SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2015 – PAPER II* VERSION – B1 [MATHEMATICS] 1.
Ans:
Sol:
0<x≤
9.
7 3
7 − 3x ≥ 0 ⇒ x ≤ 0<x≤
Ans:
−1 + i
Sol:
i10 + i11 + i12 + i13 = 0 1 1 1 1 = 11 + 12 + 13 + 14 i i i i ∴ Remaining expression = −1 + i
7 and x ≥ 1 3
7 . 3
10. Ans: 2.
Ans:
f(2n + 1) = −1 for all n n f(1) = f(2) = 1 and f(2 ) = 1, (i.e) ∴ f(4) = f(8) = f(16) = 1 f(2n) = −1 when n is odd ∴ sum = 5 − 20 = −15.
4.
5.
Ans:
X=Y
Sol:
X=Y
Ans:
(A ∪ B)\A ∩B
Sol:
(A ∪ B)\A ∩B
Ans:
Sol:
6.
7.
8.
12. Ans:
1 3 , 1
Sol:
−1 ≤ cos3x ≤ 1 −1 ≤ −cos3x ≤ 1 1 ≤ 2 − cos3x ≤ 3 1 1 1≥ ≥ . 2 − cos 3 x 3 28
Sol:
n(C) = 40, n(F) = 16, n(H) = 11 n(C ∩ F) = 8, n(C ∩ H) = 6 n(F ∩ H) = 2, n(C ∩ F ∩ H) = 1 n(C ∪ F ∪ H) = 67 − 16 + 1 = 52 n(C′ ∩ F′ ∩ H′) = 80 − 52 = 28
Ans:
3
Sol:
1 − 3y = −26, y = 9 |y| = 3.
Ans:
x = 1 − 2y
2
Sol:
14. Ans: Sol:
15. Ans:
x2 + y 2 = −y + 1
⇒ x + y = y − 2y + 1 2 ⇒ x = 1 − 2y. 2
13. Ans:
2
2
2
2
2
f(z) = 1 + z + z 2 2 Re(f(z)) = 1 + x − y + x 2
Sol:
Ans:
Sol:
2
Re f (z ) = x − y + x + 1= 0 2 2 x − y + x + 1 = 0.
11. Ans: 3.
2
−15 Sol:
Sol:
x −y +x+1=0
Sol:
2
π 2 2
z = 2i 2 z i 1+i i Z e − = 2i e − = 2i e = 2e[i] π Arg = . 2 p+q+1=0 4p − 4q = 4(q − p) 2 2 p −q +p−q=0 ⇒p+q+1=0 2
2
6 |x − 3| = 1 x − 3 = ±1 x = 2, 4 2
2x + 9x + 45 = 0 3 9 ⇒ 3(α + β) = − 2 2 5 45 αβ = ⇒ 9αβ = 2 2 9 45 x2 + x + =0 2 2 2 2x + 9x + 45 = 0.
α+β= −
−1 and 1 11 y=
x
x − 5x + 9 2 x y − (5y + 1)x + 9y = 0 2
for real x, ∆ ≥ 0 2 2 i.e (5y + 1) − 36y ≥ 0 (5y + 1 − 66) (5y + 1 + 6y) ≥ 0 (−y + 1) (11y + 1) ≥ 0 (y − 1) (11y + 1) ≤ 0 −1 ⇒ y ∈ , 1 11 16. Ans: Sol:
17. Ans: Sol:
22. Ans:
Sol:
ab + bc + ca 3x − 2(a + b + c)x + ab + bc + ca = 0 2 4(a + b + c) = 12(ab + bc + ca) 2 (a + b + c) = 3(ab + bc + ca) 2 2 2 a + b + c = ab + bc + ca. 2
2x + 2x − 1 = 0. 2
1 1+ 3
=
1− 3 1 3 =− + −2 2 2
1 3 1 Sum = −1, product = − = − 4 4 2 1 2 x +x− =0 2 2 2x + 2x − 1 = 0.
23. Ans: Sol:
24. Ans: Sol:
25. Ans:
1 50 1 − 10 2 50 25 + + ..... area S10 4 4 1 a = 25, r = 2 1 25 1 − 10 2 = 50 1 − 1 . 1 210 1− 2
25 +
2 2
16a c
4
4
2 2
(a + c) = (2b) = 16a c 10
11 24(x + 1) = 3 (x − 2)(x − 1) x = 10. 3 10
18. Ans: Sol:
19. Ans: Sol:
20. Ans:
Sol:
1 3 4
21. Ans: Sol:
= 1 + 10C1 .
ar = 1458, ar = 54 1 1 3 . ⇒r = ⇒r= 27 3 900 S1 + S2 + …… + S9 = 45 S10 + ………+ S19 = 55 S20 + ……… + S29 = 65 S30 + ……… + S39 = 75 S40 + ………. + S49 = 55 ………………. S (99) = 135 S = 5 (180) = 900.
1 1 . x + 10C2 . . x 2 + 2 4
1 3 10 1 4 . x + C4 . . x + .... 8 16 1 By inspection, 10C3 . is the highest 8 coefficient . ∴ power of the x is 3. 10
7
26. Ans: Sol:
27. Ans: Sol:
C3 .
5880, No correct option given. No. of ways = 7 × 7 × 6 × 5 × 4 = 5880 13 (m + 4) (m + 5) = 22(m − 1) m = 7, 6 m1 + m2 = 13
3
28. Ans: Sol:
x 1 + 2
a11 + a12 + a13 = 141 a21 + s22 + s23 = 261 x + 161 = 141 2 ⇒ x = 21 ⇒ 3(a + d) = 21 a+d=7 3a + 63d = 261 ⇒ a = 3. 2
Sol:
29. Ans:
1024 211 = 210 = 1024 . 2 120 n
Sol:
n
n
r
=
Cr −1
16
a ar = 32, r = 2 4 4 ⇒ a = 4 ⇒a = 4 ⇒r=2 14 16 a15 = 4 × 2 = 2 .
Cr Cr
n
Cr −1
15
n
3
n − (r − 1) r
= n + 1− r 15
∑ r n Cr −r 1 = ∑ (16 − r ) 1
C
1
= 16 x 15 −
1 . 15 × 16 2
= 240 − 120 = 120. 30. Ans: Sol:
31. Ans: Sol:
37. Ans:
−∆
Sol:
∆ = (36 − 30) −2(24 − 15) + 3(12 − 9) = −3 ∆′ = 4(−6) −8(−9) + 15(−3) = 3 = −∆.
C1 → C1 + C2 + C3 9+x 3 5 ⇒ 9+x 2+ x 5
9+x
Sol:
=0
1 3 ⇒ (9 + x) 0 x − 1 0
5 0
=0
x −1
0
39. Ans: Sol:
⇒ (9 + x) (x − 1) = 0 ⇒ x = −9 or x = 1, 1 2
32. Ans: Sol:
33. Ans:
−6
40. Ans:
−3(12 − 4) + 2b(−2) = 0 −24 −4b = 0 4b = −24 b = −6
Sol:
41. Ans:
−3 ,3 2 |A| = x − 2x(x − 1) = −9 2 ⇒ x − 2x + 2x = −9 2 ⇒ 2x − 3x − 9 = 0
3 ± 9 + 72 3 ± 9 = 4 4 −3 x = 3 or . 2
42. Ans: Sol:
Sol:
0
43. Ans:
C1 → C1 + C2 + C3 0 cos2 36°
cot 135°
⇒ 0 cot 35° sin2 37° = 0 0 cos2 25° cos2 65° 35. Ans: Sol:
36. Ans: Sol:
~(p ∨ q) ∨ (~p ∧ q) = (~p ∧ ~q) ∨ (~p ∧ q) = ~p ∧ (~q ∨ q) = ~p ∧ T = ~p (~p ∧ ~q) ∨ (~p ∧ ~r) ~[p ∨ (q ∧ r)] = ~p ∧ ~(q ∧ r) = ~p ∧ (~q ∨ ~r) = (~p ∧ ~q) ∨ (~p ∧ ~r) ~(P ∨ Q) ~(P ∨ Q) 4 5
ABA
Sol:
1 2 sinθ = = θ 1 1 + tan2 1+ 2 4 1 4 = = . 5 5 4 2×
4 (x − 5) − (y − 5) = 4sec θ − 4tan θ = 4 2
44. Ans: Sol:
(−2, ∞)
2
2
2
4 tan15 + tan75 =2−
(ABA)′ = A′B′A′ = ABA
|x − 3| < 2x + 9 ⇒ −(2x + 9) < (x − 3) < 2x + 9 −2x −9 < x − 3 ⇒ −3x < 6 ⇒ x > −2 ----(1) x − 3 < 2x + 9 ⇒ −x < 12 ⇒ x > −12 --(2) From (1) and (2) we get x > −2
θ 2
( )
x=
34. Ans:
~p
2 tan
Sol: Sol:
A = xy, P = 2(x + y) 2 Since (x + y) ≥ 4xy 2
x+4
3
2
P ⇒ ≥ 4A 2 2 ⇒ P ≥ 16A.
38. Ans:
1, 1, −9
P ≥ 16A
3 +2+ 3 = 4 .
π f(x) = cos4x + tan3x 2π π Period of cos4x = = 4 2 π Period of tan3x = 3
π π ∴ period of f(x) = LCM of , 3 2 = π.
45. Ans:
n +1 n −1
Sol:
46. Ans:
Sol:
sin(θ + φ) = n sin(θ − φ) sin(θ + φ) n ⇒ = sin(θ − φ ) 1 sin(θ + φ) + sin(θ − φ) n + 1 Nr + Dr ⇒ = Nr − Dr sin(θ + φ) − sin(θ − φ) n − 1 2 sin θ cos φ n + 1 ⇒ = 2 cos θ sin φ n − 1 tan θ n + 1 ⇒ = . tan φ n − 1
sin x − sin x + 3sin x − 3sin x = 0 4 4 2 (sin x + 3) (sin x − sin x) = 0 4 2 sin x = sin x sinx = 0 3 solutions 2 sin x = 1 2 solutions 5 solutions. 8
50. Ans:
6
4
2
(0, 4)
Sol:
C(h, k)
16 tan−1 13 2 tan
(4, 2) •
1 1 + tan−1 3 4
−1
1 2. 3 + tan−1 1 = tan 1 4 1− 9 3 1 = tan−1 + tan−1 4 4 −1
A(0, 0)
h+8 k +0 , = (4, 2 ) 2 2
3 1 + 4 4 = tan 3 1 1− . 4 4
⇒ h = 0, k = 4 ∴ C(0, 4).
−1
51. Ans:
16 = tan−1 . 13
47. Ans:
Sol:
2π 7 π π 2π ⇒ − sin−1 x + − sin−1 y = 2 2 7 ⇒ sin
48. Ans:
Sol:
49. Ans: Sol:
x + sin
−1
2π 5π y = π− = . 7 7
52. Ans: Sol:
1 − 1, 2
:
1
G
C(5, 5)
A, B, C are collinear points x1 − 3 = x2 − x1 y1 − 4 = y2 − y1 y − 4 y 2 − y1 ⇒ 1 = x1 − 3 x 2 − x1 ∴ slope of AB = slope of BC ∴ A, B, C are collinear.
cos−1 x > sin−1 x π ⇒ cos−1 x > − cos−1 x 2 π ⇒ 2 cos−1 x > 2 π cos−1 x > 4 1 x< and x > −1. 2
53. Ans:
Sol:
a
2
p1 =
6
sin x + cos x = 1 8 2 3 sin x + (1 − sin x) = 1
−a 2
sec θ + cos ec 2θ
= a sin θ cos θ =
− a cos 2θ
a sin 2θ 2
= a cos 2θ cos2 θ + sin2 θ 2 2 2 2 2 2 ⇒ (2p1) + (p2) = a ⇒ 4p1 + p2 = a . p2 =
5 8
2
10 + 2 10 + 2 G , = (4, 4 ) 3 3
cos−1 x + cos−1 y =
−1
(4, 4) • O(2, 2)
Sol:
5π 7
B(8, 0)
54. Ans:
17 3
Sol:
Solve : 2x + y = 2 x + 2y = 2 ---------------2 2 x= , y= 3 3 2
d=
55. Ans: Sol:
56. Ans: Sol:
2
2 17 2 . 1 − + 2 − = 3 3 3
60. Ans:
The required line is 4x − y = k which passes through (5, 0) ⇒ 20 − 0 = k ⇒ k = 20 4x − y = 20 x y − =1 5 20 x y + =1 5 − 20 ∴ (0, −20).
2
=
2
61. Ans:
58. Ans: Sol:
64. Ans:
g2 + f 2 − c = 9 + 1 + 28 = 38
2 +1 , 2
2 + 1 2
Distance between the direction = 2 2 .3
Choice (D)
Sol:
centre : (h, k) = (−g, −f) = (3, −1) ∴ x = h + r cosθ, y = k + r sinθ
3 2
2
63. Ans:
2g = −6 ⇒ g = −3 2f = 2 ⇒ f = 1 c = −28
2
x + y = a(x + y)
=
x = 3 + 38 cos θ, y = −1 + 38 sin θ
r=
59. Ans:
Sol:
= 4 + 16
= 2 5.
2
2
Equation of the circle passing through (0, 0) (a, 0) (0, a) 2 2 x + y + 2gx + 2fy + c = 0 ––––– (1) passing through (0, 0) ⇒ c = 0 passing through (a, 0) ⇒ 2g = –a passing through (0, a) ⇒ 2f = –a ∴ Equation of the circle 2 2 x + y – ax – ay = 0 2 2 ⇒ x + y = a(x + y) Choice (C)
62. Ans:
20
2
⇒ (x − 3) + y = 16
1 k k k2 × × = = 10 2 5 1 10
(8 − 6 )2 + (− 2 − 2)2
(10cosθ + 10sinθ)
5(x − 3 ) y ⇒ + =1 20 4
k 5 k y intercept = 1
solve x + y = 6 x + 2y = 4 --------------⇒ y = −2, x = 8 ⇒ (8, −2) ∴ centre : (8, −2)
3
20 cos θ + 15 20 sin θ + 0 , y= 5 5 ⇒ 5x − 15 = 20cosθ, 5y = 20sinθ
x intercept =
57. Ans: 2 5
:
• P(x, y)
x=
Sol:
±10
r=
2 • (5, 0)
⇒ k = ±10.
Sol:
a circle
Sol:
(0, −20)
Area =
2 +1 2 + 1 , is the only option satisfy 2 2 the equation of the circle 2 2 (x − 1) + (y − 1) = 1.
Sol:
Sol:
0, –4 y = mx + c be a tangent to 2 2 x = 4ay is c = –am 1 ⇒ k = − k 2 ⇒ k =0, –4 4 x2 3y2 + =1 9 8 2b2 16 8 = ⇒ b2 = a 9 3 Equation of ellips a = 3,
x 2 y2 + = 1⇒ 8 9 3
a e
=3 2
x2 3y2 + =1 9 8
65. Ans: Sol:
AC = AB + AD = 3i +6j + 2k D
40 a=5 b=4 4 Max {cp} + 5min {cp) = 4 × 5 + 5 × 4 = 40
66. Ans: Sol:
Sol:
A AC ∴ P= AC
(0, –1) 2
=
2
y – 4x – 2y – 3 ⇒ (y –1) = 4 (x + 1) 2 shift the origin to (–1, 1) ⇒ y = 4x focs, (1, 0), referring the original axis, focus is (0, 1) ∴ Equation of Latusection is x = 0 2 ∴ y – 2y – 3 = 0 ⇒ y = –1 or 3 ∴ and points on (0, –1), (0, 3)
9 5 7
71. Ans:
Sol:
Sol:
⊥or distance from a2 or r = a1 + λ b is
b = 2i − 2 j + 2k
d
2−2+2 12
=
i
2
(a2 − a1)× b = 3
3. 2 3
j k 0 0 = −18 j + 9k
2 3 6
1 = 3 –1 1 θ = cos 3
405 9 5 = 7 7
∴d=
72. Ans:
α = ± 1, β = 1
Sol:
Sol:
2i+3j+6k (4, 2, 2)
a. b a b 3
68. Ans:
(1, 2, 2)
b =7
a = i+ j+k
=
(a2 − a1) × b b
–1 1 cos 3
cosθ =
B
1 (3i + 6 j + 2k ) 7
d=
67. Ans:
C
1 1 1 4 3 4 = 0⇒ β = 1 1 α β
0
a+b
2
= 4 + 4 + λ2 = 8 + λ2
a−b
2
= 8 + λ2
∴ a +b − a −b = 0
1+ α + β = 3 ⇒ α + β = 2 ⇒ α = 1 2
2
2
2
73. Ans:
∴α=±1
69. Ans: Sol:
2
14
Sol:
PQ = OQ − OP ⇒
0 Q=
∴QA = a −
PQ + OP = OQ ∴ PQ + OP = OQ =
70. Ans:
1 (3i + 6 j + 2k ) 7
a+b+c 3
=
14
a+b+c 3
2a − b + c 3
∴ QA + Q B + Q C = 0
74. Ans: Sol:
π 2 Given lines are x y 2 x y z = = and = = 1 1 −1 1 −1 −1 2 3 6 4
1 1 1 1 . + . × −1 + 1× = 0 2 6 3 4 π θ= 2
75. Ans:
1 – cos α = 2
sin α = 2
11 3
82. Ans: Sol:
a b Projection = b
Sol:
=
76. Ans:
22 11 = 6 3
2 2 sin−1 3
=
3 4
P A ∩B
)
P(A ∪ B) = P(A) + P(B) – P (A ∩ B) ⇒ P(A) + P(B) = P(A ∪ B) + P (A ∩ B) ∴ 1 + P(A ∩ B) – P(B) – P(A) = 1+ P(A ∩ B) – (P(A ∪ B) + P(A ∩ B) C = 1 – P(A ∪ B) = P (A ∪ B) = P A ∩B
(
)
83. Ans: 1 and 7 Sol:
Let the unknown date be a and b 1 Variance = x 2 − x 2 = 5 .2 n 1 ⇒ 4 + 16 + 36 + a2 + b2 − 16 = 5.2 5 2 2 ⇒ a + b = 50 Also 2 + 4+ 6 + a + b = 20 ⇒ a + b = 8 It is clear that the two observations are 1 and 7
∑
Ιf θ is the required angle then sin θ = cosin if angle between i − j + k and 2i − j + k
Sol:
(
3 4
(
2 + 1+ 1
2 2 = 3 3 6
2 2 θ = sin−1 3
)
84. Ans: 24 77. Ans: –2 Sol: Sol:
cos2α + cos2β + 1 – 2sin γ = 1 cos2α + cos2β + cos2γ = –1 ∴ value = –2 ∴ choice (C)
sum of first n terms =
Midpoint joining (3, 2, 6) and (5, 4, 8) (i) (4, 3, 7) satisfying x + y +z = 14
Sol:
79. Ans: (1, 3, 5) Sol:
Foot of the ⊥ lie on the line. Satisfying only A(1, 3, 5) r
80. Ans: 3 Sol:
Sol:
45 4 There are a total of 18 observations a 1 × 10 + (a2 × 8 ) ∴ combined mean = , 18 where a1 and a2 denote the means But a1 = 15 ⇒ 40 150 + 8a2 45 = ⇒ a2 = 3 18 4
(
)
86. Ans: 26
The required plane is (2 + 3λ)x + (−8 −5λ)y + (4 + 4λ)z + −(p + 10λ) = 0 Compare with the plane x + 3y + 0z + 13 = 0 comparing coefficients λ = −1 Then we get p = 3.
Sol:
87. Ans: 81. Ans:
n (296 + (n − 1) (− 2)) 2
= n × 125 (given) ∴ 298 – 2n = 250 ⇒ n = 24
85. Ans:
78. Ans: x + y +z = 14 Sol:
a = 148 ; d = –2
2
3 4 cos 60 + cos 45 + cos α = 1 1 1 + + cos2 α = 1 4 2 2
2
2
Sol:
2
f(256) = f(16 ) = f(16) + 6 2 f(16) = f(4 ) = f(4) + 6 2 f(4) = f(2 ) = f(2) + 6 But f(2) = 8 ∴ f(4) = 14; f(16) = 20 and f(256) = 26 1 2 10 9 8 7 6 5 4 3 1 . . . . . . . . 9 10 7 8 5 6 3 4 2 = 1 2
88. Ans: 3 Sol:
∴
The domain is not explicitly given; it is R’ − {0, ± 1} and the function is continuous on its domain
97. Ans:
89. Ans: 1 Sol:
Sol:
90. Ans:
Sol:
1 sin y 1 lim it = lim − y →α 1 y y =1−0=1 2 9 limit = lim
x →α
=−
2x 2 = 3(3 x − 2) 9
=
Sol:
f’(x) = g(x + 1) f’’(x) = g’(x + 1) = h(x) f’’(2x) = h (2x)
1 − cos 2 x f(x) = sin−1 2 sin x 1 = sin− (sin x) f’(x) = ±1 |f’(x) = 1
Sol:
2
y = 100 + 45 = 145 Yy’ = 0 ⇒ y’ = 0 (Q y ≠ 0)
Sol: x →0
= −7
Sol:
+
2 x3
1 + 2 at x = 1 4
7 4
[3 sin (10x + 11) −7] is maximum 2 When sin (10x + 11) is minimum 2 ∴ minimum value of 3sin (10x + 11) = 0 2 ∴ Maximum value = (−7) = 49. 2
If A sq. units in the area measure when the radius is r units, 2 their A = πr dA dr = 2πr ∴ dt dt dA dr But = 3c dt dt ∴ 2πr = 3c ∴ c = 4π, when r = 6
dy = 6x − 5 dx = 6 – 5 = 1 at (1, 4)
101. Ans: 8
x Sol:
1+ x2 y = sec(tan− x)
227 − 5 222 = = 37 11 − 5 6 6x = 48 ⇒ x = 8
6x – 11 =
1
= sec sec 1 + x 2
102. Ans: k ≥ 1
y = 1 + x2 dy x = dx 1+ x2
Sol:
f’(x) = cosx – k ∴ f decreases if cosx ≤ k ∴ for decreasing k ≥ 1
Choice (A)
103. Ans: –3 96. Ans: 1 Sol:
2
100. Ans: 1
The limit = lim (3x − 7)
95. Ans:
−2 (1 + x )3
99. Ans: 4π
94. Ans: −7 Sol:
=
98. Ans: 49
93. Ans: 0 Sol:
1 1 + 1+ x +1 x dy 1 1 = − dx (1 + x )2 x 2
y = 1−
dx 2
92. Ans: 1 Sol:
7 4
d2 y
91. Ans: h (2x) Sol:
dx =1 dy
Sol:
Ιf t = tan θ,
sin x = sin2θ, tan y = tan 2θ, |θ| < π ∴ x = 2θ, y = 2θ
4
dy m = + 2nx + 1 dx x m ∴ + 2n 2 + 1 = 0 2 m + 2n + 1 = 0
m + 8m + 2 = 0 ∴ 6n + 1 = 0
109. Ans:
1 n=− 6n + 1 = 0 6 ∴ ⇒ 3m + 2 = 0 m = − 2 3 −4 5 2m + 10n = − 3 3 = –3
Sol:
xn 1 tan−1 + C a na
xn −1dx
1
du
∫ x2n + a2 = n ∫ a2 + u2 ; if a = x
n
=
1 1 u . tan−1 + C n a a
=
xn 1 tan−1 + C a na
104. Ans: 3
–1
Sol:
110. Ans: log|x| + 2tan x + C
acceleration time t = 12t – 12 ∴ acceleration is zero when t = 1 2 velocity at time t = 6t – 12t + a ∴ –3 = 6 – 12 + a ⇒a=3
Sol:
∫
cot ( x e x )
=
∫
if u = x e
x
Sol:
= log |sec u| + C x = log |sec (x e )| + C
106. Ans:
Sol:
∫
dx x log x
∫
1 = 3
1 + x3
∫ ∫
2
=
=
(u − 1)
du
∫
=−
2 1 + x 3 ( x 3 − 2) + C 9 x5
1 log log x 2 + C 2
111. Ans: =
dx cot u
2
–1
x
(1 + x )e x
1
∫ x(x2 + 1) dx = ∫ x + x2 + 1 dx = log|x| + 2tan x + C
105. Ans: log |sec (x e )| + C Sol:
(x + 1)
2
=
3
if u = 1 + x
du (if u = log x) 2u 1 log u + C' 2
1 log log x + C' 2
1 log log x 2 + C 2
u
1 u− du u
1 1 −1 1 1 −1 1 tan − tan 9 4 4 5 5
112. Ans: =
=
1 3
=
1 1 2 32 2 u − 2u + C 3 3
1
Sol:
2 1 + x3 (1 + x3 − 3 ) + C 9 2 = 1 + x 3 ( x 3 − 2) + C 9
=
∫
dx ( x 2 + 16 ) ( x 2 + 25 )
0 1
1 = 9
∫
1 1 − 2 2 dx x + 16 x + 25
0
107. Ans: log |2 e − 5| + C 2x
Sol:
∫
4 ex 2 e x − 5 e− x
1
dx = =
∫ ∫
4 ex 2 e2 x − 5
1 1 x 1 x . tan−1 − tan−1 9 4 4 5 5 0 dx
du 2x if u = 2 e − 5 u
113. Ans: 0
= log |u| + C 2x = log |2 ex − 5| + C
1
Sol:
108. Ans:
x2 + 2 x + log x + C 2
∫
∫
x(1 − x )(1 + x ) dx
−1
2
Sol:
1 1 1 1 1 tan −1 − tan−1 9 4 4 5 5
=
1 1 x+ dx = x + 2 + dx x x 1 = x 2 + 2 x + log | x | +C 2
∫
The integrand is an odd function & the range is (−1, 1) l ∴ =0
∫
114. Ans: 4 Sol:
=−
3
Where the curves meet, 2 X = 2x ⇒ x \ 0 or 2
=
π 4 2
+
1 2
1 π 1 − 4 2
2
∫
∴ required area-measure
( x 2 − 2x )dx )
117. Ans: yy"+(y')2 + 1 = 0
0
Sol:
8 = −4 3 4
2
2
x +y =1 ∴2x + 2yy’ = 0 1 + y'2 + yy' ' = 0
3
118. Ans: y − 3xy = C 3
115. Ans:
π 2
Sol:
π
Sol:
π
∫
sin2 x
−π
1+ 7
x
dx =
0
∫
sin2 x dx
∫
1+ 7x
1+ 7
−π π
=
−π
1+ 7x π
= 2.
x
−
∫
−π
sin2 x 1 + 7− x
dx i.e, x.y =
116. Ans:
sin x dx
119. Ans: 3 and 2 Sol:
Sol:
1 π . 2 2
120. Ans: y = Cxe
∫ 0
Sol:
π
2
2 x sin x dx = 3
2
4
∫
The equation is
2 d2 y dy 2 d3 y 2 + = dx 2 dx dx 3
sin2 x dx
1 π 1 − 2 4 π
y 2dy + A
3
0
= 2.
∫
3xy = y − C
2
2
∫
The equation: dx Ιf + x = y2 dy
x sin x dx
x
dy y = y+ dx x dy dx = + dx y x log |y| = log |x| + x + A x y = Cx e
0 π
= [x( − cos x ) − ( − sin x )]0 4
* This key had been prepared by our academic team. However, in questions where multiple interpretations are possible, there may be divergence from the official answer key published / to be published by the examination authorities and no claim shall lie against T.I.M.E. Pvt. Ltd. in the event of any such mismatch between official key and T.I.M.E.s key