Juin 2007 Solution

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Juin 2007 Solution as PDF for free.

More details

  • Words: 2,099
  • Pages: 5
‫ﺗﺼﻴﺢ اﻣﺘﺤﺎن ﻳﻮﻧﻴﻮ ‪2007‬‬

‫اﻟﺜﺎﻧﻴﺔ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫اﻟﺘﻤﺮﻳﻦ اﻷول‬ ‫‪ /1‬ﻧﺒﻴﻦ أن ﻣﺮآﺰ اﻟﻔﻠﻜﺔ ) ‪ ( S‬هﻲ اﻟﻨﻘﻄﺔ )‪ Ω (1; 2; 3‬و أن اﻟﺸﻌﺎع ﻳﺴﺎوي ‪6‬‬

‫‪M ( x; y ) ∈ ( S ) ⇔ x 2 + y 2 + z 2 − 2 x − 4 y − 6 z + 8 = 0‬‬ ‫‪⇔ ( x − 1) − 1 + ( y − 2 ) − 4 + ( z − 3) − 9 + 8 = 0‬‬ ‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫‪⇔ ( x − 1) + ( y − 2 ) + ( z − 3) = 6 = 6‬‬ ‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫إذن ) ‪ ( S‬ﻓﻠﻜﺔ ﻣﺮآﺰهﺎ اﻟﻨﻘﻄﺔ )‪ Ω (1; 2;3‬ﺷﻌﺎﻋﻬﺎ ‪6‬‬ ‫‪ /2‬ﻧﺘﺤﻘﻖ أن اﻟﻤﺴﺘﻮى ) ‪ ( P‬ﻣﻤﺎس ﻟﻠﻔﻜﺔ‬

‫‪6‬‬

‫=‬

‫‪1− 2 + 2×3 +1‬‬

‫) ‪(S‬‬

‫= ) ) ‪d ( Ω; ( Ρ‬‬

‫‪= 6‬‬ ‫‪1+1+ 4‬‬ ‫‪6‬‬ ‫إذن اﻟﻤﺴﺘﻮى ) ‪ ( P‬ﻣﻤﺎس ﻟﻠﻔﻜﺔ ) ‪( S‬‬

‫‪ /3‬أ‪ -‬ﻧﺤﺪد ﺗﻤﺜﻴﻼ ﺑﺎراﻣﺘﺮﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ ) ∆ ( اﻟﻤﺎر ﻣﻦ ‪ Ω‬و اﻟﻌﻤﻮدي ﻋﻠﻰ‬

‫)‪( P‬‬

‫ﺑﻤﺎ أن ) ‪ ( ∆ ) ⊥ ( P‬و ‪ ( P ) : x − y + 2 z + 1 = 0‬ﻓﺎن اﻟﻤﺘﺠﻬﺔ ) ‪ n (1; −1; 2‬اﻟﻤﻨﻈﻤﻴﺔ ﻋﻠﻰ ) ‪ ( P‬ﻣﻮﺟﻬﺔ ﻟﻠﻤﺴﺘﻘﻴﻢ‬ ‫و ﺣﻴﺚ أن ) ∆ ( ﻳﻤﺮ ﻣﻦ )‪ Ω (1; 2;3‬ﻓﺎن‬

‫∈‪/t‬‬

‫)∆(‬

‫‪x = 1 + t‬‬ ‫‪  y = 2 − t‬ﺛﻤﺜﻴﻞ ﺑﺎراﻣﺘﺮي ﻟﻠﻤﺴﺘﻘﻴﻢ ) ∆ (‬ ‫‪ z = 3 + 2t‬‬ ‫‪‬‬

‫ب‪ /‬ﻧﺤﺪد ﻣﺜﻠﻮث إﺣﺪاﺛﻴﺎت ‪ ω‬ﻧﻘﻄﺔ ﺗﻤﺎس ) ‪ ( S‬و ) ‪( P‬‬ ‫‪ ω‬ﻧﻘﻄﺔ ﺗﻤﺎس ) ‪ ( S‬و ) ‪ ( P‬وﻣﻨﻪ ‪ ω‬ﻧﻘﻄﺔ ﺗﻘﺎﻃﻊ ) ‪( S‬‬

‫و‬

‫)‪( P‬‬

‫‪x = 1 + t‬‬ ‫‪y = 2 − t‬‬ ‫‪‬‬ ‫‪ω ( x; y; z ) ∈ ( P ) ∩ ( S ) ⇔ ‬‬ ‫‪ z = 3 + 2t‬‬ ‫‪ x − y + 2 z + 1 = 0‬‬ ‫‪x = 1 + t‬‬ ‫‪y = 2 − t‬‬ ‫‪‬‬ ‫‪⇔‬‬ ‫‪ z = 3 + 2t‬‬ ‫‪1 + t − 2 + t + 6 + 4t + 1 = 0‬‬ ‫‪t = −1‬‬ ‫‪x = 0‬‬ ‫‪‬‬ ‫‪⇔‬‬ ‫‪y = 3‬‬ ‫‪ z = 1‬‬ ‫إذن ﻧﻘﻄﺔ ﺗﻘﺎﻃﻊ ) ‪ ( S‬و ) ‪ ( P‬هﻲ )‪ω ( 0;3;1‬‬ ‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻧﻲ‬ ‫‪ /1‬أ‪ -‬ﻧﻜﺘﺐ ﻋﻞ اﻟﺸﻜﻞ اﻟﺠﺒﺮي اﻟﻌﺪد اﻟﻌﻘﺪي‬

‫‪2‬‬

‫) ‪( 3 − 2i‬‬

‫‪= 9 − 4 − 12 i = 5 − 12 i‬‬ ‫ب‪ -‬ﻧﺤﻞ ﻓﻲ‬

‫‪( 3 − 2 i )2‬‬

‫اﻟﻤﻌﺎدﻟﺔ ‪z 2 − 2 ( 4 + i ) z + 10 + 20i = 0 :‬‬

‫ﻟﻴﻜﻦ ' ∆ ﻣﻤﻴﺰ اﻟﻤﻌﺎدﻟﺔ ‪:‬‬

‫‪2‬‬

‫) ‪∆ ' = ( 4 + i ) − 10 − 20i = 15 + 8i − 10 − 20i = 5 − 12i = ( 3 − 2i‬‬ ‫‪2‬‬

‫وﻣﻨﻪ ﺟﺪرا اﻟﻤﻌﺎدﻟﺔ هﻤﺎ ‪z2 = 4 + i − 3 + 2i = 1 + 3i ; z1 = 4 + i + 3 − 2i = 7 − i‬‬

‫‪http://arabmaths.ift.fr‬‬

‫إذن } ‪S = {1 + 3 i ; 7 − i‬‬ ‫‪c−a‬‬ ‫‪ /2‬أ‪ -‬ﻧﺒﻴﻦ أن ‪= i‬‬ ‫‪b−a‬‬ ‫) ‪c − a 5 + 9i − 1 − 3i 4 + 6i i ( 6 − 4i‬‬ ‫=‬ ‫=‬ ‫=‬ ‫‪=i‬‬ ‫‪b − a 7 − i − 1 − 3i 6 − 4i‬‬ ‫‪6 − 4i‬‬ ‫ب‪ -‬ﻧﺴﺘﻨﺘﺞ أن اﻟﻤﺜﻠﺚ ‪ ABC‬ﻣﺘﺴﺎوي اﻟﺴﺎﻗﻴﻦ و ﻗﺎﺋﻢ اﻟﺰاوﻳﺔ‬ ‫‪c−a‬‬ ‫‪c−a‬‬ ‫‪c−a‬‬ ‫ﺑﻤﺎ أن ‪= i‬‬ ‫‪arg ‬‬ ‫ﻓﺎن ‪= i = 1‬‬ ‫و ‪ = arg i‬‬ ‫‪b−a‬‬ ‫‪b−a‬‬ ‫‪b−a‬‬ ‫‪c−a π‬‬ ‫‪arg ‬‬ ‫وﻣﻨﻪ ‪ c − a = b − a‬و ] ‪[ 2π‬‬ ‫≡‪‬‬ ‫‪b−a 2‬‬

‫‪π‬‬

‫)‬

‫و ﺑﺎﻟﺘﺎﻟﻲ ‪ AC = AB‬و ] ‪[ 2π‬‬ ‫‪2‬‬ ‫إذن ‪ ABC‬ﻣﺘﺴﺎوي اﻟﺴﺎﻗﻴﻦ و ﻗﺎﺋﻢ اﻟﺰاوﻳﺔ ﻓﻲ ‪A‬‬ ‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻟﺚ‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪ /1‬ﻧﺘﺤﻘﻖ أن‬ ‫}‪∀x ∈ − {−1‬‬ ‫‪= x −1+‬‬ ‫‪x +1‬‬ ‫‪x +1‬‬ ‫ﻟﺘﻜﻦ }‪x ∈ − {−1‬‬ ‫‪1‬‬ ‫‪x2 − 1 + 1 x2‬‬ ‫=‬ ‫=‬ ‫‪x +1‬‬ ‫‪x +1‬‬ ‫‪x +1‬‬ ‫‪x2‬‬ ‫‪ /2‬ﻧﺒﻴﻦ أن ‪dx = ln 3‬‬ ‫‪x +1‬‬

‫(‬

‫≡ ‪arg AB; AC‬‬

‫‪x −1+‬‬

‫‪2‬‬

‫‪∫0‬‬ ‫‪2‬‬

‫‪ x2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪x2‬‬ ‫‪1 ‬‬ ‫‪dx = ∫  x − 1 +‬‬ ‫‪dx =  − x + ln x + 1  = 2 − 2 + ln 3 = ln 3‬‬ ‫‪‬‬ ‫‪0‬‬ ‫‪x +1‬‬ ‫‪x + 1‬‬ ‫‪ 2‬‬ ‫‪ 0‬‬ ‫‪3‬‬

‫‪2‬‬

‫‪∫0‬‬

‫‪2‬‬

‫‪ /3‬ﺑﺎﺳﺘﻌﻤﺎل ﻣﻜﺎﻣﻠﺔ ﺑﺎﻷﺟﺰاء‪ ،‬ﻧﺒﻴﻦ أن ‪∫0 x ln ( x + 1)dx = 2 ln 3‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪u ' ( x ) = x + 1‬‬ ‫)‪u ( x ) = ln ( x + 1‬‬ ‫وﻣﻨﻪ‬ ‫ﻧﻀﻊ‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪v ' ( x ) = x‬‬ ‫‪v ' ( x ) = x‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪ x2‬‬ ‫‪‬‬ ‫‪1 2 x2‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫∫ ‪x ln ( x + 1)dx =  ln ( x + 1)  −‬‬ ‫‪dx = 2 ln 3 − ln 3 = ln 3‬‬ ‫‪0‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪ 2‬‬ ‫‪ 0 2 x + 1‬‬

‫‪2‬‬

‫‪∫0‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺮاﺑﻊ‬ ‫‪2‬‬ ‫ﻧﺤﺴﺐ ) ‪ p ( A‬و ) ‪ P ( B‬و ﻧﺒﻴﻦ أن = ) ‪p ( C‬‬ ‫‪7‬‬ ‫‪ " A‬ﻻ ﺗﻮﺟﺪ أﻳﺔ ﺑﻴﺪﻗﺔ ﺗﺤﻤﻞ اﻟﻌﺪد ‪ 0‬ﻣﻦ ﺑﻴﻦ اﻟﺒﻴﺪﻗﺎت اﻟﺜﻼﺛﺔ اﻟﻤﺴﺤﻮﺑﺔ "‬ ‫‪C3‬‬ ‫‪4‬‬ ‫= ‪p ( A ) = 43‬‬ ‫‪35‬‬ ‫‪C7‬‬

‫‪ " B‬ﺳﺤﺐ ﺛﻼﺛﺔ ﺑﻴﺪﻗﺎت ﺗﺤﻤﻞ أﻋﺪادا ﻣﺨﺘﻠﻔﺔ ﻣﺜﻨﻰ ﻣﺜﻨﻰ "‬ ‫‪C 1 × C 11 × C 31‬‬ ‫‪9‬‬ ‫‪p (B ) = 3‬‬ ‫=‬ ‫‪3‬‬ ‫‪35‬‬ ‫‪C7‬‬ ‫‪ " C‬ﻣﺠﻤﻮع اﻻﻋﺪاد اﻟﻤﺴﺠﻠﺔ ﻋﻠﻰ اﻟﺒﻴﺪﻗﺎت اﻟﺜﻼﺛﺔ اﻟﻤﺴﺤﻮﺑﺔ ﻣﻨﻌﺪم "‬ ‫‪C 33 + C 31 × C 11 × C 31‬‬ ‫‪1+ 9‬‬ ‫‪10‬‬ ‫‪2‬‬ ‫= ) ‪p (C‬‬ ‫=‬ ‫=‬ ‫=‬ ‫‪3‬‬ ‫‪35‬‬ ‫‪35‬‬ ‫‪7‬‬ ‫‪C7‬‬ ‫ﻣﺴﺄﻟﺔ‬ ‫‪ -(I‬اﻟﺪاﻟﺔ ‪ g‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ‬

‫ﺑﻤﺎ ﻳﻠﻲ‪+ x − 1 :‬‬

‫‪ /1‬ﻧﺤﺴﺐ ) ‪ g ' ( x‬ﻟﻜﻞ ‪ x‬ﻣﻦ‬

‫‪−x‬‬

‫‪g ( x) = e‬‬

‫ﺛﻢ ﻧﺴﺘﻨﺘﺞ أن ‪ g‬ﺗﺰاﻳﺪﻳﺔ ﻋﻠﻰ [∞‪ [ 0; +‬و ﺗﻨﺎﻗﺼﻴﺔ ﻋﻠﻰ‬

‫]‪]−∞; 0‬‬ ‫‪http://arabmaths.ift.fr‬‬

‫∈‪x‬‬

‫ﻟﺘﻜﻦ‬

‫‪g ( x ) = e− x + x − 1‬‬

‫‪:‬‬

‫‪g ' ( x ) = −e − x + 1‬‬

‫ﻟﺪﻳﻨﺎ ‪x ≥ 0 ⇔ − x ≤ 0 ⇔ e− x ≤ 1 ⇔ −e− x + 1 ≥ 0‬‬ ‫اذن ‪ ∀x ∈ [0; +∞[ g ' ( x ) ≥ 0‬وﻣﻨﻪ ‪ g‬ﻋﻠﻰ ﺗﺰاﻳﺪﻳﺔ [∞‪[0; +‬‬ ‫ﻟﺪﻳﻨﺎ ‪x ≤ 0 ⇔ − x ≥ 0 ⇔ e− x ≥ 1 ⇔ −e− x + 1 ≤ 0‬‬ ‫اذن ‪ ∀x ∈ ]−∞; 0] g ' ( x ) ≤ 0‬و ﻣﻨﻪ ‪ g‬ﺗﻨﺎﻗﺼﻴﺔ ﻋﻠﻰ ]‪]−∞; 0‬‬ ‫‪ /2‬ﻧﺒﻴﻦ أن ‪g ( x ) ≥ 0‬‬

‫∈ ‪ ∀x‬ﺛﻢ ﻧﺴﺘﻨﺘﺞ أن ‪e− x + x ≥ 1‬‬

‫∈ ‪∀x‬‬

‫ﺑﻤﺎ أن ‪ g‬ﻋﻠﻰ ﺗﺰاﻳﺪﻳﺔ [∞‪ [ 0; +‬و ﺗﻨﺎﻗﺼﻴﺔ ﻋﻠﻰ ]‪ ]−∞; 0‬و ‪g ( 0 ) = 0‬‬ ‫وﻣﻨﻪ ‪g ( x ) ≥ 0‬‬

‫∈ ‪∀x‬‬

‫أي ‪e− x + x − 1 ≥ 0‬‬

‫إذن ‪e− x + x ≥ 1‬‬

‫∈ ‪∀x‬‬

‫∈ ‪∀x‬‬ ‫‪x‬‬

‫‪ -(II‬اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬ﻟﻠﻤﺘﻐﻴﺮ اﻟﺤﻘﻴﻘﻲ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ‪:‬‬ ‫‪ /1‬ﻧﺒﻴﻦ أن‬

‫‪x + e− x‬‬

‫= )‪f ( x‬‬

‫= ‪Df‬‬

‫ﺣﺴﺐ ‪ /2 (I‬ﻟﻴﻨﺎ ‪e − x + x ≥ 1‬‬ ‫‪1‬‬

‫‪ /2‬أ‪ -‬ﻧﺒﻴﻦ أن‬

‫‪1‬‬

‫‪1+‬‬

‫‪xe x‬‬ ‫*‬

‫ﻓﺎن ‪ 0‬ﻗﻴﻤﺔ دﻧﻴﺎ ﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ‬

‫= )‪f ( x‬‬ ‫‪1‬‬

‫∈‪: x‬‬

‫∈ ‪ ∀x‬وﻣﻨﻪ ‪e− x + x ≠ 0‬‬ ‫*‬

‫∈ ‪∀x‬‬ ‫‪x‬‬

‫=‬

‫∈ ‪ ∀x‬اذن‬

‫= ‪Df‬‬

‫=‬

‫‪x‬‬

‫= )‪f ( x‬‬

‫ﻟﻴﻜﻦ‬ ‫‪1 ‬‬ ‫‪‬‬ ‫‪x 1 + x  1 + x‬‬ ‫‪xe‬‬ ‫‪xe ‬‬ ‫‪‬‬ ‫ب‪ -‬ﻧﺒﻴﻦ أن ‪ lim f ( x ) = 0‬و ‪ lim f ( x ) = 1‬و ﻧﺆول اﻟﻨﺘﻴﺠﺘﻲ هﻨﺪﺳﻴﺎ‬

‫‪1‬‬

‫∞‪x →−‬‬

‫ﻟﺪﻳﻨﺎ ‪lim xe x = 0−‬‬ ‫ﻟﻠﻤﻨﺤﻨﻰ‬

‫) ‪(C‬‬

‫ﻟﺪﻳﻨﺎ ∞‪lim xe x = +‬‬

‫وﻣﻨﻪ ‪= 1‬‬

‫∞‪x →+‬‬

‫ﻟﻠﻤﻨﺤﻨﻰ‬

‫) ‪(C‬‬

‫‪ /3‬أ‪ -‬ﻧﺒﻴﻦ أن‬

‫ﻟﻴﻜﻦ‬

‫‪( x + 1) e− x‬‬

‫) ‪(x + e‬‬

‫‪−x 2‬‬

‫∈‪: x‬‬

‫‪1‬‬ ‫‪x‬‬

‫‪xe‬‬

‫‪1‬‬ ‫‪xe x‬‬

‫‪x + e− x‬‬

‫‪lim 1 +‬‬

‫∞‪x →−‬‬

‫اذن ‪ lim f ( x ) = 0‬و ﻣﻨﻪ ﻣﺤﻮر اﻻﻓﺎﺻﻴﻞ ﻣﺴﺘﻘﻴﻢ ﻣﻘﺎرب‬ ‫∞‪x →−‬‬

‫اذن ‪ lim f ( x ) = 1‬وﻣﻨﻪ اﻟﻤﺴﺘﻘﻴﻢ ذا اﻟﻤﻌﺎدﻟﺔ ‪ y = 1‬ﻣﻘﺎرب‬

‫‪lim 1 +‬‬

‫∞‪x →+‬‬

‫∞‪x →−‬‬

‫= )‪f '( x‬‬

‫‪x‬‬

‫‪x+e‬‬

‫∞‪x →+‬‬

‫وﻣﻨﻪ ∞‪= −‬‬

‫∞‪x →−‬‬

‫‪−x‬‬

‫∈ ‪∀x‬‬

‫= )‪f ( x‬‬

‫‪) = e + xe = ( x + 1) e‬‬ ‫) ‪(x + e ) (x + e‬‬

‫‪−x‬‬

‫‪−x‬‬

‫‪−x 2‬‬

‫‪−x 2‬‬

‫‪−x‬‬

‫(‬

‫‪x + e− x − x 1 − e− x‬‬

‫) ‪(x + e‬‬

‫‪−x 2‬‬

‫= )‪f '( x‬‬

‫ب‪ -‬ﻧﺪرس إﺷﺎرة ) ‪ f ' ( x‬ﺛﻢ ﻧﻀﻊ ﺟﺪول اﻟﺘﻐﻴﺮات‬ ‫ﻟﻴﻨﺎ‬

‫‪( x + 1) e− x‬‬

‫) ‪(x + e‬‬

‫‪−x 2‬‬

‫وﻣﻨﻪ ‪f ' ( x ) ≥ 0‬‬

‫∈ ‪ ∀x‬و ﻣﻨﻪ إﺷﺎرة ) ‪ f ' ( x‬هﻲ إﺷﺎرة ‪x + 1‬‬

‫= )‪f '( x‬‬

‫[∞‪ ∀x ∈ [ −1; +‬و ‪f ' ( x ) ≤ 0‬‬

‫]‪∀x ∈ ]−∞; −1‬‬

‫ﺟﺪول اﻟﺘﻐﻴﺮات‬

‫∞‪+‬‬

‫∞‪−‬‬

‫‪-1‬‬ ‫‪+‬‬

‫‪0‬‬

‫‪-‬‬

‫‪x‬‬ ‫)‪f '( x‬‬

‫‪http://arabmaths.ift.fr‬‬

‫‪0‬‬

‫‪1‬‬

‫‪f‬‬

‫‪1‬‬ ‫‪1− e‬‬ ‫‪ /4‬أ‪ -‬ﻧﻜﺘﺐ ﻣﻌﺎدﻟﺔ اﻟﻤﻤﺎس ﻟﻠﻤﻨﺤﻨﻰ ) ‪ ( C‬ﻓﻲ اﻟﻨﻘﻄﺔ ‪O‬‬

‫ﻣﻌﺎدﻟﺔ اﻟﻤﻤﺎس ﻟﻠﻤﻨﺤﻨﻰ ) ‪ ( C‬ﻓﻲ اﻟﻨﻘﻄﺔ ‪ O‬هﻲ ‪ y = f ' ( 0 ) x‬أي ‪ y = x‬ﻷن ‪f ' ( 0 ) = 1‬‬ ‫ب‪ -‬ﻧﺘﺤﻘﻖ أن‬

‫ﻟﻴﻜﻦ‬

‫) ‪xg ( x‬‬

‫‪g ( x) + 1‬‬

‫∈‪: x‬‬

‫ﺑﻤﺎ أن ‪g ( x ) ≥ 0‬‬ ‫اذن ‪x − f ( x ) ≥ 0‬‬

‫∈ ‪ ∀x‬ﺛﻢ ﻧﺪرس اﺷﺎرة ) ‪ x − f ( x‬ﻋﻠﻰ‬

‫= )‪x − f ( x‬‬

‫) ‪xg ( x‬‬

‫‪g ( x) + 1‬‬

‫=)‬

‫(‬

‫‪x x + e− x − 1‬‬

‫‪−1+1‬‬

‫‪−x‬‬

‫‪x+e‬‬

‫=‬

‫‪x‬‬ ‫‪−x‬‬

‫‪x+e‬‬

‫‪x − f ( x) = x −‬‬

‫∈ ‪ ∀x‬ﻓﺎن اﺷﺎرة ) ‪ x − f ( x‬هﻲ اﺷﺎرة ‪x‬‬

‫[∞‪ ∀x ∈ [ 0; +‬و ‪∀x ∈ ]−∞; 0] x − f ( x ) ≤ 0‬‬

‫ج‪ -‬ﻧﺴﺘﻨﺘﺞ اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻠﻤﻨﺤﻨﻰ ) ‪ ( C‬و اﻟﻤﺴﺘﻘﻴﻢ ) ∆ ( اﻟﺬي ﻣﻌﺎدﻟﺘﻪ ‪y = x‬‬ ‫ﻟﺪﻳﻨﺎ ‪x − f ( x ) ≥ 0‬‬ ‫ﻟﺪﻳﻨﺎ ‪x − f ( x ) ≤ 0‬‬

‫[∞‪ ∀x ∈ [0; +‬و ﻣﻨﻪ ) ∆ ( ﻓﻮق أو ﻳﻘﻄﻊ ) ‪ ( C‬ﻋﻠﻰ [∞‪[0; +‬‬ ‫]‪ ∀x ∈ ]−∞; 0‬و ﻣﻨﻪ ) ∆ ( ﺗﺤﺖ أو ﻳﻘﻄﻊ ) ‪ ( C‬ﻋﻠﻰ ]‪]−∞; 0‬‬

‫‪ /5‬اﻟﺸﻜﻞ‬

‫‪ -(III‬اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدﻳﺔ ) ‪ ( un‬ﻣﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪ u0 = 1‬و ) ‪ un +1 = f ( un‬ﻟﻜﻞ ‪ n‬ﻣﻦ‬ ‫‪ /1‬ﻧﺒﻴﻦ ﺑﺎﻟﺘﺮﺟﻊ ‪ 0 ≤ un ≤ 1‬ﻟﻜﻞ ‪ n‬ﻣﻦ‬ ‫‪0 ≤ u0 ≤ 1‬‬ ‫ﻣﻦ أﺟﻞ ‪ n = 0‬ﻟﺪﻳﻨﺎ ‪u0 = 1‬‬ ‫ﻟﻨﻔﺘﺮض أن ‪ 0 ≤ un ≤ 1‬ﺻﺤﻴﺤﺔ ﺣﺘﻰ اﻟﺮﺗﺒﺔ ‪ n‬ﻟﻨﺒﻴﻦ أن ‪0 ≤ un +1 ≤ 1‬‬

‫ﻟﺪﻳﻨﺎ ‪ 0 ≤ un ≤ 1‬و ‪ f‬ﺗﺰاﻳﺪﻳﺔ ﻋﻠﻰ [∞‪ [ −1; +‬وﻣﻨﻪ )‪f ( 0 ) ≤ f ( un ) ≤ f (1‬‬

‫‪http://arabmaths.ift.fr‬‬

‫‪1‬‬

‫≤ ‪0 ≤ un +1‬‬

‫أي أن ‪≺ 1‬‬ ‫‪1 + e−1‬‬ ‫وﻣﻨﻪ ‪ 0 ≤ un ≤ 1‬ﻟﻜﻞ ‪ n‬ﻣﻦ‬

‫اذن ‪0 ≤ un +1 ≤ 1‬‬

‫‪ /2‬ﻧﺒﻴﻦ أن ) ‪ ( un‬ﺗﻨﺎﻗﺼﻴﺔ‬ ‫ﻟﻴﻜﻦ ‪ n‬ﻣﻦ‬

‫) ‪un g ( u n‬‬

‫‪g ( un ) + 1‬‬

‫= ) ‪un − un +1 = un − f ( un‬‬

‫و ﺣﻴﺚ أن ‪ 0 ≤ un ≤ 1‬و ‪ g ( un ) ≥ 0‬ﻓﺎن ‪ un − un +1 ≥ 0‬أي ‪un ≥ un +1‬‬

‫إذن ) ‪ ( un‬ﺗﻨﺎﻗﺼﻴﺔ‬

‫‪ /3‬ﻧﺴﺘﻨﺘﺞ أن ) ‪ ( un‬ﻣﺘﻘﺎرﺑﺔ ﺛﻢ ﻧﺤﺪد ﻧﻬﺎﻳﺘﻬﺎ‬

‫ﻟﺪﻳﻨﺎ ) ‪ ( un‬ﺗﻨﺎﻗﺼﻴﺔ و ﻣﺼﻐﻮرة وﻣﻨﻪ ) ‪ ( un‬ﻣﺘﻘﺎرﺑﺔ‬

‫وﺑﻤﺎ أن ‪ f‬ﻣﺘﺼﻠﺔ ﻋﻠﻰ ]‪ [ 0;1‬و ]‪⊂ [ 0;1‬‬ ‫ﻓﻲ‬

‫]‪[0;1‬‬ ‫‪g ( x) ⇔ x = 0‬‬

‫‪ou‬‬

‫‪=0⇔ x=0‬‬

‫‪‬‬

‫‪−1 ‬‬

‫‪‬‬

‫‪1‬‬

‫;‪([0;1]) = 0‬‬

‫‪ 1+ e‬‬

‫) ‪xg ( x‬‬

‫‪g ( x) + 1‬‬

‫‪ f‬ﻓﺎن ﻧﻬﺎﻳﺔ ) ‪ ( un‬هﻲ ﺣﻞ اﻟﻤﻌﺎدﻟﺔ ‪f ( x ) = x‬‬

‫⇔ ‪f ( x) = x ⇔ x − f ( x) = 0‬‬

‫إذن ‪lim un = 0‬‬

‫‪http://arabmaths.ift.fr‬‬

Related Documents

Juin 2007 Solution
December 2019 17
Juin 2004 Solution
December 2019 17
Juin 2003 Solution
December 2019 15
Juin 2006 Solution
December 2019 13
Juin 2008 Solution
December 2019 15
2007-06 Juin
October 2019 24