SULIT
3472/2
JABATAN PELAJARAN WILAYAH PERSEKUTUAN KUALA LUMPUR
PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2008
SKEMA PEMARKAHAN
ADDITIONAL MATHEMATICS
PAPER 2
3472/2 @ 2008 Hak Cipta JPWP
SULIT
1
SULIT
3472/2
SECTION A Solution
Sub Mark
3r2 + rs + 6 = 7 ---(1) 3r + 2s = 7 --------(2) 7 3r s …………………………………………………… 2 7 3r 3r 2 r 6 7 …………………………………………. 2
1
Question 1.
Full Mark
1
3r 2 7r 2 0 7 (7) 2 43 2
…………………………………….
1
r 0.257, 2.591 ……………………………………………….
1
s 3.115, 7.387 ……………………………………………….
1
r
23
[5]
2. (a)
dy 3(3 2 x ) 2 (2) ………………………………………. dx dy ……………………………………………….. 6 dx y 1 6( x 1) ………………………………………..
y 6 x 7
………………………………………………..
(b) l 2 r dl (i) 2 dr dr dr dl dt dl dt 1 (0.2) ……………………………………………….. 2 0.03183 cms 1……………………………………………..
1 1 1 1
4
1 1
(ii) Initial r
60 2 60 5(0.03 183) ………………. 2 (3.142 ) r 9.707 …………………………
A fter 5s, r
1 4 1 [8]
3472/2 @ 2008 Hak Cipta JPWPKL
[Lihat sebelah SULIT
SULIT
2 3. (a)
(b)
POQ 10 = 11.2 ………………………………………. POQ = 1.12 radians …………………………………… OR ………………………………………. 10 OR = 4.357 cm …………………………………… RQ = 5.643 cm ……………………………………
Cos 1.12
1 1
2
1 1 1
3
(c) Area of sector POQ area of ΔPOR area of quadrant RSQ 1 1 1 10 2 1.12 10 sin1.12 4.357 5.643 2 2 2 2 2 56 19.609 25.01
11.38 cm
2
……………………………………………….
1, 1 3 1 [8]
4. (a)
The amount of savings at the end of every year forms a G.P with a = 5000 r = 1.035 ..............................................
Tn > 6000 5000 (1.035) n – 1 > 6000 ................................................. (1.035) n – 1 > 1.2 ( n – 1) log 1.035 > log 1.2 ........................................... n – 1 > 5.30 n > 6.3 n = 7 ................................................ (b)
5.
(a) (i)
(ii)
T15 = 5000 (1.035) 14 ................................................................................. = 8093.47 ................................................................. 0
1 2 P ( X 0) 10 C 0 3 3 0.01734
1
1 1
1 1 1
[6]
10
…………………………… ……………………………
1 1
2
P ( X 2) 1 P ( X 0) P ( X 1) 1
= 1 0.01734 0.8960
10
9
1 2 C1 ………… 3 3 …………
………………………………..
1 1
2
(b) 1 ( i) x (600) 200 …………………………………………. 3 1 2 600 …………………………………… 3 3 …………………………………… 1 1 .5 4 7 ……………………………………………
(ii)
1 1 1
3 [7]
3472/2 @ 2008 Hak cipta JPWPKL SULIT
3
SULIT 6.
h2 k Let
3472/2
2
100 ………………………………………………… u pv hi k j 3 pi 4 p j ………………………………………. 3p = h or 4p = k
4 3 k h, or h k 3 4
OR
h2
Then, (3p)² + (4p)² = 100 OR
34 k Then, h = 6 and k = 8
43 h 2
2
1 0 0 or
1
1 1 1
k 2 100
………………………………………..
1,1 [6]
SECTION B Question
Sub Mark
Solution
Full Mark
7. Refer to the attachment on page 8. 8. 3 1 1 or m PR 2 ………………………. 1 3 2 Point N ( 1, 2) ………………………………………………...
(a) mQS
The equation of PR is
y – 2 = 2(x – 1) y = 2x
When x = –1 , then Therefore R (–1, –2)
1 (1) 2 x or 3 x=2 or y=4 1 Area of PQRS = 2 1 = 2 = 15
(b) 1
(c)
OR
2 y 2 1 (1) y 2
y = 2(–1) = –2 . ………………………………………..
2
1 (2) 2 y 3
1 1 1
1
………………..
1
6 2 1 12 4 3 6 2 ………….
1
2 1 1 3 2 4 3 2 1 4
………………………………….…….
3 1
(1 2) 2 (3 4) 2 ……..
1
x 2 4 x 4 y 2 8 y 16 4 (9 1) ……………………. x 2 y 2 4 x 8 y 20 0 …………………………...
1 1
( x 2) 2 ( y 4) 2 2
3472/2 @ 2008 Hak Cipta JPWPKL
4
3 10 [Lihat sebelah SULIT
SULIT
4 9.
(a) Construct lines to get modal marks ………………………….. Mode = 66.17 (accept range 65.50 – 66.50) ………………..
45 7 10 48 ……………………………. (b) Q1 39.5 4 5 3 45 22 Q3 59.5 4 10 69.292 ………………….. 12 Interquartile range = 69.292 – 48 ……………………… = 21.292 ……………………………… (c)
7(34.5) 5(44.5) 10(54.5) 12(64.5) 11(74.5) 7 5 10 12 11 57.833 ……………………………………………
Mean =
1 1
2
1
1 1 1
4
1 1
Standard deviation 7(34.5) 2 5(44.5) 2 10(54.5) 2 12(64.5) 2 11(74.5) 2 57.8332 7 5 10 12 11
= 13.664 ……………………………………………………… 10.
(a)
2
2x + 3 = 4x + 9 ……………………………………………. (x + 1)(x – 3) = 0 …………………………………………… x = -1, h = 5 ……………………………………… x = 3, k = 21
1 4 1
10
1 1 1
3
(b)
1 5 21 4 or 2
3
2 x3 3 3 x ……………………………. 1
2 3 3 2 1 3 3 3 3 1 ……………………… 3 3 Area of trapezium – area under a curve = 52 – 30 2 ……………………………………………… 3 1 = 2 1 u nit 2 ……………………………………………. 3
1 1
1 1
4
21
(c)
1 y2 3 y or 1 (3 2 )( 2 1 9 ) ………………… 2 2 3 3 = 1 2 1 2 3 2 1 3 2 3 3 ………………. 2 2 2
1 1
3472/2 @ 2008 Hak cipta JPWPKL SULIT
5
SULIT
3472/2
Volume of revolution = Volume generated by the curve – Volume of cone = 81 - 36 = 45 unit3 ………………………………………………..
1
3 10
11.
(a)
L.H .S . sin x cos x (cos 2 x 2 cos 2 x 3) sin x cos x (2 cos 2 x 1 2 cos 2 x 3) …………… ………….. sin x cos x (2) 2 sin x cos x
………………………………
sin 2 x
………………………………
1
1 1
R.H .S
3
(b) y
y = sin 2x
1
y
1 2
O 1
2
-1
2
3 2
x 1 2 2 x
2
Sketch the graph of y = sin 2x : ……………… sin curve with 2 cycles ……………… ……… max = 1, min = -1 , x- intercepts correct ……… x 1 π x 1 sin x cos x (cos 2 x 2 cos 2 x 3) = 2π 2 x 1 From (a), sin 2 x 2π 2
1, 1 1
2 sin x cos x (cos 2 x 2 cos 2 x 3) =
Recognised the required straight line is y
Draw the straight line y
x 1 2 2
………… ………… x 1 2 2
… …
1
1
1 7
From the graph, no. of solutions = 3
3472/2 @ 2008 Hak Cipta JPWPKL
1
10
[Lihat sebelah SULIT
SULIT
6
SECTION C Question
Solution
Sub Mark
Full Mark
1 1
2
12. (a) 15 – 3 t > 0 ………………………………………………. 0 < t < 5 ……………………………………………… 3 (b) s 15t t 2 2 3 = 15(5) - (5)² ………………………………………….. 2 = 37.5 ……………………………………………………. Particle P reaches B. …………………………………………. (c) When t = 8, s = 15 (8) –
3 (8)² …………………………….. 2
1 1 1
3
1
s = 24 Total distance travelled = 2 (37.5) – 24 or 37.5+(37.5-24) = 51 m …………………………….. (d) sp
1
3
1
37.5 24 t 0 5 8 Shape of the curve ……………………………………………….. Critical points (0,0), (5, 37.5), (8, 24)…………………………….
13.
11 9 sin ABC sin 320 ……………………………………… ABC 40.37o ………………………………………… ABC is an obtuse angle ABC 139.63o or 139o38’ ………………… 1 (ii) 32.86 11 6 sin ACD …………………………….. 2 ACD 84.72 O or 84o43’……………………… (iii) AD 2 112 6 2 2116 cos 84.72 o ……………………..
(a)(i)
AD 12.04 …………………………………………….
1 1
2 10
1 1 1 1 1 1 1
7
3472/2 @ 2008 Hak cipta JPWPKL SULIT
7
SULIT
b) ( i)
3472/2
D C 11 cm 9 cm 9 cm
A
32O
B’
B
1
AB’C drawn ………………………………………………… 1 (ii) Area of AB ' C 11 9 sin107.630 ……………………. 2 = 47.18 cm² ………………………………..
1 1
3 10
14.
Refer to the attachment on page 9.
15. (a) (i) (ii) (iii)
x = RM1.20 ………………………………………. y = 160 ………………………………………… z = RM5.40 ……………………………………….
1 1 1
3
(b) I =
175 (14 ) 125 (18 ) 160 (16 ) 135 (19 ) 110 (13 ) 14 18 16 19 13
I = 140.7 ...................................................................................
(c)
(d)
Expenditure 2004
1
100 140.7 ...................................................
1
Expenditure 2004 = RM962.39 ……………………
1
684
1,1
115 140.7 …………………………………. 100 = 161.8 …………………………………………….
I 2007 / 2000
3
2
1 1
2 10
3472/2 @ 2008 Hak Cipta JPWPKL
[Lihat sebelah SULIT
SULIT
8
QUESTION 7 x+1 log10 y
1.5
2
3
4
5
6
7
0.362
0.415
0.550
0.672
0.799
0.919
1.049
At least 2 decimal places 1
log10 y
1.1
1.0
0.9
0.8
1 2 1
(5)
y = h kx+1
(b) 0.7
axes and scales plotted points line of best fit
(a) graph
log10 y = log10 h + (x+1)log10 k
1
0.6 the two points
i) Gradient = 0.799 – 0.175 selected must lie 5–0 on the graph 1
0.5 0.48
log10 k = 0.1248 ± 0.01
0.4
k = 1.333 ± 0.1
1
0.3 ii) y-intercept, log10 h = 0.175
h = 1.496 ± 0.1
0.2 0.175
iii)
0.1
O
0.01
log 10 y = 0.48 ± 0.01 y = 3.02 ± 0.1
1 1 (5) [10] [10]
1
2 2.4 3
4
5
6
7
8
x+1
3472/2 @ 2008 Hak cipta JPWPKL SULIT
9
SULIT
y
3472/2
Question 14
110 (a) 100 7x + 4y = 420
70x + 40y 4200 20x + 80y 1600 y 2x
1 1 1 (3)
(b) One correct line All three lines correct Shaded region
90 y = 2x 80
1 1 1
(3)
(c) i) Profit =20x + 10y Max point = (56, 6) 1 Max profit = 20(56) + 10(6) = RM1180 1
(2)
ii) Draw line x = 2y Max number of Powermax x = 46 ± 1
70
1 1
(2) 10
60
50 Profit function : P = 20x + 10y
40
R
30
x = 2y
20
10 X
Maximum point (56, 6) x + 4y = 80
O
10
20
3472/2 @ 2008 Hak Cipta JPWPKL
30
40
46 50
60
70
80 [Lihat sebelah SULIT
x