Johann Carl Friedrich Gauss.docx

  • Uploaded by: Javi Alexander Cedeño
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Johann Carl Friedrich Gauss.docx as PDF for free.

More details

  • Words: 436
  • Pages: 1
Johann Carl Friedrich Gauss (Gauß) (?·i) (Brunswick; 30 de abril de 1777- Gotinga; 23 de febrero de 1855) fue un matemático, astrónomo, geobotánico y físico alemán que contribuyó significativamente en muchos campos, incluida la teoría de números, el análisis matemático, la geometría diferencial, la estadística, el álgebra, la geodesia, el magnetismo y la óptica. Considerado el Princeps Mathematicorum,nota 1 Gauss ha tenido una influencia notable en muchos campos de la matemática y de la ciencia, y es considerado uno de los matemáticos que más influencia ha tenido en la historia. Fue de los primeros en extender el concepto de divisibilidad a otros conjuntos. Gauss pronto fue reconocido como un niño prodigio, pese a provenir de una familia campesina de padres analfabetos; de él existen muchas anécdotas acerca de su asombrosa precocidad. Hizo sus primeros grandes descubrimientos mientras era apenas un adolescente en el bachillerato y completó su magnum opus, Disquisitiones arithmeticae, a los veintiún años (1798), aunque fue publicado en 1801. Fue un trabajo fundamental para que se consolidara la teoría de los números y ha moldeado esta área hasta los días presentes. Wilhelm Jordan (1842–1899) fue un geodesista alemán que hizo trabajos de topografía en Alemania y África. Es recordado entre los matemáticos por su algoritmo de la eliminación de Gauss-Jordan que aplicó para resolver el problema de mínimos cuadrados. Esta técnica algebráica apareció en su Handbuch der Vermessungskunde (1873). Wilhelm Jordan, en su trabajo sobre topografía, usó el método de mínimos cuadrados de forma habitual. Este método es especialmente útil en disciplinas como la topografía, la geodesia o la astronomía, caracterizadas porque cuando se realizan observaciones existe una redundancia en medidas de ángulos y longitudes. No obstante, existen relaciones que conectan las medidas, y se pueden escribir como un sistema lineal sobre-determinado (más ecuaciones que incógnitas) al cual se le aplica el método. El propio Jordan participó en trabajos de geodesia a gran escala en Alemania, así como en la primera topografía del desierto de Libia. En 1873 fundó la revista alemana Journal of Geodesy y ese mismo año publicó la primera edición de su famoso Handbuch.

3. 4 Método de Gauss-Jordan El método de Gauss-Jordan utiliza operaciones con matrices para resolver sistemas de ecuaciones de n numero de variables. Para aplicar este método solo hay que recordar que cada operación que se realice se aplicara a toda la fila o a toda la columna en su caso. El objetivo de este método es tratar de convertir la parte de la matriz donde están los coeficientes de las variables en una matriz identidad. Esto se logra mediante simples operaciones de suma, resta y multiplicación.

Related Documents


More Documents from "Greven Austral"

Recursosweb20
November 2019 21
2.mecanismes
June 2020 22
Bergueda 97
November 2019 39
Bergueda 73
November 2019 30
Selva 38
November 2019 34