Juillet 2007 Solution

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Juillet 2007 Solution as PDF for free.

More details

  • Words: 3,231
  • Pages: 7
‫ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ‬ ‫ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ‬ ‫ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ‪2007‬‬

‫ﺍﻝﺸﻌﺏ‪ :‬ﺍﻝﻌﻠﻭﻡ ﺍﻝﺘﺠﺭﻴﺒﻴﺔ ﺍﻷﺼﻴﻠﺔ‬ ‫ﺍﻝﻌﻠﻭﻡ ﺍﻝﺘﺠﺭﻴﺒﻴﺔ‬ ‫ﺍﻝﻌﻠﻭﻡ ﺍﻝﺯﺭﺍﻋﻴﺔ‬

‫ا  اول ‪:‬‬ ‫  ‬ ‫ﻓﻲ ﺍﻝﻔﻀﺎﺀ ﺍﻝﻤﻨﺴﻭﺏ ﺇﻝﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﻤﻨﻅﻡ ) ‪ (o, i , j , k‬ﻝﺩﻴﻨﺎ ﺍﻝﻨﻘﻁ )‪ A(2, 0, −1‬ﻭ )‪B (2, 4, 2‬‬ ‫ﻭ )‪ C (3,3, 3‬ﻭ ﺍﻝﻔﻠﻜﺔ ) ‪ ( S‬ﺍﻝﺘﻲ ﻤﻌﺎﺩﻝﺘﻬﺎ ﺍﻝﺩﻴﻜﺎﺭﺘﻴﺔ ﻫﻲ ‪x 2 + y 2 + z 2 − 4 x − 4 y − 8 z + 20 = 0 :‬‬ ‫‪1‬‬

‫‪ ( 1‬ﻨﺒﻴﻥ ﺍﻥ ﻤﺭﻜﺯ ﺍﻝﻔﻠﻜﺔ )‪ (S‬ﻫﻲ ﺍﻝﻨﻘﻁﺔ ) ‪ Ω ( 2, 2, 4‬ﺃﻥ ﺸﻌﺎﻋﻬﺎ ﻴﺴﺎﻭﻱ ‪2‬‬

‫‪∀M ( x, y, z ) ∈ ( S ) ⇔ x 2 + y 2 + z 2 − 4 x − 4 y − 8 z + 20 = 0‬‬ ‫‪⇔ ( x 2 − 4 x) + ( y 2 − 4 y ) + ( z 2 − 8 z ) + 20 = 0‬‬ ‫‪⇔ ( x 2 − 4 x + 4) − 4 + ( y 2 − 4 y + 4) − 4 + ( z 2 − 8 z + 16) − 16 + 20 = 0‬‬ ‫‪⇔ ( x − 2) 2 + ( y − 2) 2 + ( z − 4) 2 = 2 2‬‬ ‫ﺇﺫﻥ ﻤﺭﻜﺯ ﺍﻝﻔﻠﻜﺔ )‪ (S‬ﻫﻲ ﺍﻝﻨﻘﻁﺔ ) ‪ Ω ( 2, 2, 4‬ﻭ ﺸﻌﺎﻋﻬﺎ ‪.R= 2‬‬

‫‪0,75‬‬

‫‪1‬‬

‫‪ ( 2‬ﻨﺒﻴﻥ ﺃﻥ ﻤﻌﺎﺩﻝﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻝﻠﻤﺴﺘﻭﻯ )‪ ( P‬ﻫﻲ ‪x − y + z − 1 = 0 :‬‬ ‫‬ ‫ﻤﻌﺎﺩﻝﺔ ﺍﻝﻤﺴﺘﻭﻯ )‪ ( P‬ﺘﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل ‪ ax + by + cz + d = 0‬ﺤﻴﺙ )‪ n (a, b, c‬ﻤﺘﺠﻬﺔ ﻤﻨﻅﻤﻴﺔ ﻋﻠﻴﻪ‪.‬‬ ‫‬ ‫ﻝﺩﻴﻨﺎ )‪ B(2, 4, 2‬ﻭ )‪ C (3,3, 3‬ﺇﺫﻥ )‪BC (1, −1,1‬‬ ‫‬ ‫ﻝﺩﻴﻨﺎ ﺍﻝﻤﺴﺘﻭﻯ )‪ ( P‬ﻋﻤﻭﺩﻱ ﻋﻠﻰ ﺍﻝﻤﺴﺘﻘﻴﻡ )‪ (BC‬ﺇﺫﻥ ﺍﻝﻤﺘﺠﻬﺔ )‪ BC (1, −1,1‬ﻤﻨﻅﻤﻴﺔ ﻋﻠﻰ )‪( P‬‬ ‫ﻭﻤﻨﻪ ﻓﺎﻥ ﻤﻌﺎﺩﻝﺔ )‪ ( P‬ﻫﻲ ‪x − y + z + d = 0‬‬ ‫ﻝﺩﻴﻨﺎ ﺍﻝﻤﺴﺘﻭﻯ )‪ ( P‬ﻴﻤﺭ ﻤﻥ ﺍﻝﻨﻘﻁﺔ )‪ A(2, 0, −1‬ﺇﺫﻥ ‪ 2 − 0 + ( −1) + d = 0‬ﺃﻱ ‪d = −1‬‬ ‫ﺇﺫﻥ ﻤﻌﺎﺩﻝﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻝﻠﻤﺴﺘﻭﻯ ) ‪ ( P‬ﻫﻲ ‪. x − y + z − 1 = 0 :‬‬ ‫‪ ( 3‬ﺃ – ﻨﺒﻴﻥ ﺃﻥ ﺍﻝﻤﺴﺘﻭﻯ ) ‪ ( P‬ﻴﻘﻁﻊ ﺍﻝﻔﻠﻜﺔ ) ‪ ( S‬ﻭﻓﻕ ﺩﺍﺌﺭﺓ )‪ (Γ‬ﺸﻌﺎﻋﻬﺎ ﻴﺴﺎﻭﻱ ‪.1‬‬

‫ﻝﺩﻴﻨﺎ ﻤﻌﺎﺩﻝﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻝﻠﻤﺴﺘﻭﻯ ) ‪ ( P‬ﻫﻲ ‪ x − y + z − 1 = 0 :‬ﻭﻤﺭﻜﺯ ﺍﻝﻔﻠﻜﺔ )‪ (S‬ﻫﻲ ﺍﻝﻨﻘﻁﺔ ) ‪Ω ( 2, 2, 4‬‬ ‫‪3‬‬ ‫ﻝﺩﻴﻨﺎ ‪= 3‬‬ ‫‪3‬‬

‫=‬

‫‪2 − 2 + 4 −1‬‬

‫= )) ‪d (Ω, ( P‬‬

‫ﻭﻝﺩﻴﻨﺎ‬

‫‪R=2‬‬

‫‪1 + (−1) + 1‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ d (Ω, ( P )) ≺ R‬ﺇﺫﻥ ﺍﻝﻤﺴﺘﻭﻯ ) ‪ ( P‬ﻴﻘﻁﻊ ﺍﻝﻔﻠﻜﺔ ) ‪ ( S‬ﻭﻓﻕ ﺩﺍﺌﺭﺓ )‪ (Γ‬ﺸﻌﺎﻋﻬﺎ ‪ r‬ﺤﻴﺙ ‪:‬‬

‫‪0,25‬‬

‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫‪r = R 2 − d 2 = 22 − 32 = 4 − 3 = 1‬‬ ‫ﺏ‪ -‬ﻨﺤﺩﺩ ﺘﻤﺜﻴﻼ ﺒﺎﺭﺍ ﻤﺘﺭﻴﺎ ﻝﻠﻤﺴﺘﻘﻴﻡ ) ∆( ﺍﻝﻤﺎﺭ ﻤﻥ ‪ Ω‬ﻭ ﺍﻝﻌﻤﻭﺩﻱ ﻋﻠﻰ ) ‪. ( P‬‬ ‫‬ ‫ﻝﺩﻴﻨﺎ ﻤﻌﺎﺩﻝﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻝﻠﻤﺴﺘﻭﻯ ) ‪ ( P‬ﻫﻲ ‪ x − y + z − 1 = 0 :‬ﺇﺫﻥ )‪ n (1, −1,1‬ﻤﺘﺠﻬﺔ ﻤﻨﻅﻤﻴﺔ ﻋﻠﻴﻪ‪.‬‬ ‫‬ ‫ﻝﺩﻴﻨﺎ ﺍﻝﻤﺴﺘﻘﻴﻡ ) ∆( ﻋﻤﻭﺩﻱ ﻋﻠﻰ ) ‪ ( P‬ﺇﺫﻥ )‪ n (1, −1,1‬ﻤﻭﺠﻬﺔ ﻝﻠﻤﺴﺘﻘﻴﻡ ) ∆( ‪.‬‬ ‫‬ ‫ﺇﺫﻥ ﺍﻝﺘﻤﺜﻴل ﺍﻝﺒﺎراﻤﺘﺭﻱ ﻝﻠﻤﺴﺘﻘﻴﻡ ) ∆( ﺍﻝﻤﺎﺭ ﻤﻥ ﺍﻝﻨﻘﻁﺔ ) ‪ Ω ( 2, 2, 4‬ﻭ ﺍﻝﻤﻭﺠﻪ ﺒﺎﻝﻤﺘﺠﻬﺔ )‪ n (1, −1,1‬ﻫﻭ‪:‬‬ ‫‪x = 2 + t‬‬ ‫‪‬‬ ‫‪y = 2 −t‬‬ ‫‪z = 4 + t‬‬ ‫‪‬‬

‫‪0,5‬‬

‫ﺝ‪ -‬ﻨﺤﺩﺩ ﻤﺜﻠﻭﺙ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻝﻨﻘﻁﺔ ‪ ω‬ﻤﺭﻜﺯ ﺍﻝﺩﺍﺌﺭﺓ )‪. (Γ‬‬ ‫‪ ω‬ﻤﺭﻜﺯ ﺍﻝﺩﺍﺌﺭﺓ )‪ (Γ‬ﻫﻲ ﺘﻘﺎﻁﻊ ) ∆( ﻭ ) ‪. ( P‬‬

‫ ض )‪  (1)  (2‬‬

‫)∆( ∈ ‪ ω‬و )‪{ω} = (∆) ∩ ( P) ⇔ ω ∈ ( P‬‬

‫‪x = 2 + t‬‬ ‫‪‬‬ ‫‪ (2) :  y=2-t‬و ‪⇔ (1) : x − y + z − 1 = 0‬‬ ‫‪z = 4 + t‬‬ ‫‪‬‬ ‫‪(2 + t ) − (2 − t )(2 + t ) − (2 − t ) + (4 + t ) − 1 = 0‬‬ ‫‪:‬‬ ‫ ‪t = −1‬‬

‫اذ ‪ :‬م  ري‬ ‫‪1‬‬

‫ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ‬ ‫ﻨﻌﻭﺽ ﻗﻴﻤﺔ ‪ t = -1‬ﻓﻲ )‪ (2‬ﻨﺤﺼل ﻋﻠﻰ‬ ‫‪ x = 2 + (−1) = 1‬‬ ‫‪‬‬ ‫‪ y = 2 − (−1) = 3‬‬ ‫‪ z = 4 + (−1) = 3‬‬ ‫‪‬‬

‫ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ‪2007‬‬

‫ﺇﺫﻥ )‪. ω (1, 3,3‬‬

‫ا  ا  ‪:‬‬ ‫ﻴﺤﺘﻭﻱ ﻜﻴﺱ ﻋﻠﻰ ﺜﻼﺙ ﺒﻴﺩ ﻗﺎﺕ ﺒﻴﻀﺎﺀ ﻭ ﺃﺭﺒﻊ ﺒﻴﺩ ﻗﺎﺕ ﺴﻭﺩﺍﺀ ) ﻻ ﻴﻤﻜﻥ ﺍﻝﺘﻤﻴﻴﺯ ﺒﻴﻥ ﺍﻝﺒﻴﺩ ﻗﺎﺕ ﺒﺎﻝﻠﻤﺱ(‪.‬‬ ‫ﻨﺴﺤﺏ ﻋﺸﻭﺍﺌﻴﺎ ﻭﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ﺜﻼﺙ ﺒﻴﺩ ﻗﺎﺕ ﻤﻥ ﺍﻝﻜﻴﺱ ‪.‬‬ ‫ﻝﺩﻴﻨﺎ ‪card (Ω) = C73 = 35‬‬ ‫‪0,75‬‬

‫‪ (1‬ﺍﻝﺤﺩﺙ ‪ " A‬ﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺒﻴﺩﻗﺘﻴﻥ ﺒﺎﻝﻀﺒﻁ ﻝﻭﻨﻬﻤﺎ ﺃﺒﻴﺽ "ﺃﻱ‬

‫) ‪( B, B, N‬‬

‫‪card ( A) 12‬‬ ‫=‬ ‫ﺇﺫﻥ‬ ‫ﻝﺩﻴﻨﺎ ‪card ( A) = C32 ⋅ C41 = 12‬‬ ‫‪card (Ω) 35‬‬ ‫‪ (2‬ﺍﻝﺤﺩﺙ ‪ " B‬ﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺜﻼﺙ ﺒﻴﺩ ﻗﺎﺕ ﻤﻥ ﻨﻔﺱ ﺍﻝﻠﻭﻥ "‪.‬ﺍﻱ ) ‪ ( N , N , N‬أو‬ ‫= )‪p ( A‬‬

‫‪0,75‬‬

‫‪1‬‬

‫) ‪( B, B, B‬‬

‫‪card ( B ) 5 1‬‬ ‫=‬ ‫‪ card ( B ) = C33 + C43 = 1 + 4 = 5‬ﺇﺫﻥ =‬ ‫‪card (Ω) 35 7‬‬ ‫‪ (3‬ﺍﻝﺤﺩﺙ‪ " C‬ﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺒﻴﺩﻗﺔ ﺒﻴﻀﺎﺀ ﻋﻠﻰ ﺍﻷﻗل "‬ ‫ﺍﻝﺤﺩﺙ ﺍﻝﻤﻀﺎﺩ ‪" C‬ﻋﺩﻡ ﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺃﻴﺔ ﺒﻴﺩﻗﺔ ﺒﻴﻀﺎﺀ " ﻴﻌﻨﻲ )ﺍﻝﺒﻴﺩ ﻗﺎﺕ ﺍﻝﺜﻼﺙ ﺍﻝﻤﺴﺤﻭﺒﺔ ﺴﻭﺩﺍﺀ(‬ ‫‪card (C ) 4‬‬ ‫= ) ‪ P(C‬ﺇﺫﻥ ‪:‬‬ ‫ﻝﺩﻴﻨﺎ ‪ card (C ) = C43 = 4‬ﺇﺫﻥ ‪:‬‬ ‫=‬ ‫‪card (Ω) 35‬‬ ‫= ) ‪P( B‬‬

‫) ‪p (C ) = 1 − p (C‬‬ ‫‪4‬‬ ‫‪= 1−‬‬ ‫‪35‬‬ ‫‪31‬‬ ‫=‬ ‫‪35‬‬ ‫ا  ا  ‪:‬‬

‫‪1‬‬

‫‪1‬‬ ‫ﻝﺘﻜﻥ ) ‪ (un‬ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ﺍﻝﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ ‪ u0 = 2 :‬ﻭ )‪ un +1 = (un − 4n − 1‬ﻝﻜل ‪ n‬ﻤﻥ ‪. ℕ‬‬ ‫‪5‬‬ ‫ﻨﻀﻊ ‪ vn = un + n − 1‬ﻝﻜل ‪ n‬ﻤﻥ ‪. ℕ‬‬ ‫‪1‬‬ ‫‪ ( 1‬ﻨﺒﻴﻥ ﺃﻥ ) ‪ (vn‬ﻤﺘﺘﺎﻝﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪.‬‬ ‫‪5‬‬ ‫‪∀n ∈ ℕ: vn +1 = un +1 + (n + 1) − 1‬‬ ‫‪1‬‬ ‫‪= (un − 4n − 1) + n‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫)‪= (un − 4n − 1 + 5n‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫)‪= (un + n − 1‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫‪= vn‬‬ ‫‪5‬‬

‫‪0,5‬‬ ‫‪1‬‬ ‫ﺍﺩﻥ ) ‪ (vn‬ﻤﺘﺘﺎﻝﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ‬ ‫‪5‬‬ ‫‪ ( 2‬ﺃ – ﻨﺤﺴﺏ ‪ vn‬ﺒﺩﻻﻝﺔ ‪. n‬‬

‫‪0,5‬‬

‫=‪q‬‬

‫‪n‬‬

‫‪1‬‬ ‫‪1‬‬ ‫ﻝﺩﻴﻨﺎ ) ‪ (vn‬ﻤﺘﺘﺎﻝﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ = ‪ q‬ﻭﺤﺩﻫﺎ ﺍﻷﻭل ‪ v0 = u0 + 0 − 1 = 2 − 1 = 1‬ﺇﺫﻥ ‪ vn = v0 ⋅ q n‬ﺃﻱ ‪vn =  ‬‬ ‫‪5‬‬ ‫‪5‬‬

‫اذ ‪ :‬م  ري‬ ‫‪2‬‬

2007‫ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ‬

‫ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ‬ . lim un ‫ ﺜﻡ ﺤﺴﺎﺏ‬n ‫ ﺒﺩﻻﻝﺔ‬un ‫ ﺍﺴﺘﻨﺘﺎﺝ‬-‫ﺏ‬ x →+∞

n

1 un =   − n + 1 ‫ ﻭﻤﻨﻪ ﻓﺎﻥ‬. un = vn − n + 1 ‫ ﺇﺫﻥ‬vn = un + n − 1 ‫ﻝﺩﻴﻨﺎ‬ 5

0,5

n

1 1 lim un = −∞ ‫ ﺇﺫﻥ‬lim ( − n + 1) = −∞ ‫ ﻭ ﻝﺩﻴﻨﺎ‬lim   = 0 ‫ ﺇﺫﻥ‬−1 ≺ ≺ 1 ‫ﻝﺩﻴﻨﺎ‬ x →+∞ x →+∞ 5 x →+∞ 5   S n = u0 + u1 + ............. + un ‫ ﻭ‬Tn = v0 + v1 + .............. + vn (3 1 1 Tn =  5 − n  : ‫ﻨﺒﻴﻥ ﺃﻥ‬ 4 5  Tn = v0 + v1 + .............. + vn = v0 ⋅

1

1 − q n +1 1− q n +1

1 1−   5 = 1⋅   1 1− 5 n +1 5 1  = 1 −    4   5   n +1 1 1  = 5 − 5   4   5   1 1  =  5 − 5 ⋅ n +1  4 5  1 1  = 5 − n  4 5  (n + 1)(n − 2) ‫ﻨﺒﻥ ﺃﻥ‬ 2 : ‫ ﺍﺫﻥ‬un = vn − n + 1 ‫ﻝﺩﻴﻨﺎ‬

S n = Tn − S n = u0 + u1 + ............. + un

= ( v0 − (−1) ) + ( v1 − 0 ) + ( v2 − 1) + ................ + ( vn − (n − 1) )

= ( v0 + v1 + .............. + vn ) − ( (−1) + 0 + 1 + 2 + ............. + (n − 1) ) = Tn − = Tn −

( (−1) + (n − 1) )( n + 1)

2 ( n + 1)( n − 2 ) 2

:‫ا  ا ا‬ ( 2 + 2i ) = −2 + 4 2i : ‫( ﻨﺘﺤﻘﻕ ﻤﻥ ﺃﻥ‬1 2

( 2 + 2i )2 = 2 + 2 2 ⋅ 2i + ( 2i ) 2

0,25

2

= 2 + 4 2i − 4 = −2 + 4 2i

‫ م  ري‬: ‫اذ‬ 3

‫ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ‪2007‬‬

‫ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ‬ ‫‪0,75‬‬

‫‪ (2‬ﻨﺤل ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻝﻌﻘﺩﻴﺔ ‪ ℂ‬ﺍﻝﻤﻌﺎﺩﻝﺔ ‪z 2 − ( 2 + 2) z + 2 + 2 − 2i = 0 :‬‬ ‫ﻝﺩﻴﻨﺎ ﻤﻤﻴﺯ ﺍﻝﻤﻌﺎﺩﻝﺔ ﻫﻭ‬

‫)‬

‫(‬

‫‪2‬‬

‫)‬

‫‪2 + 2  − 4 2 + 2 − 2i‬‬ ‫‪‬‬

‫(‬

‫‪∆ = −‬‬ ‫‪‬‬

‫‪= 2 + 4 2 + 4 − 8 − 4 2 + 4 2i‬‬ ‫‪= −2 + 4 2i‬‬ ‫‪= ( 2 + 2i ) 2‬‬

‫إذن  ا د ه‪) = 1 − i :‬‬

‫‪2 + 2i‬‬

‫(‬

‫‪2 +2−‬‬

‫=)‬

‫= ‪ z1‬و ‪2 + 1 + 2i‬‬

‫‪2‬‬ ‫‪(3‬ﻝﺩﻴﻨﺎ ﺍﻝﻌﺩﺩﻴﻥ ﺍﻝﻌﻘﺩﻴﻴﻥ ‪ z1 = 1 − i‬ﻭ ‪. z2 = 1 + 2 + i‬‬

‫‪2 + 2i‬‬

‫(‬

‫‪2 +2+‬‬

‫‪2‬‬

‫= ‪z2‬‬

‫ﺃ – ﻨﺤﺩﺩ ﺍﻝﺸﻜل ﺍﻝﻤﺜﻠﺜﻲ ﻝﻠﻌﺩﺩ ﺍﻝﻌﻘﺩﻱ ‪. z1‬‬ ‫‪ z1 = 1 − i = 2 #$%‬إذن ‪:‬‬ ‫‪0,5‬‬

‫‪ 2‬‬ ‫‪2 ‬‬ ‫‪π‬‬ ‫‪π‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ π‬‬ ‫‪ π ‬‬ ‫‪z1 = 1 − i = 2 ‬‬ ‫‪−‬‬ ‫‪i  = 2  cos + i sin  = 2  cos  −  + i sin  −  ‬‬ ‫‪2 ‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪ 4‬‬ ‫‪ 4 ‬‬ ‫‪‬‬ ‫‪ 2‬‬ ‫ﺏ – ﻨﺒﻴﻥ ﺃﻥ ‪ z2 ) z1.z2 = 2 z2 :‬ﻫﻭ ﻤﺭﺍﻓﻕ ﺍﻝﻌﺩﺩ ‪. ( z2‬‬ ‫ﻝﺩﻴﻨﺎ ‪:‬‬

‫)‬

‫‪1‬‬

‫(‬

‫‪z1 ⋅ z2 = (1 − i ) 1 + 2 + i‬‬

‫‪= 1+ 2 + i − i − i 2 +1‬‬

‫)‬ ‫)‬

‫‪ z1.z2 = 2 z2 #$%‬ﺍﺫﻥ ‪2 z2 [ 2π ] :‬‬

‫و* أن ] ‪ arg ( z2 ) ≡ − arg ( z2 ) [ 2π‬و‬

‫‪ arg ( z1 .z2 ) ≡ arg‬ﺃﻱ‬

‫] ‪( 2 ) ≡ 0 [2π‬‬

‫ﺝ – ﻨﺤﺩﺩ ﻋﻤﺩﺓ ﻝﻠﻌﺩﺩ ‪z2‬‬ ‫‪0,5‬‬

‫ﻝﺩﻴﻨﺎ ] ‪arg( z1 ) + 2 arg( z2 ) ≡ 0 [ 2π‬‬

‫‪2 +1− i‬‬

‫(‬

‫‪= 2‬‬

‫‪= 2 z2‬‬

‫ا('‪'#‬ج ‪arg( z1 ) + 2 arg( z2 ) ≡ 0 [ 2π ] :‬‬

‫(‬

‫‪= 2+ 2 −i 2‬‬

‫ﻭ‬

‫] ‪[ 2π‬‬

‫‪π‬‬ ‫‪4‬‬

‫‪arg‬‬

‫] ‪( 2 ) + arg ( z ) [2π‬‬ ‫‪2‬‬

‫‪arg( z1 ) + arg( z2 ) ≡ arg‬‬

‫ن ] ‪arg( z1 ) + 2 arg( z2 ) ≡ 0 [ 2π‬‬

‫‪ arg ( z1 ) ≡ −‬ﺇﺫﻥ‬

‫] ‪[ 2π‬‬

‫‪π‬‬ ‫‪8‬‬

‫‪arg ( z2 ) ≡ −‬‬

‫  ‪:‬‬ ‫‪ (I‬ﻝﺩﻴﻨﺎ ‪ g‬ﺍﻝﺩﺍﻝﺔ ﺍﻝﻌﺩﺩﻴﺔ ﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ [∞‪ ]0, +‬ﺒﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫‪( x − 1) 2‬‬ ‫‪ (1‬ﻨﺒﻴﻥ ﺃﻥ‬ ‫‪x2‬‬

‫‪1‬‬ ‫‪− 2 ln x‬‬ ‫‪x‬‬

‫‪. g ( x) = x −‬‬

‫= )‪ g '( x‬ﻝﻜل ‪ x‬ﻤﻥ [∞‪ ]0, +‬ﺜﻡ ﻨﺴﺘﻨﺘﺞ ﻤﻨﺤﻰ ﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﺍﻝﺔ ‪ g‬ﻋﻠﻰ [∞‪. ]0, +‬‬

‫‪1‬‬

‫اذ ‪ :‬م  ري‬

‫‪4‬‬

‫ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ‪2007‬‬

‫ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ‬ ‫‪1‬‬ ‫‪g '( x) = 1 + 2 − 2 ln x‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫⋅‪= 1+ 2 − 2‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪x + 1 − 2x‬‬ ‫=‬ ‫‪x2‬‬ ‫‪2‬‬

‫)‪( x − 1‬‬ ‫‪x2‬‬

‫‪∀x ∈ ]0, +∞[ :‬‬

‫=‬

‫‪ #$%‬ﻝﻜل ‪ x‬ﻤﻥ [∞‪]0, +‬‬ ‫إذن ‪ ∀x ∈ ]0, +∞[ : g ' ( x ) ≥ 0‬و*' ن ا‪%‬ا ‪-. g‬ا‪  $%$‬ا‪,‬ل [∞‪]0, +‬‬ ‫‪ #$% (2‬ا‪%‬ا ‪ g‬ﺘﺯﺍﻴﺩﻴﺔ ﻋﻠﻰ ﺍﻝﻤﺠﺎل [∞‪ ]0, +‬و ‪  / 0‬ا‪,‬ل ]‪ ]0,1‬إذن‬ ‫)‪∀x ∈ ]0,1] ⇒ 0 ≺ x ≤ 1 ⇒ g ( x) ≤ g (1‬‬ ‫* أن ‪ g (1) = 0‬ن ‪ 23 x 1 g ( x) ≤ 0‬ا‪,‬ل ]‪]0,1‬‬ ‫‪ #$%‬ا‪%‬ا ‪ g‬ﺘﺯﺍﻴﺩﻴﺔ ﻋﻠﻰ ﺍﻝﻤﺠﺎل [∞‪ [1, +‬ﺇﺫﻥ )‪∀x ∈ [1, +∞[ ⇒ 1 ≤ x ⇒ g (1) ≤ g ( x‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ g (1) = 0‬ن ‪ 23 x 1 g ( x) ≥ 0‬ا‪,‬ل [∞‪[1, +‬‬ ‫‪ ( x − 1) ≥ 0‬ﻭ ‪. x 2 ≻ 0‬‬ ‫‪2‬‬

‫‪0,5‬‬

‫‪1‬‬ ‫‪ (II‬ﺍﻝﺩﺍﻝﺔ ﺍﻝﻌﺩﺩﻴﺔ ‪ f‬ﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ [∞‪ ]0, +‬ﺒﻤﺎ ﻴﻠﻲ ‪− (ln x) 2 − 2 :‬‬ ‫‪x‬‬ ‫‪(ln x) 2‬‬ ‫‪ ) lim‬ﻴﻤﻜﻥ ﻭﻀﻊ ‪ ( t = x‬ﺜﻡ ﻨﺤﺴﺏ )‪lim f ( x‬‬ ‫‪ (1‬ﺃ – ﻨﺒﻴﻥ ﺃﻥ‬ ‫∞‪x →+‬‬ ‫∞‪x →+‬‬ ‫‪x‬‬ ‫ﻨﻀﻊ ‪ t = x‬ﺇﺫﻥ ‪ x = t 2‬ﻋﻨﺩﻤﺎ ∞‪ x → +‬ﻓﺎﻥ ∞‪t → +‬‬ ‫‪f ( x) = x +‬‬

‫‪0,75‬‬

‫‪2‬‬

‫ﻝﺩﻴﻨﺎ‬ ‫‪2‬‬

‫‪0,25‬‬

‫‪ ln t ‬‬ ‫‪= 4‬‬ ‫‪‬‬ ‫‪ t ‬‬ ‫‪2‬‬

‫‪2‬‬

‫) ‪( ln t ) = ( 2ln t‬‬ ‫=‬

‫) ‪( ln x‬‬

‫‪2 2‬‬

‫‪t2‬‬

‫‪t2‬‬

‫‪2‬‬

‫) ‪( ln x‬‬ ‫‪x‬‬

‫‪ln t‬‬ ‫‪ ln t ‬‬ ‫‪= lim 4 ‬‬ ‫‪= 0 #$%‬‬ ‫‪ tlim‬إذن ‪ = 0‬‬ ‫∞‪x →+‬‬ ‫‪t‬‬ ‫∞‪→+‬‬ ‫∞‪→+‬‬ ‫‪x‬‬ ‫‪t‬‬ ‫‪ t ‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪1 ( ln x ) 2 ‬‬ ‫‪2‬‬ ‫‪f ( x ) = x + − ( ln x ) − 2 = x 1 + 2 −‬‬ ‫‪− ‬‬ ‫‪ x‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪x ‬‬ ‫‪‬‬ ‫‪2‬‬ ‫) ‪( ln x‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪ lim‬و ‪ lim 2 = 0‬ﺇﺫﻥ ∞‪lim f ( x ) = +‬‬ ‫ﻝﺩﻴﻨﺎ ‪ lim = 0‬و ‪= 0‬‬ ‫∞‪x →+‬‬ ‫‪x →+∞ x‬‬ ‫∞‪x →+‬‬ ‫‪x‬‬ ‫∞‪→+‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫ب – ﻨﺘﺤﻘﻕ ﻤﻥ ﺃﻥ ‪ f ( ) = f ( x) :‬ﻝﻜل ‪ x‬ﻤﻥ [∞‪. ]0, +‬‬ ‫‪x‬‬ ‫ﻝﻜل ‪ x‬ﻤﻥ [∞‪ ]0, +‬ﻝﺩﻴﻨﺎ‬

‫‪lim‬‬

‫‪2‬‬

‫‪ 1  1 1   1 ‬‬ ‫‪f   = + −  ln    − 2‬‬ ‫‪ x  x 1   x ‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪= + x − ( − ln x ) − 2‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪= + x − ( ln x ) − 2‬‬ ‫‪x‬‬ ‫)‪= f ( x‬‬

‫اذ ‪ :‬م  ري‬

‫‪5‬‬

‫‪0,5‬‬

‫ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ‬ ‫ج – ﻨﺤﺴﺏ )‪lim f ( x‬‬

‫ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ‪2007‬‬

‫‪x →0‬‬ ‫‪x≻0‬‬

‫‪1‬‬ ‫‪1‬‬ ‫ﻨﻀﻊ = ‪ t‬ﺇﺫﻥ ﻋﻨﺩﻤﺎ ‪ x → 0+‬ﻓﺎﻥ ∞‪ t → +‬ﻭ ﻤﻨﻪ ﻓﺎﻥ ∞‪lim f ( x) = lim f   = lim f (t ) = +‬‬ ‫‪x →0‬‬ ‫‪x →0‬‬ ‫‪t‬‬ ‫∞‪→+‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪x ≻0‬‬ ‫‪x≻0‬‬ ‫ﺇﺫﻥ ﺍﻝﻤﻨﺤﻨﻰ ) ‪ (C‬ﻴﻘﺒل ﻤﻘﺎﺭﺒﺎ ﺭﺃﺴﻲ ﻤﻌﺎﺩﻝﺘﻪ ‪x = 0‬‬ ‫ﺩ‪ – -‬ﻨﺒﻴﻥ ﺃﻥ ) ‪ (C‬ﻴﻘﺒل ﻓﺭﻋﺎ ﺸﻠﺠﻤﻴﺎ ﺍﺘﺠﺎﻫﻪ ﺍﻝﻤﻘﺎﺭﺏ ﻫﻭ ﺍﻝﻤﺴﺘﻘﻴﻡ ﺍﻝﺫﻱ ﻤﻌﺎﺩﻝﺘﻪ ﻫﻲ ‪y = x :‬‬

‫‪0,5‬‬

‫ﻝﺩﻴﻨﺎ ∞‪lim f ( x ) = +‬‬

‫∞‪x →+‬‬

‫‪2‬‬ ‫‪‬‬ ‫‪1 ( ln x ) 2 ‬‬ ‫‪lim f ( x ) = lim 1 + 2 −‬‬ ‫ﻭ‪−  =1‬‬ ‫∞‪x →+‬‬ ‫‪x →+∞ ‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪x ‬‬ ‫‪‬‬

‫‪1‬‬ ‫∞‪− (ln x) 2 − 2 = −‬‬ ‫∞‪x →+‬‬ ‫‪x →+∞ x‬‬ ‫ﻫﻲ ‪y = x :‬‬ ‫)‪g ( x‬‬ ‫‪ (2‬ﺒﻴﻥ ﺃﻥ ‪:‬‬ ‫= )‪ f '( x‬ﻝﻜل ‪ x‬ﻤﻥ [∞‪]0, +‬‬ ‫‪x‬‬

‫‪ lim f ( x ) − x = lim‬ﺇﺫﻥ ) ‪ (C‬ﻴﻘﺒل ﻓﺭﻋﺎ ﺸﻠﺠﻤﻴﺎ ﺍﺘﺠﺎﻫﻪ ﺍﻝﻤﻘﺎﺭﺏ ﻫﻭ ﺍﻝﻤﺴﺘﻘﻴﻡ ﺍﻝﺫﻱ ﻤﻌﺎﺩﻝﺘﻪ‬

‫‪1‬‬ ‫' ) ‪− 2 ( ln x )( ln x‬‬ ‫‪x2‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫⋅ ) ‪= 1 − 2 − 2 ( ln x‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪=  x − − 2 ln x ‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪‬‬ ‫)‪g ( x‬‬ ‫=‬ ‫‪x‬‬

‫‪1,5‬‬

‫‪f '( x) = 1−‬‬

‫ﺇﺸﺎﺭﺓ ) ‪ f ' ( x‬ﻫﻲ ﺇﺸﺎﺭﺓ ) ‪g ( x‬‬ ‫ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﺍﻝﺔ ‪f‬‬

‫∞‪+‬‬

‫‪0‬‬

‫‪1‬‬

‫‪φ‬‬

‫‪+‬‬ ‫∞‪+‬‬

‫‪0‬‬ ‫‪ (3‬ا‪##‬‬ ‫‪1‬‬

‫اذ ‪ :‬م  ري‬ ‫‪6‬‬

‫‪x‬‬ ‫)‪f '( x‬‬

‫‬‫∞‪+‬‬

‫)‪f ( x‬‬

‫‪0,5‬‬

‫ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ‪2007‬‬ ‫‪ ( 4‬ﺃ ‪ -‬ﻨﺒﻴﻥ ﺃﻥ ﺍﻝﺩﺍﻝﺔ ‪ G : x ln x − x‬ﺩﺍﻝﺔ ﺃﺼﻠﻴﺔ ﻝﻠﺩﺍﻝﺔ ‪ g : x → ln x‬ﻋﻠﻰ [∞‪]0, +‬‬ ‫ﻝﺩﻴﻨﺎ‬ ‫‪∀x ∈ ]0, +∞[ : G ' ( x ) = x 'ln x + x ( ln x ) '− 1‬‬ ‫‪1‬‬ ‫‪= ln x + x ⋅ − 1‬‬ ‫‪x‬‬ ‫‪= ln x + 1 − 1‬‬ ‫‪= ln x‬‬

‫ﺇﺫﻥ ﺍﻝﺩﺍﻝﺔ ‪ G‬ﺩﺍﻝﺔ ﺃﺼﻠﻴﺔ ﻝﻠﺩﺍﻝﺔ ‪.g‬‬

‫ﺏ‪ -‬ﺒﺎﺴﺘﻌﻤﺎل ﻤﻜﺎﻤﻠﺔ ﺒﺎﻷﺠﺯﺍﺀ ‪ ،‬ﻨﺒﻴﻥ ﺃﻥ ‪(ln x) 2 dx = e − 2 :‬‬ ‫‪0,75‬‬

‫‪u ( x ) = ( ln x )2‬‬ ‫ﻨﻀﻊ‬ ‫‪‬‬ ‫‪v ' ( x ) = 1‬‬

‫ﺇﺫﻥ‬

‫‪e‬‬

‫∫‬

‫‪1‬‬

‫‪ln x‬‬ ‫‪‬‬ ‫‪u ' ( x ) = 2‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪v ( x ) = x‬‬ ‫‪‬‬

‫ﺇﺫﻥ‬ ‫‪ln x‬‬ ‫‪2‬‬ ‫‪⋅ x dx‬‬ ‫‪x‬‬

‫‪e‬‬

‫‪e‬‬

‫‪ −‬‬ ‫‪1 ∫1‬‬

‫‪2‬‬

‫‪2‬‬

‫) ‪∫ ( ln x ) dx =  x ( ln x‬‬ ‫‪e‬‬

‫‪1‬‬

‫‪e‬‬

‫‪2‬‬ ‫‪=  x ( ln x )  − 2 ∫ ln x dx‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪e‬‬

‫‪e‬‬ ‫‪2‬‬ ‫‪=  x ( ln x )  − 2 [ x ln x − x ]1‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪e‬‬

‫) )‪) − 2 (( e ln e − e ) − (1ln1 − 1‬‬ ‫‪0,75‬‬

‫‪2‬‬

‫(‬

‫)‪= e ( ln e ) − 1( ln1‬‬ ‫‪2‬‬

‫‪=e−2‬‬ ‫ﺝ – ﻤﺴﺎﺤﺔ ﺤﻴﺯ ﺍﻝﻤﺴﺘﻭﻯ ﺍﻝﻤﺤﺼﻭﺭ ) ‪ (C‬ﻭ ﻤﺤﻭﺭ ﺍﻷﻓﺎﺼﻴل ﻭ ﺍﻝﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻝﻠﺫﻴﻥ ﻤﻌﺎﺩﻝﺘﺎﻫﻤﺎ ‪ x = 1 :‬ﻭ ‪x = e‬‬

‫ﻝﺩﻴﻨﺎ‬

‫‪ f‬ﺩﺍﻝﺔ ﻤﻭﺠﺒﺔ ﻭ ﻤﺘﺼﻠﺔ ﻋﻠﻰ ﺍﻝﻤﺠﺎل ]‪ [1, e‬ﺇﺫﻥ ﺍﻝﻤﺴﺎﺤﺔ ﺍﻝﻤﻁﻠﻭﺒﺔ ﻫﻲ‬

‫‪e‬‬ ‫‪e‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪A = ∫ f ( x ) dx = ∫  x + − (ln x) 2 − 2  dx‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪e‬‬ ‫‪e‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪= ∫  x + − 2  dx − ∫ ( ln x ) dx‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪e‬‬

‫‪ x2‬‬ ‫‪‬‬ ‫) ‪=  + ln x − 2 x  − ( e − 2‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪ e2‬‬ ‫‪ 1‬‬ ‫‪‬‬ ‫‪=  + ln e − 2e  −  + ln1 − 2  − e + 2‬‬ ‫‪‬‬ ‫‪ 2‬‬ ‫‪ 2‬‬ ‫‪e2‬‬ ‫‪1‬‬ ‫=‬ ‫‪+ 1 − 2e − + 2 − e + 2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪e‬‬ ‫‪9‬‬ ‫=‬ ‫‪− 3e +‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪e2‬‬ ‫‪9‬‬ ‫= ‪ A‬ﺒﻭﺤﺩﺓ ﻗﻴﺎﺱ ﺍﻝﻤﺴﺎﺤﺔ‬ ‫ﺇﺫﻥ ‪− 3 e +‬‬ ‫‪2‬‬ ‫‪2‬‬

‫اذ ‪ :‬م  ري‬

‫‪7‬‬

Related Documents

Juillet 2007 Solution
December 2019 12
Juillet 2004 Solution
December 2019 8
Juillet 2003 Solution
December 2019 11
Juillet 2005 Solution
December 2019 15
17 Juillet 2007 11h11
August 2019 18
Juin 2007 Solution
December 2019 17