Jawapan Mt Kertas 2 Pahang 2008

  • Uploaded by: Mohd Khairul Anuar
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Jawapan Mt Kertas 2 Pahang 2008 as PDF for free.

More details

  • Words: 1,841
  • Pages: 12
SULIT 3472/2 Additional Mathematics Paper 2 September 2008

SEKTOR PENGURUSAN AKADEMIK JABATAN PELAJARAN PAHANG

PEPERIKSAAN PERCUBAAN SPM TAHUN 2008

ADDITIONAL MATHEMATICS Paper 2

MARKING SCHEME This marking scheme consists of 12 printed pages

WORKING / SOLUTION

QUESTION

1

2 (a)

(b) (c)

3(a)

(b)

3x + 2y +1 =8 x2 + 9 x - y = 8 7 − 3x 7 − 2y y= or x= 2 3 7 − 3x 7 − 2y Substitute y = or x = 2 3 into non linear equation 7 − 3x x2 + 9 x − ( ) = 8 or 2 7 − 2y 2 7 − 2y ( ) + 9( )− y =8 3 3 (2x+23)(x-1)=0 or (4y-83)(y-2) =0 or solve quadratic equation using formula or completing the squares

MARKS

P1

P1

K1

K1

x = -11.5, x =1

N1

y = 20.75, y =2

N1

uuur PR = 2 i − 2 j % r uuu uuur uuu uuur uuur uuur % r QS = QR + RS or QS = QR + QP uuur QS = 4 i + 4 j uuuur %uuur % P ' R = k RS uuuur P ' R = −3 i + 4 j + 5 i + 2 j % uuuur uuuur uuur % % % P ' R = 2 i + 6 j = 2( i + 3 j ) => P ' R = 2 RS =>collinear % % % % P ' R : RS = 2 :1 sin A cos A + , 2sin A cos A 1 + (2 cos 2 A − 1) use of sin2A = 2 sinA cos A or cos 2A = 2 cos 2 A-1 1 1 1 + = 2 cos A 2 cos A cos A = secA 2 ( sec2x -1) = sec x +1, use of 1 + tan2 x = sec2 x ( 2 sec x – 3) ( sec x +1 ) =0 3 or sec x = -1 sec x = 2 2 cos x = or cos x = -1 3 X = 48.19o ,180o ,311.81o or

= 48o11' ,180o ,311o 49'

6

N1

P1 N1 K1

N1 N1

6

P1 K1 N1 P1 K1 K1 K1

N1

2

TOTAL

8

SULIT

Question 4(a)(i)

(ii)

4(b)

Working / Solution 22(18) + 27(22) + 32(29) + 37( p) + 42(25) = 32.75 18 + 22 + 29 + p + 25 p = 26 60 − 40 median = 29.5 + ( )(34.5 − 29.5) 29 = 32.95 Height of the bars proportional to the frequency or Label the lower and upper boundaries/mid points/class interval correctly. Correct way of finding the value of mode.

Marks K1

Total

N1 K1 N1 K1 K1 7

5(a)

Gradient of normal = −

5(b)

N1 K1

Modal mass = 33 dy = 3x 2 + 4 x dx dy (1,-1) , = 7 dx 1 7

K1

Equation of normal: 1 y-(-1) = − ( x-1) 7 7y+x + 6=0 dy = −24 x −4 dx δ y −24 (1.98 − 2) ≈ δ x 24

K1

K1

K1 N1

≈ 0.03

6

6(a)

A =8000 8000, 8000(0.9), 8000(0.9)2,… r =0.9 8000 sα = 1 − 0.9 = 80,000

P1 K1 N1

3

SULIT

Question 6(b)

Working / Solution 8000(0.9) > 1000 ⎛1⎞ (n-1) log10 (0.9) > log10 ⎜ ⎟ , taking log both sides ⎝8⎠ n < 20.74 n = 20 n−1

Marks

Total

P1 K1 K1 N1

7

7(a) x 15 20 25 lg y -0.82 -0.42 -0.022 Plot log10 y against x 6 points plotted correctly

7(b) i.

ii iii. 8(a)

30 0.37

35 0.77

N1

K1

Line of best fit, ( passes through as many points as possible and balance in terms of numbers point appear above and below the line, if any .)

N1

log10 y = − A log10 10 + x log10 b y-intercept, c = -A log10 10 -2.05 = -A log10 10 A = 2.05 m = log10 b = 0.08 b =1.2 37.5 1 + (−3) 2 + 10 , ) Mid point of AC ( 2 2 (-1 , 6 ) 10 − 2 Gradient of AC = 1 − (−3) =2

P1

Gradient of perpendicular line to AC = −

(b)

40 1.17

P1 N1 K1 N1 N1

10

N1

1 2

Use of m1m2 = −1 Equation of perpendicular bisector AC 1 (y-6) = − ( x + 1) 2 2y + x =11 or equivalent y =0, x =11 => B(11, 0) 1 −3 11 1 −3 Area of rhombus ABCD = 2× 2 2 0 10 2 = 120

4

N1

K1 K1 N1 K1 K1 N1

SULIT

Question 8(c)

Working / Solution Use of distance formula for PA or PC

Marks

Total

K1

PA = ( x − 1) 2 + ( y − 10) 2 or PC = ( x + 3) 2 + ( y − 2) 2 Use 2PC = PA,

K1

2 ( x + 3) 2 + ( y − 2) 2 = ( x − 1) 2 + ( y − 10) 2 9(a)

3x 2 + 3 y 2 + 26 x + 4 y − 49 = 0 y =3x , y =4-x2 (x+4)(x-1)=0 solve simultaneous equation x =1, x = 4 4-x2 =0, x= ±2 or find the limits of integration 1 3 Use area of triangle = (1)(3) = or 2 2

(b)

K1

2 ∫ (3x)dx or ∫ (4 − x )dx 1

0

1

2

⎡ 3x ⎤ ⎡ x ⎤ ⎢ 2 ⎥ or ⎢ 4 x − 3 ⎥ ⎣ ⎦0 ⎣ ⎦1 ⎡ 8⎤ ⎡ 1⎤ Substitution, ⎢8 − ⎥ − ⎢ 4 − ⎥ ⎣ 3⎦ ⎣ 3⎦ 2 = 1 unit2 3 3 2 Add up 2 area, + 1 2 3 1 3 unit 2 6 1 Volume of cone = π (3) 2 (1) = 3π or 3 2

10

2

1

Integrate

N1

3

K1

K1

K1 N1

K1

1

⎡ 9 x3 ⎤ π⎢ ⎥ ⎣ 3 ⎦0 3π 2

π ∫ (4 − x 2 ) 2 dx 1

2

⎡ 8 x3 x5 ⎤ = π ⎢16 x − + ⎥ 3 5 ⎦1 ⎣ ⎡ 8(2)3 25 ⎤ ⎡ 8(1)3 13 ⎤ + ⎥ − ⎢16(1) − + ⎥} = π {⎢16(2) − 3 5⎦ ⎣ 3 5⎦ ⎣ 5

K1

K1

SULIT

Question

Working / Solution =3

Total

8 π 15

Volume generated = 3 π + 3

N1

8 π 15

8 π 15 p = 0.3 or q =0.7 P(X=5)= 30C5 (0.3)5 (0.7) 25 Use of P(X=r)=

=6 10(a) i.

Marks

Cr ( p ) r ( q ) n − r =0.04644 P(X<2) = P(X=0) + P(X=1) 30 C0 (0.3)0 (0.7)30 + 30C1 (0.3)1 (0.7) 29

N1

10

P1 K1

n

ii.

(b)i

ii

11(a)

11(b)

=0.0009660 or 9.660 × 10−4 P ( z < c ) =0.202 C =-2.05 25 − µ X −µ −2.05 = , use of z = 3 σ µ = 31.15mm 30 − 31.15 32 − 31.15
N1 K1 N1 N1 K1 N1

K1 N1 K1

10

K1

K1

K1 N1 K1

AC 8

=10.50 K1

1 Area of OAC = (8)(10.50) 2 = 42.01 6

SULIT

Question 11(b)

12

Working / Solution 1 1 Area of sector OAB = (8) 2 (0.92) use of A= r 2θ 2 2 =29.44 Area of the shaded region Q, =42.01-29.44 = 12.57 (a) v = 4 (b) v max , a = 0 a = 2t − 5 = 0 5 t= s 2 2 ⎛5⎞ ⎛5⎞ v max = ⎜ ⎟ − 5⎜ ⎟ + 4 ⎝2⎠ ⎝2⎠ 1 v max = −2 ms −1 4 (c) used v<0 t 2 − 5t + 4 < 0 (t − 1)(t − 4) < 0

1< t < 4 (d) s = ∫ t 2 − 5t + 4 dt

(

Total

K1

K1 N1

10

P1 K1

K1 N1

K1

N1

)

1

13

Marks

4

⎡ t 3 5t 2 ⎤ ⎡ t 3 5t 2 ⎤ =⎢ − + 4t ⎥ + ⎢ − + 4t ⎥ 2 2 ⎦1 ⎣3 ⎦0 ⎣ 3 Substitute the values of t 2 = 23 m 3 P (a) use 1 × 100 P0 x = 1.62, y = 152, z = 3.60 ∑ Iw used I = ∑w

120(4 ) + 152(5) + 150(2) + 125(3) 14 = 136.79 I=

7

K1K1 K1 N1

10

K1N1N1N1 K1 K1(used I) N1

SULIT

Question

14

15

Working / Solution (c) I P = 144, I R = 180 194.4(4) + 152(5) + 108(2) + 125(3) I= 14 = 147.93 (a) I x + y ≤ 500 II y ≤ 3 x III y ≥ 200 Cannot have sign ‘=’ (b) One of graph of straight line is correct All the graph of straight line are correct The shaded region of R is correct (c) (i) 200 (ii) maximum point (300,200) – based on the Graph 25 ( 300 ) + 20 ( 200 ) - substitute any number based on the value in shaded region 11500 (a) used cosine rule 2 2 QS 2 = (10.5) + (12.5) − 2(10.5)(12.5) cos 80 0 QS = 14.86 cm (b) used sine rule sin R sin 35 = 14.86 9.5 sin R = 0.89719 ∠QRS = 116.210 Q

Q'

Marks P1 K1 N1 N1 N1 N1

Total

10

K1 K1 N1 N1 N1

K1 N1

10

K1 N1 K1

N1

S

N1 P

(i) Can see anywhere in the diagram (ii) Find ∠PQS , used sine rule , hence find ∠QPQ ' K1

sin ∠PQS sin 80 o = 12.5 14.86 ∠PQS = 55.93o , ∠QPQ ' = 68.14 o

8

SULIT

Question

Working / Solution Find area of ∆PQS or area of ∆PQQ '

Marks K1 N1

Total

1 (10.5)(12.5)sin 80 o 2 = 64.63cm2

area ∆PQS =

1 (10.5)(10.5)sin 68.14 o 2 = 51.16 cm2 Find the area of ∆Q ' PS = 64.63 − 51.16 = 13.47 Or any other methods area ∆PQQ'=

9

K1 N1

10

SULIT

Graph For Question 4(b) Number of luggage

30

28

26

24

22

20

18

16

10 19.5

29.5 24.5 Modal mass= 33

34.5

39.5

SULIT 44.5

Mass(kg)

No.7(a)

log 10 x 1.5 x

1.0 x

0.5 x

x 0 5

10

15

20

x

25

30

35

40

x

-0.5 x

-1.0 K1

-1.5 N1

-2.0 N1

-2.5

11

SULIT

Graph for Question14(b) 500

400

300

R

(300, 200)

200

100

0

50

100

150

200

250

12

300

350

400 SULIT

450

500

Related Documents


More Documents from "Mohd Khairul Anuar"