. Persamaan garis linier untuk male dan female:

1. Male: Y = 14.17758 + 14.82533 X 2. Female: Y = 15.65625 + 12.73533 X

4

45

Male: y = 14.825x + 14.178 R2 = 0.8065

40

Growth Rate

35 30 25

Female: y = 12.735x + 15.656 R2 = 0.788

20 15 10 5 0 0

0.301

0.602

0.903

1.204

1.505

1.806

Log10 Dose Male

Female

Linear (Male)

Linear (Female)

b. Uji Ketidaksejaran

Ho: β1 = β2 JK Residu Male + JK Residu Female (S 2 yx ) p = n1 + n 2 - 4 147.7738 + 118.606 16 + 16 - 4 = 9.513566 =

1 ⎤ ⎡ 1 S 2 b1− b2 = (S 2 yx ) p ⎢ 2 + 2 ⎥ ⎣ Σx 1 Σx 2 ⎦ 1 1 ⎤ ⎡ = 9.513566⎢ + ⎥ ⎣ 2.802968 2.71803 ⎦ = 6.894274 S b1− b2 = 6.894274 = 2.625695 t=

b1 - b 2 S b1-b2

14.82533 - 12.73533 2.625695 = 0.795981 =

t(0.025 ; 28) = 2.048 Karena t(0.023 ; 28) < thitung = 0.795981 < 2.048, maka terima Ho: β1 = β2

5

Hal ini menunjukkan bahwa kemiringan Persamaan garis male dan female tidak berbeda pada taraf nyata 0.05 yang berarti kedua garis tersebut sejajar. c. Selang kepercayaan 99% untuk perbedaan diantara kedua garis: Selang kepercayaan untuk male: Selang kepercayaan = b1 ± t α = b1 ± t 0.01

s 2 yx Σx 1

2

s 2 yx Σx 1

2

10.55527 2.802968 = 14.82533 ± 5.777028 = 14.82533 ± 2.977

= (9.048302; 20.60236)

Selang kepercayaan untuk female:

Selang kepercayaan = b 2 ± t α = b 2 ± t 0.01

s 2 yx 2 Σx 2 s 2 yx Σx 2

2

8.47186 2.71803 = 12.73533 ± 5.255827 = 12.73533 ± 2.977

= (7.479499;17.99115)

6

Gabungan: Ac = (Σx 2 )1 + (Σx 2 ) 2

= 2.802968 + 2.71803 = 5.520998 Bc = (Σxy )1 + (Σxy ) 2 = 41.55493 + 34.615 = 76.16993 Cc = (Σy 2 )1 + (Σy 2 ) 2 = 763.8394 + 559.4394 = 1323.279

bc =

(Σxy )1 + (Σxy ) 2 (Σx 2 )1 + (Σx 2 ) 2

76.16993 5.520998 = 13.79641 =

JK Residu untuk regresi umum: Bc 2 JKc = Cc − Ac (76.16993) 2 = 1323.279 − 5.520998 = 272.4075 JKc 272.4075 = DBc 16 + 16 - 3 = 9.393363

(S 2 yx )c =

Selang kepercayaan = b c ± t α

(s 2 yx ) c 2

Σx 1 + Σx 2

= bc ± t (0.01;29)

2

(s 2 yx ) c 2

Σx 1 + Σx 2

2

9.393363 2.802968 + 2.71803 = 13.79641 ± 3.881344 = 13.79641 ± 2.7564

= (9.915061; 17.67775)

7

d. Uji Keberimpitan

Dengan menggunakan data hasil perhitungan di point c diperoleh nilai t: t=

=

( y1 − y 2 ) − bc( x1 − x 2 ) ⎡1 1 ( x1 − x 2 ) 2 ⎤ ( s 2 yx ) c ⎢ + + ⎥ Ac ⎣ n1 n2 ⎦ (27.843751 − 27.15625) − 13.79641(0.921813 − 0.903) ⎡1 1 (0.921813 − 0.903) 2 ⎤ 9.393363⎢ + + ⎥ 5.520998 ⎣16 16 ⎦

= 0.364288

t(0.025 ; 29) = 2.0452 Karena t(0.025 ; 29) < thitung = 0.36428767 < 2.0452, maka terima Ho: α1 = α2 Dari point b (uji ketidaksejajaran) dan d (ketidakberimpitan) terlihat bahwa kemiringan dan elevasi kedua persamaan garis regresi tersebut tidak berbeda pada taraf nyata 0.05. Hal ini menunjukkan bahwa selain sejajar, juga kedua garis tersebut berimpit.

8

e. Penggunaan Dummy variable Model regresi berganda: y1 = β 0 + β 1 X i + β 2 Z i + β 3 X i Z i + ε i ⎧0 untuk male z=⎨ ⎩1 untuk female

Male : y1 = β 0 + β 1 X 1 + β 2 Z 1 + β 3 X 1 Z 1 + ε 1

Female : y 2 = β 0 + β1 X 2 + β 2 Z 2 + β 3 X 2 Z 2 + ε 2 = β 0 + β1 X 2 + β 2 1 + β 3 X 2 1 + ε 2

= β 0 + β1 X 1 + β 2 0 + β 3 X 1 0 + ε i

y 2 = β 0 + β1 X 2 + β 2 + β 3 X 2 + ε 2

y1 = β 0 + β 1 X 1 + ε i

y 2 = ( β 0 + β 2 ) + (β1 + β 3 ) X 2 + ε 2

Hipotesis Ketidaksejajaran: H0: β3 = 0 lawan H1: β3 ≠ 0 Hipotesis Ketidakberimpitan: H0: β2 = 0 lawan H1: β2 ≠ 0

Matriks Data

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X 0.301 0.301 0.301 0.602 0.602 0.602 0.903 0.903 0.903 1.204 1.204 1.204 1.204 1.505 1.505 1.505 0.301 0.301 0.301 0.602

Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

XZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.301 0.301 0.301 0.602

Y 17.1 14.3 21.6 24.5 20.6 23.8 27.7 31 29.4 30.1 28.6 34.2 37.3 33.3 31.8 40.2 18.5 22.1 15.3 23.6

9

No 21 22 23 24 25 26 27 28 29 30 31 32

X 0.602 0.602 0.903 0.903 0.903 0.903 1.204 1.204 1.204 1.505 1.505 1.505

Z 1 1 1 1 1 1 1 1 1 1 1 1

XZ 0.602 0.602 0.903 0.903 0.903 0.903 1.204 1.204 1.204 1.505 1.505 1.505

Y 26.9 20.2 24.3 27.1 30.1 28.1 30.3 33 35.8 32.6 36.1 30.5

SUMMARY OUTPUT Regression Statistics Multiple R

0.8940194

R Square

0.7992707

Adjusted R Square

0.7777640

Standard Error

3.0844070

Observations

32

Untuk melihat signifikansi dari nilai koefisien β, bisa digunakan dengan Uji t atau Uji F. Uji t Parameter β0 : (Intercept) β1 : (X) β2 : (Z) β3 : (XZ)

Coefficients 14.17757576 14.82532971 1.478674242 -2.09000302

Standard Error 1.865126812 1.842309424 2.631988954 2.625694913

t Stat 7.601400433 8.047144262 0.561808681 -0.795980908

P-value 2.79405E-08 9.20114E-09 0.578716176 0.432740111

Lower 95.0% 10.35703673 11.05152998 -3.912710657 -7.468495161

Upper 95.0% 17.99811479 18.59912944 6.870059141 3.288489121

Uji F: Anova Parsial Sumber Ragam Regresi R(β1) R(β2) R(β3) Galat Total

DB 3 1 1 1 28 31

JK 1060.68014 616.06556 3.00276 6.02766 266.37986 1327.06

RJK 353.56005 616.06556 3.00276 6.02766 9.51357 42.80839

F-hit

F0.05

37.16 ** 64.76 ** 0.32 tn 0.63 tn

2.947 4.196 4.196 4.196

10

Persamaan: Male y1 = β 0 + β 1 X 1 + ε i

y1 = 14.1775758 + 14.82533 X 1 + ε i Female y 2 = ( β 0 + β 2 ) + ( β1 + β 3 ) X 2 + ε 2

y 2 = ( 14.17757576 + 1.478674242 ) + ( 14.82532971 − 2.09000302 )X 2 = 15.65625 + 12.73533 X 2

Hipotesis Ketidaksejajaran: H0: β3 = 0 lawan H1: β3 ≠ 0 Dari Uji t ataupun F, tampak bahwa β3 tidak nyata, yang berarti H0: β3 = 0 diterima. Hal ini berarti kedua kemiringan (slopes) persamaan regresi tersebut sejajar.

Hipotesis Ketidakberimpitan: H0: β2 = 0 lawan H1: β2 ≠ 0 Dari Uji t ataupun F, juga tampak bahwa β2 tidak nyata, yang berarti H0: β2 = 0 diterima. Hal ini menunjukkan bahwa kedua elevasi garis tersebut sama.

Kesimpulan:

kedua garis tersebut berimpit. Karena kemiringan dan elevasi dianggap sama, maka persamaan garis regresi tersebut harus ditulis: Yˆi = ac + bc X i

xp =

(n1 x1 + n 2 x 2 ) n1 + n2

(16)(0.92181) + (16)(0.903) 16 + 16 = 0.912406

=

Dari perhitungan point c: bc = 13.79641

yp =

(n1 y1 + n2 y 2 ) n1 + n2

(16)(27.84375) + (16)(27.15625) 16 + 16 = 27.5 a c = y p − bc x p =

= 27.5 − 13.79641(0.912406) = 14.91207

11

Persamaan kedua regresi: Yˆi = 14.91207 + 13.79641 X i

40

Growth Rate (Y)

35 30 25

y = 13.796x + 14.912

20 15 10 5 0 0

0.301

0.602

0.903

1.204

1.505

1.806

Log10 Dose (X)

12

Related Documents


More Documents from "Ade Setiawan"