SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2016 – PAPER II VERSION – B1 [MATHEMATICS] 1.
2.
Ans: Sol:
(2 ∗ 3) ∗ 2 = (23) ∗ 2 = 8 ∗ 2 = 82 = 64.
Ans:
(−∞, ∞)
Sol:
f(x) =
(x + 3)(x − 3) , if x (x − 3)
Ans:
0, ±
−1
= 2tan−1 (2 − 3 ) = 2 × 15° = 30°.
≠3
x + 3, if x ≠ 3 x ∈ (−∞, ∞). 3.
π cos 3 = 2 tan π 1 + sin 3
64
8.
Ans:
1
Sol:
(1 + i)(2 + 3i)(3 − 4i) (2 − 3i)(1 − i)(3 + 4i)
3
2 . 13 . 25
Sol:
3
gf(a) = g(a ) = 3
a3
( )
a f(g(a)) = f(3 ) = 3a 3 3a = a a=0 2 ⇒a =3
a=± 4.
3
Ans:
2
Sol:
x +1 f = 2x 2x − 1
1 = a2 + b2 2 2 ⇒ a + b = 1.
= 33 a
9.
Ans: Sol:
1+ 1 f = 2 ×1 2 × 1− 1 ⇒ f(2) = 2.
5.
6.
7.
Ans:
{e, f, c, d}
Sol:
A/B = {a, b}, B/A = {c, d}, A ∩ B = {e, f} A − B = {a, b} B − A = {c, d} A ∩ B = {e, f} B = {c, d, e, f}.
Ans:
A⊂B
Sol:
A ⊂ B (Not onto)
Ans: Sol:
a2 + b2
=
13 . 2 . 25
3.
π 6
argz = arg(Nr) − arg(Dr) π π cos 3 −1 cos 3 −1 = tan − tan 1 + sin π 1 + sin π 3 3
= a + ib
10. Ans: Sol:
π 4
z + iω = 0 ⇒ z = −iω ⇒ arg z = arg(−i) + arg (ω) π ⇒ arg z = − + arg(ω) ----- (1) 2 arg(zω) = π ⇒ arg(z) + arg(ω) = π ---- (2) π Solving (1) and (2), arg(z) = . 4 1 z=
2−i i
(2 − i)2
4 − 4i − 1 = 4i − 3 −1 i 2 2 Re(z ) = −3 Im(z ) = 4 Re(z2) + Im(z2) = −3 + 4 = 1.
z2 =
11. Ans: Sol:
2
=
In the region x < 0 |z + 1| < |z − 1| |x + iy + 1| < |x + iy − 1| |(x + 1) + iy| < |(x − 1) + iy|
(x + 1)2 + y2
<
(x − 1)2 + y2
(x + 1) + y < (x − 1)2 + y2 2x < −2x ⇒ 4x < 0 ⇒ x < 0. 2
2
12. Ans:
Sol:
3
Sol:
3 3 |z| = z − + z 2 ≤ z−
|z| ≤ 2 + |z| −
3 3 + z |z|
|z|2 − 3 ≤ 2 |z| |z|2 − 2|z| − 3 ≤ 0 (|z| − 3) (|z| + 1) ≤ 0 −1 < |z| < 3 13. Ans:
Sol:
14. Ans:
a + 3 4= − 2 a + 3 = −8 a = − 11.
3 |z|
3 ≤2 |z|
18. Ans:
Sol:
2048 a=2 a a a a a × × × × × a × ar × r5 r 4 r3 r2 r ar 2 × ar 3 × ar 4 × ar 5 a11 = 211 = 2048.
3 2m + n + k n k = 2+ + m m m = 2 + tan33 + tan12 + tan33 × tan12 =2+1 = 3. tan(45) = tan(33 + 12) tan 33 + tan 12 1= 1 − tan 33 tan 12 1 − tan33 tan12 = tan33 + tan12 1 = tan33 + tan12 + tan33 tan12
19. Ans:
Sol:
3 2 243 3 = 32 2 3 a= . 2
1 − 4α 1 4 1 . β= − 4α
αβ = −
a 4 − a1 a3 − a 2 a2 − a1 a2 − a1
=
= 15. Ans:
Sol:
8 x2 − 6x + c = 0 α + α2 = 6 α(α + 1) = 6 ⇒2×3=6 α=2 α3 = c c = 8.
21. Ans:
Sol:
22. Ans:
Sol: 16. Ans:
Sol:
37 6
α+β= 17. Ans:
−11
b 1 37 = 6+ = . a 6 6
23. Ans:
Sol:
a3 − a 2
+
a3 − a 2
+
a 4 − a3 a 4 − a3
a2 − a1 + a3 − a2 + a 4 − a3 a2 − a1 a 4 − a1 a2 − a1
=
a 4 − a1 a3 − a 2
.
450 a1 + a20 = 45 a1 + a2 + a3 + ….. a20 = 10 × 45 = 450. 3025 1 × 1 + 2 × 22 + 3 × 32 + 4 × 42 + ..… + 10 × 102 = 13 + 23 + 33 + ….. 103 10 × 11 = 2 = (55)2 = 3025.
α=6 αβ = 1 1 β= 6
5
a5 =
20. Ans:
Sol: Sol:
2x2 + (a + 3)x + 8 = 0 α2 = 4 α=2 a + 3 2α = − 2
12 5d = 60 d = 12.
2
24. Ans:
Sol:
25. Ans:
Sol:
2
31. Ans:
9 C3 36 k3 = 9C4 35 k4 k = 2.
Sol:
4320 X
X
X
X
X
X
X
6 ways 6 ways 5
4
3
2
1
Total ways = 6 × 6! = 6 × 720 = 4320. 26. Ans:
8 n
P4
n
P3
Sol:
Sol: =5
Sol:
28. Ans:
Sol:
29. Ans:
Sol:
( )
336
34. Ans:
Sol:
2 C2 + nC3 + 6C3 n=5 5 C x = 5C 3 x = 2.
[nCr + nCr − 1 = n + 1Cr]
35. Ans:
Sol:
9 0+
1 18
18 1 +
C1
+
2 18
C2
+ ..... +
8 19 98 A = 2 1 2 = 38 − 98 = −60 1 0 0
−3 7x + x(x − 1) = −9 x2 + 6x + 9 = 0 (x + 3)2 = 0 x = −3. −10 Expand along R1 we get coefficient of x2 = −10. 299A 1 ω2 A= ω 1 1 ω2 1 ω2 A2 = ω 1 ω 1
18 18
C18
1 1 + + .... + 18 18 C1 C8
2 ω2 + ω2 = 2 ω + ω
9 18
C9
+ C8
1 18
2 2ω2 = 2ω 2 1 ω2 =2 = 2A ω 1 A3 = A2 A = 2A × A = 2A2 = 4A An = 2n − 1A ⇒ A100 = 299A.
a 18
C9
36. Ans:
1 − a2 a
Sol:
a2 + ab ab − ab a b a b = 2 ab − ab a + ab a − a a − a
1 0 = 0 1
2
a + ab = 1 ⇒ ab = 1− a2 b=
3600
1 1 + ..... + 18 18 C1 C18
1 = 2a 1 + 18 + ..... + C1 ∴ 2a = 18 ⇒ a = 9.
Sol:
Sol:
22016 = 26 = (64 )336 = (63 + 1)336 Remainder = 1.
1 + = a 18 C 0
30. Ans:
33. Ans:
1
n
1 [1 5 + 5x 2 + x] 1 x 1 + 5 + 5x + 2x + x2 = 0 x2 + 7x + 6 = 0 (x + 6) (x + 1) = 0 x = −6, −1.
A2 = (−60)2 = 3600.
(n − 3)! = 5 n! ⇒ × (n − 4)! n! n−3=5 n = 8. 27. Ans:
32. Ans:
−1, −6
1 − a2 . a
37. Ans:
Sol:
3 396 − 19 + x < 376 − 19 + 9x 396 + x < 376 + 9x 20 < 8x [−2, 6] x < 1 ⇒ −2x + 4 ≤ 8 ⇒ x ≥ −2 1≤x<3 ⇒ 2 ≤ 8 inequality satisfied x ≥ 3 ⇒ 2x − 4 ≤ 8 x≤6
x ∈ [−2, 1) ∪ [1, 3) ∪ [3, 6] x ∈ [−2, 6]. 38. Ans:
Sol:
39. Ans:
Sol:
~p ∨ (q ∧ r) p−F q−T r−T check options ~p ∨ (q ∧ r)
Sol:
~(p ∨ q) ∨ ~(p ∨ r) = (~p ∧ ~q) ∨ (~p ∧ ~r) = (~p) ∧ (~q ∨ ~r). ~p ∨ ~q
Sol:
~p ∨ ~q
Sol:
45. Ans:
(~p) ∧ (~q ∨ ~r)
40. Ans:
41. Ans:
Sol:
The given expression π 3π 3π = sin2 + sin2 + sin2 π − + 8 8 8
46. Ans:
Sol:
tanA − tanB = x 1 1 − =y tan B tan A tan A − tan B ⇒ =y tan A tan B x ⇒ tanA tanB = y 1 tan(A − B ) 1 + tan A tan B = tan A − tan B
4 2 3 1 − = sin 15 cos 15
1 2
sinx + cosx = 2 ⇒ (sinx + cosx)2 = 2 ⇒ 1 + 2sinx cosx = 2 ⇒ 2sinx cosx = 1 1 ⇒ sinx cosx = 2 3
x 1 + y = (x + y ) = x xy
3 cos 15 − sin 15 sin 15 cos 15
3 1 cos 15 − sin 15 sin(60 − 15 ) 2 2 = = 1 1 (sin 30) sin 15 cos 15 2 4 4 sin 45 = =4 2. sin 30
44. Ans:
1 1 + x y
cot (A − B) =
= 2.
Sol:
7 2 tan−1x = tan−1 − tan−1 4 3
2
π π = 2sin2 + cos2 8 8
43. Ans:
1 2
7 2 − 4 3 = tan 7 2 1+ . 4 3 1 ⇒x= 2
π 3π = 2 sin2 + sin2 8 8
Sol:
2.
−1
π sin2 π − 8
42. Ans:
1 4 2 = = tan(2θ) = 1 − tan2 θ 1 − 1 3 4 4 1 + tan(2θ + φ) = 3 3 = 3. 4 1 1− . 3 3 2 tan θ
=
47. Ans:
Sol:
1 1 + . x y
π 3
cot −1 x + cot −1 y
π π = − tan−1 x + − tan−1 y 2 2 2π π = π− = . 3 3
48. Ans:
Sol:
15 units. 2
a=
75
h=
49. Ans:
Sol:
54. Ans:
3 3 15 × 75 = a= . 2 2 2
(4, −1)
Sol:
•A(3, −2)
x + y − 8x − 14y + 52 = 0 2
2
It is circle (x − x1) (x − x2) + (y − y1) (y − y2) = 0 ⇒ (x − 2) (x − 6) + (y − 4) (y − 10) = 0 ⇒ x2 + y2 − 8x − 14y + 52 = 0.
50. Ans:
• (h, k)
(3, −4)
Sol:
(h, k) is given by solving x − x1 y − y1 −(ax1 + by1 + c ) = = a b a2 + b2 x − 3 y + 2 −(3 − 2 − 3 ) ⇒ = = 1 1 2 ⇒ (x, y) = (4, −1)
C(−1, 0)
D
B(−6, 5)
A(−2, 1)
D = A + C − B = (−2 + −1 − −6, 1 + 0 − 5) = (3, −4)
55. Ans:
(8, 6) •
Sol: 51. Ans:
4x + 3y − 25 = 0
⇒ 4 = 3(−a) ⇒ a = − 53. Ans:
Sol:
•
56. Ans: 4 . 3
4x + 3y = 3 The equation is (y − 1) = m(x − 0) ⇒ mx − y + 1 = 0 1 3 25 = ⇒ m2 + 1 = 2 5 9 m +1 16 9 4 ⇒m=± 3 4 ⇒ − x − y +1= 0 3 ⇒ 4x + 3y − 3 = 0.
⇒ m2 =
(h, k)
(h, k) is given by solving x − x1 y − y1 −2(ax1 + by1 + c ) = = a b a2 + b2 x − 0 y − 0 −2(−25 ) ⇒ = = 4 3 25 ⇒ x = 8, y = 6
4 − 3
4x − ay − 8 = 0 c −c − = 3× b a 1 3 ⇒ = ⇒ a = 3b b a
Sol:
(0, 0)
2 5
1 −1 Sol: x + y − 3 = 0 10 4 −1 2 −a m= = 10 = . −1 b 5 4
52. Ans:
x+y−3=0
Sol:
−16 x2 + y2 + 2x − 4y + r= =
g2 + f 2 − c
1+ 4 −
λ 4
λ πr2 = π 5 − = 9π 4 λ ⇒5− =9 4 λ ⇒ = −4 4 λ = −16
λ =0 4
57. Ans:
5 2
8 4 = PM 5
⇒ PM =
Sol:
(2, 7) •
61. Ans:
(–6, 0)
• Centre
h+o 0+0 , = (− 3, 0 ) 2 2
Sol: (2,• 3)
(h, o)
=5
(–3, 0)
(0, 0)
5 . 2
r=
58. Ans:
•(5, 3)
(5 − 2)2 + (7 − 3)2
d=
40 = 10 . 4
⇒ h = –6 ∴ F(–6, 0)
3
Sol: ± 5 , 0 6
62. Ans: r2 r1
•(2, 1)
• (1, 3)
x2 y2 + =1 1 1 4 9
Sol:
d=
(1 − 2)2 + (3 − 1)2
r1 =
g2 + f 2 − c = 1 + 9 − 6 = 2
r2 =
r12 + d2 = 5 + 4 = 9 = 3.
59. Ans:
Sol:
2 k passes through (1, 1) 2
x2 + y2 =
2
⇒x +y =2=
∴r=
24
Sol:
k ⇒k=4 2 2
1 1 − ,0 4 9
5 = ± , 0 6
63. Ans:
⇒2=
60. Ans:
F : ± a2 − b2 , 0 = +
= 1+ 4 = 5
F
( 2)
P
2
(4, 3)
2.
10 x+ 8 = 0
Sol: PF = 2a = 12 ⇒ 4a = 24
P •
M
• Directrix
PF =e PM
F
64. Ans:
Sol:
2 x2 y2 + =1 4 a e = 1−
b2 a
2
= 1−
a 1 = 4 2
⇒ 1−
b2 = 2 b= 65. Ans:
⇒ − 2kˆ = λkˆ ⇒ λ = –2
2
71. Ans:
3 b
2 Sol:
( 6)
2
Sol:
(kˆ )+ (− kˆ )+ −2kˆ = λ(kˆ )
a 1 a 1 = ⇒ = 4 2 4 2 ⇒a=2
Substituting ,
a
6 a2
−
9 b2
−
2
3
2
b
2
b
=1
60°
= 1 ––––––– (1)
a b
2b2 18 9a = ⇒ b2 = ––––– (2) a 5 5 a Solving, a2 = 1, b2 = 5 ∴ 2a = 2
66. Ans:
Sol:
cos60 =
⇒
θ=
2
⇒ 5π 6
72. Ans:
Sol:
68. Ans:
Sol:
73. Ans:
Sol:
–7 2 −1 −m = = 2 4 −2 7 7 7 −m ⇒ ⇒ m = –7 = 2 2
Sol:
(
) (
)
r r r r 3a − 5b • 4a × 5b r r r r = 20 3a − 5b • a × b r r r r r r = 20 3a • a × b − 5b • a × b
( ) ( ) [ ( ) ( )]
=0 70. Ans:
Sol:
= 4b
= 3b
2
2
⇒ a = 3 b
29
(a + b )• (a − b ) = 0 = 29
x=z=0 Represents y axis ∴ DC: 0, 1, 0
0
2
2
= 4b
⇒ a = b = 9 + 16 + 4
0, 1, 0
69. Ans:
a
2
2
⇒ a2 − b2 = 0
r −9 5π = a × cos 6 3 r ⇒ a =6
Sol:
a+b
b 1 = 2 a+b
⇒
a+b
a +b
6
r r a .b r −9 r = a cos θ = 5 b
67. Ans:
a+b
74. Ans:
Sol:
1 5 , , 0 2 4 x −1 y −1 z −1 = = =λ 2 −1 4 ⇒ (x, y, z) = (2λ +1, – λ + 1, 4λ + 1) ⇒ 4λ + 1 = 0 −1 ⇒λ= 4 1 5 ∴ (x, y, z) = , , 0 2 4
(
)
r • 2ˆi − 5ˆj + 7kˆ + 76 = 0
The required plane: 2x – 5y + 7z + k = 0 and passes through (–1, 5, –7) ⇒ 2x – 5y + 7z + 76 = 0
75. Ans: 90°
Sol:
P(2, 4, 5)
–2 r r r a + 2b − c = 0 r r r Let a = ˆi, b = ˆj ⇒ c = ˆi + 2ˆj Substituting,
b A
θ
a Q(3, 3, 1)
(1, 2, 3)
a.b
cosθ =
=
a b =
76. Ans:
Sol:
77. Ans:
Sol:
(2ˆi + ˆj − 2kˆ )• (ˆi + 2ˆj + 2kˆ ) 4 + 1+ 4
=
1+ 4 + 4
5 5 ⇒ (a – 6)2 + (b – 6)2 = 13 –––––– (2) ⇒ a = 3, b = 4 ∴ ab = 12
2+2−4 =0 9
–5
83. Ans: 34
DR1: 2, a, 4 DR2: 1, 2, 2 (2) (1) + (a)(2) + (4)(2) = 0 ⇒ 10 + 2a = 0 ⇒ a = –5
Sol:
14
The point in the line is (2λ – 1, 3λ – 1, 4λ – 1) which lies on x + 2y + 3z = 14 ⇒ λ = 1 ∴ point: (1, 2, 3) ∴d=
1 + 4 + 2 = 14
79. Ans:
Sol:
47 66
Sol:
P=
x−3 y+4 z−5 = = =λ −1 −2 2 3−x 4+y z−5 , = =µ −1 2 7 Solving (3, –4, 5)
(
) (
r = 2ˆi + 0ˆj + kˆ + λ ˆi − 3ˆj − 2kˆ x− 2 y − 0 z − 1 = = 1 3 −2 r = 2ˆi + 0ˆj + kˆ + λ ˆi − 3ˆj − 2kˆ
) (
85. Ans:
Sol:
81. Ans:
Sol:
)
86. Ans:
Sol:
2 + 1− 6 − 5 4 + 1+ 9
=
8 14
7 12
C2 + 4 C2 +5 C2 12
)
C2
(+ , + , –) or (–, –, –) 5
C2.
6
C1 + 6 C 3
11
C3 16 33
3 4
sin 3 x lim
x →0 tan 4 x
87. Ans: f(x) is continuous at x= 0
sum = 4, 6, 8, 9, 10, 12 ⇒ (1, 3), (3, 1), (2, 2), (3, 3), (2, 4), (4, 2), (5, 1), (1, 5), (2, 6), (6, 2), (5, 3), (3, 5), (4, 4), (3, 6), (6, 3), (4, 5), (5, 4), (4, 6), (6, 4), (5, 5), (6, 6)
Sol:
a + b + 23 =6 5 ⇒ a + b = 7 –––––– (1)
∑ (x i − x )
2
n
lim f ( x ) = lim cosh = 1
x →0 +
h →0
lim f ( x ) = lim − cos(− h) = lim − (cosh) = −1
x →0 −
82. Ans: 12
σ2 =
3
sin 3 x x 3 = lim = x →0 tan 4 x 4 x
Point (1, 1, 2) and plane 2x + y – 3z–5 = 0
88. Ans:
Sol:
(
=
8
d=
C2 −
16 33
⇒ P=
)
14
Sol:
12
47 66
(
80. Ans:
Total = (10 × 100) + (2 × 0) + 72n 1000 + 72n = 76 Class average = n + 12 ⇒ 1000 + 72n = 76n + 912 4n = 88 ⇒ n = 22 ∴ Total = 22 + 12 = 34
84. Ans:
78. Ans: (3, –4, 5)
Sol:
(a − 6)2 + (b − 6)2 + 4 + 1 + 16 = 34
Sol:
h →0
−5 6
n C 3 − n P3 lim n→ ∞ n3
n C 3 − n C 3 3! lim n→ ∞ n3
h →0
n(n − 1) (n − 2) = −5 × lim n→∞ 1. 2 . 3. n 3 1 2 −5 lim 1. 1 − 1 − = 6 n→ ∞ n n −5 = 6
'
Sol:
f f ' g − f . g' f ' ( x ). g( x ) − f ( x ) g' ( x ) = = g g2 [g( x )]2 '
f (4 ) = g
(5) (6) − 1 . (12) 3 36
95. Ans: 2 89. Ans: 3x4 – 6x2 + 5
Sol:
90. Ans:
Sol:
(
Sol:
)
f o g x2 − 1 = f[g(x2 – 1)] = f[(x2 – 1)2 – 1] = f[x4 – 2x2] = 3(x4 – 2x2 )+ 5 = 3x4 – 6x2 + 5
96. Ans:
π 4
Sol: π π = a 4
Period =
y’ = a. e3x + (ax – 5) 3e3x =a(1) + (–5) (3) (1) = a – 15 = –13 ⇒ a = 2 1 2
y = tan–1[secx + tanx] π x = tan −1 tan + 4 2 =
y’ =
91. Ans: –1
Sol:
2x log2 + 2y log2 y’ = 2(x + y) (1 + y’) log2 x y x y ⇒ 2 + 2 y’ = 2 . 2 (1 + y’) ⇒ 2 + 2y’ = 4(1 + y’) = 4 + 4y’ ⇒ 2y’ = –2 ⇒ y’ = –1
Sol:
S = cos–1(2x2 – 1) = 2cos–1x t = 1− x2 −2 ds = dt
−1
y 1 − x = sin x y (−2x ) 1 + 1 − x 2 y' = ⇒ 2 1− x 2 1− x2 2 ⇒ –xy + (1 – x )y’ = 1 2
98. Ans: 8
Sol:
f(x) = f ‘(x) =
1 210 1
x 10
10
2 1
10 x 9
=
1
210 =1 13 94. Ans: 18
[
10
y = 2x3 – 9x2 + 12x + 4 dy = 6 x 2 − 18 x + 12 = 0 dx ⇒ x2 – 3x + 2 = 0 ⇒ x = 2 or 1 d2 y
= 12x − 18 dx 2 ∴ x = 2 is point of minima ymin = 16 – 36 + 24 + 4 = 8
8
10. 9. x etc 210 ∴ The given sum 1 10 10.9 10.9.8 = + + 1 + 1! 2! 3! 210
f”(x) =
1 − x2 = 4 . −x 1 − x2
93. Ans: 1
Sol:
1 2
97. Ans: 4
92. Ans: 1
Sol:
π x + 4 2
10 ! + ......... 10 ! C 0 + 10 C1 + 10 C 2 + .... + 10 C10
99. Ans: x = 0
Sol:
]
y = excosx dy S= = e x (− sin x + cos x ) dx ds = e x [− cos x − sin x + − sin x + cos x ] dx =ex[–2sinx] = 0 ⇒ x = 0 d2 s
= −2e x [sin x + cos x ] < 0 dx 2 ∴x=0
x 106. Ans: − cos + 10 + C 7
100. Ans: 3
Sol:
f ‘(x) = =
f (b) − f (a) b−a
16 − − 2 18 = =3 6−0 6
1 x sin + 10 dx 7 7 x − cos + 10 1 x 7 = = − cos + 10 + C 1 7 7 7
∫
Sol:
101. Ans: 6x – y – 11 = 0 dy = 3x 2 − 6 = 6 dx ∴ Tangent is (y – 1) = 6(x – 2) ⇒ 6x – 12 – y + 1 = 0 ⇒ 6x – y – 11 = 0
Sol:
107. Ans: = a log
∫
Sol:
102. Ans: (2, –9)
=
dy = 6 x 2 − 10 x − 4 = 0 dx ⇒ 3x2 – 5x – 2 = 0
Sol:
5 ± 25 + 24 5 ± 7 = 6 6 ⇒ x=2 ⇒ y = 16 – 20 – 8 + 3 = –9
(x
2
−a a
x+a +C x
)
− a2 − x2 1 dx = −a 2 x (x + a ) x (x + a ) 2
∫
1
1
x
∫ x − x + a dx = −a log x + a + C = a log
⇒x=
103. Ans: 0.8 m2/sec
x+a +C x
5 1 sine (x ) + C 5
108. Ans:
∫x
Sol:
4
5 5 e (x ). cos e (x ) dx
5 1 sine (x ) + C 5 (by inspection)
Sol:
5 θ
109. Ans: xtanx + C 8
1 × 8 × 5 × sin θ = 20 sin θ 2 dA dθ π = 20 cos θ = 20 × cos × 0.08 dt dt 3 = 0.8 m2/sec
A=
104. Ans:
Sol: `
(2, 3)
2x
∫ 2 cos 2 x + ∫ tan x dx
Sol:
∫
∫
∫
= x tan x − tan x + tan xdx = x tan x + C
110. Ans: log |tanx|+ C
dy = 24 x 2 − 120 x + 144 dx = 24(x2 – 5x + 6) < 0 ⇒ (x – 2) (x – 3) < 0 ⇒ x∈(2, 3)
=
Sol:
sec m+ 2 x +C m+2
The given integral
∫ (sec x ) sec x tan x = ∫ sec m+ 2 x tan x dx m
=
=
2
m+ 2
sec x +C m+2
1
∫ sin x cos x dx = log tan x + C (by inspection)
Sol: Sol:
∫
= x sec 2 x + tan x dx
111. Ans: 105. Ans:
(splitting)
dx
=
1 tan −1 (3 tan x ) + C 3
=
sec 2 x
dx
∫ 8 sin 2 x + 1∫ 8 tan 2 x + sec 2 x dx
sec 2 xdx
dt
∫ 1 + (3 tan x )2 = ∫ 1 + (3t )2 =
=
1 tan −1 (3t ) + C 3
1 tan −1 (3 tan x ) + C 3
112. Ans: 0
4
π 2
π 2
∫
∫
0
(y − 2)dy 2
2
Ι = log(cot x )dx = log(tan x )dx
Sol:
∫
A=
=
0
2Ι = 0 ⇒Ι=0
4 1 y 2 4 − [y ]2 = 1 2 2 2 y
117. Ans: x + y + 4 = Ce 113. Ans: 17
Sol:
2
∫
Sol:
0
4 x 2 x dx =
−1
∫ 4x
2
dx = x+y+3 dy Let x + y + 3 = t dx dt +1= ⇒ dy dy
(− x )dx
−1 2
∫
+ 4 x 2 . x dx
⇒
dt dt −1= t ⇒ = 1+ t dy dy
⇒
∫ 1 + t = ∫ dy
0
0
2
x4 x4 = −4 + 4 = 17 4 −1 4 0
log(1 + t) = y + C ⇒ 1 + x + y + 3 = Cey y ⇒ x + y + 4 = Ce
114. Ans: 4π
Sol:
118. Ans: order 2, degree 1 circle
Sol:
4
A=
1 2 1 πr = π × 4 2 = 4π 4 4
115. Ans: 0
∫ (x − 3) (x
2
− 6x + 8
)
∫ (x − 3) [(x − 3) 4
=
2
]
− 1dx
2
∫ [(x − 3) 4
2
]
− (x − 3 ) dx
2
4
(x − 3 )4 (x − 3 )2 = − 2 4 2
=0 116. Ans: 1
Sol:
Sol:
y = 2x + 2 (0, 2)
x c−x
ydx – xdy = –y2dx dy ⇒y−x = −y 2 dx dy y1− x dx ⇒ = −1 y2 ⇒
d x = −1 dx y
⇒
x = −x + C y
y=
4
(–1, 0)
y By inspection, sin −1 − 5 x 2 = C x
120. Ans: y =
2
a2 ⇒ yy"+ (y')2 = 0 2
y 119. Ans: sin −1 − 5 x 2 = C x Sol:
4
Sol:
y2 = a2x + ab 2yy’ = a2 ⇒ yy’ =
4
=
dt
x c−x