Kerala-engg-paper2-solution-2015.pdf

  • Uploaded by: sasi
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Kerala-engg-paper2-solution-2015.pdf as PDF for free.

More details

  • Words: 5,130
  • Pages: 10
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2015 – PAPER II* VERSION – B1 [MATHEMATICS] 1.

Ans:

Sol:

0<x≤

9.

7 3

7 − 3x ≥ 0 ⇒ x ≤ 0<x≤

Ans:

−1 + i

Sol:

i10 + i11 + i12 + i13 = 0 1 1 1 1 = 11 + 12 + 13 + 14 i i i i ∴ Remaining expression = −1 + i

7 and x ≥ 1 3

7 . 3

10. Ans: 2.

Ans:

f(2n + 1) = −1 for all n n f(1) = f(2) = 1 and f(2 ) = 1, (i.e) ∴ f(4) = f(8) = f(16) = 1 f(2n) = −1 when n is odd ∴ sum = 5 − 20 = −15.

4.

5.

Ans:

X=Y

Sol:

X=Y

Ans:

(A ∪ B)\A ∩B

Sol:

(A ∪ B)\A ∩B

Ans:

Sol:

6.

7.

8.

12. Ans:

1   3 , 1  

Sol:

−1 ≤ cos3x ≤ 1 −1 ≤ −cos3x ≤ 1 1 ≤ 2 − cos3x ≤ 3 1 1 1≥ ≥ . 2 − cos 3 x 3 28

Sol:

n(C) = 40, n(F) = 16, n(H) = 11 n(C ∩ F) = 8, n(C ∩ H) = 6 n(F ∩ H) = 2, n(C ∩ F ∩ H) = 1 n(C ∪ F ∪ H) = 67 − 16 + 1 = 52 n(C′ ∩ F′ ∩ H′) = 80 − 52 = 28

Ans:

3

Sol:

1 − 3y = −26, y = 9 |y| = 3.

Ans:

x = 1 − 2y

2

Sol:

14. Ans: Sol:

15. Ans:

x2 + y 2 = −y + 1

⇒ x + y = y − 2y + 1 2 ⇒ x = 1 − 2y. 2

13. Ans:

2

2

2

2

2

f(z) = 1 + z + z 2 2 Re(f(z)) = 1 + x − y + x 2

Sol:

Ans:

Sol:

2

Re f (z ) = x − y + x + 1= 0 2 2 x − y + x + 1 = 0.

11. Ans: 3.

2

−15 Sol:

Sol:

x −y +x+1=0

Sol:

2

π 2 2

z = 2i 2 z i 1+i i Z e − = 2i e − = 2i e = 2e[i] π Arg = . 2 p+q+1=0 4p − 4q = 4(q − p) 2 2 p −q +p−q=0 ⇒p+q+1=0 2

2

6 |x − 3| = 1 x − 3 = ±1 x = 2, 4 2

2x + 9x + 45 = 0 3 9 ⇒ 3(α + β) = − 2 2 5 45 αβ = ⇒ 9αβ = 2 2 9 45 x2 + x + =0 2 2 2 2x + 9x + 45 = 0.

α+β= −

−1 and 1 11 y=

x

x − 5x + 9 2 x y − (5y + 1)x + 9y = 0 2

for real x, ∆ ≥ 0 2 2 i.e (5y + 1) − 36y ≥ 0 (5y + 1 − 66) (5y + 1 + 6y) ≥ 0 (−y + 1) (11y + 1) ≥ 0 (y − 1) (11y + 1) ≤ 0  −1  ⇒ y ∈  , 1  11  16. Ans: Sol:

17. Ans: Sol:

22. Ans:

Sol:

ab + bc + ca 3x − 2(a + b + c)x + ab + bc + ca = 0 2 4(a + b + c) = 12(ab + bc + ca) 2 (a + b + c) = 3(ab + bc + ca) 2 2 2 a + b + c = ab + bc + ca. 2

2x + 2x − 1 = 0. 2

1 1+ 3

=

1− 3 1 3 =− + −2 2 2

1 3 1 Sum = −1, product = − = − 4 4 2 1 2 x +x− =0 2 2 2x + 2x − 1 = 0.

23. Ans: Sol:

24. Ans: Sol:

25. Ans:

1   50 1 − 10   2  50 25 + + ..... area S10 4 4 1 a = 25, r = 2 1   25 1 − 10   2  = 50 1 − 1  .   1  210  1− 2

25 +

2 2

16a c

4

4

2 2

(a + c) = (2b) = 16a c 10

11 24(x + 1) = 3 (x − 2)(x − 1) x = 10. 3 10

18. Ans: Sol:

19. Ans: Sol:

20. Ans:

Sol:

1 3 4

21. Ans: Sol:

= 1 + 10C1 .

ar = 1458, ar = 54 1 1 3 . ⇒r = ⇒r= 27 3 900 S1 + S2 + …… + S9 = 45 S10 + ………+ S19 = 55 S20 + ……… + S29 = 65 S30 + ……… + S39 = 75 S40 + ………. + S49 = 55 ………………. S (99) = 135 S = 5 (180) = 900.

1 1 . x + 10C2 . . x 2 + 2 4

1 3 10 1 4 . x + C4 . . x + .... 8 16 1 By inspection, 10C3 . is the highest 8 coefficient . ∴ power of the x is 3. 10

7

26. Ans: Sol:

27. Ans: Sol:

C3 .

5880, No correct option given. No. of ways = 7 × 7 × 6 × 5 × 4 = 5880 13 (m + 4) (m + 5) = 22(m − 1) m = 7, 6 m1 + m2 = 13

3

28. Ans: Sol:

x  1 +  2 

a11 + a12 + a13 = 141 a21 + s22 + s23 = 261 x + 161 = 141 2 ⇒ x = 21 ⇒ 3(a + d) = 21 a+d=7 3a + 63d = 261 ⇒ a = 3. 2

Sol:

29. Ans:

1024 211 = 210 = 1024 . 2 120 n

Sol:

n

n

r

=

Cr −1

16

a ar = 32, r = 2 4 4 ⇒ a = 4 ⇒a = 4 ⇒r=2 14 16 a15 = 4 × 2 = 2 .

Cr Cr

n

Cr −1

15

n

3

n − (r − 1) r

= n + 1− r 15

∑ r n Cr −r 1 = ∑ (16 − r ) 1

C

1

= 16 x 15 −

1 . 15 × 16 2

= 240 − 120 = 120. 30. Ans: Sol:

31. Ans: Sol:

37. Ans:

−∆

Sol:

∆ = (36 − 30) −2(24 − 15) + 3(12 − 9) = −3 ∆′ = 4(−6) −8(−9) + 15(−3) = 3 = −∆.

C1 → C1 + C2 + C3 9+x 3 5 ⇒ 9+x 2+ x 5

9+x

Sol:

=0

1 3 ⇒ (9 + x) 0 x − 1 0

5 0

=0

x −1

0

39. Ans: Sol:

⇒ (9 + x) (x − 1) = 0 ⇒ x = −9 or x = 1, 1 2

32. Ans: Sol:

33. Ans:

−6

40. Ans:

−3(12 − 4) + 2b(−2) = 0 −24 −4b = 0 4b = −24 b = −6

Sol:

41. Ans:

−3 ,3 2 |A| = x − 2x(x − 1) = −9 2 ⇒ x − 2x + 2x = −9 2 ⇒ 2x − 3x − 9 = 0

3 ± 9 + 72 3 ± 9 = 4 4 −3 x = 3 or . 2

42. Ans: Sol:

Sol:

0

43. Ans:

C1 → C1 + C2 + C3 0 cos2 36°

cot 135°

⇒ 0 cot 35° sin2 37° = 0 0 cos2 25° cos2 65° 35. Ans: Sol:

36. Ans: Sol:

~(p ∨ q) ∨ (~p ∧ q) = (~p ∧ ~q) ∨ (~p ∧ q) = ~p ∧ (~q ∨ q) = ~p ∧ T = ~p (~p ∧ ~q) ∨ (~p ∧ ~r) ~[p ∨ (q ∧ r)] = ~p ∧ ~(q ∧ r) = ~p ∧ (~q ∨ ~r) = (~p ∧ ~q) ∨ (~p ∧ ~r) ~(P ∨ Q) ~(P ∨ Q) 4 5

ABA

Sol:

1 2 sinθ = = θ 1 1 + tan2 1+ 2 4 1 4 = = . 5 5 4 2×

4 (x − 5) − (y − 5) = 4sec θ − 4tan θ = 4 2

44. Ans: Sol:

(−2, ∞)

2

2

2

4 tan15 + tan75 =2−

(ABA)′ = A′B′A′ = ABA

|x − 3| < 2x + 9 ⇒ −(2x + 9) < (x − 3) < 2x + 9 −2x −9 < x − 3 ⇒ −3x < 6 ⇒ x > −2 ----(1) x − 3 < 2x + 9 ⇒ −x < 12 ⇒ x > −12 --(2) From (1) and (2) we get x > −2

θ 2

( )

x=

34. Ans:

~p

2 tan

Sol: Sol:

A = xy, P = 2(x + y) 2 Since (x + y) ≥ 4xy 2

x+4

3

2

P ⇒   ≥ 4A 2 2 ⇒ P ≥ 16A.

38. Ans:

1, 1, −9

P ≥ 16A

3 +2+ 3 = 4 .

π f(x) = cos4x + tan3x 2π π Period of cos4x = = 4 2 π Period of tan3x = 3

π π ∴ period of f(x) = LCM of  ,  3 2 = π.

45. Ans:

n +1 n −1

Sol:

46. Ans:

Sol:

sin(θ + φ) = n sin(θ − φ) sin(θ + φ) n ⇒ = sin(θ − φ ) 1 sin(θ + φ) + sin(θ − φ) n + 1 Nr + Dr ⇒ = Nr − Dr sin(θ + φ) − sin(θ − φ) n − 1 2 sin θ cos φ n + 1 ⇒ = 2 cos θ sin φ n − 1 tan θ n + 1 ⇒ = . tan φ n − 1

sin x − sin x + 3sin x − 3sin x = 0 4 4 2 (sin x + 3) (sin x − sin x) = 0 4 2 sin x = sin x sinx = 0 3 solutions 2 sin x = 1 2 solutions 5 solutions. 8

50. Ans:

6

4

2

(0, 4)

Sol:

C(h, k)

 16  tan−1   13  2 tan

(4, 2) •

1 1 + tan−1 3 4

−1

1   2.  3  + tan−1 1  = tan 1  4  1−  9  3  1 = tan−1  + tan−1  4 4 −1

A(0, 0)

h+8 k +0 ,   = (4, 2 ) 2   2

 3 1  +   4 4  = tan 3 1   1− .  4 4 

⇒ h = 0, k = 4 ∴ C(0, 4).

−1

51. Ans:

 16  = tan−1  .  13 

47. Ans:

Sol:

2π 7 π  π  2π ⇒  − sin−1 x  +  − sin−1 y  = 2  2  7 ⇒ sin

48. Ans:

Sol:

49. Ans: Sol:

x + sin

−1

2π 5π y = π− = . 7 7

52. Ans: Sol:

 1   − 1, 2  

:

1

G

C(5, 5)

A, B, C are collinear points x1 − 3 = x2 − x1 y1 − 4 = y2 − y1 y − 4 y 2 − y1 ⇒ 1 = x1 − 3 x 2 − x1 ∴ slope of AB = slope of BC ∴ A, B, C are collinear.

cos−1 x > sin−1 x π ⇒ cos−1 x > − cos−1 x 2 π ⇒ 2 cos−1 x > 2 π cos−1 x > 4 1 x< and x > −1. 2

53. Ans:

Sol:

a

2

p1 =

6

sin x + cos x = 1 8 2 3 sin x + (1 − sin x) = 1

−a 2

sec θ + cos ec 2θ

= a sin θ cos θ =

− a cos 2θ

a sin 2θ 2

= a cos 2θ cos2 θ + sin2 θ 2 2 2 2 2 2 ⇒ (2p1) + (p2) = a ⇒ 4p1 + p2 = a . p2 =

5 8

2

 10 + 2 10 + 2  G ,  = (4, 4 ) 3   3

cos−1 x + cos−1 y =

−1

(4, 4) • O(2, 2)

Sol:

5π 7

B(8, 0)

54. Ans:

17 3

Sol:

Solve : 2x + y = 2 x + 2y = 2 ---------------2 2 x= , y= 3 3 2

d=

55. Ans: Sol:

56. Ans: Sol:

2

2 17  2  . 1 −  +  2 −  = 3 3 3    

60. Ans:

The required line is 4x − y = k which passes through (5, 0) ⇒ 20 − 0 = k ⇒ k = 20 4x − y = 20 x y − =1 5 20 x y + =1 5 − 20 ∴ (0, −20).

2

=

2

61. Ans:

58. Ans: Sol:

64. Ans:

g2 + f 2 − c = 9 + 1 + 28 = 38

 2 +1  ,  2 

2 + 1  2 

Distance between the direction = 2 2 .3

Choice (D)

Sol:

centre : (h, k) = (−g, −f) = (3, −1) ∴ x = h + r cosθ, y = k + r sinθ

3 2

2

63. Ans:

2g = −6 ⇒ g = −3 2f = 2 ⇒ f = 1 c = −28

2

x + y = a(x + y)

=

x = 3 + 38 cos θ, y = −1 + 38 sin θ

r=

59. Ans:

Sol:

= 4 + 16

= 2 5.

2

2

Equation of the circle passing through (0, 0) (a, 0) (0, a) 2 2 x + y + 2gx + 2fy + c = 0 ––––– (1) passing through (0, 0) ⇒ c = 0 passing through (a, 0) ⇒ 2g = –a passing through (0, a) ⇒ 2f = –a ∴ Equation of the circle 2 2 x + y – ax – ay = 0 2 2 ⇒ x + y = a(x + y) Choice (C)

62. Ans:

20

2

⇒ (x − 3) + y = 16

1 k k k2 × × = = 10 2 5 1 10

(8 − 6 )2 + (− 2 − 2)2

(10cosθ + 10sinθ)

 5(x − 3 )   y  ⇒   +  =1  20   4 

k 5 k y intercept = 1

solve x + y = 6 x + 2y = 4 --------------⇒ y = −2, x = 8 ⇒ (8, −2) ∴ centre : (8, −2)

3

20 cos θ + 15 20 sin θ + 0 , y= 5 5 ⇒ 5x − 15 = 20cosθ, 5y = 20sinθ

x intercept =

57. Ans: 2 5

:

• P(x, y)

x=

Sol:

±10

r=

2 • (5, 0)

⇒ k = ±10.

Sol:

a circle

Sol:

(0, −20)

Area =

 2 +1 2 + 1   , is the only option satisfy  2 2   the equation of the circle 2 2 (x − 1) + (y − 1) = 1.

Sol:

Sol:

0, –4 y = mx + c be a tangent to 2 2 x = 4ay is c = –am 1 ⇒ k = − k 2 ⇒ k =0, –4 4 x2 3y2 + =1 9 8 2b2 16 8 = ⇒ b2 = a 9 3 Equation of ellips a = 3,

x 2 y2 + = 1⇒ 8 9 3

a e

=3 2

x2 3y2 + =1 9 8

65. Ans: Sol:

AC = AB + AD = 3i +6j + 2k D

40 a=5 b=4 4 Max {cp} + 5min {cp) = 4 × 5 + 5 × 4 = 40

66. Ans: Sol:

Sol:

A AC ∴ P= AC

(0, –1) 2

=

2

y – 4x – 2y – 3 ⇒ (y –1) = 4 (x + 1) 2 shift the origin to (–1, 1) ⇒ y = 4x focs, (1, 0), referring the original axis, focus is (0, 1) ∴ Equation of Latusection is x = 0 2 ∴ y – 2y – 3 = 0 ⇒ y = –1 or 3 ∴ and points on (0, –1), (0, 3)

9 5 7

71. Ans:

Sol:

Sol:

⊥or distance from a2 or r = a1 + λ b is

b = 2i − 2 j + 2k

d

2−2+2 12

=

i

2

(a2 − a1)× b = 3

3. 2 3

j k 0 0 = −18 j + 9k

2 3 6

1 = 3 –1  1  θ = cos   3

405 9 5 = 7 7

∴d=

72. Ans:

α = ± 1, β = 1

Sol:

Sol:

2i+3j+6k (4, 2, 2)

a. b a b 3

68. Ans:

(1, 2, 2)

b =7

a = i+ j+k

=

(a2 − a1) × b b

–1  1  cos   3

cosθ =

B

1 (3i + 6 j + 2k ) 7

d=

67. Ans:

C

1 1 1 4 3 4 = 0⇒ β = 1 1 α β

0

a+b

2

= 4 + 4 + λ2 = 8 + λ2

a−b

2

= 8 + λ2

∴ a +b − a −b = 0

1+ α + β = 3 ⇒ α + β = 2 ⇒ α = 1 2

2

2

2

73. Ans:

∴α=±1

69. Ans: Sol:

2

14

Sol:

PQ = OQ − OP ⇒

0 Q=

∴QA = a −

PQ + OP = OQ ∴ PQ + OP = OQ =

70. Ans:

1 (3i + 6 j + 2k ) 7

a+b+c 3

=

14

a+b+c 3

2a − b + c 3

∴ QA + Q B + Q C = 0

74. Ans: Sol:

π 2 Given lines are x y 2 x y z = = and = = 1 1 −1 1 −1 −1 2 3 6 4

1 1 1 1 . + . × −1 + 1× = 0 2 6 3 4 π θ= 2

75. Ans:

1 – cos α = 2

sin α = 2

11 3

82. Ans: Sol:

a b Projection = b

Sol:

=

76. Ans:

22 11 = 6 3

2 2   sin−1   3   

=

3 4

P A ∩B

)

P(A ∪ B) = P(A) + P(B) – P (A ∩ B) ⇒ P(A) + P(B) = P(A ∪ B) + P (A ∩ B) ∴ 1 + P(A ∩ B) – P(B) – P(A) = 1+ P(A ∩ B) – (P(A ∪ B) + P(A ∩ B) C = 1 – P(A ∪ B) = P (A ∪ B) = P A ∩B

(

)

83. Ans: 1 and 7 Sol:

Let the unknown date be a and b 1 Variance = x 2 − x 2 = 5 .2 n 1 ⇒ 4 + 16 + 36 + a2 + b2 − 16 = 5.2 5 2 2 ⇒ a + b = 50 Also 2 + 4+ 6 + a + b = 20 ⇒ a + b = 8 It is clear that the two observations are 1 and 7



Ιf θ is the required angle then sin θ = cosin if angle between i − j + k and 2i − j + k

Sol:

(

3 4

(

2 + 1+ 1

2 2 = 3 3 6

2 2   θ = sin−1   3   

)

84. Ans: 24 77. Ans: –2 Sol: Sol:

cos2α + cos2β + 1 – 2sin γ = 1 cos2α + cos2β + cos2γ = –1 ∴ value = –2 ∴ choice (C)

sum of first n terms =

Midpoint joining (3, 2, 6) and (5, 4, 8) (i) (4, 3, 7) satisfying x + y +z = 14

Sol:

79. Ans: (1, 3, 5) Sol:

Foot of the ⊥ lie on the line. Satisfying only A(1, 3, 5) r

80. Ans: 3 Sol:

Sol:

45 4 There are a total of 18 observations a 1 × 10 + (a2 × 8 ) ∴ combined mean = , 18 where a1 and a2 denote the means But a1 = 15 ⇒ 40 150 + 8a2 45 = ⇒ a2 = 3 18 4

(

)

86. Ans: 26

The required plane is (2 + 3λ)x + (−8 −5λ)y + (4 + 4λ)z + −(p + 10λ) = 0 Compare with the plane x + 3y + 0z + 13 = 0 comparing coefficients λ = −1 Then we get p = 3.

Sol:

87. Ans: 81. Ans:

n (296 + (n − 1) (− 2)) 2

= n × 125 (given) ∴ 298 – 2n = 250 ⇒ n = 24

85. Ans:

78. Ans: x + y +z = 14 Sol:

a = 148 ; d = –2

2

3 4 cos 60 + cos 45 + cos α = 1 1 1 + + cos2 α = 1 4 2 2

2

2

Sol:

2

f(256) = f(16 ) = f(16) + 6 2 f(16) = f(4 ) = f(4) + 6 2 f(4) = f(2 ) = f(2) + 6 But f(2) = 8 ∴ f(4) = 14; f(16) = 20 and f(256) = 26 1 2 10 9 8 7 6 5 4 3 1 . . . . . . . . 9 10 7 8 5 6 3 4 2 = 1 2

88. Ans: 3 Sol:



The domain is not explicitly given; it is R’ − {0, ± 1} and the function is continuous on its domain

97. Ans:

89. Ans: 1 Sol:

Sol:

90. Ans:

Sol:

 1    sin y  1  lim it = lim  −  y →α   1  y  y     =1−0=1 2 9 limit = lim

x →α

=−

2x 2 = 3(3 x − 2) 9

=

Sol:

f’(x) = g(x + 1) f’’(x) = g’(x + 1) = h(x) f’’(2x) = h (2x)

 1 − cos 2 x   f(x) = sin−1   2 sin x  1 = sin− (sin x) f’(x) = ±1 |f’(x) = 1

Sol:

2

y = 100 + 45 = 145 Yy’ = 0 ⇒ y’ = 0 (Q y ≠ 0)

Sol: x →0

= −7

Sol:

+

2 x3

1 + 2 at x = 1 4

7 4

[3 sin (10x + 11) −7] is maximum 2 When sin (10x + 11) is minimum 2 ∴ minimum value of 3sin (10x + 11) = 0 2 ∴ Maximum value = (−7) = 49. 2

If A sq. units in the area measure when the radius is r units, 2 their A = πr dA dr = 2πr ∴ dt dt dA dr But = 3c dt dt ∴ 2πr = 3c ∴ c = 4π, when r = 6

dy = 6x − 5 dx = 6 – 5 = 1 at (1, 4)

101. Ans: 8

x Sol:

1+ x2 y = sec(tan− x)

227 − 5 222 = = 37 11 − 5 6 6x = 48 ⇒ x = 8

6x – 11 =

1

= sec sec 1 + x 2

102. Ans: k ≥ 1

y = 1 + x2 dy x = dx 1+ x2

Sol:

f’(x) = cosx – k ∴ f decreases if cosx ≤ k ∴ for decreasing k ≥ 1

Choice (A)

103. Ans: –3 96. Ans: 1 Sol:

2

100. Ans: 1

The limit = lim (3x − 7)

95. Ans:

−2 (1 + x )3

99. Ans: 4π

94. Ans: −7 Sol:

=

98. Ans: 49

93. Ans: 0 Sol:

1 1 + 1+ x +1 x dy 1 1 = − dx (1 + x )2 x 2

y = 1−

dx 2

92. Ans: 1 Sol:

7 4

d2 y

91. Ans: h (2x) Sol:

dx =1 dy

Sol:

Ιf t = tan θ,

sin x = sin2θ, tan y = tan 2θ, |θ| < π ∴ x = 2θ, y = 2θ

4

dy m = + 2nx + 1 dx x m ∴ + 2n 2 + 1 = 0 2 m + 2n + 1 = 0

m + 8m + 2 = 0 ∴ 6n + 1 = 0

109. Ans:

1 n=− 6n + 1 = 0  6 ∴ ⇒ 3m + 2 = 0 m = − 2 3 −4 5 2m + 10n = − 3 3 = –3

Sol:

 xn  1 tan−1  + C  a  na  

xn −1dx

1

du

∫ x2n + a2 = n ∫ a2 + u2 ; if a = x

n

=

1 1 u . tan−1 + C n a a

=

 xn  1 tan−1  + C  a  na  

104. Ans: 3

–1

Sol:

110. Ans: log|x| + 2tan x + C

acceleration time t = 12t – 12 ∴ acceleration is zero when t = 1 2 velocity at time t = 6t – 12t + a ∴ –3 = 6 – 12 + a ⇒a=3

Sol:



cot ( x e x )

=



if u = x e

x

Sol:

= log |sec u| + C x = log |sec (x e )| + C

106. Ans:

Sol:



dx x log x



1 = 3

1 + x3

∫ ∫

2

=

=

(u − 1)

du



=−

2 1 + x 3 ( x 3 − 2) + C 9 x5



1 log log x 2 + C 2

111. Ans: =

dx cot u

2

–1

x

(1 + x )e x

1

∫ x(x2 + 1) dx = ∫  x + x2 + 1 dx = log|x| + 2tan x + C

105. Ans: log |sec (x e )| + C Sol:

(x + 1)

2

=

3

if u = 1 + x

du (if u = log x) 2u 1 log u + C' 2

1 log log x + C' 2

1 log log x 2 + C 2

u

 1   u−  du  u  

1 1 −1 1  1 −1 1    tan   − tan    9 4 4 5  5 

112. Ans: =

=

1 3

=

1  1  2 32 2  u − 2u  + C 3 3 

1

Sol:

2 1 + x3 (1 + x3 − 3 ) + C 9 2 = 1 + x 3 ( x 3 − 2) + C 9

=



dx ( x 2 + 16 ) ( x 2 + 25 )

0 1

1 = 9



1   1 − 2  2  dx  x + 16 x + 25 

0

107. Ans: log |2 e − 5| + C 2x

Sol:



4 ex 2 e x − 5 e− x

1

dx = =

∫ ∫

4 ex 2 e2 x − 5

1 1 x 1 x . tan−1 − tan−1  9 4 4 5 5 0 dx

du 2x if u = 2 e − 5 u

113. Ans: 0

= log |u| + C 2x = log |2 ex − 5| + C

1

Sol:

108. Ans:

x2 + 2 x + log x + C 2





x(1 − x )(1 + x ) dx

−1

2

Sol:

1 1 1 1 1 tan −1 − tan−1  9  4 4 5 5

=

 1  1   x+  dx =  x + 2 + dx  x x    1 = x 2 + 2 x + log | x | +C 2



The integrand is an odd function & the range is (−1, 1) l ∴ =0



114. Ans: 4 Sol:

=−

3

Where the curves meet, 2 X = 2x ⇒ x \ 0 or 2

=

π 4 2

+

1 2

1  π 1 −  4 2

2



∴ required area-measure

( x 2 − 2x )dx )

117. Ans: yy"+(y')2 + 1 = 0

0

Sol:

8 = −4 3 4

2

2

x +y =1 ∴2x + 2yy’ = 0 1 + y'2 + yy' ' = 0

3

118. Ans: y − 3xy = C 3

115. Ans:

π 2

Sol:

π

Sol:

π



sin2 x

−π

1+ 7

x

dx =

0



sin2 x dx



1+ 7x

1+ 7

−π π

=

−π

1+ 7x π

= 2.

x





−π

sin2 x 1 + 7− x

dx i.e, x.y =

116. Ans:

sin x dx

119. Ans: 3 and 2 Sol:

Sol:

1 π . 2 2

120. Ans: y = Cxe

∫ 0

Sol:

π

2

2 x sin x dx = 3

2

4



The equation is

 2 d2 y  dy 2   d3 y 2   +   =   dx 2  dx    dx 3   

sin2 x dx

1  π 1 −  2  4 π

y 2dy + A

3

0

= 2.



3xy = y − C

2

2



The equation: dx Ιf + x = y2 dy

x sin x dx

x

dy y = y+ dx x dy dx = + dx y x log |y| = log |x| + x + A x y = Cx e

0 π

= [x( − cos x ) − ( − sin x )]0 4

* This key had been prepared by our academic team. However, in questions where multiple interpretations are possible, there may be divergence from the official answer key published / to be published by the examination authorities and no claim shall lie against T.I.M.E. Pvt. Ltd. in the event of any such mismatch between official key and T.I.M.E.s key

More Documents from "sasi"

Falling
May 2020 26
Blood Rain
May 2020 10
Cover Map.docx
November 2019 16
00jurnal.pdf
May 2020 10