Jump To First Page

  • Uploaded by: zoom^2
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Jump To First Page as PDF for free.

More details

  • Words: 1,882
  • Pages: 26
Chapter 7

Vibration

1 Jump to first page

Vibration : (A) Free vibration of particle : ■ ■

free-vibration : absence of any imposed external forces. (a) Undamped free vibration :

k-spring constant [N/m] The equation of motion :

k m x x=0

F = −kx = mx i.e. mx + kx = 0 ( SHM-simple harmonic motion)

2 Jump to first page

x + ω x = 0 2 n

or ■

where

k ωn = m

[ rad / s ]

= natural angular frequency of the



vibration ■

The solution :

x = A cos(ω nt ) + B sin(ω nt ) = C sin(ω nt + ψ )

■ ■

C-amplitude ψ -phase angle

}

They are determined by initial conditions.

3 Jump to first page

x

τ

x0

C 0

t

− t' ■

xo = C sin ψ





0 = C sin (-ω nt' + ψ )





-ω nt' + ψ = 0





ψ = ω nt’



τ =2π /ω n=period=1/fn



fn-natural frequency (Hz) = ω n/ 2π 4 Jump to first page



Simple pendulum : (small oscillation)

sin θ ~ θ θ l mg sin θ

+x m

mg

F = −mg sin θ ~ − mgθ = −mgx / l = mx g ∴ x + x = 0 l g ∴ ωn = l

Exercises on Oscillatory Motion :

(1), (3),5 (4), (6), (7), (9) Jump to first page

(b) Damped free vibration : ( s

The equation of motion :

p r

)

in g

k

m

c (dashpot )

x=0

x

Then or

∑ F = −kx − cx = mx c = viscous damping constant (viscous damping coefficient) =[Ns/m]

mx + cx + kx = 0

x + 2ζ ωn x + ω x = 0 2 n

6 Jump to first page

c ζ ( zeta ) ≡ 2mω n

So

= viscous damping factor (damping ratio) - (dimensionless) Let the solution : x = A eλ t Then

∴ or

λ + 2ζ ωn λ + ω = 0 2

[ λ = ω [−ζ −

2 n

] −1]

λ1 = ωn −ζ + ζ 2 −1 2

n

ζ

2

7 Jump to first page

The general solution :

x = A1e λ1t + A2 e λ2t

There are three cases : (1) ζ > 1 (overdamping) : λ 1, λ 2 are distinct real ”-" numbers. x decays to zero. No oscillation. (2) ζ = 1 (critical damping) : λ 1 = λ 2 = -ω

n

; real ”-" numbers.

x decays to zero very fast. 8 No oscillation. Jump to first page

x ζ >1 ζ =1

t ζ <1

(3) ζ < 1 (underdamping) :

x =  A1e + A2 e  iω d t − iω d t −ζ ωn t = A1e + A2 e e i 1−ζ 2 ω n t

−i 1−ζ 2 ω n t

[

= C sin ( ω d t + ψ ) e

[

= Ce 9

−ζ ωn t

]

 × e −ζ ωnt 

−ζ ωn t

] sin(ω t +ψ ) d

Jump to first page

ω d = ω n 1 − ζ 2 = damped natural frequency

where

x x1

t1

2π τd = ωd

τd

x2 t2

t

−ζ ωn t1

x1 Ce ζ ωnτ d = −ζ ωn (t1 +τ d ) = e x2 Ce 10

Jump to first page

The logarithmic decrement δ :

 x1  δ ≡ n  = ζ ωnτ d  x2  2π = ζ ωn ωn 1− ζ 2 =

2π ζ 1−ζ

2

 c   ; ζ < 1 ;  ζ = 2mω n  

This is the way to determine the viscous damping constant c. 11 Jump to first page

(B) Forced vibration of particles : F = FO sin ω t

m

x

p r

in g

x=0

)

(dashpot )

k ( s

c

The equation of motion :

∑ F = −kx − cx + Fo sin ω t = mx

∴ i.e. 12

mx + cx + kx = Fo sin ω t Fo 2 x + 2ζ ωn x + ω n x = sin ω t m Jump to first page

Usually, the applied force is coming from the base of the system. neutral position

m

(dashpot)

x

k

xB

( s p r i n g

c

xB = b sin ω t

)

x=0



mx + cx + k ( x − xB ) = 0

i.e.

kb x + 2ζ ωn x + ω x = sin ω t m 2 n

where Fo = kb 13 Jump to first page

Solution of Damped forced vibration : Fo 2 Equation of motion : x + 2ζ ωn x + ω n x = sin ω t

m

Solution is the sum of a complementary solution and a particular solution

x = xc + x p xc = Ce −ζ ωnt sin(ω d t + ψ ) dies down exponentially and is not important Let : x p = X sin(ωt + φ ) then V (t ) = Xω cos(ωt + φ ) = Vo cos(ωt + φ ) 14 Jump to first page

The solution is :

X =

Fo / k

{ [1 − (ω / ω ) ]

2 2

n

+ [ 2ζ ω/ ω n ]

2ζ ω/ ω n tan φ = 2 1 − (ω / ωn ) X M= = Fo / k 1 − (ω / ω

{[

n

)

]

2 2

2

}

1/ 2

1 + [ 2ζ ω/ ω n ]

2

}

1/ 2

15 Jump to first page

ζ =0 ζ = 0.1

M

ζ = 0.2

ζ =1

1 1

ω / ωn

d ω 2 2 2ζ ω 2 2 {[1 − ( ) ] + ( ) } =0 dω ωn ωn

ω resonance = 1 - 2ζ 2 ω n 16 Jump to first page

φ π

ζ =0 ζ = 0.2

ζ =1

π/2

0

1

(resonance )

ω / ωn

(1) ω is small, tanφ > 0, φ → 0+, xp in phase with driving force (2) ω is large, tanφ < 0, φ → 0-, φ = π , xp leads the driving force by 90o (3) ω → ω n-, tanφ →+∞, φ → π /2(-) ω → ω n+, tanφ →-∞, φ → π /2(+) 17 Jump to first page

Electric circuit analogy : C

L

R

q Lq + Rq + = E C q = i (current ) q-charge

E = EO sin ω t

L-inductionce C-capacitance R-resistance

18 Jump to first page

Example

y = sin θ

d l O

θ

τ o = (ky )  = − I oθ

k

y

m



I o = md

(

2

)

2   md θ + k sin θ = 0 2

For small oscillation :



2 k  sin θ ~ θ ⇒ θ + θ =0 2 md  k ω  ω= ⇒ f = = d m 2π 2πd

k m

#

19

Jump to first page

Example

R

R−r

θ r

( R − r )(1 − cos θ )

α ω

vG

G

f

Find the period. RN

mg sin θ

Rolling without slipping Method I : By conservation of energy :

1 2 1 2 mvG + I Gω + mg ( R − r )[1 − cos θ ] =constant 2 2 But 20

vG ω= r

(Rolling without slipping) Jump to first page

and



vG = ( R − r )θ

2 1 1  1 2  ( R − r )    m ( R − r )θ +  mr   θ 2 22  r  + mg ( R − r ) [1 − cosθ ] = constant

[

]

2

Differentiate both side w.r.t. t :

1 2      m( R − r ) θθ + m( R − r ) θθ + mg ( R − r )θ sin θ = 0 2 2 g   ∴ θ+ sin θ = 0 3 R−r 2

For small oscillation : sinθ ~ θ

3( R − r ) T = 2π 2g 21

# Jump to first page

Method II

τ G = I Gα

1 2  1 2   [ R − r ]  rf =  mr ω =  mr   θ 2  2  r  1 f = m( R − r ) θ 2 ∑ Ft = m(aG )t

∴ ∴ Also

− f − mg sin θ = m( R − r )θ



1   m( R − r )θ + m( R − r )θ + mg sin θ = 0 2

i.e.

∴ 22

θ +

2g sin θ = 0 3( R − r ) Jump to first page

Example

A

p

m k

c

m=45 kg k = 35 kN/m c = 1250 N.s/m p = 4000 sin (30 t) Pa A= 50 x 10-3 m2.

Determine the steady-state displacement as a function of time and the max. force transmitted to the base. 23 Jump to first page

k 35 × 10 ωn = = = 27.9 rad / s m 45 c 1250 ζ = = = 0.498 (underdamped ) 2mω n 2 × 45 × 27.9 3

The steady-state amplitude : Fo / k X= 2 2 2 1 − ( ω / ω n ) + [ 2ζ ω/ ω n ]

{[

=

]

}

1/ 2

4000 × 50 × 10 −3 / 35 × 103

{ [1 − ( 30 / 27.9) ]

2 2

= 0.00528 m

+ [ 2 × 0.498 × 30 / 2.79]

2

}

1/ 2

24 Jump to first page

The phase angle φ :

 2ζ ω/ ω n  φ = tan  2 1 − ( ω / ω n )  −1

 2 × 0.498 × 30 / 27.9  = tan   2  1 − ( 30 / 27.9 )  = 1.716 rad −1



The steady state solution :

xP = X sin(ω t − φ ) = 0.00528 sin(30t − 1.716) m

#

25 Jump to first page

The force transmitted to the base :

Ftr = kx p + cx p

= kX sin (ω t − φ ) + cωX cos (ω t − φ ) For max Ftr :

dFtr =0 ⇒ d (ω t − φ )

k ω t − φ = tan cω 3 35 × 10 ω t − φ = tan −1 = 0.75 rad = 43o 1250 × 30



( Ftr ) max = 35 ×103 × 0.00528 sin 43o

∴ tan θ = sin −1

θ

−1

= cos

−1

−1

1+θ 2 1

+ 1250 × 30 × 0.00528 cos 43o = 271 N

#

26

1+θ 2

Jump to first page

Related Documents

Jump To First Page
June 2020 9
First Jump Brochure
June 2020 1
First Page
December 2019 15
First Page
June 2020 8
First Page
June 2020 7