Jpwp Mark Scheme Spm 2008 Trial Add Maths P1

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Jpwp Mark Scheme Spm 2008 Trial Add Maths P1 as PDF for free.

More details

  • Words: 936
  • Pages: 6
SULIT

3472/1(SP)

3472/1 Matematik Tambahan Kertas 1 Ogos 2008 2 jam

JABATAN PELAJARAN WILAYAH PERSEKUTUAN KUALA LUMPUR

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2008

SKEMA PEMARKAHAN

ADDITIONAL MATHEMATICS Paper 1

3472/1(SP)

[Lihat sebelah SULIT

2

SULIT Question 1

Solution (a) 8,10 (b) 4

2

f

1

( x) 

1 3 x h h

1 2 k 6

2

1

1,1

3

1 1 1 3

(p - 1)x2 - 8x - 4 = 0 (-8)2 – 4(p – 1)(– 4) > 0 p > –3

1 1 1

x2 – 4x – 21  0 (x – 7)(x + 3)  0 or

5

Full Mark

1

h

4

Sub Mark 1

gf ( x )  g (3x  2) 1  (3 x  2) = 3x  2 3  3x 2 = , x 3x  2 3

3

3472/1(SP)

3

1 1

-3 x  -3 , 6

7

(a)

7 x 7

h = –2 k=6

1 1 1

1 (b) c =  (0  2) 2  6 2 c=4 log 10 5 2 x 1  log 10 8 x

1 1

(2x+1)log 10 5  x log 10 8

1

0.699 (2 x +1) = 0.9031x

1

x =

4

 0.699 0.4949

= 1.412 3472/1(SP)

3

1

3 SULIT

3

SULIT 8

log 3 x 

4 3 0 log 3 x

3472/1(SP)

1

log 3 x 2  3 log 3 x  4  0 Let y = log 3 x y2  3y  4  0 ( y  4)( y  1)  0 or (log3 x + 4) (log3 x - 1) = 0 y = - 4 or y = 1 log 3 x  4 or log 3 x  1 1 x , x  3 (Both) 81 9

1 4

1 1

2

10

1

a) ar = 108 or 1 r= 3 1 2 b ) a ( ) = 108 3 a = 972 12 r= or x 1

4

ar = 12

1 4 1 r=

12 4x  4 = x 1 12 2 4 x + 8 x – 140 = 0 ( x – 5 ) ( x + 7) = 0 x = 5, x = −7

4x  4 12

1

1 (Both)

6 6 [a  8]  39 OR [2a  5d ]  39 and a + 5d =8 2 2

11

1

1 1

4

1, 1 3 1

a=5 12

(a)

log4 y = (blog4 A) x + log4 A 1 or log4 A = 2 A = 16

(b)

blog4A =

1

2–1 . =  0 – (–2)

b = 

1 1

4 [Lihat sebelah

3472/1(SP)

SULIT

4

SULIT 13

1

 6    (2)  1  a a  12

14

(a)

(b)

1

1 6 4 k 6 2  8  4  14  8 1 = 24  56  8k  32  4k  84 2 1 =  36  4k 2 = 18  2k

(a)

18  2k  0

16

4

1

~

  3 (a) OP     4 (b) Magnitude of OP = 5

3472/1(SP)

1

1

uur uuur uuur TR  TQ  QR 3 uuur uuur  SQ  QR 5 3  (15 p  10 q )  10q ~ ~ 5 %  9 p  4q % %

 3   1  3   5 or   5  4    4   5

1

1

uuur uuur uuur QS  QP  PS =  15 p 10 q ~

(b)

2

Area =

k = 9

15

3472/1(SP)

1 1 1

4

1

1

1

3

SULIT

5

SULIT 17

3472/1(SP)

(a) 1  t 2

1

(b) tan(900  x )  cot x t = 1 t2

1

18

1

POR = 0.7854 rad PO = 42  42  32  5.6569 QR = 5.6569  4 = 1.6569

or

Perimeter = ( 0.7854  32 ) + 4 + 1.6569 = 10.1 or 10.0998

19

Gradient of tangent = -3 1 k  1  3 2 k  8

3

1

1 1

3

1 1 1

3

h( x)  3(2 x  1)3 20

h( x)  9(2 x  1) 4 (2) 18 h' (1)  [2(1)  1]4 h(1)  18

1 1 1

3

k

 4 x2   2  6 x   24  2 ( 2k2 + 6k ) – ( 8 + 12 ) = –24 k 2 +3k +2 = 0 ( k +1) k + 2 ) = 0 k = –1 , k = –2 (Both)

21

22

(a) New interquartile range =

1 1 1

1 8  2 4

(b) New standard deviation  25  =

1

1 4

5 or 1.25 4

4

1

1 1

3

[Lihat sebelah 3472/1(SP)

SULIT

6

SULIT 23

3472/1(SP)

(a)

2 1  7 3 2  21

1

(b) 2 2 1 5    7 3 3 7 9  21

24

1

1

n = 10, p = 0.3, q = 0.7, r = 2

1

P(X = 2) = 10C2 (0.3)2 (0.7)10  2

1

= 0.2335

1

3

3

25

1  0.6103  0.3897

1

From the table, a  0.28

1

2

END OF MARK SCHEME

3472/1(SP)

SULIT

Related Documents