JPNP PAHANG
SULIT 3472/1 Additional Mathematics Kertas 1 Peraturan Pemarkahan September 2008
PEPERIKSAAN PERCUBAAN SPM TAHUN 2008
ADDITIONAL MATHEMATICS KERTAS 1
PERATURAN PEMARKAHAN
UNTUK KEGUNAAN PEMERIKSA SAHAJA
1
JPNP PAHANG
Question 1 (a)
Working / Solution q=5
Marks 1
Total
2
1 (b)
one to one or 1 to 1
1
2 (a)
3+ x or equivalent 4
2
3−
2(b)
3− x 2 2
B1
2
3 - 2x
B1
x = 3 - 2y or equivalent 3
p<
4
q +1 4(1 − q)
4p <
3
(q + 1) 2 or equivalent (gathering of q terms) 1− q2
(q + 1) 2 − 4 p(1 − q 2 ) 4
B1
−
1 1 ≤ x ≤ or − 0.3333 ≤ x ≤ 0.5 3 2
−
1 1 <x< 3 2
OR
B2
−
1 3
3
4 1 2
x
B3
Must indicate the range correctly by shading or other ways 1 1 and x = 3 2 (both values must be seen) x=−
Accept ‘=’ or any inequality signs ‘>’, ‘<’, ‘ ≤ ’, ‘ ≥ ’
(3x + 1)(2x – 1)
2
B2
B1
4
JPNP PAHANG
5
1
3
log10
x4 y6 x3 y 6 = 4 or log + log10 x = 4 or 10 y2 y2
B2
x =4 y2 or equivalent (combining at least two terms of log correctly in a correct equation) log10 x 4 y 6 − log10 y 2 = 4 or log10 x 3 y 6 + log10
log10 x 3 y 6 or log10 y 2 or log10 10 4 6
3
4
17.65 or 17.63 x=
B1
log10 25 2 log10 5 or x = or equivalent log10 1.2 log10 6 − log10 5
B3
x
7
8 (a)
8(b)
⎛6⎞ log10 ⎜ ⎟ = log10 25 or log10 6 x = log10 5 x + 2 or ⎝5⎠ log10 (3 x × 2 x ) = ( x + 2) log10 5 or equivalent
B2
6 x or 5 x (5 2 ) or log10 (3 x × 2 x ) = log10 5 x + 2
B1 3
5(13p + 11q) or equivalent 10 [2(2 p + q) + (10 − 1)( p + q)] 2
B2
3p + 2q – (2p + q) or 4p + 3q – (3p + 2q)
B1
3
2
13122 a = 2 or r = 3 or seen
B1
2 or equivalent 99
2
1
4
B1
a = 0.02 and r = 0.01 or seen
3
4
JPNP PAHANG
9
10
11
(10, 7)
3
4(0) + 1(h) 4(2) + 1(k ) = 2 or =3 1+ 4 1+ 4
B2
P(0 , 2)
B1
-6
3
mPQ = 2
B2
P(4, 2)
B1
⎛ 4⎞ ⎜⎜ ⎟⎟ ⎝5⎠
B1
B2
4i + 3j + 11i + 5j −
B1
3
4
1 x + 4y 2
2 1 (6y – 3x) + (3x) or equivalent 3 2
B3
2 AS = (6y – 3x) 3
B2
(6y – 3x) or
2
3
1 (15i + 8j) or equivalent 17 15 2 + 8 2
13
3
2
⎛ 3⎞ ⎛ 2 ⎞ 2⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ ⎝ 1⎠ ⎝ − 3⎠ 12
3
1 2 (3x) or AS = QS 2 3
4
B1
4
JPNP PAHANG
14
108
3
3(−12)(5 − 3 x) 2 (−3) or equivalent
B2
4(5 − 3x) 3 (−3) or equivalent 15
16
B1
10
3
3
2 ⎞ dp ⎛ = ⎜3 − 2 ⎟ × 4 dt ⎝ 2 ⎠
B2
dp 2 = 3 − 2 or equivalent dq q
B1
y = 10x2
3
4
log10 y = log10 x 2 + log10 10 or log10
y =1 x2
B3
or equivalent B2
log10 y = 2 log10 x + 1 mPQ = 2 17
B1
3
4
3 3
⎡ ⎤ k 3 + [x ]2 = 7 or equivalent ⎢ 3⎥ ⎣ (2 x − 5) ⎦ 2
∫
3
2
18
3
g ( x)dx + ∫ dx = 7
B1
3
2
1 1 y = − (3 − 2 x) 4 + 2 or equivalent 8 8 2=−
B2
(3 − 2 × 1) 4 + c or equivalent 8
(3 − 2 x) 4 or equivalent − 2( 4)
3
B2
B1
5
3
JPNP PAHANG 19
20
3
⎛3⎞ ⎛3⎞ 4 + 4⎜ ⎟ + 4 + 4⎜ ⎟ or equivalent ⎝2⎠ ⎝2⎠ 12 = 20
21
1 2 (4 )θ 2
B1
B2
Any one of a , b or c correct
B1
90o, 123.69o (123o 41’), 270o, 303.69o (303o 41’)
4
3 2
B3
cos x(3 cos x + 2 sin x) = 0
3
B2
3 cos 2 x + 2 sin x cos x = 0
23
3
3
3 ,c=0 2 Any two of a , b or c correct
a=2,b=
cos x = 0 and tan x = −
22
B2
B1
4
3
277200 12
C 4 ×8 C 3 × 5 C 2 or 495 × 56 × 10 or equivalent
B2
12
C 4 or 8 C 3 or 5 C 2 or 495 or 56 or 10 or equivalent
B1
1 or an equivalent single fraction 15
3
3 2 2 × × 6 5 6
B2
3 2 2 or or 6 5 6
B1
6
3
3
JPNP PAHANG
14 or 2.8 5
1
24(a) 24(b)
1.296
2
2 ⎛ 2⎞ 7 × × ⎜1 − ⎟ or equivalent 5 ⎝ 5⎠
B1
25 (a)
1.1
1
25(b)
61.2
2
70 − µ = *1.1 (his k) 8
B1
7
3
3