Jpwp Mark Scheme Spm2008 Trial Add Maths P2

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Jpwp Mark Scheme Spm2008 Trial Add Maths P2 as PDF for free.

More details

  • Words: 2,103
  • Pages: 11
SULIT

3472/2

JABATAN PELAJARAN WILAYAH PERSEKUTUAN KUALA LUMPUR

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2008

SKEMA PEMARKAHAN

ADDITIONAL MATHEMATICS

PAPER 2

3472/2 @ 2008 Hak Cipta JPWP

SULIT

1

SULIT

3472/2

SECTION A Solution

Sub Mark

3r2 + rs + 6 = 7 ---(1) 3r + 2s = 7 --------(2) 7  3r s …………………………………………………… 2  7  3r  3r 2  r    6  7 ………………………………………….  2 

1

Question 1.

Full Mark

1

3r 2  7r  2  0  7   (7) 2  43 2

…………………………………….

1

r  0.257,  2.591 ……………………………………………….

1

s  3.115, 7.387 ……………………………………………….

1

r

23

[5]

2. (a)

dy  3(3  2 x ) 2 (2) ………………………………………. dx dy ………………………………………………..  6 dx y  1  6( x  1) ………………………………………..

y  6 x  7

………………………………………………..

(b) l  2 r dl (i)  2 dr dr dr dl   dt dl dt 1   (0.2) ……………………………………………….. 2  0.03183 cms 1……………………………………………..

1 1 1 1

4

1 1

(ii) Initial r 

60 2 60  5(0.03 183) ………………. 2 (3.142 ) r  9.707 …………………………

A fter 5s, r 

1 4 1 [8]

3472/2 @ 2008 Hak Cipta JPWPKL

[Lihat sebelah SULIT

SULIT

2 3. (a)

(b)

POQ  10 = 11.2 ……………………………………….  POQ = 1.12 radians …………………………………… OR ………………………………………. 10 OR = 4.357 cm …………………………………… RQ = 5.643 cm ……………………………………

Cos 1.12 

1 1

2

1 1 1

3

(c) Area of sector POQ  area of ΔPOR  area of quadrant RSQ 1 1 1   10 2  1.12   10 sin1.12   4.357    5.643 2 2 2 2 2  56  19.609  25.01 

 11.38 cm

2

……………………………………………….

1, 1 3 1 [8]

4. (a)

The amount of savings at the end of every year forms a G.P with a = 5000 r = 1.035 ..............................................

Tn > 6000 5000 (1.035) n – 1 > 6000 ................................................. (1.035) n – 1 > 1.2 ( n – 1) log 1.035 > log 1.2 ........................................... n – 1 > 5.30 n > 6.3 n = 7 ................................................ (b)

5.

(a) (i)

(ii)

T15 = 5000 (1.035) 14 ................................................................................. = 8093.47 ................................................................. 0

1  2 P ( X  0) 10 C 0     3  3  0.01734

1

1 1

1 1 1

[6]

10

…………………………… ……………………………

1 1

2

P ( X  2)  1  P ( X  0)  P ( X  1) 1

= 1  0.01734   0.8960

10

9

1 2 C1     …………  3   3  …………

………………………………..

1 1

2

(b) 1 ( i) x  (600)  200 …………………………………………. 3  1  2  600    ……………………………………  3  3  ……………………………………  1 1 .5 4 7 ……………………………………………

(ii)  

1 1 1

3 [7]

3472/2 @ 2008 Hak cipta JPWPKL SULIT

3

SULIT 6.

h2 k Let

3472/2

2

 100 ………………………………………………… u  pv hi  k j  3 pi  4 p j ………………………………………. 3p = h or 4p = k

4 3 k  h, or h  k 3 4

OR

h2 

Then, (3p)² + (4p)² = 100 OR

 34 k  Then, h = 6 and k = 8

 43 h  2

2

 1 0 0 or

1

1 1 1

 k 2  100

………………………………………..

1,1 [6]

SECTION B Question

Sub Mark

Solution

Full Mark

7. Refer to the attachment on page 8. 8. 3 1 1  or m PR  2 ………………………. 1 3 2 Point N ( 1, 2) ………………………………………………...

(a) mQS 

The equation of PR is

y – 2 = 2(x – 1) y = 2x

When x = –1 , then Therefore R (–1, –2)

1 (1)  2 x or 3 x=2 or y=4 1 Area of PQRS = 2 1 = 2 = 15

(b) 1 

(c)

OR

2 y 2 1 (1) y  2

y = 2(–1) = –2 . ………………………………………..

2

1 (2)  2 y 3

1 1 1

1

………………..

1

6  2  1  12  4  3  6  2 ………….

1

2 1 1 3 2 4 3 2 1 4

………………………………….…….

3 1

(1  2) 2  (3  4) 2 ……..

1

x 2  4 x  4  y 2  8 y  16  4 (9  1) ……………………. x 2  y 2  4 x  8 y  20  0 …………………………...

1 1

( x  2) 2  ( y  4) 2  2

3472/2 @ 2008 Hak Cipta JPWPKL

4

3 10 [Lihat sebelah SULIT

SULIT

4 9.

(a) Construct lines to get modal marks ………………………….. Mode = 66.17 (accept range 65.50 – 66.50) ………………..

 45   7   10  48 ……………………………. (b) Q1  39.5   4 5        3  45   22   Q3  59.5   4  10  69.292 ………………….. 12       Interquartile range = 69.292 – 48 ……………………… = 21.292 ……………………………… (c)

7(34.5)  5(44.5)  10(54.5)  12(64.5)  11(74.5) 7  5  10  12  11  57.833 ……………………………………………

Mean =

1 1

2

1

1 1 1

4

1 1

Standard deviation 7(34.5) 2  5(44.5) 2  10(54.5) 2  12(64.5) 2  11(74.5) 2  57.8332 7  5  10  12  11

= 13.664 ……………………………………………………… 10.

(a)

2

2x + 3 = 4x + 9 ……………………………………………. (x + 1)(x – 3) = 0 …………………………………………… x = -1, h = 5 ……………………………………… x = 3, k = 21

1 4 1

10

1 1 1

3

(b)

1  5  21 4  or 2

3

 2 x3   3  3 x  …………………………….   1

 2  3 3   2   1 3   3 3      3   1   ………………………   3    3     Area of trapezium – area under a curve = 52 – 30 2 ……………………………………………… 3 1 = 2 1 u nit 2 ……………………………………………. 3

1 1

1 1

4

21

(c)

 1  y2    3 y  or 1  (3 2 )( 2 1  9 ) ………………… 2 2 3 3 = 1    2 1 2  3 2 1    3 2  3 3   ……………….        2   2   2

1 1

3472/2 @ 2008 Hak cipta JPWPKL SULIT

5

SULIT

3472/2

Volume of revolution = Volume generated by the curve – Volume of cone = 81 - 36  = 45  unit3 ………………………………………………..

1

3 10

11.

(a)

L.H .S .  sin x cos x (cos 2 x  2 cos 2 x  3)  sin x cos x (2 cos 2 x  1  2 cos 2 x  3) …………… …………..  sin x cos x (2)  2 sin x cos x

………………………………

 sin 2 x

………………………………

1

1 1

 R.H .S

3

(b) y

y = sin 2x

1

y

1 2

O 1

2

-1

 2



3  2

x 1  2 2 x

2

Sketch the graph of y = sin 2x : ……………… sin curve with 2 cycles ……………… ……… max = 1, min = -1 , x- intercepts correct ……… x 1 π x 1 sin x cos x (cos 2 x  2 cos 2 x  3) =  2π 2 x 1 From (a), sin 2 x   2π 2

1, 1 1

2 sin x cos x (cos 2 x  2 cos 2 x  3) =

Recognised the required straight line is y 

Draw the straight line y 

x 1  2 2

………… ………… x 1  2 2

… …

1

1

1 7

 From the graph, no. of solutions = 3

3472/2 @ 2008 Hak Cipta JPWPKL

1

10

[Lihat sebelah SULIT

SULIT

6

SECTION C Question

Solution

Sub Mark

Full Mark

1 1

2

12. (a) 15 – 3 t > 0 ………………………………………………. 0 < t < 5 ……………………………………………… 3 (b) s  15t  t 2 2 3 = 15(5) - (5)² ………………………………………….. 2 = 37.5 ……………………………………………………. Particle P reaches B. …………………………………………. (c) When t = 8, s = 15 (8) –

3 (8)² …………………………….. 2

1 1 1

3

1

s = 24 Total distance travelled = 2 (37.5) – 24 or 37.5+(37.5-24) = 51 m …………………………….. (d) sp

1

3

1

37.5 24 t 0 5 8 Shape of the curve ……………………………………………….. Critical points (0,0), (5, 37.5), (8, 24)…………………………….

13.

11 9  sin ABC sin 320 ………………………………………  ABC  40.37o ………………………………………… ABC is an obtuse angle  ABC  139.63o or 139o38’ ………………… 1 (ii) 32.86   11 6  sin ACD …………………………….. 2  ACD  84.72 O or 84o43’……………………… (iii) AD 2  112  6 2  2116 cos 84.72 o ……………………..

(a)(i)

AD  12.04 …………………………………………….

1 1

2 10

1 1 1 1 1 1 1

7

3472/2 @ 2008 Hak cipta JPWPKL SULIT

7

SULIT

b) ( i)

3472/2

D C 11 cm 9 cm 9 cm

A

32O

B’

B

1

AB’C drawn ………………………………………………… 1 (ii) Area of  AB ' C   11 9  sin107.630 ……………………. 2 = 47.18 cm² ………………………………..

1 1

3 10

14.

Refer to the attachment on page 9.

15. (a) (i) (ii) (iii)

x = RM1.20 ………………………………………. y = 160 ………………………………………… z = RM5.40 ……………………………………….

1 1 1

3

(b) I =

175 (14 )  125 (18 )  160 (16 )  135 (19 )  110 (13 ) 14  18  16  19  13

I = 140.7 ...................................................................................

(c)

(d)

Expenditure 2004

1

 100  140.7 ...................................................

1

Expenditure 2004 = RM962.39 ……………………

1

684



1,1

115  140.7 …………………………………. 100 = 161.8 …………………………………………….

I 2007 / 2000 

3

2

1 1

2 10

3472/2 @ 2008 Hak Cipta JPWPKL

[Lihat sebelah SULIT

SULIT

8

QUESTION 7 x+1 log10 y

1.5

2

3

4

5

6

7

0.362

0.415

0.550

0.672

0.799

0.919

1.049

At least 2 decimal places  1

log10 y

1.1 

1.0 

0.9 

0.8



1 2 1

(5)

y = h kx+1

(b) 0.7

  

 axes and scales  plotted points  line of best fit

(a) graph

 log10 y = log10 h + (x+1)log10 k

 1

0.6 the two points



i) Gradient = 0.799 – 0.175  selected must lie 5–0 on the graph 1

0.5 0.48

log10 k = 0.1248 ± 0.01



0.4

k = 1.333 ± 0.1 



1

0.3 ii) y-intercept, log10 h = 0.175

h = 1.496  ± 0.1

0.2 0.175

iii)

0.1

O

 0.01

log 10 y = 0.48 ± 0.01 y = 3.02  ± 0.1

1 1 (5) [10] [10]

1

2 2.4 3

4

5

6

7

8

x+1

3472/2 @ 2008 Hak cipta JPWPKL SULIT

9

SULIT

y

3472/2

Question 14

110 (a) 100 7x + 4y = 420

70x + 40y  4200 20x + 80y  1600 y  2x

1 1 1 (3)

(b) One correct line All three lines correct Shaded region

90 y = 2x 80

1 1 1

(3)

(c) i) Profit =20x + 10y Max point = (56, 6) 1 Max profit = 20(56) + 10(6) = RM1180 1

(2)

ii) Draw line x = 2y Max number of Powermax x = 46 ± 1

70

1 1

(2) 10

60

50 Profit function : P = 20x + 10y

40

R

30

x = 2y

20

10 X

Maximum point (56, 6) x + 4y = 80

O

10

20

3472/2 @ 2008 Hak Cipta JPWPKL

30

40

46 50

60

70

80 [Lihat sebelah SULIT

x

Related Documents