Jawapan Mt Kertas 1 Pahang 2008

  • Uploaded by: Mohd Khairul Anuar
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Jawapan Mt Kertas 1 Pahang 2008 as PDF for free.

More details

  • Words: 949
  • Pages: 7
JPNP PAHANG

SULIT 3472/1 Additional Mathematics Kertas 1 Peraturan Pemarkahan September 2008

PEPERIKSAAN PERCUBAAN SPM TAHUN 2008

ADDITIONAL MATHEMATICS KERTAS 1

PERATURAN PEMARKAHAN

UNTUK KEGUNAAN PEMERIKSA SAHAJA

1

JPNP PAHANG

Question 1 (a)

Working / Solution q=5

Marks 1

Total

2

1 (b)

one to one or 1 to 1

1

2 (a)

3+ x or equivalent 4

2

3−

2(b)

3− x 2 2

B1

2

3 - 2x

B1

x = 3 - 2y or equivalent 3

p<

4

q +1 4(1 − q)

4p <

3

(q + 1) 2 or equivalent (gathering of q terms) 1− q2

(q + 1) 2 − 4 p(1 − q 2 ) 4

B1



1 1 ≤ x ≤ or − 0.3333 ≤ x ≤ 0.5 3 2



1 1 <x< 3 2

OR

B2



1 3

3

4 1 2

x

B3

Must indicate the range correctly by shading or other ways 1 1 and x = 3 2 (both values must be seen) x=−

Accept ‘=’ or any inequality signs ‘>’, ‘<’, ‘ ≤ ’, ‘ ≥ ’

(3x + 1)(2x – 1)

2

B2

B1

4

JPNP PAHANG

5

1

3

log10

x4 y6 x3 y 6 = 4 or log + log10 x = 4 or 10 y2 y2

B2

x =4 y2 or equivalent (combining at least two terms of log correctly in a correct equation) log10 x 4 y 6 − log10 y 2 = 4 or log10 x 3 y 6 + log10

log10 x 3 y 6 or log10 y 2 or log10 10 4 6

3

4

17.65 or 17.63 x=

B1

log10 25 2 log10 5 or x = or equivalent log10 1.2 log10 6 − log10 5

B3

x

7

8 (a)

8(b)

⎛6⎞ log10 ⎜ ⎟ = log10 25 or log10 6 x = log10 5 x + 2 or ⎝5⎠ log10 (3 x × 2 x ) = ( x + 2) log10 5 or equivalent

B2

6 x or 5 x (5 2 ) or log10 (3 x × 2 x ) = log10 5 x + 2

B1 3

5(13p + 11q) or equivalent 10 [2(2 p + q) + (10 − 1)( p + q)] 2

B2

3p + 2q – (2p + q) or 4p + 3q – (3p + 2q)

B1

3

2

13122 a = 2 or r = 3 or seen

B1

2 or equivalent 99

2

1

4

B1

a = 0.02 and r = 0.01 or seen

3

4

JPNP PAHANG

9

10

11

(10, 7)

3

4(0) + 1(h) 4(2) + 1(k ) = 2 or =3 1+ 4 1+ 4

B2

P(0 , 2)

B1

-6

3

mPQ = 2

B2

P(4, 2)

B1

⎛ 4⎞ ⎜⎜ ⎟⎟ ⎝5⎠

B1

B2

4i + 3j + 11i + 5j −

B1

3

4

1 x + 4y 2

2 1 (6y – 3x) + (3x) or equivalent 3 2

B3

2 AS = (6y – 3x) 3

B2

(6y – 3x) or

2

3

1 (15i + 8j) or equivalent 17 15 2 + 8 2

13

3

2

⎛ 3⎞ ⎛ 2 ⎞ 2⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ ⎝ 1⎠ ⎝ − 3⎠ 12

3

1 2 (3x) or AS = QS 2 3

4

B1

4

JPNP PAHANG

14

108

3

3(−12)(5 − 3 x) 2 (−3) or equivalent

B2

4(5 − 3x) 3 (−3) or equivalent 15

16

B1

10

3

3

2 ⎞ dp ⎛ = ⎜3 − 2 ⎟ × 4 dt ⎝ 2 ⎠

B2

dp 2 = 3 − 2 or equivalent dq q

B1

y = 10x2

3

4

log10 y = log10 x 2 + log10 10 or log10

y =1 x2

B3

or equivalent B2

log10 y = 2 log10 x + 1 mPQ = 2 17

B1

3

4

3 3

⎡ ⎤ k 3 + [x ]2 = 7 or equivalent ⎢ 3⎥ ⎣ (2 x − 5) ⎦ 2



3

2

18

3

g ( x)dx + ∫ dx = 7

B1

3

2

1 1 y = − (3 − 2 x) 4 + 2 or equivalent 8 8 2=−

B2

(3 − 2 × 1) 4 + c or equivalent 8

(3 − 2 x) 4 or equivalent − 2( 4)

3

B2

B1

5

3

JPNP PAHANG 19

20

3

⎛3⎞ ⎛3⎞ 4 + 4⎜ ⎟ + 4 + 4⎜ ⎟ or equivalent ⎝2⎠ ⎝2⎠ 12 = 20

21

1 2 (4 )θ 2

B1

B2

Any one of a , b or c correct

B1

90o, 123.69o (123o 41’), 270o, 303.69o (303o 41’)

4

3 2

B3

cos x(3 cos x + 2 sin x) = 0

3

B2

3 cos 2 x + 2 sin x cos x = 0

23

3

3

3 ,c=0 2 Any two of a , b or c correct

a=2,b=

cos x = 0 and tan x = −

22

B2

B1

4

3

277200 12

C 4 ×8 C 3 × 5 C 2 or 495 × 56 × 10 or equivalent

B2

12

C 4 or 8 C 3 or 5 C 2 or 495 or 56 or 10 or equivalent

B1

1 or an equivalent single fraction 15

3

3 2 2 × × 6 5 6

B2

3 2 2 or or 6 5 6

B1

6

3

3

JPNP PAHANG

14 or 2.8 5

1

24(a) 24(b)

1.296

2

2 ⎛ 2⎞ 7 × × ⎜1 − ⎟ or equivalent 5 ⎝ 5⎠

B1

25 (a)

1.1

1

25(b)

61.2

2

70 − µ = *1.1 (his k) 8

B1

7

3

3

Related Documents


More Documents from ""