Chapter 7
Vibration
1 Jump to first page
Vibration : (A) Free vibration of particle : ■ ■
free-vibration : absence of any imposed external forces. (a) Undamped free vibration :
k-spring constant [N/m] The equation of motion :
k m x x=0
F = −kx = mx i.e. mx + kx = 0 ( SHM-simple harmonic motion)
2 Jump to first page
x + ω x = 0 2 n
or ■
where
k ωn = m
[ rad / s ]
= natural angular frequency of the
■
vibration ■
The solution :
x = A cos(ω nt ) + B sin(ω nt ) = C sin(ω nt + ψ )
■ ■
C-amplitude ψ -phase angle
}
They are determined by initial conditions.
3 Jump to first page
x
τ
x0
C 0
t
− t' ■
xo = C sin ψ
■
∴
0 = C sin (-ω nt' + ψ )
■
⇒
-ω nt' + ψ = 0
■
∴
ψ = ω nt’
■
τ =2π /ω n=period=1/fn
■
fn-natural frequency (Hz) = ω n/ 2π 4 Jump to first page
■
Simple pendulum : (small oscillation)
sin θ ~ θ θ l mg sin θ
+x m
mg
F = −mg sin θ ~ − mgθ = −mgx / l = mx g ∴ x + x = 0 l g ∴ ωn = l
Exercises on Oscillatory Motion :
(1), (3),5 (4), (6), (7), (9) Jump to first page
(b) Damped free vibration : ( s
The equation of motion :
p r
)
in g
k
m
c (dashpot )
x=0
x
Then or
∑ F = −kx − cx = mx c = viscous damping constant (viscous damping coefficient) =[Ns/m]
mx + cx + kx = 0
x + 2ζ ωn x + ω x = 0 2 n
6 Jump to first page
c ζ ( zeta ) ≡ 2mω n
So
= viscous damping factor (damping ratio) - (dimensionless) Let the solution : x = A eλ t Then
∴ or
λ + 2ζ ωn λ + ω = 0 2
[ λ = ω [−ζ −
2 n
] −1]
λ1 = ωn −ζ + ζ 2 −1 2
n
ζ
2
7 Jump to first page
The general solution :
x = A1e λ1t + A2 e λ2t
There are three cases : (1) ζ > 1 (overdamping) : λ 1, λ 2 are distinct real ”-" numbers. x decays to zero. No oscillation. (2) ζ = 1 (critical damping) : λ 1 = λ 2 = -ω
n
; real ”-" numbers.
x decays to zero very fast. 8 No oscillation. Jump to first page
x ζ >1 ζ =1
t ζ <1
(3) ζ < 1 (underdamping) :
x = A1e + A2 e iω d t − iω d t −ζ ωn t = A1e + A2 e e i 1−ζ 2 ω n t
−i 1−ζ 2 ω n t
[
= C sin ( ω d t + ψ ) e
[
= Ce 9
−ζ ωn t
]
× e −ζ ωnt
−ζ ωn t
] sin(ω t +ψ ) d
Jump to first page
ω d = ω n 1 − ζ 2 = damped natural frequency
where
x x1
t1
2π τd = ωd
τd
x2 t2
t
−ζ ωn t1
x1 Ce ζ ωnτ d = −ζ ωn (t1 +τ d ) = e x2 Ce 10
Jump to first page
The logarithmic decrement δ :
x1 δ ≡ n = ζ ωnτ d x2 2π = ζ ωn ωn 1− ζ 2 =
2π ζ 1−ζ
2
c ; ζ < 1 ; ζ = 2mω n
This is the way to determine the viscous damping constant c. 11 Jump to first page
(B) Forced vibration of particles : F = FO sin ω t
m
x
p r
in g
x=0
)
(dashpot )
k ( s
c
The equation of motion :
∑ F = −kx − cx + Fo sin ω t = mx
∴ i.e. 12
mx + cx + kx = Fo sin ω t Fo 2 x + 2ζ ωn x + ω n x = sin ω t m Jump to first page
Usually, the applied force is coming from the base of the system. neutral position
m
(dashpot)
x
k
xB
( s p r i n g
c
xB = b sin ω t
)
x=0
∴
mx + cx + k ( x − xB ) = 0
i.e.
kb x + 2ζ ωn x + ω x = sin ω t m 2 n
where Fo = kb 13 Jump to first page
Solution of Damped forced vibration : Fo 2 Equation of motion : x + 2ζ ωn x + ω n x = sin ω t
m
Solution is the sum of a complementary solution and a particular solution
x = xc + x p xc = Ce −ζ ωnt sin(ω d t + ψ ) dies down exponentially and is not important Let : x p = X sin(ωt + φ ) then V (t ) = Xω cos(ωt + φ ) = Vo cos(ωt + φ ) 14 Jump to first page
The solution is :
X =
Fo / k
{ [1 − (ω / ω ) ]
2 2
n
+ [ 2ζ ω/ ω n ]
2ζ ω/ ω n tan φ = 2 1 − (ω / ωn ) X M= = Fo / k 1 − (ω / ω
{[
n
)
]
2 2
2
}
1/ 2
1 + [ 2ζ ω/ ω n ]
2
}
1/ 2
15 Jump to first page
ζ =0 ζ = 0.1
M
ζ = 0.2
ζ =1
1 1
ω / ωn
d ω 2 2 2ζ ω 2 2 {[1 − ( ) ] + ( ) } =0 dω ωn ωn
ω resonance = 1 - 2ζ 2 ω n 16 Jump to first page
φ π
ζ =0 ζ = 0.2
ζ =1
π/2
0
1
(resonance )
ω / ωn
(1) ω is small, tanφ > 0, φ → 0+, xp in phase with driving force (2) ω is large, tanφ < 0, φ → 0-, φ = π , xp leads the driving force by 90o (3) ω → ω n-, tanφ →+∞, φ → π /2(-) ω → ω n+, tanφ →-∞, φ → π /2(+) 17 Jump to first page
Electric circuit analogy : C
L
R
q Lq + Rq + = E C q = i (current ) q-charge
E = EO sin ω t
L-inductionce C-capacitance R-resistance
18 Jump to first page
Example
y = sin θ
d l O
θ
τ o = (ky ) = − I oθ
k
y
m
∴
I o = md
(
2
)
2 md θ + k sin θ = 0 2
For small oscillation :
∴
2 k sin θ ~ θ ⇒ θ + θ =0 2 md k ω ω= ⇒ f = = d m 2π 2πd
k m
#
19
Jump to first page
Example
R
R−r
θ r
( R − r )(1 − cos θ )
α ω
vG
G
f
Find the period. RN
mg sin θ
Rolling without slipping Method I : By conservation of energy :
1 2 1 2 mvG + I Gω + mg ( R − r )[1 − cos θ ] =constant 2 2 But 20
vG ω= r
(Rolling without slipping) Jump to first page
and
∴
vG = ( R − r )θ
2 1 1 1 2 ( R − r ) m ( R − r )θ + mr θ 2 22 r + mg ( R − r ) [1 − cosθ ] = constant
[
]
2
Differentiate both side w.r.t. t :
1 2 m( R − r ) θθ + m( R − r ) θθ + mg ( R − r )θ sin θ = 0 2 2 g ∴ θ+ sin θ = 0 3 R−r 2
For small oscillation : sinθ ~ θ
3( R − r ) T = 2π 2g 21
# Jump to first page
Method II
τ G = I Gα
1 2 1 2 [ R − r ] rf = mr ω = mr θ 2 2 r 1 f = m( R − r ) θ 2 ∑ Ft = m(aG )t
∴ ∴ Also
− f − mg sin θ = m( R − r )θ
∴
1 m( R − r )θ + m( R − r )θ + mg sin θ = 0 2
i.e.
∴ 22
θ +
2g sin θ = 0 3( R − r ) Jump to first page
Example
A
p
m k
c
m=45 kg k = 35 kN/m c = 1250 N.s/m p = 4000 sin (30 t) Pa A= 50 x 10-3 m2.
Determine the steady-state displacement as a function of time and the max. force transmitted to the base. 23 Jump to first page
k 35 × 10 ωn = = = 27.9 rad / s m 45 c 1250 ζ = = = 0.498 (underdamped ) 2mω n 2 × 45 × 27.9 3
The steady-state amplitude : Fo / k X= 2 2 2 1 − ( ω / ω n ) + [ 2ζ ω/ ω n ]
{[
=
]
}
1/ 2
4000 × 50 × 10 −3 / 35 × 103
{ [1 − ( 30 / 27.9) ]
2 2
= 0.00528 m
+ [ 2 × 0.498 × 30 / 2.79]
2
}
1/ 2
24 Jump to first page
The phase angle φ :
2ζ ω/ ω n φ = tan 2 1 − ( ω / ω n ) −1
2 × 0.498 × 30 / 27.9 = tan 2 1 − ( 30 / 27.9 ) = 1.716 rad −1
∴
The steady state solution :
xP = X sin(ω t − φ ) = 0.00528 sin(30t − 1.716) m
#
25 Jump to first page
The force transmitted to the base :
Ftr = kx p + cx p
= kX sin (ω t − φ ) + cωX cos (ω t − φ ) For max Ftr :
dFtr =0 ⇒ d (ω t − φ )
k ω t − φ = tan cω 3 35 × 10 ω t − φ = tan −1 = 0.75 rad = 43o 1250 × 30
∴
( Ftr ) max = 35 ×103 × 0.00528 sin 43o
∴ tan θ = sin −1
θ
−1
= cos
−1
−1
1+θ 2 1
+ 1250 × 30 × 0.00528 cos 43o = 271 N
#
26
1+θ 2
Jump to first page