SULIT 3472/2 Additional Mathematics Paper 2 September 2008
SEKTOR PENGURUSAN AKADEMIK JABATAN PELAJARAN PAHANG
PEPERIKSAAN PERCUBAAN SPM TAHUN 2008
ADDITIONAL MATHEMATICS Paper 2
MARKING SCHEME This marking scheme consists of 12 printed pages
WORKING / SOLUTION
QUESTION
1
2 (a)
(b) (c)
3(a)
(b)
3x + 2y +1 =8 x2 + 9 x - y = 8 7 − 3x 7 − 2y y= or x= 2 3 7 − 3x 7 − 2y Substitute y = or x = 2 3 into non linear equation 7 − 3x x2 + 9 x − ( ) = 8 or 2 7 − 2y 2 7 − 2y ( ) + 9( )− y =8 3 3 (2x+23)(x-1)=0 or (4y-83)(y-2) =0 or solve quadratic equation using formula or completing the squares
MARKS
P1
P1
K1
K1
x = -11.5, x =1
N1
y = 20.75, y =2
N1
uuur PR = 2 i − 2 j % r uuu uuur uuu uuur uuur uuur % r QS = QR + RS or QS = QR + QP uuur QS = 4 i + 4 j uuuur %uuur % P ' R = k RS uuuur P ' R = −3 i + 4 j + 5 i + 2 j % uuuur uuuur uuur % % % P ' R = 2 i + 6 j = 2( i + 3 j ) => P ' R = 2 RS =>collinear % % % % P ' R : RS = 2 :1 sin A cos A + , 2sin A cos A 1 + (2 cos 2 A − 1) use of sin2A = 2 sinA cos A or cos 2A = 2 cos 2 A-1 1 1 1 + = 2 cos A 2 cos A cos A = secA 2 ( sec2x -1) = sec x +1, use of 1 + tan2 x = sec2 x ( 2 sec x – 3) ( sec x +1 ) =0 3 or sec x = -1 sec x = 2 2 cos x = or cos x = -1 3 X = 48.19o ,180o ,311.81o or
= 48o11' ,180o ,311o 49'
6
N1
P1 N1 K1
N1 N1
6
P1 K1 N1 P1 K1 K1 K1
N1
2
TOTAL
8
SULIT
Question 4(a)(i)
(ii)
4(b)
Working / Solution 22(18) + 27(22) + 32(29) + 37( p) + 42(25) = 32.75 18 + 22 + 29 + p + 25 p = 26 60 − 40 median = 29.5 + ( )(34.5 − 29.5) 29 = 32.95 Height of the bars proportional to the frequency or Label the lower and upper boundaries/mid points/class interval correctly. Correct way of finding the value of mode.
Marks K1
Total
N1 K1 N1 K1 K1 7
5(a)
Gradient of normal = −
5(b)
N1 K1
Modal mass = 33 dy = 3x 2 + 4 x dx dy (1,-1) , = 7 dx 1 7
K1
Equation of normal: 1 y-(-1) = − ( x-1) 7 7y+x + 6=0 dy = −24 x −4 dx δ y −24 (1.98 − 2) ≈ δ x 24
K1
K1
K1 N1
≈ 0.03
6
6(a)
A =8000 8000, 8000(0.9), 8000(0.9)2,… r =0.9 8000 sα = 1 − 0.9 = 80,000
P1 K1 N1
3
SULIT
Question 6(b)
Working / Solution 8000(0.9) > 1000 ⎛1⎞ (n-1) log10 (0.9) > log10 ⎜ ⎟ , taking log both sides ⎝8⎠ n < 20.74 n = 20 n−1
Marks
Total
P1 K1 K1 N1
7
7(a) x 15 20 25 lg y -0.82 -0.42 -0.022 Plot log10 y against x 6 points plotted correctly
7(b) i.
ii iii. 8(a)
30 0.37
35 0.77
N1
K1
Line of best fit, ( passes through as many points as possible and balance in terms of numbers point appear above and below the line, if any .)
N1
log10 y = − A log10 10 + x log10 b y-intercept, c = -A log10 10 -2.05 = -A log10 10 A = 2.05 m = log10 b = 0.08 b =1.2 37.5 1 + (−3) 2 + 10 , ) Mid point of AC ( 2 2 (-1 , 6 ) 10 − 2 Gradient of AC = 1 − (−3) =2
P1
Gradient of perpendicular line to AC = −
(b)
40 1.17
P1 N1 K1 N1 N1
10
N1
1 2
Use of m1m2 = −1 Equation of perpendicular bisector AC 1 (y-6) = − ( x + 1) 2 2y + x =11 or equivalent y =0, x =11 => B(11, 0) 1 −3 11 1 −3 Area of rhombus ABCD = 2× 2 2 0 10 2 = 120
4
N1
K1 K1 N1 K1 K1 N1
SULIT
Question 8(c)
Working / Solution Use of distance formula for PA or PC
Marks
Total
K1
PA = ( x − 1) 2 + ( y − 10) 2 or PC = ( x + 3) 2 + ( y − 2) 2 Use 2PC = PA,
K1
2 ( x + 3) 2 + ( y − 2) 2 = ( x − 1) 2 + ( y − 10) 2 9(a)
3x 2 + 3 y 2 + 26 x + 4 y − 49 = 0 y =3x , y =4-x2 (x+4)(x-1)=0 solve simultaneous equation x =1, x = 4 4-x2 =0, x= ±2 or find the limits of integration 1 3 Use area of triangle = (1)(3) = or 2 2
(b)
K1
2 ∫ (3x)dx or ∫ (4 − x )dx 1
0
1
2
⎡ 3x ⎤ ⎡ x ⎤ ⎢ 2 ⎥ or ⎢ 4 x − 3 ⎥ ⎣ ⎦0 ⎣ ⎦1 ⎡ 8⎤ ⎡ 1⎤ Substitution, ⎢8 − ⎥ − ⎢ 4 − ⎥ ⎣ 3⎦ ⎣ 3⎦ 2 = 1 unit2 3 3 2 Add up 2 area, + 1 2 3 1 3 unit 2 6 1 Volume of cone = π (3) 2 (1) = 3π or 3 2
10
2
1
Integrate
N1
3
K1
K1
K1 N1
K1
1
⎡ 9 x3 ⎤ π⎢ ⎥ ⎣ 3 ⎦0 3π 2
π ∫ (4 − x 2 ) 2 dx 1
2
⎡ 8 x3 x5 ⎤ = π ⎢16 x − + ⎥ 3 5 ⎦1 ⎣ ⎡ 8(2)3 25 ⎤ ⎡ 8(1)3 13 ⎤ + ⎥ − ⎢16(1) − + ⎥} = π {⎢16(2) − 3 5⎦ ⎣ 3 5⎦ ⎣ 5
K1
K1
SULIT
Question
Working / Solution =3
Total
8 π 15
Volume generated = 3 π + 3
N1
8 π 15
8 π 15 p = 0.3 or q =0.7 P(X=5)= 30C5 (0.3)5 (0.7) 25 Use of P(X=r)=
=6 10(a) i.
Marks
Cr ( p ) r ( q ) n − r =0.04644 P(X<2) = P(X=0) + P(X=1) 30 C0 (0.3)0 (0.7)30 + 30C1 (0.3)1 (0.7) 29
N1
10
P1 K1
n
ii.
(b)i
ii
11(a)
11(b)
=0.0009660 or 9.660 × 10−4 P ( z < c ) =0.202 C =-2.05 25 − µ X −µ −2.05 = , use of z = 3 σ µ = 31.15mm 30 − 31.15 32 − 31.15
N1 K1 N1 N1 K1 N1
K1 N1 K1
10
K1
K1
K1 N1 K1
AC 8
=10.50 K1
1 Area of OAC = (8)(10.50) 2 = 42.01 6
SULIT
Question 11(b)
12
Working / Solution 1 1 Area of sector OAB = (8) 2 (0.92) use of A= r 2θ 2 2 =29.44 Area of the shaded region Q, =42.01-29.44 = 12.57 (a) v = 4 (b) v max , a = 0 a = 2t − 5 = 0 5 t= s 2 2 ⎛5⎞ ⎛5⎞ v max = ⎜ ⎟ − 5⎜ ⎟ + 4 ⎝2⎠ ⎝2⎠ 1 v max = −2 ms −1 4 (c) used v<0 t 2 − 5t + 4 < 0 (t − 1)(t − 4) < 0
1< t < 4 (d) s = ∫ t 2 − 5t + 4 dt
(
Total
K1
K1 N1
10
P1 K1
K1 N1
K1
N1
)
1
13
Marks
4
⎡ t 3 5t 2 ⎤ ⎡ t 3 5t 2 ⎤ =⎢ − + 4t ⎥ + ⎢ − + 4t ⎥ 2 2 ⎦1 ⎣3 ⎦0 ⎣ 3 Substitute the values of t 2 = 23 m 3 P (a) use 1 × 100 P0 x = 1.62, y = 152, z = 3.60 ∑ Iw used I = ∑w
120(4 ) + 152(5) + 150(2) + 125(3) 14 = 136.79 I=
7
K1K1 K1 N1
10
K1N1N1N1 K1 K1(used I) N1
SULIT
Question
14
15
Working / Solution (c) I P = 144, I R = 180 194.4(4) + 152(5) + 108(2) + 125(3) I= 14 = 147.93 (a) I x + y ≤ 500 II y ≤ 3 x III y ≥ 200 Cannot have sign ‘=’ (b) One of graph of straight line is correct All the graph of straight line are correct The shaded region of R is correct (c) (i) 200 (ii) maximum point (300,200) – based on the Graph 25 ( 300 ) + 20 ( 200 ) - substitute any number based on the value in shaded region 11500 (a) used cosine rule 2 2 QS 2 = (10.5) + (12.5) − 2(10.5)(12.5) cos 80 0 QS = 14.86 cm (b) used sine rule sin R sin 35 = 14.86 9.5 sin R = 0.89719 ∠QRS = 116.210 Q
Q'
Marks P1 K1 N1 N1 N1 N1
Total
10
K1 K1 N1 N1 N1
K1 N1
10
K1 N1 K1
N1
S
N1 P
(i) Can see anywhere in the diagram (ii) Find ∠PQS , used sine rule , hence find ∠QPQ ' K1
sin ∠PQS sin 80 o = 12.5 14.86 ∠PQS = 55.93o , ∠QPQ ' = 68.14 o
8
SULIT
Question
Working / Solution Find area of ∆PQS or area of ∆PQQ '
Marks K1 N1
Total
1 (10.5)(12.5)sin 80 o 2 = 64.63cm2
area ∆PQS =
1 (10.5)(10.5)sin 68.14 o 2 = 51.16 cm2 Find the area of ∆Q ' PS = 64.63 − 51.16 = 13.47 Or any other methods area ∆PQQ'=
9
K1 N1
10
SULIT
Graph For Question 4(b) Number of luggage
30
28
26
24
22
20
18
16
10 19.5
29.5 24.5 Modal mass= 33
34.5
39.5
SULIT 44.5
Mass(kg)
No.7(a)
log 10 x 1.5 x
1.0 x
0.5 x
x 0 5
10
15
20
x
25
30
35
40
x
-0.5 x
-1.0 K1
-1.5 N1
-2.0 N1
-2.5
11
SULIT
Graph for Question14(b) 500
400
300
R
(300, 200)
200
100
0
50
100
150
200
250
12
300
350
400 SULIT
450
500