Introductions To Statistical Thought

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Introductions To Statistical Thought as PDF for free.

More details

  • Words: 220,228
  • Pages: 403
                  

             !"" #

     

         







                           !   "  # $ #  %  &                ' "  (  #  &                  "  (    &                  )  &   " " ( *+ " ' ( , #  &                  ' - . /- - / #               " ' / /   0  ' ! 1 - / - 2 / /              " 3 . # &                              !  ! 3 &  .   /   ! 3 * ) 4      & %             &               3! . #                   ) 5 . # 6 &   *+                                 )3 << 7 8 9 :; ;                                  55    







  

    











 



      











 





 

 





 

    

 

 

 







  





      

 



 







  

 





 





 

   

  



 





  

 









  





 

 

  





 

 











  



 













   



  



  . & ## .                          &  !    " *+ 6                     "  /                              "' "  (  / $&                  "' # ( #       '' "   / % # #              ') " "  / %  ' * #                               ) '  ( + # & #  / * #             ) '  1 & % * #                   ! ' " (  # /  & %  #        !"    2%                         !5 !  /                              ) 3    (                          )' ) *+                                 5)   ; 7 < " 2 / &                             5 /                        ) " , # "  2 / &                         ) /   " "  2 % % /                      '' "" / ""   6                      '' ""    6                      " "'  /  % # 6                     3 " *+                                 ! 8     7                        3" '  ' 6 / #                            3' '    % 6 / #                  3 '  #  % 6 / #                 3! ' " $&  % 6 / #                 3!  &                      ) '" 6  '' *+                                 )!  









    



    



 

  

 





   





  

 

  





  





  



         



 



  





 







  

   















  

 









 







  

  



 

  







 





 

  











 

 





    









 





  



 

    





    









 











 











 

















  









 

 











 







 

 







 













  

      





  





 













  



    ; 7<   # / ,  #                  )5  & #                        " "  %                                " #                               " ' - . &                 "  ## - *+ !                                  ") 3 , #                                "5 , #  &            "5 3 ( , #  3 (        " ) t / F   &               &             ""' )  ( t /  &                      ""' )  ( /                      ""5 5 *+    F     &                        ""5 8  8 9  < /                          "'5 !                 " ! ( # .  /  !" (                          "!'                            "!' !' . &                          "!' ! (   # /                         "!' !! / # /                  "! !3 * & !) *+                                 "! 8    %      3   .                         "!3 3 . &                          "!3 3   -  - /  & / *        "3 3" *                          "3 3' 1 # , #                   "3 3 6                           "3 3 ( % % # &  %  #                    "3 3" 2 #                             "3"   (                       "3" 3'  3'  &                            "3" 3'  (  / 6 (                  "3" 3' " ( . & (                     "3" 































 









 

  



      





























    

 

      









 





 













 











 





          





       













   

          

    

        





 





   





   















   









 







 







 

 





 



 





 





  















 

   

  

  



 





 







 

  

 



 



 

  



3' '  %                            "3" #                         "3" 3 *+ / . $ #                     "3" 3! 33 $&                              "3" 3) 2 #                              "3" 35 1                             "3" 3 *+                                 ")  

    :;9  :;9     < 



      



    



 

 



 

   

     



 







 





      

/   /%%% #                 3 # %   p  5 &  

  # &   2# /         "  %                          ' '    %                    3   #  ! P[X = 3 | λ]  %& λ /   3 *+ ) , # /                            5 # &  45 , , 30 -  # /        3  , #  #  / , # /  %               5    * / 1%    "  /  # &             &             "" " ( /%  ±1 / ±2 .                  "5 ' # & %  / / /           '"   #  % &  N / X   %                '3 ! $ &   /%  & (X, Y )%              / /    /     3       %                       ) ) 5   # &  %% θˆ   - -          !' / &            !)    # &  θˆ & /%

            !5 & %    # & %  $1 * + #              3"  "   #   # &                   )!  &    %                             "    # % ) "   # 5 

 

  

   



Y

 



  

 



     









   

 



















 

    



   

 



















  



  



  

 





 







      

   



















 

   

  

  



  

 





 

 

 

   

 

 



    

   

 

 

 





  







    









 

 

 

   











  

                                      



   













2





 





   







   



 











   









        



'   # % % %                      /                   '  % ! .                     ! 3  &  % % # .    "                   5 )    % # &    # /        5                          % %                      !  / $ & /                 %           5

/ $ & /     "  # % &  / & / # / $ %%&    " " ( #   % / & / # / $ &    " ' ( #   / &  ( # & &  & / % % / &  % % & /  "  /  "! ! ( # & &  & / / % / &     &    ") 3  % /P%& % ) `(θ) % y = 40 ! & /                 ' 5  / . .  %                  ' / + %  / . .         '   / # *              '3  / /  /  * *+ #  $1  "  % / %& % %  & .%                  "  / ' (λ, θ ) % *+ #      ! 3   / %& % & %  # # / # /     !  ! . # / % &  3   #  # # %  #  % #  (n, .1)   !3  /  + #     3' ) -  / /   5  -  / /  /   %% λ n = 1, 4, 16 3! "  -  / /  /  % λ n = 60    33 "   -  / /  /%  . .     35  /%             ) "  & / /  % & " "  / % /  &   /  n = 0, 1, 60      ) " ' /% %  (100, .5) /  &                5 " /%  (100, .5)% /  / , (50, 5)  /  &  5 " ! 1 + # % /  &% ##   t           5"  /         53 " 3 , & # %#  " )   #  # & / &  %               5) " $ & %  + # %           %             " 53 /  & #  /         " 





  

       



 



  







    



 











 

 



 



  

   

 



 



   

  

  

i



















 







 





  



   



 

 



  



   



 

 



  



   





















 





 







 

 





 





 



 

 





 





 



 

f        

     

 

 







   





    













   



  













 

  

 



 







  

 















   

  



   

 



  

 



 

  

 

    

   





  



 

  





  

  







  

 











   





    

              

  







  



 







 



 

 









 



  

 

    





   

  





  











 





 

    







 







 





 



















   



 

 

    

















   

       







 











 













   

 

 



 





 

 

 



           

     





  





  

 

        







 

  

 

 





+ #            ' "" % & #  / % "' ( & # % ,  /  55" 553- & /     ! % /                      5 "  % /   "!   #  % "3 (   /                       " ") 2 # % & # % &  # # &        5 + #   "! "5  / &  (µ, δ , δ )  "   %   /                   ")                         ' "   "  / %& &  % β - γ - δ / δ   + #  '"  /                        '! ""   /   &           ') "'  /  "  / %& % "! 1 &  / /  / &   / %  / /  !  %  / /               ) "3 ") 1 & # / / &  % # # /          ! "5    & %   /              !' / (Y , Y ) ' ( (X , X )  ) ' #% - /% - / /%                        )  (  # #%                          5  ( ,  # #%                    55 "   % #% % λ = 1, 4, 16, 64                   " ' 6 & / /  $ &                  " 5  ## /                            " /                          " ! *+ 3  /                              " ) # &     # /             "  , # /                    " ) 5  , # /                       ""    t /   % % & /  % % / # / , (0, 1) /   "") %  # / % % 62     " ! ! . # #                            " / / /         " ' !" Y  Y %  !' Y  Y %  /  /          " % Y ∼ Y |Y %  /          " 3 !

            

 

 

 

 



         





  

  





   



  



 



 

M







 



 





P







1



1

2



     









    

 



 



 



 



 











  

     



1



2







 



  



1



2

 













 

 



 

    



















 



 



    







    











 

 



















  





 

 















 























 

 

1

 



 

 



 

 





       







  

   

 

 

 



  









 

 

 









 









 

  

   

  



       

   

 







  









  







      



 



 























 

















                





  

t+1

t+k



    





t

       







  

     



 

   

 

t



 

t+1





 

t−1

t



   







 

 









+

        

!! !3 !) 3 3 3"

$ %  /                           "! 1                         "! 1 &                             "!" (  (.39,% .01) /                       "33   % Y¯                           "35   Z                           ")  



 





2

  











 





 



in

in



     

   " " 







. /1  / / 66 %  / & # . &            '' ( &                   '! , / /  /  & / ! 55 / 55"        / /  "" / "'           β  % $ & "'                         '3 6 & % / /  /                   " )   







   





      

 



 



  

  

 





   















  











  



 

 



+

+

      

    

(   //  & & /  / & / #  / &%  / / +     & &  % & & / /  /   % & /         # &   / / %  /     / # %    # & / %& /  / /  +     1 & & & & & & &  % #  #  %   / /  ( -  // % & & & / &  # & /  &/  / /  # &/   % + &/ # %

&  % & %  #  4 4 & % / / % #        & #  / / ; :;  9  ;   %  2  ## / / + #  /  / 4 ( & & & % ## + - / + &   %   1 / /    & +#   & # + #  &    /#  & / & &  

   



 







        





      



 



 



 



 

  



   

       



 

 

  

        

 

 







 

 

  







  







  







    



    

    







 

 



     





     



         

+





      



   

  

 

 







  



 

 





 

     

  

 

  

   

 



    

   







   

 



 



    









         



 





 

      



  

   



     

   







     



 



  



  





 

   

  

 

 

          



 





 



 







   





 

 

   

       

  



 





 



    

 





  





  



  

 

    



   

 





 







   

 



      



   





      





       

   





   

  













  





 

 







 

+



      

 

       

    

%   %  /F !"#! - (X , F )  %& & µ : FX→ 1[0,1] /2  -   /  µ %     &  "! $ #%&% F  µ  / #  & & %& / ( #   % µ &  µ(∅) = 0 ∅  #    µ(X ) = 1 - / " % A / A /   µ(A ∪ A ) = µ(A ) + µ(A ) % /   

 " / %  &   *+   2  ## /  + - % & # #  / % " & /      & &  µ  & X / '"&!!  X - µ  / &%%##"  2 /    -%         F & & #  ( F& % # (X &%  & & & % X  .  /  % ) . %  55 ) /  2  + / #  /  # &  X & F #  F   &X



 

 







 



 







 

  







      

 









  

 







 



 



 







 

 

    



        



  

 



 





  













1



 





















  

      





     



2

       

     

 

 















 



 

       

 





 





  















   



 











 





 

  

  









  

  





 

  

         

   

 





    

 











 





   

   

         

    

   



      

 

1



   







2





 

 









 









      



1

          







     

2



 



  













            



2 + # X   % & # % + #  / / # / + / # + # - / µ  +  / / /  (  % & #&   {1, 2, $3, 4,% 5, 6}  / &  X ≡ {1, 2, 3, 4, 5, 6}  2% / &/   µ({1}) = µ({2}) = · · · = µ({6}) = 1/6  (  % # & &  &  

    







      

 









 

   

















  



 



 





     

      









 







 

 

 

  

 















   









       

        



µ({1, 2}) = 1/3 µ({2, 4, 6}) = 1/2



% #  / µ(2)%- µ(5) -  . µ(i) = 1/6  & # /# % &  /   +   µ(i) = 1/6 &  % µ $ & &  /%   # P & + # - & / &  / /  ( • 

 

  

        

        

       





 

  

 







 

 



  





 





 

 

 



      

               

    







   



/

• P(1) • P[



        

  

 

/ ]

(  & + + # / '"#% &  • µ({1})

  

 



    

%   % # 

 %# & /% #                                    

  

 

  



 















  



 

   

     











/

!"#!

  

   





!"  #            

 

   %     $ &      ' (   )  *        +   ,,    -   '  (  .      / " 0  ,/ ' ( 1*   *  !   '/ " 0" + " ,,  ,/(        -    ' 23 ! (   4     '     !   (          5     !    !    *  !      "  4  !    6. 1*     4  *      6. 7  " . *       6. *      4  7 

    

      

   

"

            

   !    !      ! *  "   ) ! P( ) ! P(

     2 3!  

) = P(

+  ,,

) = P(7) + P(11).

   ! *  ,"            !  d1      -     X  !            d 2      *  ,    6    *      

d1

X

d2

(6, 6) (5, 6) (4, 6) (3, 6) (2, 6) (1, 6)

(6, 5) (5, 5) (4, 5) (3, 5) (2, 5) (1, 5)

(6, 4) (5, 4) (4, 4) (3, 4) (2, 4) (1, 4)

(d1 , d2 )

(6, 3) (5, 3) (4, 3) (3, 3) (2, 3) (1, 3)

(6, 2) (5, 2) (4, 2) (3, 2) (2, 2) (1, 2)

(6, 1) (5, 1) (4, 1) (3, 1) (2, 1) (1, 1)

1*      * "          !   6      0  *  "    *        & "   P(d1 , d2 ) = 1/36 (d1 , d2 ) ! +  ,, P( ) = P(6, 5) + P(5, 6) + P(6, 1) + P(5, 2) + P(4, 3) + P(3, 4) + P(2, 5) + P(1, 6) = 8/36 = 2/9.

5   .  ! !   !   ! 0 *      !  5   *3 *    " " "    )  "       *  !   (6, 5) (5, 6) (1, 6)

  ! *        

*+ #  &   ##%  &   %  # # %    / / / - /  # # /  & &  % # & &  .# #   & / # # # # + #  %#   # &  (  &  #&  & & 4 & &% / *+ #  &   4 &  # & # & / *+ #      7       ; ;9  5   !   *  "    .    !      5             *   ,    5         4     & #  "  *     *        *   * "  #3       4     





      



 



 







   

 

 





      



  

 















  

  











 



  





 



 



   

    

              

 



 

   

                  

                         

                      

                       

  

  

 

   













'

            

     

   

4

 

4

 !     !   ! "  !  "       5   !        !                 *    , *    !   ,  !    '1  ! .   .      (        5      !      ! 

    5                !   ,  5   .  "       *      5    .     ! !    , .                   !*!

4



  

 

 

      %  









    

                

%   



 





  



 

       



    

    % 



 

•  •

  

    

4



   

4



4

.          ! " #!$ !%      "       -   "       .           1    "    *   % 

 





            "     # *



4

4  

 

 

 

1 "  ! *         



     .    5              *   

& %$ !%  





.  !      .!   ! !    "

    (!# )  *  !  *   . !  *  .  & # "    -   *   !   !      !  !      

• '

            



 #)$  )%  1    . " # 0(  " *  3  * "        !  0  1*  ! ) !      !       *      '5 !  &("   *   *  5   

• 

• •



5  %     



 ,     

    *   4#       !   

* !

 * .  !  



. "  #  ,7  *        ! ,"  ,7     ! /"    5  *        !            !     *     #  ! ,  , " , / "      !    !   5        !     "     !  !    !   !     !  !$ !" !*!   *!!  

    

                    





 



   







 





 



%









 !  *   ,  !      ! ,   " !   !      !   .                    !    !  * "  ,   &   "      ,   "             23 ! "      !    !  !  *       6               

          

         



     

 







  











 

!

                                      



% 





 











 

 %$ 



 

 

 

 .  - !  !     !  2 3 !            2 "       !     *     6  !   #  

         

   



     %

 %

   

 

     %       %  $     5   *   6    *       *  ! * 

 

    



 

  



 

   

 

 

            









  





 



 

 



 



 



4

 





      +  ,,   1      !      !    5  !    #  ,,   ! #    ! × 1000 222    ! !     !      !  (2/9)    # ≈  *     !   5    ! *  *    *  ! !    / ,   !  ! !    ! /// !   !      !      *    !   5   !       .    *     !  !     !   ! !    1* !  "    !  ! 5  . 3    5        !     *    !   

4



   

. % / # & %  & &   X 

4

    

%  # % #  $ /  - & % & .  /  X  .# + #  '"&!!

     

                      

                         

                                    



4



  

  





 

   

  













 

                

89  # & % 

  % # %   

 8;  ; / #   ; #& %   # & & ;

  # &/ / /  #  % & & Y% #/ /  /    



        

 







  







 



   

    

 





 











&  #  / /   / &/ / &%%##"  $ + # / ( / #  Y $ & 

    

 



 

 



 

 

#  &# # / & % #  / #

 

 





 

 

 

  

     



        

 



 



  

 

 

      

  









 

 



  









p(y)

  



%



  



 



 

 

 



 

 





  

   

       



 



+

        



3

y

$ &  /% % # /     '!%" $ #%&% '$  ( ( & & /%  /# /  - +  / y = 0 % # & y #  &  6  





 



 

 

   







  















 

  



    





         



 

 

 



    



 

  



 

 

 



)

            

# /  /% & %      &  + - &  /  #  p - π % f /%   $& / /%-p(50) π(50)  f (50) #  & / & & $ +y =# 50   ! # &  

     

 



   

  

   



 

   

          









 

    







            



 











 

  



 











 







    





   

 





    









 









P[Y < 60] =

Z

60

p(t) dt.

* /% # &   %   p(y) ≥ 0 % y   R p(y) dy = 1  / &  - % p(y) < 0 (  R  / p(y) dy < 0 P[Y ∈ (a, b)] = (  / % / &  P[Y ∈ (−∞, ∞)] = R & &  & &  / # %  ( & a] = 0 a∈R 0

   



 



     

   

∞ −∞









      

 





b     a 

  

 

         







  

 

 



     

 



 







  

  

∞ −∞ 



    p(y) dy = 1  P[Y = Y

   



 





(a, b)



 





 

P[Y = a] = lim P[Y ∈ [a, a + ]] = lim

Z

a+

pY (y) dy = 0.

 & -% &#  a < bP[Y ∈ (a, b)] = P[Y ∈ [a, b)] = P[Y ∈ (a, b]] = P[Y ∈ [a, b]].  % /         &    ( & & 2 / /  = # #    & '!%" - #     2   /     / & #  !%  $ %!  2 /- % /   % ""# 2    &/     / % /   & &  # * & %  & # → 0  % /  &  /   $  + / &# a Z    d d P[X ∈ (a, b]] = f (x) dx = f (b). →0







    

   





 









            





 



 













 











  





 













 

  







  

             

 

  







 

      





    



















a





→0

         

          

                     







     









  



 



b

db

db

X

a

X



5

                

. # - d/da P[X ∈ (a, b]] = −f (a)  . # %#   % /%  % % / & -  &$  + # & -/   #  / %% #  ( Y /   & $ &       



     





 





   

 

 

 



 



 





  











  

  

     



        









  

 

 

   

 

   

 

  





Y







 

 



          

 

 / & %& /  / #  / % #  Y # & &  . /% p # &   

    

 

 

 







    

 



X

 

p(y)

0.0 0.4 0.8



0.0

0.2

0.4

0.6

0.8

1.0

y

$ &  p % 





$ &   / & / 









 









 



%

  

& # % 



 



 

   



 



      $      $             



, •

  





  

Y



 /  / &  #   - 

     



      





 

         





- 









            



##  /  - 

    •  











 $



 



 

  

            





 







 



    



 

 



     

        





               

  





/ $   •   / 4   / •



     



 

/ &   (          - /   / % / / &  + /  #  % +  2%   #  & #  #  + +   





 





  

 









       

    







  





#   /   / /    # /  1 & & % / - /  # /   // & / % # /  % &   # $% & #"   #  %   (# & % #  / & & , 1 ' , & /  . / #/  /    & /# *+ #   #% /  /% f   f  & /& / &  ( /  # % & #   /# / & % ##f (  # & & # - %  / & &#  #&     / / /  # f   & #  /  # % f  2%  & & #  // #  # /  #  // /  & & % # f   &  # %f  /  # / % & /    # % $ & " & &  # %    %  /  (  #  4 / -  4 + -% ( & #   / /  # )! 5 5 2  /  /  , # / /     & & (3.1) / & / . "  2  # # % / & %  %& &   (3.1) /  & -  & / + +%&#&  2%  % #  1 -  % /  & & %/ /  ( &# % /      / # & / /  &  ( &     # &  & / / &     











 





 

 





 











 



    

   

 

  

  

  



 













  





    



 











 







 





















   







  

 

               

 







 

  

 



      













 



  







 





 



         











   





 

 

      

       



  

  







    





 



  







   

 



 



 



     







 

     

          

      

    

   



 























     











    

 



 







 





 



 

     



 

  

  



 



   





 



 







       

 



 

 

    



 

   





   



    



 

    





 

    

 











 



 











 

       

     



 





 



 

 

 









    

        







  





 



 

 

 

 

      

 









  





  



 













     







   

  

 

 



 

       



 

  









0.0

0.2

0.4

                

5

6

7

8

9

10

11

0.00

0.10

0.20

temperature

0

2

4

6

8

10

12

discoveries

$ & " /    , # # % #&  /  # /  & & 









   









  





  

' , &/ )! 5 5

   ◦           

 







 $ & "  / & /

            















 



%

  



     

  





   





  $     

 

$           $   %  $   $  

                

             

      $       $   $ $      $

         $



    

    

         

           

      

         

 

 







  







   

 

                      

 

       





,













 % 4   &  !!"     4 #   & & &

 %, 1  /  •  %  #      /    # &  / & / / & / % # & #      & #  &  / %  & &  • $      '  /  5 & •  /  /  &/  '' / '! #    # $ &  +  • 

  &/  #    / % &   &  #  &  .   ' •  

%/ /  # /%  .   /  # / /   &  //  +  •   



•  



 

   











 

 

 

 

 

  









        







 

 

 





 



   

 





 



                  





 























 

   

     







   













   

 





 



 







 



 

   







 















 

     

 

     

 









  







     







  





 





   





 

     





   





          

   



 





"

                

#  /  2  % % % # - Z = g(X)  #  &  /  /#  /   & p  X = h(Z)        ! X !  %'



 

 

 



 



  

 







  

      











 





 













 



  







 





  

   

    

Z

   







 

%# /  #% - % + / & g  #  p (    %&  g &-   /  #

















  







X







 

 



!    '$ ! !  ' !  pX  g !%! %%& %  !! $ #%&% %' '! %!  !%   ! '$ Z = g(X)   $ " 



Z

 $



2% g 

pZ (b) =

 





−1 d g (t) pZ (t) = pX (g (t)) dt

 %& 

−1

    

d d P[Z ∈ (a, b]] = P[X ∈ (h(a), h(b)]] db db Z d h(b) pX (x) dx = h0 (b)pX (h(b)) = db h(a)

% g /   %  +   /% p (x) = 2x ( &  -&  X  / #  % #    ( & Z = 1/X p (z)  X = 1/Z  2  /  dx/dz = −z  ( % -

(

    





 









   

 



(/ #





  







X

       





 

 

−1 d g (z) 2 1 = − = 2 pZ (z) = pX (g (z)) d z z z2 z3 −1



 









        

Z





  



  

 



 

∞ 1 2 dz = − 2 = 1. z3 z 1

   

       

  







   

      

    

P[X ∈ Ix ] P[Z ∈ Iz ] x =           (Iz ) (Ix ) (Iz )

    

 

pZ (z) = 2/z 3  



 

& /  x -  z2 & ( x /  I  I  "  (I ) ≈ p (x) |h (z)| 





    

%& #  z = g(x)+  1 / $ &  '  ( / g & / z

pZ (z) ≈

 



Z −2

1





 

    

  



 

  



 

&  % Z  - % #  ∞%  .  1 (1, ∞)



   

  

 



1/









 

 







 



z

X



0











x

             ' + #  * & " +   %I /I ( /    %  / &   % R 2% g   /    &  g 

 

 





 





 



 



    



x

   





  



   

 



      

            

 









z







Z=g(X)

z

x

$ & ' 



   

%

          



  





     

# &  &#   .  - %  +% # / - /  /  & /   (  θ #   & P( ) = θ & θ % %   %2    # # & &# % / /    -% / + & θ  / / θ- &    + # - P( | θ) P( | θ = 1/3)  /  ( %  /   . P( | θ = 1/3)  /   θ & %   " / P( | θ)  /  /  (  θ 

       

           



 





  

 





 





 

 











 





 

  

 



      



 



 

 





 



    



        









 

  





 

 

 



  

  







   

 









 

  









 

 

    









     





   

           

 



 





   

  



 







 







  

   

# 



                   

   







/  2  / % %     ( & % θ  / / Θ &  (  %  µ  













 

   

 & /  /  . & / / / -   /   θ!!  (  %  θ &  θ  $ θ %  #  # &   # /& -

 

  

 

      

 



  



   

 





 

  



 





 

  

        















    

   

θ



 

  

   

 



( (

P( | θ = 1/3) = 1/3, P( | θ = 1/3) = 2/3, P( | θ = 1/5) = 4/5

  

 







  

{µθ : θ ∈ Θ},

%  /  / &  % & %!& $# &  %&   

 









  

 

 



#    %  # % #&  (% # & 

 





   

    

    



 





     



 





          

/   % %  &  &  % &  1 •   / • .   / % &  & / • & % &  ( & # % &    &  & • .&   / %  . # + #  #  #  *  89  1 &/       #  + / /  *    

  / / * #      ;   &  / / # &  /   *    .   

 

%

          

 

   



  

 

    

 

     

    





 



    

 



         

 









 

 



 



 





  

    

 

    

     



 



 

  







 







  

 

      

         

      

  



 

  

 

   



     



      

  

        



  

 



         



   





             

 

 



 

   



             !  / &  & # + #   / # *  /  &# %   & & / / N # & %      % /& /  &  & / / & & " X /  X ∼" p '"#!'  θ(  #&  ∼ & / " '"#!' (N, p) " %  "  ! %    &'"#%  .# # & # N% p & # + #  % N  + / / -θ   # % - / & # /  #     #& & θ)+ / # && / / X ∼   (θ) N =/1 / & X   %  % ## +  # / &% # /- X  & / &    N % % % # (   P[X = k | θ] * & '  /& k  N .    N  '  P[X = k | θ] = θ (1 − θ) k (  #   / %  &! &!% /  /  N  k  % &   %  k /  # = & & % # /% # % /  # 2  k = 0 k = N - 0!  / /  $ & &  N  #  % N ∈ {3, 30, 300} / p ∈ {.1, .5, .9}            ; ;9  5   #   !   *    6 #  ,,  ,/   







 

 

  

  

 

 



 

 

     

  



 



    

 





 



 



 

N k 













 



 

 



 



 

  

 





  





















  



 

 

 

  



     







 

 



  

 

 

  

 





 

  





 



 



  

 

 

 



  

   

     



   



 

 

    



k













 



 

          

 



 







 

       





  



 





  



      

 

 

  

 



        



 







         



 

    



 









 









 

    



  





 





N k N! k!(N −k)!  





  



  









 

























  





N −k





   





  

 



  

 









              *  # * !         2 3 !  5         #   ! ,

          2 3 !       1 !

   !"   



/  5   ! *              0



   !   !  * ! 

    !  * ! 5     * !  "    X     * !  #  ,,    N6= 4 p = 2/9



X ∼

! 

 

(4, 2/9)

2

0

1

2

0.6 0.0

probability

0.35

3

3

0

1

2

N = 30 p = 0.1

N = 30 p = 0.5

N = 30 p = 0.9

30

0

10

0.00

probability

0.00

probability 10

30

0

10

30 x

N = 300 p = 0.1

N = 300 p = 0.5

N = 300 p = 0.9 probability

0.00

probability

0.06

x

0

$ &   # 







0.06

x

0.04

x

200

200

0

x   



  

3

0.20

x

0.15

x

0.20

x

0.00 0

N=3 p = 0.9

0.15

probability

0.6

1

0.00

probability

0

probability

N=3 p = 0.5

0.0

probability

N=3 p = 0.1

0

3

                   

   

0.00

   



200 x

)

            

5       * !      2 3 !    !      2 3 !  

P[

1

] = P[X ≥ 1] 4 4   X X  4 (2/9)i (7/9)4−i ≈ 0.634 = P[X = i] = i i=1 i=1

     

     

+  * & 

 

 

 

 



P[X ≥ 1] = 1 − P[X = 0],

 / 4 ( $   ## / # &  & &  ( # & * &  & /  #  $     

/  # % (   / & % X%   (   ; &   &  





 

      





 

  

 













 







 





  

 

    

   



  



 





 







 



  

     



     



     



 

 



 





  





   







 





   

  







   

       



  

          







 



    









   









 









 

  

 









 







  







 

 









 

 



 

     







   

   

 







 

  

      

 





 

      

  





&  #

    

  

 

%  ## & %  % (  / # %  & / - & & • *  # /# /#  •   (  &/ • .&   /  ""% % 5 & # . #      ( & # %   &/  & .# +#  & %# %     

 (  /  #    

 ;  &  & # & /     ;   %  &  /%   ;  &  & &          



  



  





 



1







 

$ / ## %    

 





 





   

5

                   

   

   &  #   &  % &  % % / λ &# %  (  2#  (λ) &  #/ #   & /   / X  X ∼  % &  #& +  # & & /   &  /  & /# ` / %  & / `  ( + #/   /- X & * & !  &  !  λ e P[X = k | λ] = . k!

% # # %    & /  #  & /  *+ # ' & & %       & λ / &        9;  ;    5   !   .         6    "   





   







 

  

  

 



     



             







 

 









   

      

 

     





1

   





  

 

 

     





   

 



   

    

   

      









   

   



 



           

 

   





  



        

            



 

2









      

    



    

 

 

 

 



 

 



  

  

 

 

  





 

    

 



k −λ





 

  









 

   





  









 











 

 







         



   



 

   









 

  



 





   "      !    .!  !     .  "     !                  !     *  1           !     !   *   .  '      3 !                  '   *!  *      

    6  *  *                *       "       *         *    *      "        *    ! . .    5    !    ! . ."    !  !  *   !  '  !    (   !    .       .  !     ! !      .    /  /   *! '  !  *               6 ! "  λ    ! "          .        !        .! *  5  λ      .! * P[X =  3 | λ]     .! *  λ      #  

 "  λ

X=3

            



  

P[X = 3 | λ]

*     .! *  & #  " λ

13 e−1 3! 23 e−2 P[X = 3 | λ = 2] = 3! 3 −3 3e P[X = 3 | λ = 3] = 3! 43 e−4 P[X = 3 | λ = 4] = 3! P[X = 3 | λ = 1] =

≈ 0.06 ≈ 0.18 ≈ 0.22 ≈ 0.14

1   "  .! #      * !      3      .!  .!  ) ! λ =     λ=1 λ=2 λ=4    *!   *  5  - !  ! & !  ,   P[X = 3 | λ] λ    . -  

 #      5  !  = 3 | λ] λ = 3    P[X      "   !    "   .    !   ,    5  - !       .! * *    !     !  #        !    λ

0.00 0.10 0.20

P[x=3]

λ=3

0

2

4

6

8

10

lambda

$ & ! P[X = 3 | λ]  %& 







   



   

                   

   

$ & !  / & / 







     

%

  



  







   



  

          

        $   $     $           











,





%   #/ %     &    / % #      / &    & &

 

$      %   /  &  • & /  %  # /  &  /  2 -      ## / • + + -&  + /  + •

















 





/- /   / % λ/ + # &  0&  / / & / 4  







 



  



 







   









    

  





 

























 $



        



  







 



  



 



  



  





 



























       





     

 





  



 

  







    



     

        

      

    





 

    



     

      



     

 

 

    

      













2  %  # /  /# /   % #  . # + # & &     # /    

 # & + &   

 # & + & %%% 89; # % /   

 /   /  

 





 

        

          

  

 

    





 $ / % / / &  %    $ & !     & % &    &

 



            

  



 





    

  

   











 









 



 

    





 









X



/  





            



2  %+ #   + / #  - #  /    / / . /   / 0 /   x   1 &  %& /% % & & &   x=%!% '!%" % x > 0. 1  3  p(x) = e λ '"#% /    !! *+   X$ " %3! %!% λ X ∼ %

 + /    / % (λ) & &  λ    

     







 

 





   



   

  



   

 

  

 















 









      

 



 







8 6 0

2

4

p(x)

0.5

1.0

1.5

x

$ & 3 *+ 







      

/   

 

 

     

lambda = 2 lambda = 1 lambda = 0.2 lambda = 0.1

0.0





10





        









x −λ







2.0





   

                   

   

$ & 3  / & / %       









  



  





   



"



              

        % 

       

    %             $        

    %          

                            $     $     



        $               

          

       

+ /  %  / % / / & λ  ' &  %x ,+  ' &  % λ • % / # (  / & /  p(x) % • λ# +   # % ## ++  /   2   / - x ( ' '  ! 

 + /% ( & # 4 x •  &  /% #  &    4 && % #  4 &   /  ( &  %       *+   - 4   *+    (      # + &   # +  /  (  •   /    # %  # % 2 &   -    &  % & # % - & &      %   /       4 &     / / /  ( &  •   x /  % & % % / +    y &  3  2   & /-'     %    & &! !%"% $ & / 2   #  /   % /  %  •  & &  •



          





    

 

       





    



 

 

 

 





 

 

 



  



 

 



     



   

  



       

 



 

  

 







    





 

  

 



 













                                                                    

  



  









  





 

         









 



 



   





   

 





   

  





   

    

 

  

      







         

 





     

   

     



  











 



 

 









   

    















  



 



 

 

 

 











 





 





       

          



     



    

 

  













 

 







       



 



  

    









   









 

 



  

  





        



   

   



'

            

  

  



     

2  %  # /  /# /  Y  # & /  / . # + #  & &   

 ;  

  % ;

  # &  &    ;   #  %   9  ; .1(   2  /# + / / %   &  $ / %  &  & #  % %# /%  . /%  & /% & # / //  /  #  1 &  %& /% % &  &     '!%" 1  )  p(y) = √ e ( ). 2πσ  '"#% "      !% %' "%'' '! % / Y µ ,   , # /  %    ) $ & σ Y ∼ (µ, σ) /% %  /  /  & (µ, σ)/%  1 &  /  & & µ% % µ 

/- σ    / /%  & σ #  / /%  #  σ &   $ & )  / & / %    









 

  



     

 

 















 









 





 









  

 





    

     

     

 

 





             

 



      

 



   

     



 

     



           













 

              



      

 



  









 

















  

   

  







 









 

    









  







 

    



 







 

   





 

    

 

      











 

 

  

       

  



  

     $      



   







    

   



   









   

   

                    





      

y−µ 2 σ













    

  

 









     







 





  

− 12





  







 

      

 

          

%                   

   





   

                   



mu = −2 ; sigma = 1 mu = 0 ; sigma = 2 mu = 0 ; sigma = 0.5 mu = 2 ; sigma = 0.3 mu = −0.5 ; sigma = 3

0.0

0.2

0.4

0.6

y

0.8

1.0

1.2

   

−6

−4

−2

0

2

4

x

$ & ) , # /   









 

6



!

            



   

  

     

  #  , # /%  #   % x  &   & / & #  (# & / & #   / //  # 1 %&  &  - $ & 5   %  # %  % // 1

# & 5") 553 & /  # - ' /  , / /" /    # ( /&  ( , (5.87, .72) /   & #  /& , # /    / # / %   &/ # &  #& # /   +#  *+ #   $ & 5  / & /









 





 



 



    









 



 













 

 

 

   









  







 

 

 

 

       









    

 



 

 





  









 





  



 











     

 



 

 



 











  



      





 



  







 

 







 







 













 





                    



 







    $    $    %     $         

         

         

(  # &  / &   # ( & # % •   /   /     ' &  % ( • & , # /  %  /  , # /   •   1 & & - &  & / & /  / 4 %&      % 

 ( # /  &     #    %  / //  ( /#  •



 







 



   

  

   







    

 

 

  













 













  $ 

 













 





 

 

 

  





      

   



 

  

## / / #  # % # , # / %  %  #   # 

 

















 

 & &  [4, 7.5]   &

       

   







 





  



  



  





  









 

  







 

         











 





 







 







   

                   



3

0.4 0.2 0.0

density

0.6

   

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

temperature

& 5 /   # ,$ (5.87, .72) 











 

& 



, -  # /  (

45◦ , 30◦









)

, (5.87, .72) /   # 2  & % , # /  #   / $ &    

            

















   











 



 



 

















 



 







 



  











  





  









   



  













  











    

 





         

 











 



          



- /  $ & 5 - / # # /   $ &      #   / + /  # /  # % & /  # /  % / # , # /  2  & & $ & 5  # &   /& /



      

 



 







      

        

     

     $           $            $     

                  







 









 



 









 







! ! !  % # %   %  /, /#/ /  -&  #  "%'' &#%" &   / / & &&   / / /  2 $ &    & # !!  &  / /& # #  ' & &  &  %&  / /&  # (  $//& -  #   # # %  ## $  & /    - # & / %  5  / "# &   /   &  & / $    (   & 4/  

/  / , #  & & & 



 









 

 









,

 



  

 

 

    





 









 





     





    





 

     





 



   







   





  





  





 





 



 







  

 

 

 





  





   





 







 





 







    



  

   

    





  

  



    

 

      

/ 4.5 = 40.1 $   1  + '"3     / + % /  / /  & &    /   -4 # /  & 

              

            

   

  

   



    







  

  





  









           







   





     









  







 



 

       





    











   

       



 

 









 



  

    

  



   



  

  





/  # # -   / # &  & & 6.5  =/43.7 $ !    / //  /  1  #&  # + / %  '#  / '  ( / ( &  + - /   %/ # / . / /&   %  / # & (  / / & &- % / / #   

/ / - & , # & #  











 

 













   



     



















 

  

    

  

 

 





   

























 

  













 



 



    











    

        

   

                   

   



5

0.4 0.2 0.0

density

0.6

(a)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

degrees C

0.15 0.00

density

0.30

(b)

39

40

41

42

43

44

45

degrees F

0.4 0.0

density

0.8

(c)

−2

−1

0

1

2

standard units

/ , (5.87, .72) $/ &      11  ## % %   % # %, (5.87, .72) # , / (42.566, 1.296) , /     1  # %   % # , (0, 1) / 1.296) , (42.566, /   (0, 1) 







  















 















  

 











   

"     /   % $ & 

            



 









  

/& /





                                  

                                 $       %   

$           $     

              



                      $     $   

          $           $  

 

                   







 





 







 





 



 











, (µ, σ) / / /#  Z = (Y − µ)/σ Z   / / &  2  # % / / &  Y   # µ  /  & Z (   / &  - /  % Z- /   $ # & p ( #  











Y ∼

 





 





/ &  / 



 



 





  





   





 

  







   













 







 

  





    

   



 









 , (0, 1) /   2 - Z ∼ , (0, 1)  ( , (0, 1) "%''   /  &  













 

                

  





 

  



6 $ & "      % # / /  /  & & /& # #/  #  & /% # & / / 

 



1 2 1 pZ (z) = pY (σz + µ)σ = √ e− 2 z 2π











 

Z

 

 



   

 













 

   

       

  





 

2 % &/ #  /  &%  & /) / 





    





  # % / /% #% 2  /  p - &  # /  /  &/  &/% &  /  # &

 

    

   



    

        







 









  

  

  





  



 

 

 

 

 

            

  









      



  





               

    

  

  

     





   





   





   





        

 

  

 

"

    

# / / &  1 / & &  / " /  /  & 2  - /  % / #   % &  .    % / & % -% /  & / %   / . '   # % % # /   &  /  / & /  &       4     !        !    !  "   " !



 

  

  ◦

 



      





 

















     





 

 



    

          

 







 

 







 



 

     



        

          

 



 

 



 

            

   



  



   

     



 











 !  " #     "    .    *         !     ! *          !        ! *   !        !            ,  +  "     !  *   !    *        !  .  !          *   !    !  "  !  "   "  '6   !  , +      .  !    !  !   *        *     * !        '     %         $              ( &  !  ,,,     "    ) & #  )% "     * !   *      3 !       ! ,  ,  ,  ' 5   !  *            3   *  - !  !     * !  .       !     !   *  *       3    &  !  ,,/     !    .      * ,              5  !     &  !  ,,/         * & !  ,0       & !  ,,/                  *       !   3    5          *    *  !   *  5     *     *  ! ◦   !     ! 3     5    *  ! ◦   ! 0    ! 3/   '    .  "   !  9   * 

"      .   !    *       . ( 1    *       *   !"   !         . *       &    ! "   3 !           !         !           !    *     ! !  *  .      !  ! %! % )%& ! *        6       5        !      ! ' ,      ◦   ! "   *     "    

 

 

 

35

      4  4 

"

            



  ! !            

20

30

40

latitude

50

60

'

−40

−30

−20

−10

0

longitude

$ &  / 









 

 

 % *&

     

  

/ 1%

 

%/ % /  #  & #  ( % #  ##  #  ( !% %  # - %  %  & # -   &   !% %  #    8;      ( %  &;  ; # - x , . . . , x  # % x ,...,x = 1 Xx .  5    

 



  











 





     













 



 

 

 



 





         















1

n

 

1

n

n

i





 

   



  

latitude = 45 longitude = −30 20

latitude = 45 longitude = −20

10 5

10

0

0

5

20 0

""

    

40

60

latitude = 45 longitude = −40

 

20

        

 

4 6 8

4 6 8

temperature n = 213

temperature n = 105

temperature n = 112

latitude = 35 longitude = −40

latitude = 35 longitude = −30

latitude = 35 longitude = −20 15 10 5 0

0

5

10

0 2 4 6 8

15

20

12

4 6 8

4 6 8

temperature n = 37

temperature n = 24

temperature n = 44

latitude = 25 longitude = −40

latitude = 25 longitude = −30

latitude = 25 longitude = −20

10 5 0

0

0

5

5 10

10

20

15

4 6 8

15

4 6 8

4 6 8

4 6 8

4 6 8

temperature n = 47

temperature n = 35

temperature n = 27

$/ &  , /# - "& - ' /    # / - & / - " - ' & 





    

       













 

  









"'

            

  #  # %  % ( / / x¯   $ & %  /   ( /  x ,/. . . , x & # / / &  ##  . # % -#  % &  %& / %  /  &  $ + # # % /% & "  & )-  #  $ & # /  # . # # #  %  (3.1) /  &  "-  #  # %      /  %% &   / &  #  # / #  /  + # % -  /  (n, p) /  &   $ #  /  (30, .5) /  & $ &   ( % & /  / - /   ( # % / (300,&.9) - % & / # -  & 3 / !  !&!' #! !  !&% /   E(X)  





  

  





 

 



 

 















 

      





 



               









 

  

 



    





  

 

 



 











   

 





  

 

 



   



 





X







 

  

      

 



 

 













n

  

 

   

   





1



    

    

     

 ;  ;  7 8;  ;9 %  X /% F / /% p  (  !% & X %F   



 







 

 

 



   

 



   









 

 



   





 



   

  

 

 



 











  

 



 





  

  









 

   





 





-

/#

   

         

X

 



!%

X

%X / % X  & &

(P i P[X = i] E(X) = R i x pX (x) dx



 





% /   / ( E(X)   % X  * &  /  %# 2 // & E(X) ## # %   X µ    # % % #  % / &  /  &/ / / & +   



 

   



  











 

    

  

 





 

  

   

   



     

 

   

  

 











%



/ # 

  

 

X

 

   



 



  









 

 





 



    

    

     



 

 

   

        

  

;  2% X ∼ 



  

"

    



 

(n, p)

n X

E(X) =

 

i P[x = i]

i=0 n X

  n i = i p (1 − p)n−i i i=0  n X n i pi (1 − p)n−i = i i=1 = np = np

n X

i=1 n−1 X j=0





(n − 1)! pi−1 (1 − p)n−i (i − 1)!(n − i)! (n − 1)! pj (1 − p)n−1−j j!(n − 1 − j)!

(  P&   &  %  (  +  % # #   (n −  (/  & # · · · % & # #  #   ( 

1, p) & & & & # E(X) $ &     ; 2% X ∼  (λ)  %  *+ E(X)  )= λ. ( /   ;;  2% *+ (λ) X∼ = np









 



 



 

n−1



   







   

  

j=0            







  





    

  











 













 

     



  





E(X) =



 

Z



x p(x) dx = λ

−1

Z



xe−x/λ dx = λ.

     2% X ∼ , (µ, σ) /  %  *+  ( E(X) = µ  ) .    / # & / /   / % /  & /#  /  #  2 $ &  -  / & / # & #&  # &  



       







0





0

  

 



  

 









 

  

  

  

        





 



 



   



 

    

      



 



 





        

 

  

 



             "! # % # & & / . & /  # /  /  & & &#  %   /  -& % % #  # # /  &  #  % / 6    #  $ & /  %  # %  /  #  % #  ## #   %  / %&! /   & - "%'' '! % &  ;  ;    ;   ( %&! %  # y , . . . , y  

















  



   







  

     

         

          

 



 









     

           



  



   



   

     





  

  







  





 



    





   



 









       

   







 









%&!





 



1



  







(

 

      



%

/#

X



Var(y1 , . . . , yn ) = n−1  



  



Y

n

(yi − y¯)2 .

 ;  ;    ;99 9  ;   ( "%'' '! % %  #  y ,...,y q X SD(y , . . . , y ) = n (y − y¯)) .  ( "%'' '! % % / # Y 

Var(Y ) = E((Y − µY )2 )



1





     



      









   

       











 

n

1







−1

n

 



2

i

  



p E((Y − µY )2 ).       Y

%  % / / σ σ   (  / / /  % % ## /  &   / /  - #P  / & %  #   / $ (y − y¯) Var(y , . . . , y ) = (n − 1)

 / /  / 1 n % % /# / #  & / % % / / #    /  % # # -  & % #&  # #   #&      7  $ Y "  %' !  !% Var(Y ) = E(Y ) − (EY )  (

SD(Y ) =

    



     





 

    

 

 













   









 

 

 



 



 





 

 

  

 

2 Y 



Y







     

 

1

 

−1

n



i

 

2

          

                            

                              

                           













 



 $









  













Var(Y ) = E((Y − EY )2 ) = E(Y 2 − 2Y EY + (EY )2 ) = E(Y 2 ) − 2(EY )2 + (EY )2 = E(Y 2 ) − (EY )2

2



2

        

 

  

% % (/ % #  $ #& . // //// /#  / - SD(Y )  /   SD $ & '  # & /  % /  #  &  ## 

     

  



 





 

 





  



 



 









% &#  # % # # & /   . / &5 &   %/& # -  

 







     





  











  







2

  

 

 

 

 

 









SD





 

    

&  / // 





&  / // 









   

   

%

   



% / 2% x , . . . , x  & / / & /% / & &% / x¯# - - & . " # & . % % # & /  / &  .  /%    





& #/ /







  

    

  

 



 







1

 



 

% 



 

  



   

 

 

 



 



 

 











  

   







 



 

 

 



 



   

 

 





- % -  #  & &#

 









 

 







 





 







 



 





&# 5  %  # % 

 









(  #& %& & & ( /# 





  

  

               

 











  





# %  " % # &







  

    

















"3

    

 / // # & - $ & '  ± / //   # &%    /  * -  #  /  && Var(Y & )  /  Y  &  & % - /  ( 

   



 











  









 

n

 





 









  

  









  



")  ; 

 

Y ∼





(30, .5)

            



Var(Y ) = E(Y 2 ) − (EY )2   30 X 2 30 .530 − 152 = y y y=0 =

30 X y=1

= 15

y

30! .530 − 152 (y − 1)!(30 − y)!

29 X

(v + 1)

v=0 29 X

/    



%

29

X 29! 29! .529 + .529 = 15 v v!(29 − v)! v!(29 − v)! v=0   v=0 29 + 1 − 15 = 15 2 15 = 2

   

 

29! .529 − 152 v!(29 − v)!

Y ∼

, (0, 1) 

SD(Y ) =

p

15/2 ≈ 2.7

!

− 152

 . *+   5 /  







 



" 







Var(Y ) = E(Y 2 ) Z ∞ 2 y2 y √ e− 2 = 2π −∞ Z ∞ 2 y2 y √ e− 2 =2 Z0 ∞ 2π y2 1 √ e− 2 =2 2π 0 =1      SD(Y ) = 1

/ %  . *+   5 /  $ & "/   #  #  (   ,  /  /% %  (30, .5) & (0, 1) &  







   







 









 



  

 

  













 



        

  

 

"5

    

0.10 0.05

+/− 1 SD

0.00

p(y)

0.15

 

+/− 2 SD’s 0

5

10

15

20

25

30

1

2

3

0.0 0.1 0.2 0.3 0.4

p(y)

y

+/− 1 SD +/− 2 SD’s −3

−2

−1

0 y

$ & ," ( /%  (0, 1) 



  

 



±1



/ ±2 . 

   





(30, .5)





#

' $ & "  / & /

            











 







    

     

  



4 / 









%

 



 

         $         $  

 



              

      

    

    





         



     

      

        













            

 

 

 

 

   

  

$

        



           

              





  





 



  











   

.

 ;  ;   8 ;   ( /# / /  Y







 











E((Y − µY )r )

 



 



 







/ &# 

 

  

%

  

 !%



  



 

  

% # 



 



#





 

y1 , . . . , yn

%



%  #  % /#   /  

(yi − y¯)r



 

       // % # %

  / # #  #  

 



r

X

    

     

  



n−1

 

  



& #   //# + &

 

• 

             . / &#



   

                    

                           

                           

     

   



   

 





 

  



 



 

 

  

   



'  / #& 4  & %&  # & #  / % # #   , 4 &  /  n − 1  /   4  %           $ %               

 











 

  

  





 

 





  









         







 















   

    

          

  $  

 

 

           

              %      %     

%      %  

 %              %      %  %      % 

   %   %  

                 

                            

 

 $   



 / #/ % # # /  &  # /  /  (   % #  (100, .5) /  &  /  %&  ( E[h(Y )] = R h(y)p(y) dy P h(y)p(y) h /     + / & % h(Y ) /  / !%! !'  # #  & E[h(Y )]   & !%  (  X = h(Y ) - / p - / % ( R + # - Y /% f (y) = 1 y ∈ (0,& 1)  $ E[X] = xp (x) dx /  8 9X = h(Y ) = exp(Y Z) •

( 









  

  





 





















  



     





 

  





 







 

 







 



 



    

  

 

    









X

   









 

X





 

    

  

  







 

   

  





  

 

  





Y



1

8 9 7

E[h(Y )] =



0

exp(y) dy = exp(y)|10 = e − 1.

pX (x) = pY (log(x)) dy/dx = 1/x Z e Z e E[X] = xpx (x) dx = 1 dx = e − 1

%& 2% h   E[h(Y )] &       $ X = a + bY  !% E[X] = a + bE[Y ]  1

  





1

    





  

           

% # 

'



 $





           

EX =

& &  /  

 



            

  %  + 

  

  



 



Z

(a + by)fY (y) dy Z Z = a fY (y) dy + b yfy (y) dy = a + bEY

#% (   /        $ X = a + bY  !% Var(X) = b Var(Y )   $   /   %  +   & &   µ = E[Y ]  



    

  



   



           



2

 

  



  



 



 

Var(X) = E[(a + bY − (a + bµ))2 ] = E[b2 (Y − µ)2 ] = b2 Var(Y )

    



     



    

      

.  % /  #& &  % % - / #  $ + # - #%  % & / / &   / / & # A / S / & -   ( ( % # % % D Y / A= S= %6 & . % / R N % #  /" % .&  % / ) 6 &  / % / & # ( ) / " / &%  '%  & / ( 

        

 



       

      

              

   

     



 

    



 

  



   

 



 



   





    







 



  

   





 

   





  







   

  



  





  

 

  





    

     

 

  

 



  



 

 





 

  







 

  



 



                    





   

  



latitude = 45 longitude = −30 20

latitude = 45 longitude = −20

0 4 6 8

4 6 8

temperature n = 213

temperature n = 105

temperature n = 112

latitude = 35 longitude = −40

latitude = 35 longitude = −30

latitude = 35 longitude = −20 15 10 5 0

5

10

0 2 4 6 8

15

20

12

4 6 8

0

'"

5

10 0

5

20 0

       

10

40

60

latitude = 45 longitude = −40

    

20

 

4 6 8

temperature n = 37

temperature n = 24

temperature n = 44

latitude = 25 longitude = −40

latitude = 25 longitude = −30

latitude = 25 longitude = −20





 

10 5

4 6 8

4 6 8

4 6 8

temperature n = 47

temperature n = 35

temperature n = 27

$/ &  ' , 

0

0

0

5

5 10

10

20

15

4 6 8

15

4 6 8

# &     # / - &/ - " - ' &/ - " - ' /   -  / / / 

     

 



















 

 



  







   

''

$ 1  # ')  6 & ' ! ! ") /6% (   1 

 

             

 







 











  







   

%

/ /#

 

    

   



 

   

   1  - &     p &  &. & 



  

   

! ' / & # .& 

  

  

S |A



 





pS | A (Y | D) = 0.80; pS | A (Y | R) = 0.35;

 



 

 

/



pS | A (N | D) = 0.20; pS | A (N | R) = 0.65.

  -  .   % / S=N A=D %  #  ! & & %(  #  % )/ # % !  ') % / &     %& (A =( D,')S = Y )   %  p (D, ( Y ) = .48 /  (  & # p (D, N) = .12 p (R, Y ) = .14 p (R, N) = 0.26 



  

 

    

 





  



# 

 







 

 

     













  

  







 







   



 





 



  



 





 

 





 





&  ( ( #& /  %! -#' - ! - / " ) - /  % & % #     % - /    & / #  (A = ( A=D / .  D, S = Y ) (A = D, S = N) A,S



A,S



A,S







A,S

      

                    



                        

                                  



            

                     

 

(





 

 



   





pA (D) = .60 = .48 + .12 = pA,S (D, Y ) + pA,S (D, N).     

      

( 

/



       

A=R

 (A = D, S = Y )

/# ( / (A = R, S = Y )  .    



     





S=Y





pS (Y ) = .62 = .48 + .14 = pA,S (D, Y ) + pA,S (R, Y ).

 !   %    & &  $  %! ! ''  ! %  !" $   #!" $  !  ! % #& %   #& & / ! (      



 





  

                 















    





 







  

   

/# 

  

  





X /Y

'

       

    







fX,Y (x, y) = fX (x) · fY | X (y | x) = fY (y) · fX | Y (x | y) X X fX (x) = fX,Y (x, y) fY (y) = fX,Y (x, y)



' 

.# #    / / /#  / /   # #   / 1 /  # #   f /% f / / / f f  (& %   +# # /&  -/    2  ##  - /# /  # / #  / ( %  / &  (   5 & %   %  &  /-   5 % % &  & % &  -" %      / 1 &   / # &  . &/    &   &&      / &  (   # % %/# - U - % / &  % / T - %  & %    U =1 &  / U = 0  T = 1  %&   T = 0 %   /  f (1 | 1) f f & & f &  f / f   y











 









 

    



    





















  







   







 

  

    

         

 



 

  

U,T

( 

   

&

 

   





 





        

 











   







X

 





  





    





 







       





    



U,T

T |U

fU,T (0, 1) = (.7)(.1) = .07 fU,T (1, 1) = (.3)(.9) = .27

fT (1) = .07 + .27 = .34

  

fU | T (1 | 1) = fU,T (1, 1)/fT (1) = .27/.34 ≈ .80.

  



 





fT (0) = .63 + .03 = .66

 

       





/



 

fU , fT | U −→ fU,T −→ fU | T

fU,T (0, 0) = (.7)(.9) = .63 fU,T (1, 0) = (.3)(.1) = .03





  

     



U |T











U



  

    











     

      

  

U |T







 



     

   

 



  





  

  













  

    





  



  





    











    

 

X |Y







   



 



 

      



     

      



Y





    

  



  









     









             

    

       





Y |X



x





'!

            

! " " ! ! (  . / 

 3 3  3 " " ' / (  6 & 

T =0 T =1

U =0 U =1









2













 

 





/- % &    & % / 2% /5   & # &  %) %  # -    1 "  / # & 3 &    1 & 3 & &   % #& & % 3   . "'    & # & 3- )   & % #  # 2 % # ( %  # #  / # # / /  /  & - / &   # # / #  & &*+ # !  %  % - / - / #  & & /  &        9;   #  ,  !    .  #       !   *  







    



 







    









 











 

 

 

   

    



 











                                

      

   



        

       





       









 

 

 







 

 



  



 

    













     



 







 



   







    





  

                     

  

            







 

                   



 



 

 

       



 







 



  

 



 



  

 



 

   !   ! . .   2   5                2     &    !  !      !  "    !  *        6!  4 N N ∼ (λ) *          .     ! . .   λ>0       #           * ! . .    !  *    ! . .  6θ!   ! . . *  X 

       ! . . *      5     (N, θ)  5X∼      & !  ,,      .! *   X)       *     &  !  ,,  (N,      "  fN,X !!"  !       .        !  & #  "

         fN,X (3, 2) N =3 X=2 5  #    - !   !    )            2   " * #  "  .  5  .          * ! N = 3 "  . " "  

(N = 3, X = 0) (N = 3, X = 1) (N = 3, X = 2)

  



'3

       

    

...

   

...

0

2

X

4

6

 

0

1

2

3

4

5

6

7

N

$ /&  #  #   &  % N / X & & 







 



  

   





 

(N = 3, X = 3)



 



&#

 

%



/  

 

 6

fN (3) = fN,X (3, 0) + fN,X (3, 1) + fN,X (3, 2) + fN,X (3, 3)

5  4    *    !    −λ 3 N f λ /6 N (3) = P[N = 3] = e  −λ 3  .    * !    5           * e λ /6  

 5   .                   

X

  3 (1 − θ)3 0

  3 θ(1 − θ)2 1

  3 2 θ (1 − θ) 2

  3 3 θ 3

5  −λ 3                       7!  e λ /6     5            .   #)%  )% "             /            N = 3  5     f (2 | 3)  X|N  5  )         

P[X = 2 | N = 3]

e−λ λ3 e−λ λ3 (1 − θ)3 fN,X (3, 1) = 3θ(1 − θ)2 6 6 e−λ λ3 2 e−λ λ3 3 fN,X (3, 2) = 3θ (1 − θ) fN,X (3, 3) = θ 6 6

fN,X (3, 0) =

')

            

1  "   e−λ λn n x fN,X (n, x) = fN (n)fX | N (x | n) = θ (1 − θ)n−x n! x

           "  * *  !  *        !    ! fX     !   &    ! !  "

       &  !  ,,          3 x f X (x)      5  "   !  !   X = x fX (x) ≡ P[X = x]             '

X

fX (x) =

n ∞ X

  ∞ X e−λ λn n x fN,X (n, x) = θ (1 − θ)n−x n! x n=x

e−λ(1−θ) (λ(1 − θ))n−x e−λθ (λθ)x (n − x)! x! n=x

=

∞ e−λθ (λθ)x X e−λ(1−θ) (λ(1 − θ))z = x! z! z=0

e−λθ (λθ)x x! *     P =

5     !  !    ! *       · · · = 1 z *   4   !   5  -  !             −θ)) *   4 (λ(1  

!      ∗  6 4 ∗  ∗ (λ ) λ = λθ X ∼ (λ 1   .   !  ! !   5)        z = n−x     

$

    

& & / / # 

pX | Y (x | y)

   

/ /    /&  * & ' p (x, y)    (x, y) = p (x)p (y | x) = p (y)p (x | y) 





  

- /

        

                 



 



 



 

X,Y

pX,Y

X

pX (x) =

Z



Y |X

Y

pX,Y (x, y) dy

pY (y) =

Z



X|Y ∞

pX,Y (x, y) dx

  #  % /  % %/ #  2 / % (X = /  x, Y = y) &  $  X = x   &  Y = y -&  (    % X = x & p (x) × p (y | x) (



 



 

 

    





−∞ 





 







   









  

 



 







X

Y |X

−∞















 

  

   







 

 

   

  



'5

       

    

&  #    /  /   Y = y  &  & /  / - % && &  X =x  / #    & & &  &  %& &   $  Y = y &  X = x &  (    # #   %  /#  % / 0& R   2%R A  - P[(X, Y ) ∈ A] = p(x, y) dx dy (x, y) /  /  A ... &  % / /# / /  % / #0&  /   % /  p% & / p # /     . /   & #& / B⊂R R /- P[X ∈ B] = p (x) dx

& /







 







 











 





 





  







   





 



  

    







   



 

  



   

 

  



     

 

 

 



 



  

Y

    



 







 

      





 

X

B

Z Z

P[X ∈ B] = P[(X, Y ) ∈ B × R] =



 

A

 



X

         

                  

  



  



 





                 





 



 





 



     



 

 A







 



    

   

  

            

          

 



  



 

 

 

pX,Y (x, y) dy



dx

#  p (x) = R p (x, y) dy  1 + # # % #&    1 /&  # / / # &  /  % X  ( #& & % # &  /Y # % &    /  W = Y − X  . &   /   p (x, y) = e  0<x
 

 



 

X

   

      

  



B

   

R  X,Y 

  



 

 





 

   

 

  





R

 

 







X,Y

"



p(x) = 

Z

p(x, y) dy =

Z



−y

e

x

 "  !  % '!%" $ p(y) =







    





Z

Y

p(x, y) dx =

 "  ! &%'% '!%" $ p(x | y) =

∞ −y

dy = −e

= e−x

x

 X

Z

y

e−y dx = ye−y 0

  !%

Y

    

    

      



   

    

  



p(x, y) = y −1 p(y)

−y





            

'



 "   ! &%'% '!%" $



 "   !  % '!%" $

X



p(x, y) = ex−y p(x)

p(y | x) =



  !%

Y

W



Z ∞ Z x+w d d P[W ≤ w] = p(w) = e−y dydx dw dw 0 x Z ∞ x+w  d = −e−y dx dw 0 x Z ∞ d e−x (1 − e−w ) dx = e−w = dw 0

$ & !# &% #  *   & (  $ & /    /# #  #  % %&  2& &  -% +% # -%  % & & (X =x - Y  # # x% ∞ -  # % # #2   - % & &  /    % #   & / y X ∈/ (0, y) % % / & . % Y  ' % / %  % X  &X % # Y .  /  % &   /    % /   /(0, y) /  % Y / % &  X  2  -  - Y > X% /  /X /  /  + . . /     "  " Y & %  /    %    % %   # & /  / # / &  /  & &   ( -  # #   /%   / /# X & / & + 



 

   

 

 







 

 



(# 





    

  



  



/%

  

 







       



  









 

















 

 







   

 



   

 



 

   

 

       

 







 







  





      

    



     

  









  

  









  

     

E(X) =

  



  



  





 



   

    

 

 



 

       



  

 



  

 





 













 

 



 

&



 



 

   

  





        

   

          





     

    





 















 





 

   

 

        

  

 





 

   

      



 





    

 

  





      

 













Z

xp(x) dx.

 & # % X  /   #  X   / +  (X, Y )

 

  

E(X) =





Z





  

   

xp(x, y) dxdy.







 

   

  



       

    



(b)

0.4

p(x)

2 0

0.0

1

y

3

0.8

4

(a)



1

2

3

4

0

2

4

6

x

x

(c)

(d)

8

10

0.0 4

6

8

10

0.0

1.0

2.0 x

(e)

(f)

y−x=w y−x=0

0

0.0

2

0.4

0.8

x=1 x=2 x=3

3.0

6

y

4

2

y

0

p(y|x)

y=1 y=2 y=3

1.0

p(x|y)

0.2 0.0

p(y)

2.0

0

0

2

4

6

8

10

0

1

2

y

3

4

x

  # $/ & !%    # %/ R  % (X, Y) 9  / %/  % X Y % %    / /   & X Y Y Y X % %    & X W ≤w 





 

 

 

        

  



         





   

2





    

 

 

  

 



 

  



  

  



 

 

 



(%

 





  

% #& - % &  - & -  

 







 

        





  

    

 &

             

p(x)

/





X E(X)

/   





 

 

!   3   (x | y) %(& % y - /  g(y)  (# +# // # $ * & & # !x- p R g(y)p(y)dy  -  / # . # - | Y )  %& & % Y E(g(y)) -  h(Y )  ( # // # * & 3  RE(X h(y)p(y)dy / # &  E(h(y)) -        9;    ; ;9  #  ,  ,  ! "  !  *      *  Z

  pX (x) = pX | Y (x | y) pY (y) dy = E pX | Y (x | y)  Z Z E(X) = xpX | Y (x | y) pY (y) dxdy = E (E(X | Y )) .

         

  

 

      

 

 







   





        

 



        





    

   













    

  

 



 





X |Y

   



 







(N, X) ! . . .     #  ,  !    !  * 

!      4

N∼



(λ)

 !  ,,+   

E(X)

X |N ∼

 

(N, θ).

    ! 

E(X) = E (E(X | N)) = E(Nθ) = θE(N) = θλ.

       ; ;9 

      #  ,," ,/  ,0  !   *   #  , !   *      

X

    !   !   P[

'    !   !   

*  

*   

( 0 X= 1 

      - 

  

] = pX (1) = E(X).

pX (1) = E(X)

( 

Y

   !  *  2 3 !

                       

 



"

   !   ,,+  E(X) = E (E(X | Y )) = E(X | Y = 2) P[Y = 2] + E(X | Y = 3) P[Y = 3] + E(X | Y = 4) P[Y = 4] + E(X | Y = 5) P[Y = 5] + E(X | Y = 6) P[Y = 6] + E(X | Y = 7) P[Y = 7] + E(X | Y = 8) P[Y = 8] + E(X | Y = 9) P[Y = 9] + E(X | Y = 10) P[Y = 10] + E(X | Y = 11) P[Y = 11] + E(X | Y = 12) P[Y = 12] 2 3 1 +0× + E(X | Y = 4) = 0× 36 36 36 4 5 + E(X | Y = 5) + E(X | Y = 6) 36 36 5 4 6 + E(X | Y = 8) + E(X | Y = 9) +1× 36 36 36 2 1 3 +0× . + E(X | Y = 10) + 1 × 36 36 36

6       -  *  5  !  E(X | Y = y) y = 4, 5, 6, 8, 9, 10               *   !    = E(X | Y = 5)     #   *        w     z  "     *          ! % ' * (" ") ! z = 5 ' * ("  )"" & % ' *    ( 5  *  z=7

z

w = 1 × 4/36 + 0 × 6/36 + w × 26/36 (10/36)w = 4/36 w = 4/10.

'

*    !   *        -  E(X) =

3 3 4 4 5 5 6 5 5 4 4 3 3 2 + + + + + + + ≈ .493. 9 36 10 36 11 36 36 11 36 10 36 9 36 36

2    .  *    !         





                           

2  % &  %& /  # & / %  /#  X / Y  ( 4 /    /  



  

 



  



  

 





  

 

 





  

/ + # 2

  



  

  

   

 



' 

 



 







 

  



 %  



  











        

  

  



   

  

  

  



 

            

              

 

         





       

 



 



           





 

 

 



       

 



    

 

 (

  



  



/  3 % #  / / /  % /  #&   .   / &   %4 /  3  / & / % 

 













 

 









                                    

$ /&  % & $&

 / /  %  / %   

       

   

  





            

    

  

2   /

 

       





 

            

               





   









 %   - # + %  %    / &(  " % #    # % # + ( (i, j) % / # +   + $ / + # - / & j  i & +   % #  ## # &  %  & %&! / &!%   ;  ;    ( & %&! % X / Y  •

 



 

 





 

  



























 







   

      

















 

   





 





 



  

     

  

  

   

 

  

  





    







        

 

      

  

       

     





 

  







 



 #  ( & -

Cov(X, Y ) ≡ E((X − µX )(Y − µY ))

            

       







2 #   / & 4-  # &+ 

 







    

  

 



  

 

 

                    









 



   



       

  

                  

  



     

                

                     

 



 

 

    



                       

 

3.0

4.0

0.5

1.5

2.5

6.5

7.5

2.0



2.0 2.5 3.0 3.5 4.0

4.5

5.5

Sepal.Length

5

6

7

Sepal.Width

0.5 1.0 1.5 2.0 2.5

1

2

3

4

Petal.Length

Petal.Width

4.5

$ & 3 



6.0

7.5



1

3

5

7

 / /  %  / 





 



  

 %  





  





!

/   ( #/ #& #  #  # &  & &



 

    

 

            

       

       







  



     

   

 





  

 



      

        

              

       



   





  





 





         

       





 







# #   





 



                                            





       





 / / #  (    

               

                               



        



*  # /    #& /   2 % - &     &  % % #       ! X %' Y ! %' !"   !% Cov(aX + b, cY +               



  



   





 

               



               











d) = ac Cov(X, Y )   $ 

Cov(aX + b, cY + d) = E ((aX + b − (aµX + b))(cY + d − (cµY + d))) = E(ac(X − µX )(Y − µY )) = ac Cov(X, Y )

#    % Cov(X, Y ) / % /   / X % # & / 1  #   Y & /  & &   #  ## & & # &   ;  ;    ( &!% /Y  X (

 





       





 



 

 



 





  

 















  

 

  



 

 























   

# &  



Cor(X, Y ) ≡    

        

            



        

       

    

 

     

(

   





Cov(X, Y ) SD(X) SD(Y )



  





 

   



                

    

    



         

 





        

      

   





          





 

 

3 - /   

                       

 



# & #   /  / -& /  /  & / ( # !   # & #   &       ! X %' Y ! %' !"   !% Cor(aX + b, cY + d) = Cor(X, Y )   $ . *+  '  /   # &  %  % # &  &/    & /   /  ( -   # & #  $ & )/  &/  /  (  /& % & # & +   &  & / & /    ,  & % % &    # /  &   (    %(  && ##   /%  /   / &   %   % /  %    / 5 !#  / / /   #  /    ( & & % # %   1  %  &#   /  #  /  $% -  #   / &/ & &    # / #   ( // &  % / &  - /   &  # &   /#   & # #  /#   -  &   ;  ;    ( / # /  / %'! !%  X Y '!% % -%  % 2% / / / p(X | Y ) = p(X)  / '! !%'!%& Y  X Y 2% X / Y / / %  & p(Y | X) = p(Y )    % /# /  ( /  2% / / /  X Y &   2% / /   /Y /% / X ⊥ Y X 6⊥ Y X   &  1  - X ⊥Y ( Cov(X, Y ) = Cor(X, Y ) = 0 

 

  



 



 



   





  

 

        

         



    





 













         

 



         

           

  

 

 

 

         











       









 

   



 

 

     

   











 

 



    

 



  

 

 

  







 

  

   















   

 



  







 

 





 



 



 











           



  

 











 



 

  

      









  



  

     

    









    







       

    







 

     







 

 

    



 

  



  

        

 





   

       

     







  

   









     



  



    

    

   







   

 

 





      



     







   

 

  

 

  

 



  







    

  



   

    

 







         

   

        



 





 

 

 





    

 





 



  



 

  

  





 

     

    



  







 

  



  

  

                



 

   



 







       



  

  



  















 

 



 





 

 

  

















          

            







 

 

 

 

 





  

  

 











  



  







   

  



 





 

 

    



)

            

cor = −0.9

cor = 0.3

cor = 0.96

cor = −0.5

cor = 0.5

cor = 0.67

cor = −0.2

cor = 0.8

cor = −0.37

cor = 0

cor = 0.95

cor = 0.62

$ & ) 



      



                       

 



5 %

/  (   &  & &  / / %  / / # +  /  & & & & X / A = 1 % X ∈ {1, 2, 3} / A = 0 % X ∈ & #  %  / / %'&  /  & & {4, 5, 6} A % %   /  ( & A=1 (X).  %'& $ #%&%  1 (X)   / 1  &   B = 1 (X) - C = 1 (X) - D = X / E = 1 (X)  A / B / /  P[A] = .5 1 (X) & & P[A | B] = 0  D / E / /  &  P[D] =% P[D/ | E] /= .5  &   / P[E]/= P[E/ | D]- = 2/3  &  & & & A B  '5 X / Y $ # + %# # - / / %  &  W = Y − X  % & / p(x | y) = y   &  p(x | y) ( / / /  . # - p(y | x) / / x   #    & y/ X 6⊥ Y  #  X & & & Y / / / 1 & X W 

p(x, y) = p(x)p(y)  



 









  

 



 



 



  

 

    

 

 







   









  

  

 



  



 



 

   





  





 





  









     

      



 



{1,2,3}

  



{1,2,3}

  



 

 





      

  







 







 



 

      











 











  







  











 



 





 

       

 

 

−1





      

  

 



   









 

    

 



   





{1,3,5}

 

   

  



   





 

 

     



 







 



 





 







{4,5,6}



 

  





 





{1,2,3,4}

{2,4,6} 

 





{1,2,3}



 









p(w | x) =

d d P[W ≤ w | X = x] = P[Y ≤ w + x | X = x] = e−w dw dw

/  / / x ( % X ⊥ W   #    # &/ & X & & W     <  9;    ; ;9  #  , " , "  ,+   !     *   !   6!   











 





   



   



  



      





 













       .  !  *       !  * ! .       .  "    "  1*     .  k    N1  N k .   "    !  4  1 "    Ni ∼ λ * .    1*    "  *         (λ)"   !  * λ  *         λ   !    !  !

   "   !        "   )    "       " !  Ni

λ

p(n1 , . . . , nk | λ) =

k Y i=1

p(ni | λ) =

k Y e−λ λni i=1

ni !

P

e−kλ λ ni = Q ni !

!

            



 ! *

 !                 .   1  !    λ .  *" *  "          *        λ           *   !  *  !        *  !   !     1     *      " " λ "   *     !   *   !   .! * N1 , . . . , Nm " Nm+1 , . . . , Nk        λ1 *" Ni

Z

p(n1 , . . . , nk ) =

p(n1 , . . . , nk | λ)p(λ) dλ =

Z

P

e−kλ λ ni Q p(λ) dλ ni !

6 "            !             Ni 1 "      !   .   !     "   !    Ni          .  λ

      



/   % # / &  &  

#

   

      

  





   



  



 







  









   



                 

                       

                     

 



  



- *+ #  - + # % # & %  # & / -  #&   & & (  + - / / + #  / / & +

  

   

              

    % % %  # #/ #/ &  # &  && &/ /- & #  / % # # #  / # &  $  - *+ #    #  3

&  1 &   &  & / /  #& *+ # *+ / &    # /  # &  / &  # + / & # #  #% &  µ ≡ E(g(Y )) % (  %   # &  &% & y #  #   ( & Y n & & 

         



                

   



 

 

  









 

  



 

 

  







      

 

 



  

                    

                            



  

  

 





 

 

 

 





 



  

     

   

   



  

  

 

   

µ ˆ g = n−1

X

g(y (i) )



(j)



   



  



  

 



 







  

  



 



  

 

 



   

 

  



   









 



  

 

  

g



  

     

     





  



        





 . #&     /  #  + / # Y %  # %& # #  Y  #& / j

  





     

 

    # %µ 2 % 



 

  



 



  

g

.  /%  # µ  

X

,&#   &

 



  

 

g(y (i) ) = µg .

 #& # /# & # & /   % +  . &  % ( & /P[Y  ∈ S]   ## / S  X ≡ 1 (Y ) P[Y ∈ S] = E(X) & # # % &%  % S = n X x . & *+ #  &   # %              ; ;9  #  , !   *      * 2       4   !           !    



    

 

 

/

lim n−1

%

!

n→∞

 

g



      



       







   



    









  





 











 

    



   

S







  

  



 

 

 



−1

(i)



 





  

 

 







       %             %         %   %                

                        

                %    

            %  %              

           

                





 

   





 





 



 









   



 

 

 

 

  

  



 

 











 

 

 



  

 





 



 

!

            



             %  

 





  





 





   

                

    











 









   4   # % % 2%      #          (   •     







 



  







 

 

   

 

  



  



 

  



 



      

  

 



#





 

(# + #   / % #  . '5  *+ & & ) & %  #  %-  &  %&  # 1 & %   # % µ  2%  # &%  / / µ ˆ # # Var(g(Y )) Var(ˆµ ) = n Var(g(Y ))P # /pPn ((g(y) − µˆ ) ) / SD(g(Y # / ))    /  .   n ((g(y) − µ ˆ ) ) SD n & #% ( # -    % /  n - % +# -  /  &  .#  % - &  #&  #  &-  &# + % # % & /  & & SD             ; ;9       







 

 





−1/2

       





g

2

 





2

 

 

                 

 







   

 

g



 



−1



   





g







 













 



    

 

 



 





     

   



g





    

       

    



        



   





−1/2











  

 









 

 

 



   



 

 





 







 

  

    



 



           



 !      !    #  ,,   5    !       * "  !  * !  X      !      * !  ' #  , * ! θ











 

  

g −1



 

 

  



  



   

θ ≈ .49

" ! 

     

!"

 

             ( θ

  , θ)   (θ)(1 − θ) p   SD(X/  ) = (θ)(1 − θ)/   "   2     5   *      "    θˆ = X/  ∼ (θ, (θ(1 − θ)/  ) )               !      !       = 50 "  /  "  , "   5 !     ,   !       = 50 "   ,     = 200 "    ,     = 1000  5  !       #   &  !  ,,   1 & !  ,,        ) ! "       ! #  .   5  # *   50       *  ,    ) !  !   '    =   

X∼ Var(X) =

(

1/2

ˆ

  !  #("   *  ˆθ *   !    ' !    *  #("  θ   *  ˆ *   ! 0     ' # *      ( 1    " θ, ˆ * θ = 200      !  ! *   !"   ,  ˆ *      !  ! *   !   5  * *  !θ  *  =* 1000    .5

  *  ! *   

    * *  !  "  ˆ SD(θ) SD     * *  ! /  6   * &  !  ,,  *  *!     * # 

 

 

 

 4 /% 

 







 



 #&

  

 / $ & 5 





     

 



         

                             

        



     

 









 





 







   

!'

0.3

0.5

0.7

            

50

200

1000

n.sim

$ & 5   # & 



   





 % θˆ %    - -  









          

        

 





   $ 

$   

     

 

 

      

        





  % # # +# ( + % /#    /        #  %     &  / & #       #       + •      

#         •

 







        

  











   

1 $-



 





 



*+ /

     











 





 





  



 



    















  





 



/  /   2 /&  # //   ( & % / ( /  #/ % /  / + / /  /





 





 

  







 



                 



 

 



  







     















 

       

    

 

 





  

! % & % / 1    #   " !"  ( % + #/ %  /  . *+ #   "  &  % +  / %& +

     

 













 

   

     









  



     

   



  

  

  





 

  



 

  



      

  

  





   

    

. #&  # #  &  %& / / + & #   #   + #    /   + # - / %  - & & / $- " % &  & /  # # 1 %   %  / /  (  & # %  / %    &// 3  ( //  & - / * %   & θ = % / /  & θ = %  & /  & θ= 1 #  ##/   /  / # θ / /   /  /   & ( &  6 / #  #   & /  * # % /  &/  % θˆ =  6 / #  #   & /  * # % /  & θˆ = % / / /  & θˆ =   

 





 



 





I



 





  



 







 







 













 





 



        



        

 











 



 

 

  







   





 



 

        





 





     





   





 

  



 





       

   

       

   

 

    

G

 



 

     

I

θˆ2 = .3θˆG + .7θˆI

" 6 / #  # " 

   



            





    





     

 

1



 

    

     

 











     







 





 



 

 









 

 



  





       

        







 

G

  











  















      

  





 

    



 



 













 



       θˆG =        θˆI = θˆ3 = .3θˆG + .7θˆI

 / 3 / /  * # % /  & % / / /  &



 



 



 







       

  

 

      

     



!!

            

/&  

   + & & / - #& #     # &  -2  # &  #    #  & &  &  % θ - θ / θ & /& /  #& &     # 4 / %  #& 



 

 

  













  





 

  

  



 



            

          



























   



 











 

  





  



 

   

          

$                  









    %    $          %       











  





  





     %     $                      

  $              

   $                   









 

     



 

 



  



                        



       













     









 

I

     

      

  % $   %                                 

       

   

 

  

   

 









    

   



 

  



G

 %



 



 











    









  

  





  

    



     

 

 % 



!3

 









 

  















 



 



  

     %              

  $              

   $                     %          



 

        



 

 





     

  







  



% %&  # + 2 % / - 

 &   %/ #%  # +   ( - &  # &# %   / ( + -    / & $ &  & / & ( + + #    #& + #  &      7     5   ! *    #  "  2 "          







 

 

    

   

 

 

 





 



       

        



 

 

 

 





 







 



                          







   



   

 

 



   





        

  

 







    





   





      .   !  2   *  !       ! *

            5                "  !    &  !  ,/ , 5        .   * #    5          * 2      3 2 !    !     *   ,    ,  +  5       

           ! !   5       * 

   !   * *  *! 2      !       2     *       !"        2    .! !            !    !    2                   2     !     1         2    !            !         * 2 #     5    !    ! . 2  "       3 !  #      !  1   !"2   *   ! 

4





!)

0.35 0.50 0.65

            

1

$ &    # & /& 



      

  

2

 % θˆ & / 



    

3



    

/&  % 

 



   !           # *   ! * 2    2     !     .   *    !   !  !   !   !  .  "  "    .    ! " #     .   3        3       "     *      "   '    " !!  "         2               !      2  "   ! 2     "          6        2     # 2         ! 2          !     !"  3           *       ! #   ! .   !        5   "    ,         *      .       6     *   '   (  !     !      & 2 "  !!     % # $ !%  .        .       '      2      $   ' #  

   

 

& 2 '

     

 .               !

     

!5

 

(b)

0 −2 −4

320

co2

340

resids

2

360

4

(a)

1980

1960

1980

Time

Time

(c)

(d)

320 2 4 6 8

$ &   

340

co2

−3 −2 −1

0

cycle

1

2

360

3

1960





12

Index                

1960

%



1980 Time



  

2

&

 

3

            



       -    !      3     5   2  /3     *      * .       !  0      "     /     & *        3 !   * 2  /  .  " . 2  /    !                   !    & 2   !    

    -   !   3 '     & 2  3 ' !    *    !  *!3*!   "   3   & 2 &            '    *   2  / # 

   33-  !  6    *  !     *    1  & 2 #  " 2   ' 2       5  . * 2        ! 2         2          ! * 2         2  - ."     .   # 2    3/, !        .        4                       !  & 2      " 2   !  *  ! *       '      ! 2 2      .   

"  *"  )  #   !  & 2 2#    5  -  .  & 2      '   '  ! "  " (" 6     '   "'. (  2 * '  ' .  (  *  '   3          ,   "      3 !  & 2 #     * "  !  #        '

.     !   .  "       !  &    ! *   #    !  *!  .      .      *   '   (    !       1   ! "     3     #    ! .     * !.   .        ! #         5   3       !    !   !   5   *      "     *  "   .    *   #   #     , 5  #    !    *   "  .   0          !  .  2       !      5  #     2 ! * ,    1.     3 - ,        !  &   5  .   !    *   " !  *   #   "   .     $ 







 

     

3

 

/  5     ! ,      *  #    5      *  



 



 

0  5  .  !    *          %           %         5    !           *    * .        * ' " "    ( 5      

      !      # "   " -     5        .            



   

   







   !         # !  !       5    ! !       $          $       '

    

      

              *     ,  .   5   .        5  -    .!       $                 .     '            



    

     

  1.   #         !     .   *

/         .  *      5  .!    $    $     5    !   !   $    ,  " ,  " ,  '   (  ,,      ! .           !         *   $    $     &     "        *     $  



( , 0.1 ∗ ($ − 1))   !       $        "      *     







  

+

 !









    *     #   .  6    !  5       !         !   3   !          5  !          *         !                         (1,

 

 

  

)

      

   #    !  !    *     &  -         . !   

 

     

   

  %                    %      



3

            



               

& !  !                  !3        * $         $           

   !             

    !

      !     !    !     1    ! 

$         $           

     

,   5    !   *             !                      

)

$ "!



         -   *      *       6 6   #  *    ! 3 &  ! !    "  .   3    " &  !  ,// "                     *  !   5         *!     *  & 2 #     !  & "     ! *       '!  #   ! .       * !

  

   



                           

     %  $                  $                                     

                                                

 







               





  







  







 



3"

 

1.0

1.5

growth rate

2.0

     

2

4

6

8

10

year

$( & +    . %/y / / 

 









 # &  % $1 *  #    /  /   /  /

       

   

  

   



   















 

 

 



 



+ #  ( x +    #   #  # i &  /     

 

   

        





 

   



   

3'

            

$           %       $            %                         $              $        $$               

             

       

 













  







  







     

 



       



  

 





   

 

 

 

 

   

 



   



  

 

 $  

       $     $ $



                                       

            

  

  

  

  

  

         $

 $          

$                    $ 

 $           



 

    





 

 









   









 

   



 

 

 

  



                                                

                            

           

                    %  $      

 



 

  

 



 











 



 







  

















                                                         

  

 

  

     

     

 

     $  %               %  $     $          %         $           %    %          $                         %           $                                 %                       %           %           $      %            %            $        

 %   %       $ 

 %            $  

 

         

   











 



 

 

              









  

 



 



 







                 





       

  

 

  

 

             

3



   

 

    



    $   %    %          $     % %      $           %  $         $         %           

      



 



 

  



       

          

             

                      



                      

                                   

         

              

   $       

                                 $      $       

       

     

   



   

    

        

 

     

     

   

 

3!

               



 $        

                  $           $       

  

 

                          



 

 

     

 

   

                                             

    $       $   

             

      

                                      

                 

 







     

     

 

           

            

                                    

                      



         

 

         







   

 





/ &%  % # % 4 ## / /%  (     ( % % /& / +  / &/  / #  &  & / / &/ #& / &  4 / & & %/ # %  /  ( & & %&/  %  / % / %  ( %  $/ / 6 0  # #  / # & &. . &  %  .% %  /( %  (   $     2% &  $

 / / $ / / / +   $   &  & / + # /  # (  &/  &  / $   %   && /   &        



   



 

  



  



  









 





       



      





 

     







  

 



  











 

      

 











 









 

 









 





 

 





 



  





    

  



    

 



 



 





  



 



 



 









 





 



   

  



 



 

 

 



  



 

 









  

  



 

 



      





   









           





  



 

  







 

 



  







 











  

     



 





     

  

 



       

       



 



 



  



 

   





 

   

 

33



( % 



  

$    





 

   









/ / 

4 /

 

 



 







         $   $                %      %  %    %  % $     %  %      %     %    %    $             

 $   

         %            $            %  

 $  

%# +

/ /   1 •   /  & /    +  # + ( #  (  & # - $    - 4  $  / (  / & # -         -  4

$    



 

 

 





        















 



 







           

    













 

   





    



 



   



  

  

  

     

    

 









 









 

 



 

   





  

    

 

    

  











#  % & # 

 / #  % # +- / % #  •   / #   $ # + / % # -   #  / & #     %      $   & / &  #  • #   -   -  2  &  /  /   /   / / 2 / / & #  % #   / / #  &%   &  $  % $     / &# # + (   & # % && &  / #  &     2% & #  # +

   #  /&  % % # -  $%

/ #  $     & - % / # %  &  % $ + #   #  #  / $ & %  1      % & #   &% $    & #   -  $  -    #    %/ &   /% &  -  $  * # # $    /   2 / / & # & #   







 

















 









   

 



 

      

 

 









  

   







  

  

  

 





 



 

 



 











 

 



  

  

 





  

    







 









 

 









 





  















 

  





 



    



 

 





  

 

    



 













 

     



 

 



     

                 



   

    





  

    



      



  

 

 



 











  







 

              







  

 

 

 

 

     

 

  

 





    



 

  



 

      







     















 

 

 







   

   

 

 

 



 















 







 









 

  











  





3)

            

$        

#  & / #  /-    & $ / 

    





    

     

     

 











   

 







 















         $   $          $      $         $   

 

 





 



 





  



   





 

   

 







 



        



   







    



    



 









 

    

      

















   $     $ $     $         

   

 

   %   





   

 





  

      

 



  

   /  $ +    



#



   

 









 



 %   # %  

 

   

 

   

   



   





 





  







      

   













  

 

1 &  & ## / &    #  (  ( &   # % 4  %# / -  / / / # /  & #%%  



  



       





 

 

 





   

  



 

#  2%   # #   /  ,  # + % /   % &&  ( # %  & # & &  ( &  $   % $  / & / $       / 

$          $      $     $    





         









   $                                       

   



   /  -  % /   4 + / #  / & /  # # / &     / % % &     -   #   / , # +#  #-   / # /  / / /&       $             

%     

   %  

              %               

         %   













 



 



 











    





 



 



  

 

























 

           

         

 









  

   

   



                

 









   

  

 





 









   

  













      

 



( 6/

     









-& / & - & &



   





 













 

                

      

 



( , # &  /   1 /  ## % /   /  & / + # , (19.15, 8.37)  & , +#  / # & #% / / % ( % ## / 











 



 





 





  



$ 

    





   

  

      







 



  

 

 





 

   %     

 





  

 



 



     $   $    $    $    

 



 





                $               







35 + 











 / # & #% (  / // % #   %

# # /    & #% & & / ') & / % / " & % & #%  ( & %   / / & #  / # & & % /# / / & %% #%  & %   2% / / # #  & 



 









 

 

       







 





         

 





    

  





1 #& / & & 2%% • •



 

   











  



 

 



 

 

 







 

    



       







 

   



       

          



 

  







 

 







  

 



 









 



          

    





   



 

    

    

 









 





 

     



  







  

 







   



 





 

 

  





  

 

 

 $     

%     $     



 %     $   $    





 

  

 

  

   

  







% !'%  $ + # -    %  #  %

#   $ q & / q & %   q  1 #$ & %& / /   ( # /   & / /   -   - -     % $  & & % $  ## / / /  &  / %   #& & & & &

#%!

 





                   



%    %     % %   $   % $        $   %     $  



,



 



    





 



  

            

          















 



   







)



            

# /  %/ 2 &     /   * +  % ( &% +   &  / / &   % / 3 &  # // ( +%  # /% % % & &  (  & %+ / #  / 1 &  & / &   / /  / / &  %   4  % $  # 2 #  • % % #  + # &  %& /   %& /    $ &  ( #/   ( / &% %  %& # & / # -&# / / & •



  "

        

    















 

  

    













  

  

   











 

          

  

 

 





       

                  %      

 



 





 





 







   

 

   





 











   





 











  

 

  

    



  









 





        





 

  

  

 





 







   





 

          

 





  

 

 

  



# % %   &#   (

 

 



 

















 

$ &   





    $ 

      

 

 %                      $       $                  $ 

   %         

  

  



    

%    

%     

% 

 





 

 



 

 



     



       

 

 

 





#   - & / /  #  / • $ # / $   $ -  #  &  # •





  







     



 

   

   

   





     

 %       $







 

    







    



  

  



  

  



    









  



 







   



                            



 2   & # 





 

      







)

      

             

# ( , # &  #    % %   % #  /  / & /  +% # / ,&(19.15,  / /    & 8.37) / % /%  # & #%  / i/12 &   , (  ,   )  2%  (i − 1)/12 #  / # & #% +# #  /% # & / #      ;   ;  9   ; #  99   ;   













  

 









    





 







   

 







 



  

 





  



   



2  &  & /  / # &#  #    #  ( +# / ; ; <  ;9

 

/  #

        

  

 







 

  

 















   

        



      

 

    



   

      





    

     







  



 





    







  











 





  





       

#  # - #  &  /   % ( % &  &  # ( #  - " / '%  #  / & . 3&5  &  1 y ,...,y

                                                                                                                                



    % % % #     " &'

yi ∼ f

 '  

yi



"  

   !

%' "  ! i = 1, 2, . . . , n

"  #  $     1 n " %  " $  #"    $ " "  #  

n

 #

%  $ ( (  #   #  ) ' '

*     

(y1 , . . . , yn )

f

% # 

y1 , . . . , yn ∼

f (y1 , . . . , yn ) =

' "! ' ' '# '





 

Qn

i=1

f (yi)

'

f

  ' '# ' %  # % "  %'! !%'!% %' '!%& '"#!' ' +    # (    %  % % , % # %    -     #  $ %$ .  % ) $    "%   -  )  # $     "% /    $  '   $   # %( %%     # "   % #  #    (  "  .  # (   ,    %(   ) 0# $    ' ( &1 1 2 -    %  ,  ) # %   "  # $ %$       % -  % #   # # %( %%  "   3 4  %( %  #   5 (  6  (   4( ' R R 4(    % ' '# ' ' 7   # 2 y1 , y2 , . . . , ∼ f µ = yf (y) dy σ = (y −     $    #    " ' *     #  ( / - 2





µ) f (y) dy

f

µ

σ

           

2

 # -  /   %$    #       (  $ '   -  "  ( % )   $  "    %  %  % )  % $   ' y¯n ≡ (y1 + · · · + yn )/n n µ 4 $   ( %  %   % #  



0   %$   " % 





 %

y¯n

n

   % 

-   $ ( %

n

)  - (   %

µ

%

n

%%

y¯n

%  % $   "

µ



  #      # % #  " ( 



*   $ % & '&  # & '&   #   %- %   %  ( %  % ' " %    $ -  # %$    $  %(  %  (   $    #    " '

  

!%

  $

  

!

! %'

x1 , . . . , xn E[x1 + · · · + xn ] = µ1 + · · · + µn 

 

%(  %       %

E[x1 + x2 ] = =

Z Z

ZZ

n=2



!"  

!%"

y¯n

µ1 , . . . , µn 

'

(x1 + x2 )f (x1 , x2 ) dx1 dx2 ZZ x1 f (x1 , x2 ) dx1 dx2 + x2 f (x1 , x2 ) dx1 dx2

= µ1 + µ2

    !!   !%

  

!

y1 , . . . , yn

!  %'

"  ! $ 

  $ *      " - % " $ *   $ % & '  # & ' ' 

f

  

!%

E[¯ yn ] = µ 

          ! ! %'! !%'!% %' x1 , . . . , xn %'  "  !%



!"  

µ

!%"

µ1 , . . . , µn σ1 , . . . , σn   Var[x1 + · · · + xn ] = σ12 + · · · + σn2   $ %(  %       % ' 3 %  *  $ &' ) n=2   Var(X1 + X2 ) = E((X1 + X2 )2 ) − (µ1 + µ2 )2 = E(X12 ) + 2E(X1 X2 ) + E(X22 ) − µ21 − 2µ1 µ2 − µ22   = E(X12 ) − µ21 + E(X22 ) − µ22 + 2 (E(X1 X2 ) − µ1 µ2 ) = σ12 + σ22 + 2 (E(X1 X2 ) − µ1 µ2 ) .

 

(

    "

X1 ⊥ X2



  

 

   

2

 

E(X1 X2 ) =

ZZ

x1 x2 f (x1 , x2 ) dx1 dx2 Z = x1 x2 f (x2 ) dx2 f (x1 ) dx1 Z = µ2 x1 f (x1 ) dx1 = µ1 µ2 . Z

4

Var(X1 + X2 ) = σ12 + σ22

'

     *   $ &'1   ( % #   #   -   *   $ & ' #  %

 '

    !!            

      y1 , . . . , yn  f   2    2

σ

Var(¯ yn ) = σ /n

  *      " - % " $ *  $ % & '  # &'1 '

  

   !   "  #   $ %& '(  ) * !  +



µ

  

 



     , σ   > 0-

σ = = ≥

         

P[|X − µ| ≥ ] ≤ σ 2 /2 .

  2

X 

Z

Z

(x − µ)2 f (x) dx µ− 2

−∞ µ−

Z

−∞

2

≥

Z

(x − µ) f (x) dx + (x − µ)2 f (x) dx +

µ−

−∞

2

f (x) dx + 

= 2 P[|X − µ| ≥ ].

Z

Z

µ+ 2

µ− ∞

Z



µ+

(x − µ) f (x) dx +

Z



µ+

(x − µ)2 f (x) dx

(x − µ)2 f (x) dx

f (x) dx

µ+

*   $ % &'&  # & '&    -  $   $   $ % " %  % % ' *     #   %- % )   %      % )     ( %  %    2  '

   

2

 

   ! 

 





        

   *  " &+

 y1 , . . . , yn              

         2           µ σ  ,  > 0-



lim P[|¯ yn − µ| < ] = 1.

n→∞

 

    5     %   (   *   $ & '& &   



y¯n

& '&2 

'

lim P[|¯ yn − µ| < ] = lim 1 − P[|¯ yn − µ| ≥ ] ≥ lim 1 − σ 2 /n2 = 1.

n→∞

n→∞

    % 

n→∞

" *   $ &'& %  #   4   7 - " 7    ( $ .

 % '

 

  !    (

     *  " & +

 y1 , . . . , yn              

         2      µ σ       ,  > 0-

P[ lim |Y¯n − µ| < ] = 1; n→∞

  -

P[ lim Y¯n = µ] = 1. n→∞

%   #   %   "  % %   ,     #      -      7 7   #   47 7  ' 4 4   '1 '    !  (   !            +     y , . . . , yn  √     

         2  1 f  µ σ zn = (¯ yn − µ)/(σ/ n)     -    ,    a < b 

 

lim P[zn ∈ [a, b]] =

n→∞

  

Z

b a

1 2 √ e−w /2 dw. 2π

                z    (0, 1)   n *   7 - " 7    ( $  % % -   $ /% % $ (   % -  /  # - 

  %$  %       %$  ' % %   %   ( $   " % $ (    - %   %   %$   %   - % )   )     "   % $ (   % n→∞        "   %$     %  %  # %    (  ( 

X¯ n →

  '

   



 

  

   

2

0  %   )  , $   & '&& ) -   -  ( %# % $ (    % $  

µ 4    - % 5  % )   % $     $  $    # $   (   % P[ ]   ( $   " % $ (   % %# " $  )    )  #    &   ' *   5   7 $ *   $   % ( %   /    % % $ (   % $   %' 5    ( )   5   7 $ *   $ % %  

lim pzn =



n→∞



%          %   ) "   

pz n ≈

-   (  $  %

py¯n ≈





(0, 1). n

)

(0, 1),

√ (µ, σ/ n).

 , $   & '& & -  % $ (  #    $  " 5  % "      )   ) *   % % $ (   %  #   # 0  (  & '  ' *   (       % - %   %  $ " &  % $ (   % )  ( %     ' 0  %   = 50 % $ (   -           (  $ % "   % % $ . = 50 X1 , . . . , X50 √ (   % '   ) %  #

 ' Xi ∼ (.493) µ = .493 σ = .493 ∗ .507 ≈ .5 *  "  )  #     5   7 $ *   $ ) -       # &  '

= 50

√ ¯ n ∼  (µ, σ/ n) ≈  (.493, .071) X

*  % %     $  #  %    #   (       " 0  (  &'  '   %     #   , $       %  $ '  # %      (.493, .071)   %  ( % ¯ 50 ∼  (.493, .071) )   , $  ' *   5   7 $ θˆ = X *  $ % %       , $   -      # "   '  %  % n %     (   ' 4   '& ' -  # %( %%    ( %  " -   %  n = 50 n     (   ' 4 $ )

¯ n ∼  (.493, .035) X ¯ n ∼  (.493, .016) X

-      -     

= 200 = 1000.

*  % #  % %    #   $ # #   # -    % " 0  (  & '  ' *   5   7 $ *   $ $ /%   %  $  %   (   # %   (.  "    %$  %

y¯n zn

&'

E[¯ yn ] = µ E[zn ] = 0

)

   



        

0 1 2 3 4 5 6

Density

2

0.3

0.4

0.5

0.6

0.7

0.6

0.7

0.6

0.7

6 4 0

2

Density

8 10

theta hat n.sim = 50

0.3

0.4

0.5

10 0

5

Density

20

theta hat n.sim = 200

0.3

0.4

0.5 theta hat n.sim = 1000

0  (  & '  %  $ % "  % % $ (   % ' 4  # ( %    $  .  , $   %  #     5   7 $ *   $ '

        '

'

2

√  )  # SD(¯ yn ) = σ/ n SD(zn ) = 1 y¯n zn



 % )   , $  )    $  # %   (  '

*    % -  "  %   # / - " $ *   $ % & '  # &'1 ' %     %   #     % /    5   7 $ *   $ '     %(  $      "$   5   7 $ *   $ %     # %   (  % " y¯n  #   %$  %  #  $ # %    #

    "  ( % zn µ σ " $   '

f

 

   

%       $ %(    "      & ' 4 - " µ # %  % %

A1 , . . . , An

µ(

n [

i=1

'

 * !     



  (   #    !! &

% $ (  

Ai ) =

n X

n ≥ 2

)  #

µ(Ai ).

i=1

   #   % ' 5  (   ( $   " & % )  % ) ' ' ' )

 ( ,    ( &  "   ( $   '  -    ( ,   # 



% '

-  % - %  (  %( 

 - "  -  ( #  ( ,     $     &   & %   (   % $ (    % $      %-  '

  (

      &      #  $      %      $ %  #    (  %  #   (        -    -  #    (   (  %     $  " $     % ' *   (   ( )    $ ( %  / " $  #   ( ' "      '  % $ %  (  ) %  $   / #  ( A≥2 A D  / %  $ #  -  "$ &   $ % ' 4    % & $  $ ( %   "   #    /   ( )  $     %   / -   $ $ ( $ " &  #  $ , $ ( $ " $ % ' "   min(3, A − 1)

 %  /  % $ % (  )   $  # " #  $ %"   D≥1 D ( %   $ $ ( $ " &  #  $ , $ ( $ " $ % ' % min(2, D)  $  % -  %  %   /  # # " # -    $ , $ ( $  $ %%  

( $   " $ % '

 '  

   

22



        

  

    / % -  $ % %   % #  '      a a # " # % -  $ %    % #  ' %    % #  %  $  #

%    % ' d"     % ( %d   %  -  #  )   % % #  

   % % %  $  #  % % #    % ' 0     $   % )

"  % #  %       %    - %  # $ %   $  "$



    #   - % - %  #  $ %   $  " $     # ' 

      -   $   % % )    " -  $ %  $ # " $     # '

 •   $     / -      #

 / % -    $  %   % -  $ %  (   ) % # " # % -    $     %

     $   (   -   %            - 

-  "



'

'

     

4(    %   6  &  % -  $ %   (  % ) ) C C  # )   6    %   $   (  % 1 ) 2 ) C3 C B B  # 4 )  #    (   / %  (  '    1 % 2 B3 B Ci B     4 6  & -    %( %%"(   % i  "   " (   / % ( % "   % %  "   (   & ' ' ( % "   % %  "     " " *   $ & '& ' 6  *   $ & '& -  

%   #  $    '  %  ) '

Y

k

      '

0 #

k

g

%  #  %  "(   '

Y ∈ (−1, 1)

' *    # " %









"  % $ 

'

3 %        # " ' 7 

Z = −Y

' 0 #    # " "

Z

' 6  '

%   #  $       

U

p(y) = ky 2

[0, 1]  p(u) = 1

'

'  -    #  %

   6 

%  "(   "

'  -    #  %

   6 

%  "(   "

V = U2 V V %  "(   " ' ' 0 #    # " " ' 6  U V pV (v) v

W = 2U W W %  "(   " ' ' 0 #    # " " ' 6  U W pW (w) w

        

 '

2'

1'

7 

21 '

 -    #  %

  

6 

% 

X = − log(U) X X "(   " ' 0 #    # " " %  "(   " ' ' 6  U X pX (x) x X∼

, 

(λ)

 # 

Y = cX

"  % $   % 

c

'

     # -   #  %  " '  X   0 #   #  %  " '  Y    $    # %   (  " '  Y      #  $  % %  % ( # 

 " $  4  &  %% ' 7  X   ( $   " $    ( %%   % ( #   %  $   # ' 7  " Y =1   % ( #  % "$   # "   % ( #  % $  ' 0 "    " Y =0   %% % "$  '  $     -  $  )         $   #   $   %% ) "        $   # -  $   %%%  #         $   #   '  $     $  )         $   #   $   %% )  "       $   # -  $   %%%  # -        $   #   '    *    !&  X    0 #  ' [X|Y = 1]  4(  % % ( #    

 #



Y

 #   #  '

 )'  # %   (  '  %    %



                                 

& '

( $   )     $ ,   %               %    ,  $  (   "             %  ,  $  (   "       #     - % 4(  !   %  $  -       "  *   #  $ #      %     # " X  Y  fX,Y (x, y) = 1          "  .  #  $   # !    % . & )  ) & )  ) # XY  "      )&  ' #  (  $   %  #  * &  

   

1

      #    "   "   &&'

0 #

 0 #  0 #  0 #  0 #  0 #  0 #  0 # 

# #  % !

X 

fX (.5) fY (y)

'

[Y | X = .5]

fY (.5) fX (x)

'

'

[X | Y = .5]



(

'

'

fX | Y (x | Y = .5) 

        

'

fY | X (y | X = .5) 



'

'

 "  $ ! #  %  (  #  

(

 #  %/ '

' ')

  

' Y   %  %         " 2 %(     2    "  R  x + y2 ≤ 1 p(x, y)

  0 # '   p(x, y) #  #  #       X  Y    #  0  #  $   #  %  % ' p(x)  p(y)    "   # #  0  #   #  #  %  % ' p(x | y)  p(y | x)       0 # ) ) # '   E[X] E[X | Y = .5]  E[X | Y = −.5]  $   , $  & '     &  '   " !  '      argmaxλ P[x = 3 | λ] = 3  #        (  & ' '     & '   %  #"  "   (  ( %  #  $    ' 0  # R '  p        w  R p(s) ds  0 # R "   # "    (  &' '   R p(s) ds    #     & ' 6  2 % ! %  ! #" $ ( %  %  %" !  -    % ' ' ' "     '   "  $  % "   - !   %   (    '  , p(y) ≥ 0     "  y & '

 % 

  (  ( %  #  $    ' 0  # R 0 '       y  −∞ p(s) ds (  %  # %     %  %  $  ( $  & '   % ( ) '         y ∈ (0, 1]     %  p(y)    % '    "  $ &  ' 4  $   ,   %  %   #  %  %  "  "  $  #        ' %  ( #  ( %     # "    %  (  (   "            #"

"

1 2 1 p(y) = √ e− 2 y 2π



       

1&

  ( %   % $   / 6    6   " '  X ∼ (λ)  E(X) = λ  -  ( %  #  #    $   "    $  #  %  (  '         6    "     %   '        X ' ∼ (µ, σ)  E(X) = µ  "      "  6   "    (% &1 ' 

 '  *   $ &X'1 ' ∼  (n, p)  Var(X) = np(1 − p)    6   " 6     ( %   % $  '   / -  ( %X # ∼  # (λ)   $ Var(X)  " = λ  $   #  %  (   #       *  $ & ' ' , ) #  " '   ( %  *  $ & ' ' (λ)  Var(X)    X∼  # " ) # '   ( %  *  $ & ' '   X ∼ (µ, σ)  Var(X)   '  ( %  " !   %   "   (  & '&  '       ( %  " !   %   "   (  & '&  '       !  % '        "   ) #    & ' 7 



 ' X1 ∼  (50, .1) X2 ∼  (50, .9)  X1 ⊥ X2  Y = #  %  (    !  - !   '  %      (100, .5)   X1 + X2

Y  # )     ' 7 



 ' X1 ∼  (50, .5) X2 ∼  (50, .5)  X1 ⊥ X2  Y1 = #      '     %    $  X1 + X2  Y2 = 2X1  ""  Y1 Y2  %        ( % " ! ! (  %-  '  ""   Y1 Y2   %     (  '    $  %   ' 5  %  #  ( %  $  %    "   %  ,  $  !  ,      -  "    #  %  (   .               $    #   # %   #  % %      (   (  ' λ  ' ')       $ %   #  . −λt '  %%( $    %(  %%      p(t) = λe        #    "    ' 7       $   "   ,  ( % $  #     # #   $T1 (       "  %   # ( %  $  '  T2              %    #  % !  " (T1 , T2 )       7  )   $  (    ,   -  ( %  $  %   '    S =% T1 + T2  ' '      !     %   ( %   $  % P[S ≤ 5]           -    ,   $  (  %           %   E(S) $   ! %   (     "  -   (  %     #   '  "      %   "  - ' *    %  % # (   - " (  # '  "   "     % #  %  (    &2 '



   

1

     



        

 ( $    "  $  %  $   -  % )  "   )  ( $    "  $  %  $    %  % )  "   y )  ( $    "  $  %  $    %  %   # !   %  %  #.  "     x    # ) "  # )  $   %     w "   "    %  % ) #  "    %  $ (   % -     %  ' " ($   (  %xxx   !     "  "  $  ) -   %     ( $   "   p   " " $  (   % $ (   %   %       %    "  ( $           %    %     #  '   %     -  % "   $  -  /  % 1   ' %   ' *     %%  "   %        "   "  $ $  !   " "     #  %         %%  " !  %   '     !-             "  -  %%  $   '  "  $ ( & %    "         "   $   "  "   ! -  %    %   $ $        "       '   # !       # 4  %  "  %  ' *  $   ' * $ %   %                 " -    "    " $  '      %       

-  %  %  %  *  -    "  %  %  %   %   $  -       $  % ' " ! %  %  "   - %  $  ' 4   %  2 '   %/         "      " $ /    %  ' " %  $  %%  %  %  )   $  %    "     ( # '        "   " "     ( $    " %  % %  $ /  % '     %  #  % .  7    ( m  "        %  ,   #  (  #            # 1 % % )  %   m   %  $ /  % %  $  -  -         ( %       7     ( $   "   ( # %   $  % "  $  "    -r % '     %  #  %  (   "     "   %  ,   #   r ( #        %                r≥1  1 ' 7      #  % ! "(  ' *    -  - ! %   # (x, y)   (  RR  fx,y    '   - !  %   ' *    %  %   Ey yfx,y (x, y) dxdy      -     #  % ! )  #  $   #  % ! )   (  fx,y  fy    "      R %-  ' ' 4  -    %   -  $  # %    % $  yfy (y) dy  "   z

)

       

1

% '   ' 6   *  $ & ' ' &    #  %    "   % '  & ' 6   *  $ & ' ' 2       (  ( %   "     #   '   %     #  $ ! %    % $  .# (   % ' 7       "  xi  yi      %  "   $  # # (  )  %    ! ' * (   i "   "   0 %  #   #   #     xi  xj      #   #   #    xi  yj     #   #   #       yi  yj   # #   #   #    xi  yi      '  %   "  % $   $  -  / %  #   -  #   #   #   %(  % ' 7   &     %(  "  %  #  #    %(   "  %   # '     %    !   & &     &        "   

   %    $  #   #  4 )  #  %.  '  #   %( %   %        

%   (  )    !    %   %  % ' 4  (  %  ' &  "          

  (  )     %   & )   ' *  #    #  % #   %   %  ' *   %   %  (   (   '  $    -     4 "   %    "  

! # %  %    %(  1 1  "   $  '  $    -  #       "   %    %(   !   "   $  '   4   %  ! # % 

     0      (  %  )   %   %(   %  %   ' 5 (          !       % 4 '      

  ' 0  ( %  %  % )  %    %  "  -   /  -  ( $   "   -         #   $   %%   % %(  %       % % )   #  ( ( %  )    / % ) "  '       -" "  "  "      %-  % ' %/ %  %   (  %  % #   !  %  /  !     $ ! (  (  "(           *    ( #    $ )  %    %   #   %  #  $  #  " "        #  $   #  %  %  ' *  "   -  %    ( %   %  $  # '    "     %   #   %  %  #   #   %  "  -   %  (  % '        "   " *  %%  )  (  #   %  -   $  ' "  # %  # % ) %-  (  %  ! %      '   ' "  # %   % ) %-   (  %    ' ( %  %-     $       

 -    (  %  ! (  %-  '      "  (  %    #       % ! (      ( $   #   

        "

   

1



'



        

 (  %     ! (   ( %  #          %-   (  "( ! -  (    

 ( %    %  #    %     ( %  )     %"         %  $  # '   %     '     %  #  % -     (      #       ( $ .   ( $ ! %%( $     %  #   %   (  "(  ( !  /  !     ##    ' 7         !    %   p           #  $ ! %    #  %   % ( %  #    '        %-  %      %    !    #  $ ! %    #  %   ! %             4(  %  -  %(  ! &   ' 7    ( $  -  %-     " X   ! % '     %  #  %  (    X # #  % ( %%  % '  %%  3  %  . &1 1 &   4  3  % &11 &   % !  "  ! # %     - % %  $  "   %  %   4 6  %    ' *  %  (  %    %     (   %  %  "       ,  $   %        -   %  #   /     (   %   !     (       !    "  ' 3 %  ,  %        ' ' '  (  "  #   ,  $   %  (  "  (     % ' *            ) -   $  %   #   " !      %   % "     $     %   # !  4  #  4  ' *   ,  $  "   "     #     %  "    %/ )    %   %  %  "  $  %(   % %  % ( #  "   %  %    %   "  (   .        % ' "( #"  % #  (     " #  #  %  /     "  " "          %  -    %       ' *  "  (   "  %%  %   7   -  %   !  %/  %   %  (    $ . (    #  $ ! %       '        #    ,  $    /  -%   #  !  ""     '      # 4  % (  %  #  %  (" #.  %   # )   .        " # ! %  #   #  $ % '   %   # %            " %  ( #  % ) -  -   %  #  #  "  #   '  .     "   %  #    $ ) 4 -   %     $    #     %    #  %  " $     %   % .     "        ' *  $     % %      #  #'  " "* ( #    %%  / %    $ $  #   ! "   " "     *  $      %   #  # '   .$  (  %  #         $ )   - % "  "  (   % "  $  /    "  

       

1

   %   (    '   % %/  #        .  "  # $    ' #    -  % ! " $  %  "    "    *    %    #   / % # )  "        "      %  /  #  %  ) #     % %  # ' *     %%"  %  (  $  !   #  # !   $ (  ' *   $ (   #  % !%         % "  #  / '      %  %  " (  "  #  ,  $   % !  # ! 3  % )  -     ( $     "     % '"  " #    % ' 7      X        %%   (  %  "  X         %%( $    %   4 6) #    ) -    %  #  %  (.    " "     "   X    '  6   $ "  "  #  %  (         # # 0 # '   E[X]  SD(X)   # #   $  ,  $        '            "  (#  "  $      ) ,  $  ! -   (  %  "  "" %  %   -       4 6)      !    % %  X       " "  )   ( $   "  % - %  '    #  ! ( "    ( #      x = 122     $ (       "  %%  ( %  %   ' *  %  ,   %   %  %  #          5   7  $  *  $ '  - %   ! -   "         (   %  %      '          -     %   "                              ,       -  -         !            -          -       .                                   -               *       /                -          /                   " 

*     ,

   

1 6      

2 

1 



        

             -     /  /        .        "      -         "   -             *       /           -    "/         6             -            "  

           /           "  -          !   /     -        -           -    !         "                                " "  4       ,                        -     !          -   "               (100, 10)                 (105, 10)  

     ,       ,                                  ,                   

       -                  .                             -              .                                       !            -                    

       "      

            -       ! -                          

 -  +                    -                   "   "  -  

      +         /  - -         -  

    - !                                !                       /   -              "           "    -                   "     "        -     -         -          !    !  /  !    •           -                     4       !            !  •             "    "             " "     5              -   -             

       

1

  4  -                  ! -   . "   "      

-     



!   -             " 6             " + /   

 

12

   



        

      

 

 

                              !     

    "

    

                  

  y1 , . . . , yn                                                          f Y          f (y , . . . , y )                                1   n          E(Y )                     Y   f       !         R  (y1, . . . , yn) !           

             f yf (y) dy                          !  "            "            "    

       !                             "                   !     "                  !        " Y f         !                              f                 !               "      f        

     !                         f                   !                                    f 

                 !                             !   f       !  

        !          "           f    #             !  ! !                         "        f          

                          

$$



   





   

 









  

       

           

            "  

  !     "         & &# % (                    "                          "     "   "    !                   . . , yn      "                 y1, .         f           

       f         &            

                     f           !                  {fθ : θ ∈ Θ}                          f    θ                θ  

       "    fθ     &   (                         "              f 

                       !          "           "            & &  ( '( & & ( # & !       !                    !                      f   y1 , . . . , yn          & # (              !          "                                          f y                                                " f                    f                !  y    & # & (    (                                                              f      

  "  "          "   "      

 



       

    ! !                                  "                                    !        !   "   "    

    !                                       !

               "      "         !"

      !            

        

    

  

     

!          !                                         !                                            $                   P                    ! −1  $              y¯ = n y i            "

          !                  !     "                        

   !                       !                                       

y1 , . . . , yn

n

 &  ( (   !   & # +          



      



!













 !     

                                                           P    & (                    y¯ ≡ n−1 yi          

 &  (           !               m              

          

 yi   m     yi              #  !               "        m                                          !         [5, 6]      #               m ∈    !                        "      !     "       

) *  ( & &



!                     ! p ∈ [0, 1] p 

                     

 "    "  q     q    pn          (1 − p)n    "   q                          "             

                   $  "           

                



   





  

       

                                                                       "                       $  

               !                              "                                                              

                           "                                                                "                 $                                                  !         p (y1 , . . . , yn )      p     #q  !        qp             !               qp (y , . 1 . . ,yn )     "  "     

           

          

       yi    " y(1) , . . . , y(n) 



  y(2)  



y(1) ≤ · · · ≤ y(n) . 

q0 ≡ y(1)  q1 ≡ y(n)



        " y(n−1)    n − 1

i = 1, . . . , n − 2



q

i n−1

≡ y(i+1)



 [y(1) , y(n) ]



 

!         i , q i+1 )      (q n−1 n−1                

            qp   "              p       q          .5       (q  .25  ,q.5 ,q.75 )            "     q.1 , q.2 , . . .          q.78            #      i i+1       p ∈ ( n−1 , n−1 )                              

!      "  (3.25, 7.75)                       "            (y  (1) , . . . , y (n))       ! 

             y(i)         i 

!



i i+1 p ∈ ( n−1 , n−1 )

qp



  

  

      

    



b

0.4 0.0

F(y)

0.8

a



4

6

8

0

2

4

y

y

c

d

6

8

6

8

0.0

0.4

F(y)

0.15

0.8

2

0.00

p(y)

0

0

2

4

6

8

0

y

2

4 y

                        $       "                           $                                        



 





 













   

!

    "

             "                                      









  

       



                                       

                                                                               

     

                           

 

                                                                 

                                         

                                                            

                         

        

                                                    

  •   

                                                        !         

      

    





                            ! !             !                                &  (   & $  (  

     



  

 









 



 

                 

rP (yi − y¯)2 s≡ n

  

rP (yi − y¯)2 s≡ n−1

              n  "        s     

                       

 $   ( # &  

 





    

P (yi − y¯)2 s ≡ n 2

     



  



  

P (yi − y¯)2 s ≡ n−1 2

                     n  " 2       s ( & ) *  &  ( &           q.75 − q.25     "          

                 "              

                                      !                "                                       "                                 "        !          "                                                   "                             !   f   "                                     !      "       f    "    !                  "                        



   





  

       

                              f              "     "                      f       "               "         "                                                   !        "                  "                               !      " !       "    " 

            !   

!         

                      !          "        ,    ,     !                              !        !     " ! "      "  "                              !       "           !                                   "                                 "             "

                       !          " !   #                        

   !            !   !               !                  "! "        "                      !     "     "      

           

                   !                          !"                   "   "            !           

      "      "        #                   "       # &  &                   !                                       "        "              % &   !    +

                                                            !  "     #              $            %  

            $              

  %                                   !        &   !     ' '   (

        

           

    





  

  

#                    !       #                         "  "    #    %            #      

   

                          

     !           %                   !        !    % "                !    !    !                               

           %  !                                                             

      

                         

                                                 

       

                        

 

•     

         "             !              %  



  

               %                                              "               &          "        "     %                                                %                                %    

"             !        



"

   



       

OJ, 0.5

0

0.0

1

1.0

2

3

2.0

4

5

3.0

VC, 0.5

  

0

5 10

20

30

0

5 10

30

OJ, 1

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

VC, 1

20

0

5 10

20

30

0

5 10

30

OJ, 2

0.0

1.0

2.0

3.0

0.0 0.5 1.0 1.5 2.0

VC, 2

20

0

5 10

20

30

0

5 10

20

30

                !    !      " "  "                  









    



VC, 1

VC, 2

1.0 0.0

0

0.0

0.5

1

0.5

1.0

2

1.5

2.0

3

1.5

2.5

4

3.0

VC, 0.5

$

2.0

      

0 10

25

0 10

25

3.0

OJ, 2

0 10

25

0.0

0

0.0

0.5

1

0.5

1.0

2

1.5

1.0

3

2.0

1.5

4

2.5

5

0 10

OJ, 1 2.0

OJ, 0.5

25

0 10

25

0 10

25

                !    !         " "  "                   

   



  

VC, 1

       

VC, 2

1.0 0.0

0

0.0

1

2

1.5

3

4

3.0

VC, 0.5



2.0



25

0 10

0 10

OJ, 1

25

OJ, 2

0 10

25

1.5 0.0

0

0.0

2

1.0

4

2.0

OJ, 0.5

25

3.0

0 10

0 10

25

0 10

25

                !    !      " ! "  "                  









      

    



   !                    &            '               

&        "                      "      

   !              %        " (

          !           % !                "   !            &      

        %      !          !          

                   

    "      

                                                        

     !                 !     !       !    "               

                "   "                                                    "                                  !                         !              "    

   

 & ( & 

 &   (

   % &   !#     

 !    #    

     %      !                       !    !  !    %         

            !   %        !             !          %      !  #           

 "   %   

 &+



 

     !      ( % !                 '   % !  %               

$              !    

         

   

 



                     

&   !     ' '   (

    

  

  

 

        '          ! % !                            !       !    



   





  

       

              !        ! % !     

               !    

              "      ! % !          %                    %                         !             



           !      %         %   

 "

      

            "      %           !    %      %               %  !         

        "       

               

  %          %                !  

              

    %      % % %

         

    

 

            !               

x1 x20  x1 , . . . , x20

         !      

  % !                 

   

f

f

           !

     &      % 

     !        

f (x)

x

x

   

   

&     %  %  "             &                           !       

 



 f(x)   

%        !             %     

n  %     h>0

     % 

n

x

   

1 X 1(x−h,x+h)(xi ) = fˆ (x) ≡ 2nh i=1 fˆ

 

%         ! % !          ' !

fˆ (x)

  &    %

!     !         

h

!

x

2h

                %  !    

 ˆ                   "   f  (x) " (x − h, x + h)     %       !   "        % %     "                    "    

x

         !         !      !  

x



 ˆ              !  h f  (x)

       %   %          !           

     !  

x



 

g0

%   % %    !        

 %                    

0

  & 

1X fˆ(x) ≡ g0 (x − xi ) n

g0

   

       #    %   



   

 %   % %         

g0

Z

g0





X ˆ dx = 1 f(x) n i −∞

Z



−∞

 fˆ



     % %   



g0 (x − xi ) dx = 1







     %       !              %   

 % "    !  

fˆ

  !     '

       %       

    

g(x) = h−1 g (x/h)





g0

g0

 %   !      

 #       % 

        

0      !            ! 

   &          %

(−h, h) &



    

h>0    g

!  

        ' h−1

%

R g0  g=1

1 X 1X g(x − xi ) = g0 ((x − xi )/h) fˆh (x) ≡ n nh              !   

                h h fˆh       %           %       !    "         !  "       %      "   !    !      f

                                %





  !   %        !   %   

   

        







            

%     '         !

f

    

%     '                   !      '  "  

                                                                                                                                                     

                                           

                 

                           

                                   

                                              

  

 !



  

(b)

0

0

1

2

2

4

3

6

4

5

8

(a)

      

140

160

180

120

140

160

calories

calories

(c)

(d)

180

0

0.010 0.000

1

2

3

density

4

5

120

120 140 160 180

100

calories

(e)

(f)

200

0.000

0.010

0.015

density

0.020

0.030

calories

0.000

density

100

140 calories

   

150

180

100

140

180

calories

              ! +  !" +  !# +       " "         "  ! +  !& +  ! +   !                  "

      

              

• •



  



  

  



• •



         

       !       !           %     





•      





        %    %

           

    '         

    

  '   %  !             

g0

 % "  

(0, 1)



  



  

%

 

    !       !      %   

       %                       





            !  

 % #  &  (   % &                      "                               ! +                     "                     " 

                             !        "                     "  !     "                                                                                         "      !    !                             "    !         #             "    "             

              "     "                                            

                                                       

                           

          

  





  

      

1 0.5

dose

2

(a)

5

10

15

20

25

30

35

25

30

35

25

30

35

growth

1 0.5

dose

2

(b)

5

10

15

20 growth

OJ

method

VC

(c)

5

10

15

20 growth

          !             !    "   "   "   "         !    !       "   "    "

      

   

       



                      

                                   



 

  % &               !              "                           !             !  

 

               % &   ! *   # & & + 

      !             

  "                 

     

   '

                       

       !  &         %    !           %  

   %                  %          &     

           

    %          

     !  %           !                   

             

       

      

        !  %                 !         !  %                       %   !        %    %              %   ! 

      %    %                     %    "                  % "   %   %      &     !    '         %                !            !     %       %  !       '                                          !               



 

%    "           % "   %   %                                "         



   

     

          

  

       

             !   !          !     

  

               !   

      

             "     !   

    

                 '                 %   %                        

     &                    "      "                  %     !  &             !         







"

 



  

      

      !   

     "  %    %      "       



%    

           %  !                                                                                          

                                                                                                     

       



                         

                     



 



            % &                                                 ! 



   !   !             !                     "  "    

           ! 

    "      !             "                  "     "                           " "                      "                                         "                      n = 213  x , . . . , x                             1     213      ! !          !   "     (x , . . . , x(213) )        "       (1)                 E[(z(1) , . . . , z(213) )]         !               !                               x i          "                  !          "                             "                       !                                !

     

   



0

2

4

6

8

10

Individual quizzes

Q1 Q4 Q7

Q11

Q15

Q19

Q23

Student averages

0

2

4

6

8

10

score

    "

 

           





$



 





  

      

    !                             "              !"                                                                            

     " "



     



                            

      

                                                                

                   

                                  

    



 

              

                                                                               !      !            !     !             "    #               "  !           "     !   !           

         "      % &        #  '    "                    

%  

  



      

      

   !       '   %            

 "               !       

                  %        

      %                    (





      

     

  



 

latitude = 45 longitude = −30

latitude = 45 longitude = −20

4

9 7

4.5

6

5

6

5.5

8

7

8

6.5

9

10

latitude = 45 longitude = −40

−3 −1

1

3

−2

0

2

−2

0

2

n = 105

n = 112

latitude = 35 longitude = −40

latitude = 35 longitude = −30

latitude = 35 longitude = −20

5.5

8.5

8.0

6.5

8.5

9.5

9.0

7.5

9.5

10.5

n = 213

−2

0

2

−2

0 1 2

−2

0

2

n = 24

n = 44

latitude = 25 longitude = −40

latitude = 25 longitude = −30

latitude = 25 longitude = −20

−2

0

2

7.2 −2

n = 47

     "      "

6.8

6.5

6.5

7.0

7.5

7.5

8.5

8.0

7.6

n = 37



0

n = 35



2

−2

       ◦     

0

n = 27



2

 









  



  

      



                                                                           





              

                       



   

          

         %     

  



 "      '                          

    

  

             

  



             

  



      

     

           

     

         

 

             

 





    

         



 "  !            !    

     



              

  







    

           

 

              

 

  

    

          

 

              

    

          

               %  !   

    "                                     %       %   !         !        %          !     

 %             %     !                &        !               % &              %                    "          

   !   



      

                                                      

   

   !      !            

      

 

1198/(1198 + 1493) = 44.5%       557/(557 + 1493) = 30.4%

 

                     

                             

 







!



  

      

                       !      !      

        !                                !    

       !         

   !                   !    

!



     

               !       %           !                           !                   !   !                !                       "           !                          

           % "             

   !          %           (

                      



                             

     !          !                  "          !         

   !       !            !      

     ' !         

  "         !       

   

"     #  '                               

            %         

       

     %   "                          

      '     

   !               '    

  %             '       !        

           

                        

                      

 

            

                      

 

                                    !                  &           !     





          

         

                    

                   

                                         

     

  



Student admissions at UC Berkeley Rejected

Female

Gender

Male

Admitted

Admit

     $   "





  





      









  

      

Student admissions at UC Berkeley Female

Admitted

Male

Rejected

Admit



Gender

    "

 



 





  





      

     



  





                                    

     

         



           

        

   %  !                #             

          %  ! !                       !                 

                                                               



              

   "     "                                                !            "               %              %        %               

   !             !           

     

   

                !      

       !        

   !                %    "   %     !        "               '    % !            %             

                                           !                           "                                             % &   !     *  +                 $          '                  



  %            

  %  

           $        

    

  

  !   %        

     

                     !

 '     

        %      !      !          !          

   !           %           #      "     $       !   %                         



         !                  

   % !     %         %  

  %      

                  !    !         

%                         !   



      "                &       %        %                %   %   !          









"





  

      

           !     & "                                       !  "   "                



     %                 %    !    "   %                 "         %  !         

     !                                  

                          



     %   "      "       % "      '             %  "    "                





      !           !                 



        "             "                                 "                

      !           %                              %     %        

                 &              

  

                ! !   &       "               % "   !           !         

                            !      

         

        

                                         

                                           

                                                   

                                        

                                                                                          

      

        

     

  



(a)

2

3

4

$

(c)

5

6

40

60

80

duration (min)

waiting (min)

(b)

(d)

100

0.01

0.02

Density

0.3 0.2 0.0

0.00

0.1

Density

0.4

0.03

0.5

1



1

2

3

4

5

duration (min)

6

40

60

80

100

waiting (min)

                                         !       "       "                  





  

      

50

60

70

80

90



time to next eruption



1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 

  

duration of eruption

    "

 



# 

 "

     





    





    

     

  



 

1.5

2.5

3.5

duration

4.5

a

0

50

100

150

200

250

200

250

data number

50

70

waiting time

90

b

0

50

100

150

data number

     

 " 

                            "  "             



  









  

      

3.5 1.5

duration

a1

0

50

100

150

data number

4.0 2.0

duration

a2

0

20

40

60

80

100

120

140

data number

80 50

waiting time

b1

0

50

100

150

data number

80 50

waiting time

b2

0

20

40

60

80

100

120

140

data number

     

                    "  !            "  "                      

         



                      

    



       



   

                                

                                       

                                    

                                        

                

   

                      "               !           "         "                                      "                               "                                        "  " "        "   

                       "  "                                "                  "        "   −10) "  "             (−17,

!                          "                !  !                                !         !        35◦                   

         "      "   "    !                               " " !  (−20, −13) (−25, −16) (−30, −20)

              (−34, −25)  (−40, −28)                                        !         

  "     "                !        #      "      •              !          • "    "         #      







!



  

      

                       "                                    " "    "           !                   !   "           "                              "                   

  "       "                        !    #          "     !         " "        " •

   

 

 

       

"

        !                        

 



            

                              !                        !                  "  

                X∼                 #   !     (λ)    θ)   λ         X  ∼  !  (n,    θ              !              X                   X ∼ (µ, σ)                   

        !      !      µ    σ !       #     (µ, σ)          λ       !λ  θ       θ (µ, σ)             ,              !                         "                              "                                       !                          "                  "   !                                "                         !             !             !                     !            "  "                   $       "       !     

 

    

 





Given : lon −40

30

−30

40

−25

−20

50

20

−15

30

−10

40

50

5

10

15

temp

5

10

15

20

−35

20

30

40

50

lat

    "

 



                    





 

 

        "







  

      

Given : lat 20

−30

30

−20

35

40

−10

−40

45

−30

50

−20

−10

5

10

15

−40

25

5

10

15

temp



−40

−30

−20

−10

lon

    "





                     



 "

 

 

     

 

    

 





                          "      X∼ (λ)                 !              λ   #                      "        X             !      !            λ Pr[X = 3 | λ]              !                  λ `(λ)                                  "   "   X=3    λ                    !         !                      !                           !   θ  X     , . . . , Xn ∼ f (x | θ)  1      θ Y     f (X1 , . . . , Xn | θ) = f (Xi | θ).                     #                  θ                        f(    "     !           | θ)        θ       "           

        `(θ)   )         `(θ |   !                                             `(θ 1          θ2 )/`(θ2 ) > 1 θ1         θ     

 k        !  θ2   )/`(θ ) = k  `(θ

1   2        1                                                                              X            



 

      X



NR, R, NR, NR, NR, R, NR, NR, NR, R

                                          X = 3         3 7      X ∼  (10, θ)  `A (θ) = 10 θ (1 − θ)                !       3           "  !  !   !                                            "                               " !       θ   θ ≈ 0.3                                    θ                            !         θ ≈ 0.3                      ! !     θ ≈ 0.1 θ ≈ 0.6            

                   θ       "                        θ ≈ 0.3 

"





  

      

0.8 0.6 0.4 0.2 0.0

likelihood function

1.0



0.0

0.2

0.4

0.6

0.8

1.0

θ

            "        







 `(θ)

 

  

 θ

   



 



 

    

   

 



$

     !           "                                                                             



                     

               

"









    •     

!   



  

!   

    

              "  "    !                 





                                    !          !                       Y                                                            Y = 10             `B (θ) = P[Y = 10 | θ]         = P[  "   9 2 θ (1 − θ)7 × θ = 2   9 3 θ (1 − θ)7 = 2

$

        ] × P[   ]

       !           9 10        `A                  ! 2 / 3               !                                      θ

                            "           !                                    !      Z Zk            1   k         #     Zi        "   !   i    !                       !                               

`B

 





`C (θ) = (1 − θ)θ(1 − θ)(1 − θ)(1 − θ)θ(1 − θ)(1 − θ)(1 − θ)θ = θ3 (1 − θ)7

!







  

      

              !         `A  `B              !                                "             !            "      

                             θ          !                "                         % &    &&      +

`C

                        !               %   !           "       !               !             "             &                        !       '     !        

`(λ) ≡ p( | λ) = p(y1 , . . . , y60 | λ) =

60 Y 1

=

    Q

p(yi | λ)

60 Y e−λ λyi

yi ! 1 −60λ 40

∝e

λ

       " !           

   

yi ! λ   "                     P       "    `(λ) `(λ) y        i '    "                 '  P yi yi = 40                 #                      yi `(λ)         '     %            !                 !      !         "   !        

                                                                 

               

λ

 

    

 

0.4

0.8

! 

0.0

likelihood

 

0.0

0.5

1.0

1.5

2.0

λ

    "





"

`(θ) 

      

  P



yi = 40 



 

  

 

       

                          % &      &     

                           

   "   

!  !   

                      #  !                   %      !     "       

                                    !                 

                !  #  !         !     "                 



                      

  

  !  "  "               !       !        !  & "                 %             %  !           !     





#                       !  "  "              %     ! !    !  !    



       

   "   !                 %              !        " %               

  

    

!





 

x=8

      

  

  %     

           

     



       

X

     %  !  "  "    

          %   

 '     !    

X∼

 

(145, θ)

  % "



`(θ) ∝ θ8 (1 − θ)137

 



                             "   !     θ              %      "   

               

likelihood

%    "    !    !    %          %        θ         %   

0.00

0.05

0.10

0.15

0.20

θ

    "





$              

             %  !      

                                                                  

                    

 

    

 

!





&     !          !  "   !       θ                          

`(θ)

     '          !      '    

                    !                 !                                                 !                  !                                    !            !                                 "                                          "   "   !                                                  "        !              "                "                       !                                                          "  

                    "                             "                                    "  !                          #        

       

   

          

                                    !  n    P[n  |  ] = 2−n  P[n  |    ] =            n                                        1        "     

2               

   "             "               ≈ 1/8          argmax `(θ) ≈ .055    `(.025)/`(.055)    ≈ .13



  θ = .025    θ = .055   "        "

            

       "                  !  

              "  θ = .1   `(.011)/`(.055)            ≈ `(.15)/`(.055) ≈ .001 θ = .011 θ = .15    " 



                                 "                          θ  θ = .025 θ = .1                                                   θ ≈ .055   ! θ          "                θ    





 !!

 

     

          

  

      

        

         

                 !                                                                                                  "    !      "                               !   !  #     !   f          X1, X2 ,. .. , Xn                          f    

            

       "  f      µ     σ                (µ, σ)     !                 µ =       Q                   `(µ, σ)   f (   | µ, σ) = f (Xi | µ, σ)      f      `(µ, σ)                                                               "     µ      ¯       ¯  X  µ     δi ≡ Xi − X      !    ¯ X, i = 1, . . . , n                             n  " √ ¯ ∼  (µ, σ/ n),         ! X 

#



    2       !  σ  σ ˆ 2 = s2 =

        !   

X

1 `M (µ) ∝ exp − 2



δi2 /n

¯ µ−X √ σ ˆ/ n

2 !



 !



                                    !  $$    !               

                              "  "                       

                #                            "     "    

"









        

!



   % &      &         &  

   



                               

'                 '     



      

                           X   i  !        ¯ = 8/145 ≈ .055      σˆ 2 = (8(137/145)2 + X      2



137(8/145) ))/145 ≈ .052

σ ˆ ≈ .23

1 `M (µ) ∝ exp − 2



µ − .055 √ .23/ 145

2 !



 



                '     !          

marginal exact

0.0

0.4

likelihood

0.8

'           %                 '     

0.00

0.05

0.10

0.15

0.20

µ

    "

  

 

 "  



                 

           %  !      

                                                        

                             

!







  

      

                                                      

                                                  

   % &         

         #     %                     %                     "   %     





                !    !  !   %    

   

     %         %        %     &      



  &           !       & "   

  

            '  % & "      "        

"                         !    !    "     !   &       '  &               %      !          $              !    

         



   

                     

&   !     ' '   (



    

             %            ! 

 ! #    !     &            "                     '     !     

` (µ)

n = 60   µ

M

              !     "                 !               %                                    !        "                %       #               ¯                %          !      '     X                        '     !     





`M (µ)

        

!

(a)

0

200

400

600

800

1000

Salary (thousands of dollars)

0.2

0.6

1.0

(b)

likelihood



340

360

380

400

420

440

460

mean salary

    "

 



 

       "    



 





!



!

"







  

      

            %  !      

 

                                

       

            

                                



       









           

                                                              

                

       

   

      

   •    •



           

       ! 

               %     

                           %    %  

                           

  !                    



!    %           !        

    % %  

  



!

   



     

       

     

#                                                                            Xi           (µ, σ)         (µ, σ)          % &             &  

                   %    #        '    

                 

#         2



        

!

  

     #     

   

$

   %            

      !  &   %       !   %        "   %     %         



        "  !  %               

      

  %    "   %       !                                       "     !           %      %         %          %                   "   ! (µ, σ)        %                 

'     !     

`(µ, σ) = =

n Y

1 n Y 1

f (xi | µ, σ) √

1 2 1 e− 2σ2 (xi −µ) 2πσ 1

∝ σ −n e− 2σ2

Pn

2 1 (xi −µ)

     %          !  '     !                  '     !          

 

(µ, σ) ≈ (1.27, .098)

 "   !   %                      (µ, σ)    '       %     !                               

      





       !         

         

  

  "    ! (µ, σ)                %            

µ

 !              

#       "  2                     %              σ     !      ! %                % "      ` µ σ            %  %  !    "    !            µ

     '     !              !  σ = .09, .10, .11           %      "           !  

µ

   "      !      "   !      "       µ &  "    !      !                !    " 

σ

         '     !     ! 

µ

            

                  '     "   !  "    ! µ µ          %      "          "    "  

(1.25, 1.28)











      

  

(b)

0

0.10 0.08

1

0.09

2

σ

3

0.11

4

5

0.12

(a)

1.0

1.2

1.4

1.6

basal area ratio

1.20

1.30 µ

0.6 0.4 0.0

0.2

likelihood

0.8

1.0

(c)

1.20

1.30 µ

                     $$"     "$$            "         ÷

                                   



        

  

                                                                          

                                               

          

      

                           

                                  

                        

                                                                                                     

         

                     



            %         

                    

   '      



                     !    "    '     



    "    !

  "             "                                           

                "         

 

       `(µ, σ)



 

     

µ

 

σ

"   

       !   

            

      "              













  

      

                  "               "          '                  

  •   

          



                &



 "           "                ! "                      "         



          %          '                                 

 •   

 



 

       



!  

   



       

           



  

$ 

 



 

          "     

    %    

            • 

 '         !         

          !   "   !     

σ

                    

   % &    



   &      & 

σ = .09, .10, .11



                  %    

           

            %    %                 %     !   





!             ! 

"         "                                        %       %  %          %             % 

(µ, σ)

       '     !            "   ! !   µ  %       %       "   ! !    %      %          σ      !           !  !           %      (µ, σ)        "       !              &  

              '                 

           !   



           %                                                       



        

0.8

0.9

1.0

1.1

1.2

1.3



0.7

σ



6.8

7.0

7.2

7.4

7.6

µ

    "

  



  











 

    







!







  

      

          

      

                                                            

           



                         !              "                         !  " !                      !     "              !            "                  !       !                                               % &       &&       &  

                       % "       %     

                

    %             " "  

 

   



     !             '            "  "          ' !  %                                    &                

 

 " "                     '         % "             %  !                  

"            

 

t

    " %              

t−1

 %                !    

  #              !   

                !                                 !        !     !       %  % !        

               &       %   "    %       

                          "              !          

  T %       %  !     N             i !           %  i NiO  % "     %   !                          i               T                         

   

Ni ∼

(λ)



         



$$  $$ 

     

 



    

θf





    



 

  "



  

       "



     

 

    







       $$   $$    "       

! %  !             

θf

      

 !       % !       %   !                     !   !   !       &       "

                        "                         T    θf NO ∼ (NiT , θf ) NiO Ni    % "      i        %          (λ, θf )        !          '       O 

N1992 = 0

       %        '     !     

`(λ, θf ) = P[N O = 0 | λ, θf ] ∞ X = P[N O = 0, N T = n | λ, θf ] n=0

= =

∞ X

n=0 ∞ X n=0

=

P[N T = n | λ] P[N O = 0 | N T , θf ]



e−λ λn (1 − θf )n n!





∞ X e−λ(1−θf ) (λ(1 − θf ))n n=0 −λθf

eλθf n!

=e

                 ! !  "    log `(λ, θf ) log ` `

        10    

    10    !        "     !    % 

  %  (λ, θf ) = (2.5, 1) (λ, θf ) =         "          %    O N =0                         

log10 `(λ, θf ) = −1    (λ, θf ) (6, .4)



λ=0

θ =0



f %       !  !     "          %        ! 

     

         !         

λ

       

      "  &       "   !

λ

  



 











  

      

 "     %    '                   %         !  %  "  

θf

   %          "    !     



    %         %    "   !         λ   "  "    !         "     %   '     !

λ

            %          "   !                 "   ! "    !

θf θf





!    %   

   "  %    '        !                          

λ

     '        "    !  !           "   ! λ λ %           %           "   !     

 %  

    & 

θf

%  '    !     !           



         !         !                   

λ

 

θ

   '                   % 

       f"   

                !                             

                           

         

                                              

              

             

                     

 • 

     %       

                !      

          

                      

             

                                                         

             

        



0.4 0.0

θf

0.8

(a)

0

1

2

3

4

5

6

λ

0.0

0.4

0.8

(b)

θf



0

200

400

600

800

1000

λ

    "

 

!



"

        









 



(λ, θf ) 

 







 







"







  

      

                     

#   

                                     !            !              !    "                                                 !                         !                          "               θ      !            !     "        t t ∼ (θ, σt )    !        σ t     

!            "                       θ      `M (θ)      



      

       !                             "      

    !  y          !  y       θ  "                  p(y | θ)

!          `(θ)             θ            θ            θ `(θ)        `(θ1 ) > `(θ2 ) θ1                                              θ2          ! "     θ1  θ2   `(θ)                   `(θ1 ) = 2`(θ2 ) θ1      θ2          "  

        θ                θˆ                !                θ  θ    y    

                          `(θ)    "   !  





     

         

 !                      θ                              `(θ) θ                  ˆ θ 



  

θˆ ≡ argmaxθ p(y | θ) = argmaxθ `(θ).

                $

            "  θ                      `(θ)  y = 8         !        $                ˆ θ ≈ .05. "  ""   



    



$

# 

                    !         `(θ)         "                         "        `(θ) ∝ θ8(1 − θ)137        

 



  "





!



`(θ) ∝ 8θ7 (1 − θ)137 − 137θ8 (1 − θ)136  θ = θ7 (1 − θ)136 [8(1 − θ) − 137θ]



 





0 = 8(1 − θ) − 137θ 145θ = 8 θ = 8/145 ≈ .055



                              θˆ ≈ .055                                          ` 

                     !                  !    "            "                !  ˆ y   y " θ = y/n         n −             !                                         "        log         `(θ) = argmax log(`(θ))   Q       !       argmax           log ` `(θ) = p(y | θ) log `(θ) =   "   P                    i       θ)  log p(x  i |               







   

log `(θ) = 8 log θ + 137 log(1 − θ)  log `(θ) 8 137 = −  θ θ 1−θ 137 8 = 1−θ θ 137θ = 8 − 8θ 8 . θ= 145

        y1 , . . . , yn ∼  (θ)  X

   yi =   θˆ = n−1         !              "  





  

 





     



θ













 

y1 , . . . , yn ∼



(µ, σ)

  

µ ˆ = n−1 



y1 , . . . , yn ∼

 

ˆ = n−1 λ   

y1 , . . . , yn ∼



(λ)

  



X

yi = 

     

X

  















λ



     

      



µ



yi = 

  

ˆ = n−1 λ

 

     

X

  

(λ)





λ



yi = 







 







      

                         !    ! "                     ˆ "           θ  θ                   ˆ      !              !   θ  θ     "          "                                         !   

                                               !    !             ˆ      " "    θ  `(θ) > `(θ)/10      !                  "        

.1



  

(

`(θ) θ: ≥ .1 ˆ `(θ)

)

        !    !               "    α ∈ (0, 1)             α



α



(

`(θ) θ: ≥α ˆ `(θ)

)

                   !        θ           

   α       !                 θ                        !       !               α!                                              !      #  α         θ                  !  

 

α ≈ .1

  





    

 



 !                            `(θ)              !     !    ˆ       "     θ  "   θ →         "    $     ±∞    ˆ "       θ ≈ θˆ ⇒ `(θ) ≈ `(θ)    ˆ                   θˆ     θ                 θ     α











θl  θu 

α

       

= [θl , θu ]

 







       !         

       "      ˆ      ˆ           `(θ)   θ = 8/145     !              "               

       !       !                 !!  θl  θu             ≈ .013            ≈ .015                                .1 ≈ [.023, .105]       $       "        θ "            "                                  θ     "             "             θ !                                   !  !                   !         θ           !            !     "   "          #         n → ∞   ""                      "         θ  

    % &

    %       &                                % %

         !    



θ

!

                   

   !    "           !        %              !            '     !                                  

`(θ)



`(θ)

                "  !           

  " %          '  ! 

     



  ! 



 



     

 ! 

  

                   !

≈ [.15, .95]       `(θ)  !         

.1

!        !        

   

       



≈ [.05, .55]  [.25, .7]

   ' !      .1 % 

.1     ' "  !      % 

[.38, .61]











  

      

0.6 0.4 0.0

0.2

likelihood

0.8

1.0



0.0

0.2

0.4

0.6

0.8

1.0

θ

    " 



  



  





 

   !        θ     "  "  "         

             $     





    





              !                  

            

                





            

    

  





                                   

                

   







                 

                       

                   !       "         "          !                       !         !                       !          



     

      



    

      ˆ                    θ       y1 , . . . , yn            ˆ   ˆ          "      "    θ θ               ˆ     #         

          Fθˆ θ 

                            ! Fθˆ                     "  "     n = 50, 200, 1000    θ   

           !                                          $  θˆ       "     Fθˆ θˆ                                 ˆ              θ              "

      !       F ˆ        "            



    !  θ ˆ              "    θ   θ Fθˆ   !          ˆ    !        !     Fθˆ "       θ θ "      



!







  

      

          !                 ˆ   "      θ  θ         !        

                       ˆ  ˆ               θ1  θ2   Fθˆ1  Fθˆ2                     !             "  "        θ                                 y1 , . . . , yn FY         #                    θP≡ E[Y ]                  ˆ θ1 = (1/n) yi  θˆ2                                      "                         n = 4, 16, 64, 256        

                    ˆ     FY    (0, 1)         θ1            ˆ θ2  "  "      "        F Y  #           F Y                             "                  ˆ ˆ θ2   "  ""           "       ˆ    !θ1 

        "      θ1 θ      ˆ                            "     θ2

   

     !           "                      

"

 



                                              

                                                                                

                               









   ˆ  ˆ   !    !                          "  θ1   θ2          ˆ                    θ           



    



(b)

−2

−1.0

−1

0

0.0

1

0.5

(a)



mean

median

mean

(d)

−0.4

−0.2

0.0

0.0

0.4

0.2

(c)

median

mean

median

mean

median

                ˆ            "   "  θ     θˆ2                      1   

     !      ! 

 









  

      

           ! "             !                                        !          #                 FY                 

                                   ˆ       !   !                 !       "     θ                 !           



Fθˆ



θˆ ∼





(µθˆ, σθˆ).

µθˆ = µY σY σθˆ = √ n



"



          !                      

                            "      "                !                                  #           n = 5, 10, 25, 100 p = .1        "           !        !                                                

                          "

   

     !           " 

                                

                                                             

                  

"

  



            

    

 





    



0.2

0.4

0.6

0.0

0.4

(c)

(d)

0.6

0.0

0.2

0.4

0.6

θ^

              ˆ    "      "   !θ                    

 !     !

0 2 4 6 8

density

12

θ^

0 2 4 6 8

density

0.2

θ^

12

0.0

0 2 4 6 8

density

0 2 4 6 8

density

12

(b)

12

(a)



0.0

0.2

0.4

0.6

θ^

             (n, .1)                      

 



"



   





  

      

        



                          

                      



               

                      

                                            



                             

                                                                                         

                !                ! "      n             !            "       FY   "         "                                    n = 5 n                  "       !      n   "              "   "                         !    n        !         256  n =            ˆ

     θ                     "   θˆ            "

               "                

       

 !        

ˆ  #  ˆ     !         ! |θ − θ|  θ ∼ (µθˆ, σθˆ)     σ θˆ                     $     

       ±2             



Pr[|θˆ − θ| ≤ 2σθˆ] ≈ .95







      



$

                             $                !       #         !   



        !               "  !        "      `(θ)           "  Fθˆ                        "   √   #  ˆ                θ ∼ (θ, σθˆ)  σθˆ ≈ σ/ n         !                           θ        $               ±2σθ     (θˆ − 2σθˆ, θˆ + 2σθˆ)                                  #                          

                      "      "       2            ¯ ˆ ˆ √Y `(θ) ≈ exp − 21 σˆθ−     !  .1 ≈ (θ −2σθˆ, θ +2σθˆ) / n                      

 

 

          



                                           #        θ!                                 p(θ) p(θ)        "     "            θ p(θ) θ                           p(θ)    ! #                 $              θ "                      &      p(θ) ! %   ! #   "  &            &                                             $   !      

             (               ! '  

                                 !            !              P( ) = P(' ) = 1/2 ! )                       P( ) = 1 P(' ) = 1

                                           '  ! #                !        #      !       *+  *        , *           , *+         

           &        −$1 + P[  !  ] × $10 !

* +





                     

         !                !

• • • • • •

       





        



 

P[

 



 

] ≥ .1 !

    

              

                                               !

    

# 

"          "                                    !

# 

                         !

#   

  

           

          



!

   

                "    "                               !

     

                           "  "    !





                           !                             θ      "   ""    !

• #

                             !           "                                                       !                          "                                       θ            

             p(θ) θ! '                         "  p(y1 , . . . , yn | θ)                            y1 , . . . , yn θ!   "                     p(y , . . . , yn , θ) !         1        "  p(θ | y1, . . . , yn ) θ y1 , . . . , yn ! #                      p(θ | y1 , . . . , yn )                                    ! p(θ)                p(θ | y1, . . . , yn )            !





 











      

* *

                             # !                  &  *  *+ ++      !

                          (     $ '                                !            "                  =1                  "         ! ' ' =1 =0    "            "             ' =0  $            !#  P[' = 1 | = 1] = P[' = 0 | = 0] = .95 !                       "          "       

   P[ = 1 | ' = 1]   #  "                          " 

                       ( , ') ' ! '               "

    '! '    P[ = 1  ' = 1] P[ = 1 | ' = 1] = P[' = 1]    P[ = 1 ' = 1] =       P[' = 1 = 1] + P[' = 1 = 0]











P[ = 1] P[' = 1 | = 1] =     P[ = 1] P[' = 1 | = 1] + P[ = 0] P[' = 1 | = 0] (.001)(.95) = (.001)(.95) + (.999)(.05) .00095  = ≈ .019. .00095 + .04995  $ !



        "              "   '      "         $   

                  !                           *+ + +          * !      "                 " (      $$$         "                 +    " (        *         "   *               

     

                $ ! ' ! '                                    ! #                               '  "                               









*



   







=0

 



= 1!



        



           



`(0) = .05;

`(1) = .95

  $                                      "           !     P[ = 1 | ' = 1] ' = 1] P[ = 1 =     ' = 1] P[ = 0 | ' = 1] P[ = 0





P[ = 1] P[' = 1 | = 1] =   P[ = 0] P[' = 1 | = 0]      P[' = 1 | = 1] P[ = 1] =   P[ = 0] P[' = 1 | = 0]    1 .95 = 999 .05 ≈ .019

                     "      

 '  ! '                                                                       !                     "               !                               #           !   $                              "              "         ! y      y1 , . . . , yn !

p(θ, y) p(y) p(θ, y) =R p(θ, y) dθ p(θ)p(y | θ) =R p(θ)p(y | θ) dθ

p(θ | y) =

      !*+             !$

            "         





p(θ | y) = R



 !*+ 

               !         

p(θ | y)

p(θ)`(θ) p(θ)`(θ) dθ

θ









      

* 



p(θ | y) =

p(θ)`(θ) c

 R

                          c = p(θ)`(θ) dθ θ! #             (              θ    &  θ                      θ! ' c       *   R              p(θ | y) dθ = 1 ! # c ! ! !                                                 c!  * * p(θ | y) ∝ p(θ)`(θ) !





                     

 #

      ! *+   c!         !* *       ! *!         

           cR     c = [ p(θ)`(θ) dθ]−1 !    !

    

                                                                  %   !        "                       (λ)        %   %         !         "   !                                                                     

        

 

  

          

           

    

   %                  

             p(λ) = 4λ2 e−2λ (3, 1/2)                              !     p(y | λ) ∝ λ3 e−λ !                     !                                             p(λ | y) ∝ λ5 e−3λ                  !          !   (6, 1/3) c            %                          ( c = 6  1/[5! × (1/3) ]

     

 ! "  

                                                         !      $                  "   "  !  !               

y1 , . . . , yn



`(λ) =

Y

p(yi | λ) =

Y e−λ λyi yi !

∝ e−nλ λ

P

yi

!







        

0.5

*

0.0

0.1

0.2

0.3

0.4

prior likelihood posterior

0

1

2

3

4

5

λ

 

    "                   !               "  y=3

λ

      







      

*

                             $  '  !             *           ! ! `(λ) n = 1, 4, 16           y¯ = 3 ! n = 1, 4, 16                           *  ! # n                 !

 $      n λ '             

         λ ! '                           "   λ  "             !













!

                           # n         

 $           `(λ) ! ' n                                                          !    "                        !                                                                    !                                !                      log `(λ) = c + # P                n log p(λ) + 1 log p(yi | λ) ! # n → ∞              "                         log p(λ) !              $         #        *  y¯     +        n+    !           !  !   ! #         *  ! p(θ | y1, . . . , y60 ) ∝ λ42 e−62λ





 

                      +            " (43, 1/62) ! ! !      !  !!*                      !    "   * $$$        

    

      

!

               !                                ! "              !                                              "                           "                                                                 

*





        



b

0.6 0.0

0.0

0.1

0.2

0.4

likelihood

0.3 0.2

prior

0.4

0.8

0.5

a

0

1

2

3

4

5

0

λ

1

2

3

4

5

λ

0.6 0.4

n=1 n=4 n = 16

0.0

0.2

posterior

0.8

1.0

c

0

1

2

3

4

5

λ

      $      !

1, 4, 16

     



           

λ





n =





      

* 

prior likelihood posterior

2 0

1

density

3



0.0

0.5

1.0

1.5

2.0

λ

     +     P

!

yi = 40 !

              



λ





n = 60

* "







        

            !       &     %                 !                          !             &         

 "

            "  "     

      

   

    ! "    

      



     %    ! 

    



        %          %    

θ

     % %    

               "         !                                    !          " %           !                        "      !          "        !       !        !          #      4.2/145 ≈ .03   "    !                     %          "  !   % !  

                                  "    ! θ ≈ .03           " %      % !     !                      %             !   

%         !      θ ≈ .06                            !      Γ(20)Γ(400) 19 θ (1 − θ)399 p(θ) = Γ(420)



 !* 

           !     (20, 400)                     !            `(θ) ∝ θ8 (1−θ)137                      p(θ | y) ∝ θ27 (1−θ)536 (28, 537)

  !                                        

     

   

p(θ | y) =

Γ(28)Γ(537) 27 θ (1 − θ)536 Γ(565)

                    







    *   * "    "               ! ! !

        a −bλ        a        λ e θ (1 − θ)b           

                    c        

         

 "  ! '  ! '                            "                              ! ' "                                      "                               !

* $

      



40



10

20

30

prior likelihood posterior

0



0.00

0.05

0.10

0.15

0.20

θ

      *     !

               



      

*" +











        

 

    

                                   "             #    " y1 , . . . , yn , yf p(· | θ) ! y1 , . . . , yn !              

            yf  yf ! '            !                              yf ! #                                                 !         

 "          #            "      "      " "       y !#             f         "   !        ' (0, 5) "   $ +    "  yf   Pr[y ∈ (0, 5)] = .90 !     "                 f  "    "      $ +  " $  " +  "   !                " "      ! #               $ +    " "    $ ! (0, 5)    $ +    " "       (−1, 4.5) !

      

 

  "               #          "       &        yf !                "                 !             $       $                 θ ! #             " y1 , . . . , yn !   $                 $         θ!          y1 , . . . , yn , yf ∼ ! ! ! (−2, 1) !

                          θ '                      $     

    y1 , . . . , yn ! '                                      yf                    θ! y1 , . . . , yn yf          " θ! 



p(yf | θ, y1, . . . , yn ) = p(yf | θ).

                   '       y1 , . . . , yn !

     

 

θ

    



*" *

   



                     # yf yˆf = −2                           $ +      ! (−2, 1) "    #         (−∞, −0.72) (−3.65, −0.36) (−3.28, ∞) !                 

                 "                 "        "   ! # yf                 "         yf (−2, 1) !                     yf !                   $  

                  θ! '                     !  . . , yn θ    y1 ,.                      ˆ p(y | θ) !         f           "       y ,...,y      !                      1 n µ ˆ = −2 σ ˆ =1   " !                   *   *    !! !     "        #    

      ˆ λ λ = 2/3 ! '  !    "                       ! ! yˆf = 0   

    $          "      {0, 1, 2} ! '              $$  "  (    ≈ .97 {0, 1, 2, 3} ! !



0.4 0.2 0.0

probability

 

0

         !         

2

4

6

  "     

8

yf ∼



10

(λ = 2/3)

   

*"







        



                          '     $       "     !               "               θ ! #      yf     $            θ !                   $ ! '                            !        "               y1 , . . . , yn θ    " 

                  !   θ                               !                          "     !                                            " "     "     !                $           " "                      θ! #    

                       ! ' θ  "  "               y1 , . . . , yn , yf θ y1 , . . . , yn , yf , θ

     "                  "      yf y1 , . . . , yn !





p(yf | y1 , . . . , yn ) = = =

Z

Z

Z

      ! *!       y

p(yf , θ | y1 , . . . , yn ) dθ



p(θ | y1, . . . , yn )p(yf | θ, y1, . . . , yn ) dθ p(θ | y1, . . . , yn )p(yf | θ) dθ



 !*! 

        "                                "      ! ' (θ, yf ) R         "     R  p(y ) p(θ, yf ) dθ = p(θ)p(yf | θ) dθ    

            f  p(θ) p(θ | y1 , . . . , yn ) ! ' y1 , . . . , yn    "                     ! θ

   "         *             '  ! !              "            $          !    *                          θ    ! !                 "           !                              θ     *                         ! !  "      ! f









    





          







*" 

   

!         

      % 

Y

      %  !                      

        !              

Y ∼ (λ)   !                  "     %        p(λ) = 4λ2 e−2λ % %                   %          y Z pYf (y) ≡ P[Yf = y] = pYf | Λ (y | λ)pΛ (λ) dλ Z y −λ 3 2 λ e λ2 e−2λ dλ = y! Γ(3)  Z 3 2  !*  = λy+2 e−3λ dλ y!Γ(3) Z 3y+3 23 Γ(y + 3) λy+2 e−3λ dλ = y!Γ(3)3y+3 Γ(y + 3)   3  y  2 y+2 1 = , y 3 3     #                 "          %       !                      



 3 8 2 = Pr[Yf = 0] = 3 27  3 2 1 8 Pr[Yf = 1] = 3 = 3 3 27  

             % %        &        !                %        y1 = 3             

 

%       

 % "  

y1 = 3



36 p(λ | y1 = 3) = λ5 e−λ/3 . 5!                   "

pYf | Y1 (y | y1 = 3) =

Z



    %    ! 

pYf | Λ (y | λ)pΛ | Y1 (λ | y1 = 3) dλ   6  y  3 y+5 1 = y 4 4



 !*



*"

!





   ! 

        



     

 6 3 Pr[Yf = 0 | y1 = 3] = 4  6 3 1 Pr[Yf = 1 | y1 = 3] = 6 4 4  

             % %  

             !  

  !   %

      

!  

6243 42 −62λ λ e p(λ | y1, . . . , y60 ) = 42!                          "



 !* 

    %    

    6  y y + 42 1 62  !*"  Pr[Yf = y | y1, . . . , y60 ] = 63 63 y

             % %            !      % "         "        %   n=1 λ    !                         "     %         %      !              "     %       !  n = 60  % "        !             !         %   λ             "     %     "                 "     %    



             

                          !            

        

   

         0            •



!

  0  

•     

                    & "                

!

!



        

*

0.5



0.0

0.1

0.2

0.3

0.4

n=0 n=1 n=60 plug−in

0

2

4

6

8

10

y

 

 

 "                   ! y            f   "

n = 0, 1, 60

*



• 



 0 

           



!        "          

      0      

   &      

       

    



              ! 0   "    



   



     

!

  0  

' '

   " "      



%

!



      0      



  0  



  0  





  !

  ""         !

• •

!

!

• •



       "          

      •



   

' '

         

!      "   

   

 

   

!

 !

 !





 "     "       "

!

!

                          0                                                         "  !          "                   "

        !                          "            "        $           !









        

* 

       " "                                                  !        "               

  "           !          &                               &          "  "   "   !          !

                                 ! '                   0          0!                 (                              0

            0 ! '                                 !







*                      !   !

!

     

               w = w(y1 , . . . , yn )                      &     



! 

!



w

0

!

                   

w

      " "       w                 0! 

   



0!

y1 , . . . , yn



                                     "                                             ! '               "     "     !       "                                         !





                                                 " ! Xi                    ! X ,...,X ∼                     1    ( n  



(θ1 ) ! % !! !             Y1 , . . . , Yn ∼ ! ! ! (θ2 ) ! θ1 θ2 !  w = θˆ1 − θˆ2 !                       E[w] = 0 !  0           $  ˆ   ˆ         θ1 θ2 w!  '                !   "   $ & w #        $ "   !       $            0!





*





   

           



         "           ' !                     X , . . . , X ∼ ! ! ! (µ , σ1 ) !     "    1    n    1    Y , . . . , Yn ∼      

 1   ! ! ! (µ2 , σ2 ) ! µ1 = µ2 !  w = µ ˆ −µ ˆ2 ! ' 0            1 (       µ1 , µ2 , σ1 , σ2 w                  ! #     w

    !   "   $ &     $             $ "   !   0!

   



      

          "                                                                    !                                                          !                      "          "                    !      "      &             0! !        

   

                   0! "        0!           $                '     

                       ! '     & "        $                 !                     !                            #                       "     !         (  "              ! #                               !  YC,i                                  $ i                               YT,i                 $     

      i ! '  YC,1 , . . . YC,n ∼ ! ! ! fC ; E[YC,i ] = µC ; Var(YC,i ) = σC2  E[YT,i] = µT ; Var(YT,i) = σT2 YT,1 , . . . YT,n ∼ ! ! ! fT ;                   "   

   µC µT σC σT ! '               



 :µ 0 T

= µC : µT 6= µC







* 

        

    $

    &              w = Y¯T − Y¯C !                          ' n          2

    +    2 2 ! ' w ∼ (0, σw2 ) σ = (σ + σ )/n 0 w T C   

 "  2          "          σ 0! '    "    2w      2             ! σT2 ! σ w                 C      σ  w  $                $   $ "        ! 0 0!                          #           

               ! '  "      

              ! '                               !      "            (     "                              ! #                            !  Y Y $      $ T,i    C,i 

      ! ' i i



Xi = '

(

1 0



YT,i > YC,i

  

      

X1 , . . . , Xn ∼ ! ! !

                  

p! '

 

(p)

           

 : p = .5 0

: p 6= .5

P                  w= Xi !  (n, .5) ! ' (n, .5) 0 w ∼                   0          ! ! w                   +   +        n = 100 ! w                                  w 0!     +        +               

   ! '               |w − 50| !

                              '     $     &                ! ! ! ! 0                                                              &    w !                              ! 



* +

   

           



0.00

0.04

0.08



30

40

50

60

70

w   

 !         (100, .5)      

                         w   '      

                µ0 ! '             "               σ0 w

  0!             ! 0     *  "   $            "     $  !                (                  !   "                           √!                 ! µ0 = n/2 σ0 = n/2 n = 100 0!                               !                   "      w                      (µ0 , σ0 ) µ σ0           0          0  ! t ≡ |w − µ0 |/σ0 0               $ "        0!

                     ' !









                 

                  ! "             #    $ %   &   #       $           '        #  ' $ = 0.5  #     (      # )         *      #       +



* *

        

0.00

0.04

0.08



30

40

50

60

70

w   

 !          (100, .5)



   



(50, 5)

         

 '     #     # )                 $       #           $              #       *   *    x1 , . . . , x10  #   (          #       *   *    (   =  y ,...,y =  *       #           "     # "     # 1#  #10  #  xi yi # *          

 #  x1 , . . . , x10 ∼ f

 #  y1 , . . . , y10 ∼ f

     *        #         $  + µ ≡ E[xi ] µ ≡ E[yi ]    #      '     #             0



: µ = µ : µ 6= µ

        $                * "      # )        *          #         $           '            '  w = |¯ x − y¯| w 0

*





   

           

        *          *            $



    



!  

  σ

x¯ ∼  µ , √ n   σ y¯ ∼  µ , √ n      $      #    0

w∼



0,

r

2 2 σ

+ σ n

!

,

     $            #    #   #  w SD      #  $ #                                      '# '      #  $               t/σ ≈ 3.2 t      # '  t #      #  ' #  #  $     ' #  0       0

    

   *    # # *        *  



 # 

         &  

       (               %   &               &  

       (               %   &           &     &   

 %   !   "    # "     &  $  "      & !  % &  % ' % &  % '  &   (      "    ' %     "    ' ' % '   &    '       '       '             '  '  )  *+ ' ) &   * 

          ##       '# '   

t

     

                                        ! 0

 (  

w

   



*

        



0.00

0.15



−6

−4

−2

0

2

 

4

                 ! #   "     "       ! t

6

t! '

  

         

  



                  *       $           '           *               #              '  * *                            #$            '           *                               ) &   &%(              '             #   '   #     '   #        #  '            * # '                 #  $ '      #   '   $                   '                  '                  #               #    '     #     * *     '         *    #         "           $  #   #     *    #              '      #        '         *        #         ##     #          '                             & ) 



 &    &      %   &  &    (        

    !"!  !   !    ##$ %  &% $ '

* 



  

     

     

      

           





     

   & )  #       '   *    '#        * $    

                * 

   &  #                  '           *                                       *          * $    

  &     #      #    *     #     '            

  *         ##    *       *    # 

   %   &  &    *              *            *        '   *   ##      #     * $ 

   (  #              *        #     #              *         * $   

!

             *               *    #       w %          (           &             &    

'                #    #      n = 147 w = 87   *               *    #         *        #         #  w 0                      !   "              $  $        $        !!  "   !!  "   ! ( #   

 '

 

#  $     '   #                  *           $    *                ' ##        $              *      $  $       *              #   *  # #             #  $        0                 #       $     #   #           0#  $         





        



  *   *  #      #                              W   *    #      *         $             #    *    $ #         $  *       $       #             "  ' #       % % "

   !!  "   &     !!  "   ! ( #               !!  "    &        !!  "   ! ( #         "   *  

   & #    '  "   !     *  "   # &   "   #  &  %  % "



    " ( 

 # &       

 " 

  & 

$              $        *           '#         #         #    w=9                     0  * #    *  $        *    #                 ! " *               $ "    (  )  !  $  ! ( # '  "   %  % "    ! !  "   &     !!  "   ! ( #   $  ! ( #         ! !  "    &        !!  "   ! ( #   $  ! ( #     & #    '  " 

 !     *  "   # &   "   #  &  %  % "     " (   # &          & (  



     *         $ "               *    #   *         '# '         #                     '# '                       #          # #     *   w                '# '         #          *         w 0    $  # $               *           ' #     





   

            



     $       #     $ *   $             # 0             '    '          0 ' $           "          ' $           0        ' #         #      ' #        ' $            *        0              0     *         # #          "      #  $   #    '   *                    *               *    #    # '     # )          #         *                      #                                 #                                     $        *  #           #     #               #  0       #  * *       *  0  #       #    $  '          $      *    #        

   *    # # *        *      

$  ! ( # "  (   ! ( &    ! !  "   ! ( #  $  ! ( # "   &  $ $  ! ( # "

#       !   )  '  !     *  $  ! ( # "  $ !! %    !!  "   ! ( #   $  ! ( # "    !  "  " (     !!  "   &  $ ! ! %      !!  "    &     $ !! %   "   $ "   $  ! ( # "   '  "   "   "  '       '       '    $  ! ( # "   '       $ & )  !  " ' "  # !  "   !  " '  ' # )  *+ ' ) &   *  #     !  " 

    

   *    # # *        *      

 !  "   & #    '  $  ! ( # "  "           '  $  ! ( # " '  "   !     *  $  ! ( # "  $ !! %    !!  "   ! ( #   $  ! ( # "  







        

VIV

0

0

200

200

400

400

OMO



6

7

8

9

10 11

8

10

12

w

w

NYA

WEA

14

16

0

0

100

100

200

200

300

300

5

0

1

2

3

4

5

15

20

w

25

30

w

0

50

100 150

LIN

8

10

14

18

w





   





  

          

          



   

 

    

            

0







   

            



0

100

200



50

60

70

80

w.tot

   

   







   

       

 !  "    " (  



 





     

        

  !!  "   &  $ !! %      !!  "    &     $ !! % 

 "   '  $ "   $  ! ( # "   '  " 

 !  "  !  " (    !  "  "   !   # #     "  '  ' " (   "   "   ! '       !  '       '       $ & )  !  "  ! ' "   ! # !  "   !  "  ! '  ' # )  *+ ' ) &   * 

#     !  "  !

  

    

                  

 

g(x)







  

 

   



  







         



 



 





 

     



 





 







 

!!  ! 

    

      



  

















    

     



   

    

 

     

     

        

        







  



    

 

          

   

 

 

  





 

 



 





   

   

 





 

 

            



 

 



     

&  ( #  !



    $ 

 



 

 



  







     

 



 









     



    

    

 







 



 





 

     

 



  





 

 

`(θ)

 

    

      





  

 

          

    

 

   







   

 

 



 

     







 



  

          

 

 

  









 





 



    

 



 

                   

 







   

 

  

p

    

 

            p ≈ .1                 

   

   

                                  

  



       

  





 



      

 

 







 

            



  



 

               

      

    

 



    (  



 

 

        

   " #  !     (   &  ( #  !  " *             " #     (   &  ( #   "  * *    !  ! 

    

 

   



     

                   



   

   

        





 

                  

       





  

              

           



 

 

      









 

   



 







 

   



            



                           

               X  

              

   

  

   

   

p

  



p



























   





  





  





  



 

    

  x1 , . . . , xn ∼ (λ) `(λ)             P

 

x1 , . . . , xn



`(λ)

     



 





   

y , . . . , yn

xi

xi



       

 1    



       





 





    



(λ)













 

 



 







ˆ = y¯ λ

 



  



 

                       

   





  

   

     

     

              

          "    #       "  ) ( &%(  %   " & "          %  &  "   % *              Yij

             i j i = 1875, . . . , 1894 j = 1, . . . , 14 

               



 

 

  



 

Yij

  

     



 

        

   











    

  









   





      





  

   

  

  



λ



(λ)



  



    



       

   





      

       

       





      

ˆ λ

  



           





  

           





  

            

  







  







  

     

    

  







    

 

 

    



     











        

X1 , . . . , Xn ∼     



  

  

(µ, 1)

d d f (x1 , . . . , xn |µ) dµ dx



d f (x1 , . . . , xn |µ) dµ

 



    

d f (x1 , . . . , xn |µ) dx





 



   

  





        

   

   

θ







   



  

µ ˆ



  

=0

=0 =0 

 



 





   

  



 

           y1 , . . . , yn ∼ (µ, 1) `(µ) y1 , . . . , yn             P               















 



n = 10 

 

 



yi







(µ, 1)      µ   

 y 1, . . . , y10 ∼  

y , . . . , y10 ∼  1   `(σ) 



 









       



       



              

      









Yi





     











 





µ   µ

(µ, 1)

  

 







 



 

µ





 





    



   

  

σ



σ



  

     

`(λ)

 

 

     

 

 







µ ˆ = y¯

           

   

      

        

           



                 



Yi ∼ (λ)      λ ≈ 3.1

     

 

  

  



σ y1 , . . . , y10



y1 , . . .P , yn (µ, σ) 2 −1 2       σ ˆ =n (yi − µ)       %  " ) " &  & "          ! i



 

 

(µ, σ) y1 , . . . , y10



      

    











µ

(µ, σ)   `(µ)

  

y1 , . . . , yn

yi



           



 

 

`(µ)

   





 

 



 

    









  

                   

     

         



 

 











   

            

                    

             



                

                   

 

                 





         

    

  



  









  



      

  

    



  

   

P[



 







  

 

 

 

 

 

 



] = .8

   

    



 

  







   



   

   

 





 

    





 

 

            



 

     

 

     

|



 

  

     

  

|











   

  



n

   



 





 

 

  





 





      



  

 







   

  



 



].



 

       



T ∼ exp(λ) λ                t1 , . . . , tn 

                  λ                  n = 10     ˆ `(λ) λ                           λ              P  

   

   

      

   

] = .2.

                   

T

               



          

           

Pr[



 

   





   

        

P[



    

           

 



      

                

                      





 

 

  



   





  

`(λ)  ti

  

ti

 

       



 

 









       

  

 

   



     

    



    





     



 

 



  

 

  

     











  

      

  



   



      

 



  





  

  

          

 



                       



     

   









  

   





 

P[H] = 1/4

       

 

   

      



  









P[H] = 2/3





                                                                                                             

                              



 







   

        

           





        











   











  

 



   

 

 



  









P[











   

 

 





  





 







 

 



]

 



 

] = .01

P[



   

    

    

  

   





 



 

    

 

  









   

 



   

  



]

        



 

]



P[





   





]





 





       

  



 



      

  

 

     

P[

  



   

  

P[



  

 

              

   

 



   

  



       

   

 

  

P[ 





 

(700, 50)       (600, 50)

 

       

  



  







 









   

]

















      

P[







 



   

            

        



 

   



]





 

P[







  













   

]

 

 



    



   



!       

  

   







 







     





  



 

 

 



 !   















     

   

 



      "



    "

 





] ≈ .5



  



          

   







 



 









     



  

 



 

  

 

    

    









  

 

                            0                        





  

P[



        

 



                  

 

      

     

      

 

 

  ! 

 

 



   !

  !

 



                       



  !

 

  





 

 

 



 

     !      ' *  '    "(      + 

   

 

   

w











  





       

  

 

       







 

               



                                         

 





   





    





         

    

t

   

  

w

 

  















 





                   b 

                    

                   





  

    









   





 



  



   

      



     



 

                            

                 

t



     





     



 



y∼









θ

(θ, 1)





















 y ∼ (m, σ)

 

















  



θ

  

y

     





             



(θ, σy )

  

y

  









θ









y1 , . . . , yn   θ



θ∼

     



(0, 1)

        



  











   

 





n  (m, σ)

  





         





θ∼





θ

θ ∼

        



  











y ,...,y





  

        1 n       



 



  

 





     







θ





 



  





(θ, σy )



        

 

  





   





  



   











 









 



















 

















   



 











% ! "&

  

=2



  



 





 









0, 1, . . . , 9



    



 





    



(−3.28, ∞)

   

    



Pr[yf = k | y1, . . . yn ] 

 

     

 





      

    

   

       







        

  

  

      

   



  

  

     



   



              

   

          

    

   

   

 







k = 1, 2, 3, 4    



(−∞, −.72) (−3.65, −0.36)

      

 



 



 

   



  











  











  





      

     

 

% ! "&

=1





   





    



   

  

  

    



   

    

  



     

X = 122

 





   

"( ##



 





       

  

  

= 





"( ##









  

  



   



           

  

                                   



         

   





 



  



 





    

   

      

  

  









        

       

       

   

      

  

  



               



     

                 

       





           

 







    



= 



                                                                             



  

         



          

     





 

  





 



 

            



 



    



    

   

  







X = 122

   





     







 



 



               



        



                          



              



 

  





    

   

    

  









  

          

       









         

nA = 100           nB = 400            nC = 100

         



    





   





 











 

 .1

 

 

    

.1

 

.2

      

  

     

  







 

    





 



     









           

             

  

      

                     

     

 





        

 

 



  

  

 







 



!



 



  

 



 

 







 



 









 











    

   





 





 

 

      

   

   

   





    

 



! 









 

 

        

         

         

 



 



  

 









 





   

  









λw = 100

     









λw







    

λw

  

                   



 

M

M





xi

  

*  '  *   "   



!   &"    # &"





 

 

           

x1 , . . . , x15    xi ∼ (λw )

   &#    &  "  " ! 

 



  



   



     





! 



   



     









            

 

               

 



   



  

         



    





    

   



 





          

  

 











  

     

  

           





*

      

     

    



    !     * *      &#    &  "  " !

*  '  *   "   

!   &"





 

 ! ' 

   











   

   # &"     !  *   

* 

 #     *  

            

  # *

    *                                                      *    





   



  

  !     * 

       

 

       

         

 !     * 



    





  





   

  





  



 





  



 













    

    

         







   







            

                      



 





 

 & (

      

 



 



   

Y =

      









     



  

 







   

        



      X

X

   ! (    

Y





  



 





Y



    

  

    

Y

   





    

   







        

      

 

 

   



     

Y

Y

 ) " 

      





       

       

X



 

X





 

 



  



            





     

Y

 

    





    

    

  



       

 



   

     

 

    (                                  

         

 

          

 

     





   

  

   

  

 



     



  

                 

 







           

 

 



  

        

X =

 





   

  

X

  



                    

        



X

 

       

   

         



        











   









Y =



   





   





            

       

 





X



     



X=

         

          

   







      

Y



    

#       !   )  '

%  

  & (

%  

    ! (         ! (      &  # '    ! (      !  & '      &  # &   (  &  '       ! !  &  '        ' # )   

#  !   &  (  %  " '  &  (   ) ) &  '       "   ) &  '      ) ) &  &    !   '        ' # )   

#  !



%  

  ) " "  # )     )   "    )   "    ' # )  * '      &  $  '  & ! %    &   '        (      "  ""  !   '      ) 

%        (  #  !      (  ' # )    '      % 

    



   

  

      



     



 

  

X =

 







    







  

X



X

    

         



 



Y



  









     





 

 



 



    







  

 



    



 



   



Y

    



    



  

 



    

Y

      

    



Y

    

X

  





 



















 

           

      



  

    

X=

            

X

 

                          

       

      



          

                  

  

 

 &  (     ! (            (          )  "          

   

 

    

Y =

  Y

 





       



(b) 150 50 0

100

300

60 70 80 90

Distance

temperature

(c)

(d)

0

70 50

60

waiting

80

1

90

0

Manual Transmission

100

ozone

0.6 0.4 0.2 0.0

Acceleration

0.8

(a)

2

3

4

5

1.5 2.5 3.5 4.5

Weight

 



eruptions 



 



 

    















 

X

   







 

          

Y



   

     

  



        

   

      

        

 





   

                  

    

     





                 

          $   #     $  '          *            $           #   #              

   $ #               # *  #            #    # *    #   $       # # *        #    '# #           #                 # *   #   #       $  #   $        #           *     #  #    #         #$   $   # #           *     #  *   X = Y =                 *    #  X Y      

     

*    # # *        *      

#  !  %      !   &   ' %         ! '       !   &    '          (   &  

      $          *    #   $         + X Y # '   

 # )       # )    '       # "   #  Y X                      #           $   $  *   

  X     '                     *  *  # #      #  Y







E[Y | X] = g(X)        *           g     '  $     +                    # g       '              *     #     $ #  *

                      *      *   g   #        #$       $  *       $   ' * #              *   # ' $        #       #      # *   #        *       #         $  

       

200 0

100

Draft number

300



0

100

200

300

Day of year



 



 







     



          













   

      

0

100

200

Draft number

300



0

100

200

300

Day of year



 









 !  & ""







     

     



        " ( # " ( 





  





    

 





                 





*    # # *        *       %      !   &   %         !

#  !   '  '       !   &    '          (   &      & "   !  & ""   '     & "  " ( # " (   '  '      !  & ""

  $ *   #           # "( # " (            *     "                       !  & ""   '   *  $        "( # " (   '                                 '      *  $       *  # *      #    '              



           

     #            #      #$ *    #        *  !                   *                *    '   # )     '        #             *                       # # ' ##        #    × ×

            '     * #      #      ' '          #  # * #       # )     # )      # # )     #            *             * #              #           '      !  & ""   '                 #  *                  #  #      #             ) $  #         

*    # # $

#  !  !    &  '     ! (  %    % &   '      !    &  " &&%   $ "     & "   !  & ""  !    & 



  



  





i yi

   

    

          



  

(xi , yi )

     

yi = g(xi ) + i .





i = 1, . . . , n         xi



 









   

      

0

5

10

15

20

total new seedlings

25



0

10

20

30

40

50

60

quadrat index

  



 

   

 

   

  







   

        



  



  



 



 

yi

               i g

      g              

  

  



  



           





yi − gˆ(xi ) r        i i



   

 







   







 

    









 

  



 





 





   



ri













  

 





       

y







    

    

!  

  







   

   



 

           y               y x           







y



     

y

      

 

    

x



   

     

      

x x

x



y

 

 











x

g























 

 



    





x



   



 



 y

     

x

y  x

 



  





      

                

  

y

    

       

                

y

 







ri ≡

  

  x  



 

  

                       

     



           

 

   ! 

   

           



g

   

  

  

     

x

   

          

                         







  

     

   





 



        

             

x







i



   





                    

                  





   

   



  



  

 

 

   

     

 



    

    







g(xi )

     





     i

     

  



 

     



  

  



ˆi = ri =  



     

    



   

  

      



   

  



y

y

  

x



         

       

        

           

   



        

                                             

             





                                    

   

     

  

       

        

 









 



 



     

                





      

     





 











   

g





 





   



 





g





        

   

   

       

 







   







   

      

   

        

  





                                                                                                     

                                                                         





 









  

 

       



              

      #  $     #      $      #             $   #    '    '          $  *                  #     *    # *   #     #      

*    # # *  

"  # )    ! % ! $ "    !   & "  ! % ! $ "   # & ' # )  * '      )   !   & " 

              #     $   #                                                  *  #  $                    $       $      #                  #      '   #     )        # *           $                                   #       #                   #        '                  # *  #          '            #      # 

 #   (µB , σ) B1 , . . . , B20 ∼

 #    (µM , σ) M1 , . . . , M17 ∼

 #   (µP , σ), P1 , . . . , P17 ∼ *       "  "  # "                        # Bi Mi P #   $       ' $i          

µB ≈ 150;

µM ≈ 160;

µP ≈ 120;

σ ≈ 30.

        



Beef

Meat

Poultry

   

100

120

140

160

180

calories

 







           









   

      

     '          

 #  B1 , . . . , B20 ∼  (µ, σ)

 #   M1 , . . . , M17 ∼  (µ + δM , σ)

 #  P1 , . . . , P17 ∼  (µ + δP , σ)  #     #           $    '                           #            $ #      $         #        #                #      *                       '      *                              * #   #       *      *   $            #             * *    *       #       

*    # # *        *      

#       !   )  '* #  !  % &  "    ! % ! $ "   ! % ! $ "     &&   '      '      )   '   '      '       '     )   !   & "  '      &&   #  !  % &  "    ! % ! $ "   ! % ! $ "     &   '      '      )   '   '      '       '     )   !   & "  '      &   #  !  % &  "    ! % ! $ "   ! % ! $ "     ! (     '      '      )   '   '      '       '     )   !   & "  '      ! (    





! % !$ " 

 # ! % ! $ "      '                                  ' #  #   $    ! % ! $ "    !   & "  # ! % ! $ "   # & *          '                             

% &  "      '                 #  $  +        !      #* #   '                 #* #   '    *  $    $ # )      #* #     *     $ # 

   

        



Beef

50

100

150

200

250

200

250

200

250

calories

Meat

50

100

150 calories

Poultry

50

100

150 calories



 





  



               





 















µ

µM

µ + δM



 

 

µP





    

    

   

   



σ



        





  



  







  



  





  

    

   

     

 





  

   

 

  

     







  

  



     













  





  





        









          

  

   

    



  





    ! 





      





  

    

  



 



   

δP

σ

     

   

    

  

µP − µB



   

    

  

δM

  

   

  

 

µM − µB

      

   

  

µ + δP



    

 

µB

   

 



    

               







   

          





     

 &  $ $  ! ( # * )   % *   (  *(

 



 



    











)   )  

 

   



 

 

   

    

       



      

  





     

 











  

        

  



 

 

 



          





     



      

  



 

      



  

  

  





        





ctrl

trt1

trt2

   

3.5

4.0

4.5

5.0

5.5

6.0

weight



 









    

  

 



    ! 



   







  



    !  $  ! ( # ' # )  * '



     &  $ 



  

     

    !   &  $

"  # )   



 

                  

                                   







      

 

 

 

  

   

          

 



 

 

   





  





  



  

           



  





  

  





 



    

   

     

   

    

 



    

 

  

  

  



   





                

µ δ2

  

 

                

    

  



     







  

   



    





   

      





δ1

         









σ



  





   

      

      

  



WC,1 , . . . , WC,10 ∼ (µ, σ)     WT1 ,1 , . . . , WT1 ,10 ∼ (µ + δ1 , σ)     WT2 ,1 , . . . , WT2 ,10 ∼ (µ + δ2 , σ).  



             

       



 



















 

                    

         



 







 

 

     

              

                             '               #     # # #         #  #

 Y Y 

                   $   #    #  *      #      Y   #        

 # )    #  # )             + Y            #       *     #  #      $      #   Y            #         *  #  #        $       # Y       '          #   X   #           #            #         *   Yi Xi      "                 #      *     *      i                               $ '        Y      #  #       

# &

 &&   && 

  & "  ! *( +

*( *



& &

! (    ! (   

*%  * (

*  * 

 ! % (  % % % (

 %  



     $              #      '    *        #           $ # )        '        +

              $  #               #   #$ !                          #  *  (Y1 , . . . , Y54 ) i

   

* '    

        

X1,i

 #





$

X2,i ( 1 X1,i = 0

    "    #     i    * 

 #

(

    "    #     $  i 1 X2,i =    *   0  #   #   '      * #   '               X1,i X2,i    "    #    *  *  #      *   * *   $        i X X     $          1,i

      2,i

#   '            k k−1    * '       #        *      

i = 1, . . . , 54

 *   

Yi = µ + δM X1,i + δP X2,i + i

 #   (0, σ). 1 , . . . , 54 ∼           $                    *          $    '   #        !











 

Y = (Y1 , . . . , Y54 )t , B = (µ, δM , δP )t , E = (1 , . . . , 54 )t ,                 $  '     '       '    #  1 1     1  1  X=   1  1    

 0 0 0 0        0 0  1 0       1 0  0 1       1 0 1





   

      

                         #        54 × 3              #     #                  $   #               *   

X







Y = XB + E     

 

    ! 





  

Yi =



   

  

X1,i =

(

1 0

X2,i =

(

1 0





i

i

i







 



          

 









        



  

,

               









                





Y = (Y1 , . . . , Y30 )t B = (µ, δ1 , δ2 )t E = (1 , . . . , 30 )t 



         

1 1     1  1  X=   1  1     1









 0 0 0 0        0 0  1 0       1 0  0 1        0 1







 

 

Yi = µ + δ1 X1,i + δ2 X2,i + i











Y = XB + E.



   

 



        

   





  

     

        



  

XB

µ + δM X1,i

    ! 





  

  

  









   



Yi + δP X2,i 













     



 

  



 











  

     

 

   





    

















   





   



 





µ + δ1 X1,i + δ2 X2,i



  !









 

    

                               E i

                                         

                                                      i                     

                         

                   

  



   



  



    













 



   



+

 

           

  

   

 



=

µ + δM X1,i + δP X2,i

   µ + δ1 X1,i + δ2 X2,i

 



        



       



   



(µ, δM , δP ) 

   (µ, δ1 , δ2 ) 

   



    

!   

  ! 

                 X                          X                                    







  





  



X

    

Y











              *    $

           *    # '       +*      #           $    $    $              #$

*   #               #  #      '                       '     !  +    #    '    ###          #      #* #    #   

   "  ) ( &%(          & "   ) &  &       

    *            %  & *





 ( +

#  )&  

 ) !  & (

& # %*

  $ &  # +

 & 

   

     

                

#









 %   

 

 (  

+ +



(*

   

      

+



+(



  '      



    #  +         #$   



      

                   

  

             #  

   

   $    $

   #  

             #  



         '       # $        #     

*        #$    $      $      $ 

     

           '                                     

           = β0 + β1 + *  # #       #    $ *          #                                                 *              (β0 , β1 )      





Y = ( 1 , . . . , 30 )t B = (β0 , β1 )t E = (1 , . . . , 30 )t  #

   #  

     1 1 1       2  X =          1 30

Y = XB + E.               #   #             #  $ 









        





0.25

0.30

0.35

0.40

consumption

0.45

0.50

0.55

   

30

40

50

60

70

temperature

 

 









       



       



      















  

    

 





 



   



      

      











     

          





 



    











 



   

 









 



 





 







  

  

 

                                        



  



        

      

 







 





  

    

p

 







 



 

  







      



 





 

   

     

  

  









 









n



 















 





             





Yi = β0 + β1 X1,i + · · · + βp Xp,i + i



 

   

 

 

Y = XB + E.







 

    

    

 

       





      

                

       

         

         





        

 

      

   









Yi ∼ (µi , σ) P 

  i = 1, . . . , n µi = β0 + j βj Xj,i          p+2 (β0 , . . . , βp , σ) `(β0 , . . . , βp , σ) =

n Y i=1

=

n Y i=1





 







   









 



  



     

i







y −(β +

P

β X

)





«2

0 i j j,i −1 1 σ √ = e 2 2πσ i=1 P − n 2 1 P = 2πσ 2 2 e− 2σ2 i (yi −(β0 + βj Xj,i ))

(0, σ)

1 yi −µi 2 1 e− 2 ( σ ) 2πσ

        



p(yi | β0 , . . . , βp , σ)

n Y

    



p+2

    

       



   















       

  



  

          



    

  

        

 







     



  



 

       

log









X 1 X yi − (β0 + βj Xi,j ) log `(β0 , . . . , βp , σ) = C − n log σ − 2 2σ i j   

        

C





   

 











X  1 X ˆj Xi,j ) Xi,p = 0 ˆ0 + β y − ( β i σ ˆ2 i j X X 2 n 1 − + 3 yi − (βˆ0 + βˆj Xi,j ) = 0 σ ˆ σ ˆ i j       

         

                   





 

  

       

        

yˆi



(βˆ0 , . . . , βˆp , σ ˆ)

 





  



          

              p+1                    

        σ2 p+1 p+1 β                                  ˆ = (Xt X)−1 Xt Y, B





     

  



!2



  







  

X  1 X ˆ0 + ˆj Xi,j ) = 0 y − ( β β i σ ˆ2 i j X X  1 ˆj Xi,j ) Xi,1 = 0 ˆ0 + β y − ( β i σ ˆ2 i j

 





  





  

i ∈ {1, . . . , n}











yˆi = βˆ0 + x1i βˆ1 + · · · + xpi βˆp .         



      

          

ri = yi − yˆi = yi − βˆ0 + x1i βˆ1 + · · · + xpi βˆp









           







     

i





  

  

   

      

        







    

σ ˆ

X 2 1 X n + 3 yi − (β0 + βj Xi,j ) σ σ i j X 1 n ri2 =− + 3 σ σ i

0=−



σ ˆ2 = 

σ ˆ=





1X 2 ri n P

ri2 n





 

     



           



          





  



βi

 12

    





  

  



  

  

      

        







    

β

 



   





   



     

              



 

   







         

         

              

               #    #                 +     #        #       *        #          #  #    $           $  #         #       *      #        #  #   ! % ! $ "      ! % ! $ "    !   & "







 ! % !$ "   # &

 #         # 

 #                #   $    "  #     + •   #  

  #    #         # #                        #         # #         $  

   

• •



        





      $     # 

     $                    #      X     





             #    #   *     # ! % ! $ "         *  #  '  #   $    *    







   '       %    *        %       &    # ! % ! $ "    

 ! % ! $ "    ! & "



 ! % !$ "   # &

*   #  ' *    ! % ! $ "    



   & "   # & ' %    ! % ! $ "  !

  $ *     $       *  *   

  ! % ! $ "      " " (            "   #               *        *       "(       ! % ! $ "  



 

  !  (    ! % ! $ "    !   & "



 & "  %(   " 



*

 *   + *( %  

!

&%   

  (

 ! % !$ "   # &

     



 +   %

&    ) & " 

 "   &  %     !  "   ( &  &  ) & # *  + (     % +     * ! % !$ "   # & &  * (  +     %  ! % ! $ "   # & ! (       ( (  %   *

   

  & *+ & & &  ( * *

 % &  + & & &









  $    ) ! % & " 



& & &     *

   

& &    *

&    

          *

 *

 & "  %(   "   %   % &   !    % + !   * % & $  && " !    &&% !  (  #  &   ! (   &%    ( + + '  %  ( " &%  " ! (   &%    +  +

"   "  )  *+ 

!    %  * '

# "   ( &   ( +  &  +

                           # ! &    )  &  "         *                                                   &  ) & #  ! % ! $ "   # & &    # ! % ! $ "   # & ! (               #  "   &           "          # 

Yi = β0 + β1 X1,i + β2 X2,i + i *     #   #   '           $      #      #  X1 X2

  

Yi = β0 + i Yi = β0 + β1 + i Yi = β0 + β2 + i

       #        #        $  #  

              &  ) & #                 #   β0 = = % $ "   # & &    # )     *       #    #   β1 = ! ! = % $ "   # & ! (      # )     *   β2 = ! ! =     #   $   #     

   ! &    )  &  "            

βˆ0 = 156.850 βˆ1 = 1.856 βˆ2 = −38.085

                  #  %     !           "                ˆ              ˆ            β β     #         0               ! 1      $    ˆ β2

   

        







     $        

βˆ0 ∼  (β0 , σβ0 ) βˆ1 ∼  (β1 , σβ1 ) βˆ2 ∼  (β2 , σβ ) 2

   "                  "          !             $           #                 

   $ β0  *      #                  

  *      # β                  #

  *     1# +         β                      2                 ' #        #    '    '          *                #                  ' #       $   #    '   #   $  *         $

*    # # *        *      

  )  *  + (  ' * (  + '  ( (  "  )    % + '    '   

#       !   )  '   " & !   *   & " * '  * #  & " * '  &  $  %  #  !   ' %  !   ' * '" * '  # &    '     &  #  & ""  !   ( '       &   !! %  '        " & !      & "   '    #  & "   '  &  $  %  #  !   ' %  !   '   '"   '  # &    '     &  #  & ""  !  % &     '      

&   !! %  '

    

  " & !      & "   '    #  & "   '  &  $  %  #  !   ' %  !   '   '"   '  # &    '     &  #  & ""  !  % &     '      

&   !! %  '

    

     $    '                 #  & "  %(   σ



   

      

likelihood

likelihood



140 150 160 170

−20

µ

0 10 δM

likelihood



−60

−40

−20

δP









 

 

      

(µ, δM , δP )

  



  

     

   

        







"   %   % &   !                #  $         σ ˆ ≈ 23.46 # $                   '     $       #        *                            *              

  



 



     

 







     

                



  



 

  

          

  

                                 Y                        

Y                                                                         

 

         

 

        





                       #   )   "     +                    $ *            #                              '            $  %    )   "  #    #    # &  #  )   "                      # *   #        $      #    +     #                #            #    #                    $   +    #         $                          $          #    #   $                    #              '             

*    # # $

#    "   )   " ') * ' 



   $       #  '             '                '    #    '                         # 

 

= β0 + β1

*

+





        %     #  !  $  #& #   '' '   #& # $!







σ ˆ ≡# '  &#    $ '   #   '' ' $  %  !$  $ P 1/2 ( r' i2 /(n − p − 1))     $   #    &  $ &  '  $ #   np ! n#$%    $     '









400

3.0

4.5

16

      

22 25

100

   

400

10

mpg

250

100

disp

4.5

50

hp

4

3.0

drat

22

2

wt

16

qsec 10

25

       #   "       

50

   

250

 ) "

2

   

4

   & #  )   "





 

   

        







     #     #       #                  '  *         #       #               ˆ  # β0 ≈ 37.3 #   

    

 

          $           ' $

βˆ1 ≈ −5.34    #   *          #         $       #  *      $     $          *  #  $              *           #              *                                   $   $ # )     *     #    # *                     # )       '        #     $  '     $                  *  *       #      = γ0 + γ1 +     "  #                                  + γ             "           #           γˆ0 ≈ 30.1 γˆ1 ≈ −0.069   *        #       # #         #  # *                # )        #                   *                      $              *   *     *   #       * $   #    #         *          #    #      #         #   '       # '     '        X     #   *    '            #          #  #  $  #  *    '  #            # #    #        # $   *    '  *   #  # $       '             '                #                 '      # '   *         #     #    #    *      # '                             #    #                    '    #                                               #                              $           $       *

  # $     # *             $       # $   *                     # #     '            #         $          +          *    #   $          +                 #       # $     #         $          '          #       # $   *           *   #          $        #                   # $        "(             #            # $   * σ ˆ σ ˆ ≈ 3.046 *       # $           *  *    #      *    σˆ ≈ 3.863         *  " *        *     #      $  *       







   

      

 

              *       $       # $   *   # $                  $         *      #    *     #        #   # $     

 #$

  # # ' %    )   "

        *       #              



 

= δ0 + δ1

*



1

          

+ δ2

 2

 #   

*





+





  #        #     $    *                "       #        #        σ ˆ ≈ 2.6 δˆ0 ≈ 37.2 δˆ1 ≈ −3.88 δˆ2 ≈ −0.03   '#   #         #             #     $   #  #     

              #     $ *       $       #             



*    # # *  

#  !   )   "  '  )   "  # $ '      &  $  '      # $   # $   *     # $   ' %    )   "    &  ) ! &   # $   *

       

     #



*    # # *  

 #  &  ) #  !    &%  # $   * '  & "  %  # $   * '      )  '       &% "   ( & "   !    *  '      & "  %   #  &  % #  !    &%  # $    '  & "  %  # $    '

      &% "   ( & "   !      '      & "  %  '      % 



     

   

 

   



 



   

 





 

       

   



10

20

mpg

10

20

mpg

30

(b)

30

(a)

3

4

5

50

250

horsepower

(c)

(d) 6 −6

−4

−2

2

resid

resid

150

weight

0 2 4 6

2

10

15

20

25

30

10

fitted values from fit1

15

20

25

fitted values from fit2

−4

0

resid

2

4

6

(e)

10

15

20

25

30

fitted values from fit3



 

 



#$

 # #



  ) "

     

 

   



       

 

#$



    

#

 



 

      

         

#$



 

    

 

 

  

  









 

    





     



 



 



δ1

 





   

  



 

β1







 



 









   

γ1  (−.05, 0)  





δ1





 



 



 

                  

 





 

    





δ1



 

   





     

 





  

 



 

     

 

 

 



δ2



  



β

  1

 









   

 

  





β1 ≈ δ1

    δ2



      

         

     



#       !   )  '   " & !  ( ' *  '  &   +  #  !   ' %  !   '   % %  '    * '  # &    '     &  #  & ""  !   &  *  '       '        " & !  * '  '  &   +  #  !   ' %  !   '  +(  '  * *  '  # &    '     &  #  & ""  !  $     * '       '        " & !  ( ' *  '  &   +  #  !   ' %  !   '  ( (  ' +    '  # &    '     &  #  & ""  !  % &   * '       '      " & !  * '  '  &   +    #  !   ' %  !   '   * '      '  # &    '     &  #  & ""  !  % &     '       '     





    

    



  







     



(−.1, −.04)            γ1 6≈ δ2

    

       X Y



 

       

      

   

γ1

 

 

     

 

  





 

  

    



                   







   

β1

β1

  

 

     

     





        

             

 

 

  

        



    

      

           

       



= β0 + β1 +   = γ0 + γ1 +    = δ0 + δ1 1 + δ2 + 

 

 

       

    

 



   



  





   

       

   

−8

−6

−4

 

−2

−0.10

−6

−4

−2

−0.10

δ1

 



 



0.00

γ1

β1

−8

−0.04

      

−0.04

0.00

δ2 



β1 γ1 δ1



δ2

  

 )  "      











       

              

      

 









      

      



   

 

   





 











 

 







 





 



  

   





       

     

    

                  

Y |X 





   

 

     

    

 

 



 

E[Y | X]                            X Y |X

                     

  E[Y | X] Y                               θ X                        

         Y



              

         

      

                 #            

              )              *             #            2         

                     *   ## ' $ $          $                         )     '#                      $  #             #   2          *      $ #             *  #     * *         " #   $       #       *        *        $     $                          $          #                    '         $    #   #   #                                  #            X Y  #    *                  '                    #                Y X                   $   '     



  

            $     $       *      # $    #                         #    #     '   *                *     #       " !  $  "##   *         #                "       $                *    #    $     









               #              *       #           # '   $                    *        

    

 

       





*    # $  +           $     $                  *    #        +             #   #            *                 *       #        *             #      '       #    *    #  " )  &  ) &  " )   "  $ ! "  " (  &   ""  !  "   *   % ! ) "            #          '  

        

 

             #         

            #    '   '                    $ # # #           #

                    #  '              *  *          #      #  '         #  *         #                 +                       #              #           *      $   ' # $            #   $  #              $      # *       $       +     *  #   # $    *                      $   #          # *                       '           $       #  *        # #             #       $  '                       #                 Y = X =                         #        #          #            $   ' #    #  +          *  #    #           $   #                     #   #             $   #                                  37◦

        

    

  





 



    



  

  



E[Y | X] = P[Y = 1 | X]





  

E[Y | X] = P[Y = 1 | X]









  



  

   

         

  

 

 





        

       



    

X X

         

   

  





    

          

E[Y | X] = P[Y = 1 | X] =

eβ0 +β1 x 1 + eβ0 +β1 x

  

   



       

0.8 0.4 0.0

pine cones present

(a)

5

10

15

20

25

DBH

0.8 0.4 0.0

damage present

(b)

55

60

65

70

75

80

temperature

 

 

 

         

               



       

 



 

    

    

 



 

 

    

 

 



       

 

   

  





 

    



β0



 



 

    



β0

 



 



 



     

   

  

β



 



 

 







  



 



β1

  

 

 

  



 

β1 



 





 

  



           

#      !     # !   !   "                          #    !   " #   "           !  "     ! #    "  #    $ % &" "      &! " & ' &! "  !     (    "     #  #   )    *   )   #  #   )    *    # !  !    "    # !    "      #       #                #   "           " # $      ! #    "  #     # " $       &  &  &  !     (    "     #  #   )    *   )   #  #   )    *   

+      

   



,- ./ 0. 12 12// . -3  4 

 

i



       





   

       

0.0

0.4

0.8

pine cones present

(a)

5

10

15

20

25

DBH

0.0

0.4

0.8

damage present

(b)

55

60

65

70

75

80

temperature

 





 



         

               





       

 



               

 

    

          

xi

 

     

,- .0

      

φi

       





 

θi = E[Yi | xi ]   θi φi ≡ log . 1 − θi



θi





   

          

θi =        

    



eφi . 1 + eφi

φi = β0 + β1 xi .  

23 21,. 2

     

φ





   

    



,.3 21  - 2,

E(Y | x)

      

β0 + β1 x     θ→1 x → −∞ θ → 0 

    



     

,



  

 

 

,.3 21  12. 0 -1   

  

          









x → +∞

  

  β0   

   β1

                                  4                                             

  

   

    



    

E(Y | x)    β1 > 0

   

β1 < 0







    



 





Y |x



 

  



 









  

   

   

  

            

       

 

     



      

     

       



 





 

          

       

 

     

    

p(Y1 , . . . , Yn | x1 , . . . , xn , β0 , β1 ) = =

Y i

Y i

=



p(Yi | xi , β0 , β1 ) θiyi (1 − θi )1−yi

Y

θi

i:yi =1

=

Y



(1 − θi )

i:yi =0

Y eβ0 +β1 xi 1 1 + eβ0 +β1 xi i:y =0 1 + eβ0 +β1 xi i:y =1 Y i



      

i

                         

  4



  

       

 

(β0 , β1 )

      



      

β0



β1

   

       

−6

−4

0.35

0.40

0.45

0.50



0.15

0.20

0.25

0.30

β1



−11 −10

−9

−8

−7

−5

β0

  

    4  

                 

      

  

  





 





       



 

    

       

n



           

            

     

  

    



 

 



     

    





  

   

 





    

     

      

           

        !   "    # # #     #  #   "    !     ' #    "  & " &"     ' #            ' # ' #  !     (' #  !     (' #    #       #   )    *  !   "            #   #      )   #    #   

          #  !           *                            !  !     #         #   " "  !     #       #   ""  !      

• •

• •

    



    

             

  





 

 #   &&&

   &&&



          

 



 

    



   & & &

      







 

 

   



      



(β , β )  0 1  

           

     



         



      

 #                         !   "          

   #  

            

           

             



  *                     

   

  

     

       

    

β0

          

β1

    



 

       





 



  

      

 

 

    

   



                 

    





   

     

 

β0 ≈ −9



 



   





  



 

 

  



    





   

         

  



      

β0

   



  

 

β1

 

 



 β1

β0



β1  β0 ≈ −6





 

 





 

    

    

+ 

 





   

β1

  

    

       

   

          









β





            

(β0 , β1 )



1     



       



 

   

      



β0





   

         

                   

β1

 

  





         

    

 

       



    

 

    

          



      

 !   "      &        #     !   " &               !   "     

        !   "    # # #     #



              !   "              !   "         &&&  !        " (

         "      &    !         #  % &! ' '$ !

&% ' # #!  ! & !   &   #  * * * # &#  

 &$ % ! # &# # # # % * * *  !   "       # & ' 

&&&

" &&& •  ! 

 

    

 



    





   & & &

# &%

& '

&! !

    





   $ # &  #   &!  & ' #   ! &

' & ' #   &!

 # # #





"#         $  

   

### # # # ! # '

  !!       !!     #        .3  /   # # #      

             

  

         

  

   



            

 

# # 

# #!

#



 

0 2 







   !!    ! !  "#  

  





      

             







     • •

     & & & 

       

   

    

  & & &





       

    





 



  



   

  

    



    

       !  

"        

    

y





     











 

      

    



   



              



 

      





 

   

  



  

  

  

    







 

#









   

 (βˆ0 , βˆ1 ) ≈ (−7.5, 0.36)

       

 



 

           

           



 

±2





  

   

  

β1





                                                                        Y         Y

                                  

                           Y        



X





Y ∼

(λ)



X

         



 

log λ = β0 + β1 x +          

   

                    



λ

      

     

 

                              !   " ! !       #$%&' '()'(*+   !",   -,.           !"     / 0/ 1  ,   

/  2" -,3 ,   -,4 

    0 !  1 !5   /, " /  6!"7 8    !"  !  5     , 2 7   

    6/7  !  " !   !  "     " !, 9  / ! 0 /      " !  !   !"   ! :    5 " !  ! #  /;  

 !      ,+ !  !    !0  8    !"   <(λ)  0!,   Y 0  ij !0  8    !" 0  ! 1   i ! / j , =  > ! 7 ! !   λ   0/ 1   ! ! !     !;,

   



       

       &                 &                 &            #                                                        







• •

   !    &               ,    0            " /   

!    0       !/             !  7     !  !       0/   ;  !"   , 9            

   7  !"    ! 

   7     7 !    ,       ! ! ! # 8    !"+7 1    !0  ! /  ,       !/      0 5

!,    !   &       !  " ! !      ,    7 !     !"     !     !     0 7        !     0 ,   ; 0    !;  !    

 0  !!!"    4  /!"    4 1      4       !"    1   , 9  !  1    !0     0 7 !  !0 ,    !   " !    !   ,             " !  /    6!     ; 

!",       /      0 ! !        

   ,          /  >    ! / ! !  7 !     ,              /  >  !            ,     ; 

/  !      7 !     0   

   4 1   ,

  !   > !         7       >    !     >    ! 2"  -, , < !    !

    

 

        



       # ,        / 0    !"7       ! !       !  !    !   , < !    !             ,  !   !       !         

         / !   

      !   # ,   ; ! !       !"  2"   -,3 ,         , 2"   -,

!!     /, < !               " ! /  ,       :  ! 0  ! / ,  7 -7 !  "   /  . ! 3   ,           /       ,   ; ! 0/               )                   

< !    !     "!       ,       !  ! 2"   -,       !" /   6  !    0 :  !   >, 2"   -,          

 !" ! ,                      #                                              #           #            #                                                 #                                                    #               #                #                                                                                                     #                                                                 

   



(b)

6 4 0

2

residuals

10 5 0

actual values

15

8

(a)

       

0.8

1.0

1.2

0.6

1.0

fitted values

fitted values

(c)

(d)

1.2

4 0

2

residuals

6

15 10 5 0

actual values

0.8

8

0.6

0.865 0.875 0.885 0.895

0.865 0.875 0.885 0.895 fitted values

(e)

(f) 3 1 −3

−1

residuals

10 5 0

actual values

15

fitted values

0

1

2

3

4

fitted values

5

0

1

2

3

fitted values

4

5



                                        #                   #                   



       

          



  

 !" !    2"   -,

    ! ,                                                                                                                             #                                                                 

 

   

   

      

                                            

x

   

β

         00 2  , 2/   

x

             12. 0 2  , 2/ 

  

              

      )    -, !       !        ", =   !5 !    ! 0/  !"         6   0 !

/ :  !  !  !/     !     , 2      6!   " !    !      

      ! 1  ! -,

7 -, 7 ! -, 7    !    >     

   , +! /0 7    - . yˆi = βˆ0 + βˆ1 i ,    - / . yˆi = γˆ0 + γˆ1 i ,     -  . yˆi = δˆ0 + δˆ1 i + δˆ2 i , 9    >    " !             !/ ! 5  0 :  ! , 2"   -, *  /     , 2"   -, *        ! "  # $ % & $' # (

       

*

 

       

/

(b)

10 0

5

actual values

1 0 −1 −3

residuals

2

3

15

4

(a)

1

2

3

4

year

5

0 2 4 6 8 fitted values

0 −1 −3

−2

residuals

1

2

3

(c)

0 2 4 6 8 fitted values     -                                 $               

      

          



!    &      >      0 !

/       ! " !"    / 

     7      &       >  5    :           !       7       ,    !   !         &  !    &      &  , + !   -,  6  >      "       &  σ ˆ  !      &  ,    & 

  

2"   -, *        

 !" ! ,     &                 &          &          &                    &                                                   



           >   ,     ! 0 !/       / >  0/  7   7       !!  >  ,

     

-            -   

y = β0 + β1 x + 

,

-

.

                                x y                                                                    

             4                       xf                                 

yf



xf

yf ∼

yf

(µf , σ)

  

µf = β0 + β1 xf                       β0 β1                 

µf

µ ˆf = βˆ0 + βˆ1 xf

(β0 , β1 )





   



       

20

10

20

30

20

25

30

10

20

25

10

15

fitted from wt

20

25

30

10

15

fitted from hp

25

30

10

15

fitted from both

10

15

20

actual mpg

10

20

30

    - /       

10

 

20

30

           

       

   

     

             

µf  

                      ˆ ˆ (β0 , β1 ) (β0 , β1 ) 

       





µ ˆf



             

µ ˆf ∼

                σ       

xf



    

  

(µf , σ )

               

 

                 

                                          x µ ˆf y          f              f     µf 

µf

y f = µf +             

 ∼ (0, σ)        



±2σ

yf

 

    

µf





   

                         .   σ yf                            , .   µ  (β0 , β1 )        f                        

,       σ           

                                          

      

     (β0 , β1 )                                                                                 

  

  

,

.                                    -  .  .    .  , , , .                

,

.                              ,                  &       . ,                                                                                            X Y 

        -                                - -                               .     ,                                                 -                                     

          0      w w  0

               -                                    ,

   

  -     -  

.                            

                       

            



. ,

. , . , . , . ,

      



 

         



                     

       +       





  

   0





           -     -       -                                                                               -                         δP          





/

   

  -     -               +                                                  

      



,

.            -                   -  

,

.         +    -   

                     

.

,

     

             



    

- 

      ,

-

 .         +    -   

            

    

 .              -   ,  .               ,  .                         -   ,  .       ,

 

                        

                            

        

  

         +        -              +    -   

            

                               

                          ◦                                   +             - /                   -                 

β0

β1

       

   

     - /



γˆ0 ≈ 30 γˆ1 ≈ −.07

 

σˆ ≈ 3.9



      



                   

                                    

 (   &  &  &                    !(  ' ' #   !!                                           

                   

                                                   

     



-              ,

.

   





µC µT 1 µT 2

.          , 

.          , 

 

      

σ

 

    -  



µT 1 = µC



µT 1 = µT 2



       

                                                                           

 

           







              

                           

                                                                           

                                                    

                                                                         

        

               

     

                   

                               .3 2//   -0. 23 0                         -                                .            Pi = 1 0 , B = 1 0 ,  i          . 

b

p



39

40

41

42

43

44

45

HQ

    -       

   





        

 

                  

   ,

i

    

= α0 + α1 Pi + i

.         





α0 α1 β1

 

i

β2



= β1 Pi + β2 Bi + i

      . ,

. ,

 





            β1 β2 α0 α1                        HQ = 43 HQ = 44      2                    σ ˆ =1 ,         

                 .                    α0 α1 β1 β2 

                 

 



 

                                                          





      '' '  

% ' ' 

 

                               

                       21 23 0  122 , 3                                                                                    23  -  1  2                                     

   

                                                                            ,

.                                                



.                          ,                               

                     

  

                    

.                                                           

,

         .                               ,

                                +                                             

                         4                         ˆ ˆ   (β0 , β1 )                           -                 -                 β0 β1                                       -                   

                                /                             



                                                           yi z                   i         z = β0 + β1 yi β1       i       ' &  $' ( & 





,



.         

  

   

        ' #                       

,

.





    





    

    )      ' #              +     

               

.                

,

 

     

SD(βˆ0 ) = .13 SD(βˆ1 ) = .22

   βˆ0 βˆ1



     



 #   #    #        ( # #          ' #       )      ' #                          & '   #    # )

               &! !       )

 +     

      #                  

                     

                       4    

  60◦ t1 , t2 , . . . , t100             .    

   .      t1 = , t100 = , 4      

           

    y1 , . . . , y100  z1 , . . . , z100                     

          .    ,                   t1 , t2 , . . . , t100  yi  zi                                  

                    

                     

       ,



.  %     !& 



     

yi = β0 + β1 ti + i     ,





    



.  %     !& 



     

yi = β0 + β1 ti + β2 t2i + i    







     

zi = β0 + β1 ti + i    



-  -.

    



.  %     !& 

,

,

    



,

-

.

       

/



 .  %    !&        ,  -  .

zi = β0 + β1 ti + β2 t2i + i    





    



 .  %    !& 

,

,



      -

yi = β0 + β1 zi + i    





,

.

    



 .  %    !&        ,  -  .

yi = β0 + β1 zi + β2 zi2 + i    



,

    



 .                   ,  .                   ,

 

 

 βˆ0    βˆ2

  . ,     . ,



-                              .                         ,                                                                                      /                            !           !  ,

.                                            ˆ  ˆ    



β0 β1

σ ˆ

.                             !    ! 

,

.         

      ,   .                         

,                                             ,                 .   .         

   ,   .          

             ,                              

                     

        



             

   

             * ) )      # 

,

.               



.                  



,

.                      ,    .                        ,  .                     ,      

   

&    # # #        &         ( &            #      * ) )       # #                                            )  

    

    

    



  



                     yi = β0 + β1 xi + i    

     



  

     

          β1  

                            yi  xi                    

w = xi + δi δi ∼ (0, .1)       i       

 yi = β0∗ + β1∗ wi + ∗i (β0∗ , β1∗ )                           (β0 , β1 )  wi  xi             

  

   



        &    # # #  &#    # ( #  &    # ( #    #       (        (         &          ( &                 )       #    &       &#  )  *  &   )                                                                  &       

                                          &# $ '% # &! ! ' $  & # %            

                                  

                         β0 

β1 ,

.                

          x               

                  

,

.                           β0 β1                           β                       . 2  21/

β1

β0

.         

      (β0 , β1 ) θi = eβ0 +β1 xi /(1 + ,   

         

         eβ0 +β1 xi ) θi xi

               

      ,



 .                             x β     

         

       

  θ      

                                 

                x β

            





                                                     ◦     36         

                                                   /              -     .               

      -         ,      .          $    )                 ,           

.                               ,             $    )      .                                ,                                                                     



       

      

 

 

      

   

                                                                              X FX           /              d

fX (x) =

FX (b)

db b=x                        d 0 F (b) f (x) ≡ F (x) =  X     X     db  X   b=x                    A                     



P[X ∈ A] =

Z

fX (x) dx

Z

f ∗ (x) dx

A

   ∗                       f fX R     

      

                R

 ∗ A

A

f =

A

fX

P[X ∈ A] =

A

  ∗                                 fX f                               

                                                                                                   

                X                                                                X    -



   

    (# ('   

     

f

     

  

P[X ∈ A] =

Z

A



     A



f (x) dx



                             

         

 

  

           

 X

fX

          



         - 

                                                                                                     

 "   #     X#           

Z

    

   

−1 d g (t) pZ (t) = pX (g (t)) dt

pX ! g   Z = g(X) ! $

−1

%



      A P[Z ∈ g(A)] = P[X ∈           

 

!   





A] =

R

A

pX (x) dx



 

dx P[Z ∈ g(A)] = pX (g (z)) dz dz g(A) R  '()* !+ dz     '()* !+       P[Z ∈ g(A)] = g(A) &  & ,     −1 pZ (z) = pX (g (z))|dx/dz| Z

 -

 

z = g(x)

−1



 pZ (z)



.  



                                                                                                                                                                        X1 Xn  n n  

           

        

~ = (X1 , . . . , Xn ) X



         ~                            

X                    

     



         



 



           

X1

 

Xn

        

~          X

pX~ (x1 , . . . , xn ).                                            n   A R  

Z

~ ∈ A] = P[X

··· A

Z

      



pX~ (x1 , · · · , xn ) dx1 . . . dxn

              ~ X1 ∼ (1) X2 ∼ (1/2) X1 ⊥ X2 X =                         (X1 , X2 ) P[|X1 − X2 | ≤ 1]                                 pX~ pX~                   

|X1 − X2 | ≤ 1

A

X 1 ⊥ X2

1 pX~ (x1 , x2 ) = pX1 (x1 )pX2 (x2 ) = e−x1 × e−x2 /2 2

                              A                  

P[|X1 − X2 | ≤ 1] =

ZZ



X 1 X2

   

pX~ (x1 , x2 ) dx1 dx2

A

1 = 2

Z

1 0

Z

x1 +1

−x1 −x2 /2

e

e

0

             

   

 

 

1 dx2 dx1 + 2

(X1 , . . . , Xn )

Z

∞ 1

Z

x1 +1

e−x1 e−x2 /2 dx2 dx1

x1 −1

   





 .

≈ 0.47 ,

      

pX~ (x1 , . . . , xn ) = pX1 (x1 ) × · · · × pXn (xn ) (x , . . . , x )



     1   n                   (X , . . . , X )    

                    1   n (X , X )                      i  j          



   

 

    

                                                       



~ = (X1 , X2 , X3 ) X

P[(X1 , X2 , X3 ) = (0, 0, 0)] = P[(X1 , X2 , X3 ) = (1, 0, 1)] = P[(X1 , X2 , X3 ) = (0, 1, 1)] = P[(X1 , X2 , X3 ) = (1, 1, 0)] = 1/4



            X 1 ⊥ X2 X1 ⊥ X3 X ⊥        

           2 



,

X3

X3

     



 



.

X1 X2



          

~                          X ~ ≡ (E[X1 ], . . . , E[Xn ]) E[X]



   ~ ≡ (X1 , . . . , Xn )                      X 

                      ij  Cov(Xi , Xj )         



   

σii

  

 σ12 σ12 · · · σ1n  σ12 σ 2 · · · σ2n    2    ~ Cov(X) ≡ ΣX~ =         2 σ1n σ2n · · · σn

σij = Cov(Xi , Xj )

 

 

σi2 = Var(Xi )

     

σi2

     

          

     -                              

~ = E[g(X)]

~ X Z

···

R Z



g

      



g(x1 , . . . , xn )pX~ (x1 , . . . , xn ) dx1 · · · dxn

                        ~     g(X)                     

        



g



      

 



  

 

X1



X2

     

Y = X 1 + X2 ! $

! E[Y ] = E[X1 ] + E[X2 ]

! Var(Y ) = Var(X1 ) + Var(X2 ) + 2 Cov(X1 , X2 ) %

         !

                          

   ' % 

~ = Y = ~at X

 

 

!

! %



P



~a = (a1 , . . . , an )  #

 

   

           

n

ai Xi ! $ P P E[Y ] = E[ ai Xi ] = ai E[Xi ] P Pn−1 Pn at ΣX~ ~a Var(Y ) = a2i Var(Xi ) + 2 i=1 j=i+1 ai aj Cov(Xi , Xj ) = ~  /

!   

    

 



    -

  ,

 .

   

  ,



.



                                            

k≤n

i = 1, . . . , k

Yi = ai1 X1 + · · · ain Xn =

X j

             

    

aij             (Y1 , . . . , Yk )

~ Y~ = AX

  





A

  

k ×n

       

aij

~ aij Xj = ~ati X



~ai = (ai1 , . . . , ain )

    

  

 



   

Yi 

~ at X) ~ Cov(Yi , Yj ) = Cov(~ati X,~ j n X n X = Cov(aik Xk , aj` Xj ) =



=



k=1 `=1 n X

aik ajk σk2 +

k=1 ~ati ΣX~ ~aj

             

n−1 X n X

(aik aj` + ajk ai` )σk`

k=1 `=k+1



 

     



  

Y~ =

 - 

   

/

 

    

 "   ~           

     ~ X n E[X] =              ~ Cov(X) = Σ A k×n k µ   ~   ~ Y = AX ! $ #   ! E[Y~ ] = Aµ  ! Cov(Y~ ) = AΣA0  

                                  '%









                   - .    ,                         

~ = (X1 , . . . , Xn )   X          n fX~ n                   ~ ~ ~ Y = (Y1 , . . . , Yn ) = (g1 (X), . . . , gn (X))                          ~ 7→ Y~ gi  g:X                 fY~ Y~         

              J   ∂Y1  ∂Y1 · · · ∂X1 ∂Xn  ∂Y2 · · · ∂Y2   ∂X 1  ∂X n  J=       ∂Yn ∂Yn · · · ∂Xn ∂X1  

|J|



                 

 '%

%

  

  



J



fY~ (~y ) = fX~ (g −1(y))|J|−1      

                    R R  ~ ∈ A] = ··· p ~ (~x) dx1 · · · dxn  A P[Y~ ∈ g(A)] = P[X                 A X

!   

~y = g(~x)





 



P[Y~ ∈ g(A)] =

Z

···

Z

g(A)

pX~ (g −1 (~y )) |J|−1 dy1 · · · dyn

R R  '()*+ dy · · · dy      '()* + P[Y~ ∈ g(A)] = ··· g(A) &  1 n  &      ,    −1 −1  pY~ (~y ) = pX~ (g (~y ))|J|  pY~ (~y)

  

 

                                                          

X1 ⊥ X2



 

X1 ∼ (1) X2 ∼ (2)                ~ X = (X1 , X2 ) P[|X1 − X2 | ≤

   



 



                                ~ = 1] X                         |X1 − X2 | ≤ 1 (X1 , X2 )          

                 Y = X − X Y2  1 1 2                              Y~ = (Y1 , Y2 )                        |Y1| ≤ 1 Y 1 = X1 − X2                          

   Y2                    n  n               R R  Y                    2         ~ X Y~                              Y 2 = X2   ∂Y1 ∂Y1   1 −1 ∂X2 1 = J = ∂X ∂Y2 ∂Y2 0 1 ∂X1 ∂X2

|J| = 1 X1 = Y 1 + Y 2

 

X2 = Y 2            



 

pY~ (y1 , y2) = e−(y1 +y2 ) × 21 e−y2 /2 =          

  

  1 −y1 −3y2 /2                e e

pX~ (x1 , x2 ) = e−x1 × 12 e−x2 /2

2

P[|X1 − X2 | ≤ 1] = P[|Y1 | ≤ 1] =

ZZ

pY~ (y1 , y2 ) dy1 dy2

A

Z Z 1 1 −y1 ∞ −3y2 /2 e e e dy2 dy1 + e dy2 dy1 2 0 −1 −y1 0 Z Z 1 1 −y1  −3y2 /2 ∞ 1 0 −y1  −3y2 /2 ∞ dy1 + e −e e −e dy1 = −y1 0 3 −1 3 0 Z Z 1 0 y1 /2 1 1 −y1 = e dy1 + e dy1 3 −1 3 0 0 1 2 1 = ey1 /2 −1 − e−y1 0 3 3  1  2 −1/2 1−e + 1 − e−1 = 3 3  - . ≈ 0.47 ,

1 = 2

Z

0

−y1

Z



−3y2 /2



/

   

 

X2

Y2

X1

   

 

   

   



    

      

Y1

   

         

(X1 , X2 ) (Y1 , Y2 )       

                 ~ ~ X Y |X1 − X2 | ≤ 1  

    





  

       

                                            

                                                                                                                                                         ! "#            ! " #             $                                   $  $                               $                                                            % "#            % " #  

              &       

         



                                                                                  

        



/

                                                 

     

           

                  Y Y   Y    p                             Y             

                     Y                        



FY



(P       c Y y=−∞ P[Y = y] FY (c) ≡ P[Y ≤ c] = R c        Y . p(y) dy −∞

  .

,

                                                                  Y  b∈R P(Y ≤ b) = F (b) =

Z

b

p(y) dy

−∞

                        p(y) = F 0 (y)

                    Y P[Y = y] = P[Y ≤ y] − P[Y < y] =           −           FY (y) − FY (y ) , FY (y − ) F (z)                 .   Y   z y lim↑0 FY (y − )            

(       FY (y) − FY (y − ) Y pY (y) =         FY0 (y) Y

            

 .

,

                                                     FY (y)                                  

 Y Y                              F            Y                .           ,             .        , 

   

/

    

Bin (10, .7)

0.0

0.4

cdf

0.20 0.10 0.00

4

8

0

4

8

y

y

Exp(1)

Exp(1)

0.0

0.0

0.4

cdf

0.8

0.8

0

0.4

pmf

 

0.8

Bin (10, .7)

pdf



0

1

2

3

4

5

0

1

2

y    

3 y





                 

4

5

         

  





      









/-

  

       

           

                                                                      &   

                                                           

                                                                           

                            •                                  





              

             Y                            MY 

MY

(P       ty Y tY y e pY (y) MY (t) = E[e ] = R ty         e pY (y) Y

   ' % 

  



,

.

                  pY                                                                     

                                     . t=0 ,         

                     M (t)

  .  Y        ,             t MY (t)   

                                δ>0                              MY (t) t ∈ (−δ, δ)        

       



Y

 

  n

MY

E[Y ] =

        

  #   

(n) MY (0)

dn ≡ n MY (t) dt 0



/

   

%

 

n

!

                  



n=1 

 

    

           

Z d d ety pY (y) dy MY (t) = 0 0 dt dt Z d ty = e pY (y) dy dt 0 Z = yety pY (y) dy 0 Z = ypY (y) dy = E[Y ]



                   

d dt

Z

f (t, y) dy =

Z

d f (t, y) dy, dt

                                    f                                                       

                                

                   

          



                                                                                                        

       

MY (t)

                 ' %       X                Y      MY ! X (t) = MY (t)

        

  #   MX

 # M           t FX = FY ! ! X Y     



!    ' %                        Y1 , . . .                       MY1 , . . . !  M(t) = limn→∞ MYn (t) !                 

  #  

    t M(t)                #              













F



         



! 



!M



y

  





/

F (y) = lim FYn (y)

F

     

n→∞

      

F!

                                         

                                    .                                 ,                  



CY (t) = E[eitY ]

   

                      i = −1                    

                                           ,                         

                                           

                                      /                   ' %          # 

 #     X a, b   bt

Y = aX + b ! $

%



!

MY (t) = e MX (at) !

  MY (t) = E e(aX+b)t   = ebt E eatX = ebt MX (at)

   ' % 

X +Y ! $

%



!

               X Y Z= !    MZ (t) = MX (t)MY (t)

  MZ (t) = E e(X+Y )t = E[eXt eY t ] = E[eXt ]E[eY t ] = MX (t)MY (t)

                Y1 , . . . , Yn      ! ! ! MY !  X = Y1 + · · · + Yn ! $

 ' %' !! %

   





MX (t) = [MY (t)]n







   

/

 

     

  

     ,

.

       

 





                                 ~  

             pX               x1 x2     

            pX~ (x1 , x2 ) (x1 , x2 )      

                                                   x1 x2 pX~

            



,

.



  

      

      

               

.                                 

,



 

    

    

A

   

 

    



 .                        ,                                N                       X                       -





P[X ≥ 1]

                        

 

(X1 , X2 )     p(X1 ,X2 )



                   (X, Y ) p (x, y) ∝ ky k > 0                 (X,Y  )          (x, y) (0, 0) (−1, 1)     

(1, 1)

,

.   

k



.     P[Y ≤ 1/2] , 

.    P[X ≤ 0] ,   .    P[|X − Y | ≤ 1/2] ,                                           ,

.

  

                 ~ = (X1 , X2 , X3 )  X         

              X 1 , X2 , X3           

     



/

.           ~ = (X1 , . . . , Xn )  X ,                       X 1 ⊥ X2 X1 ⊥ X3              

       

     

X2 ⊥ X3

  

X1 X2

X3

                                            

/   

       

 

X Y  (1, 0) (0, 1) (−1, 0) ,

.

    



(0, −1)

p(x, y)            X Y 

             

,

.

 

     

 

U =X +Y

 

V =X −Y

             

 

X = UV

.

. ,

. , . , . , . , . ,





 

 

U V              p(u, v)          U V                 p(u) p(v)                   p(u | v) p(v | u)         E[U] E[U | V = .5] E[U | V = −.5]

        (U, V )         ,

 

p(x) p(y)                     p(x | y) p(y | x)           E[X] E[X | Y = .5] E[X | Y = −.5]



                  

Y = U/V

          

 

X Y

            

              

(X, Y )

                                

P[Y > 1]



P[X > 1]



P[Y > 1/2]



X Y







(X, Y )



   

//

     

  .    P[X > 1/2] , .     P[XY > 1] ,   .    P[XY > 1/2] ,                                                     

t=0

             -        

 Y      

MY (0)

    n=2                       

X ⊥Y

    



  

     

                                                 

                                                             -                            

  

           N

        θ θ                             (0, 1)  (N, θ) θ θ                     

    {



(N, θ) : θ ∈ (0, 1)}

                                                   - .      -  .           - - .     ,     -  .    ,               ,       ,                

 

    



           

 

            (  '  ( !  (&# % (   # ('       ! "  # $    # # # %   ""      %%& ! $  ! % ! " %$ &   # %" % $ "  # %  

 %     '   "  &  "  %   .  ( %  ""  &  %     , !  % " .  & ! " %" $ % %   ,  % # %  , $ " .      "" % # %  , &   % &  . '   !     ,  & "  % $ %





/





     

 ' # $& 

%  %"



n



' #  %  "   $  

 

- ' %" %

 θ





!  !(    # &

% # %"   !

!  ""   !   !   # # %   ( 

θ

'



 # %! & (% " # $& %  $     $ #  ""  X    %" ' #   !  # ( #  & " ! % $  #  %&  %   X     % ' #   " ("$    % #   %     (n, θ) X∼ (n, θ)  X ' ' '  '    $ %  ' #    &  "     & "  &   %  ( %" &    n    ! ' $ ""   $       ! # %" %  %%& ! %! %  n θ θ " %  $ '

($ "θ "%  ("$   % ( !   #   "%   ! & "" ("$  θ  ( !   #   & X  % "" '  $  ("$  # ( !    $ ( "  X θ  & $   "    & % '    %$ "%      %$ "% ("$ X =x  #     %( !      $   #    ""     " !  !   %     ' #              " ("$ '



θ 

   ' %     





X ∼  (n, θ)

 

p(x | θ)

  n x pX (x) = θ (1 − θ)n−x x x = 0, 1, . . . , n !

%"     & "   %&  % %% ! $ # %  ""    $     . ! "$%    . $ #  '     , # ,!  % # 1000110 · · · 100  "  #    $   $     S = {0, 1}n  x ∈ {0, 1, . . . , n} # $          $     #   !  '  Sx  S x 1 n − x 0 #   '    %$ "%  "" # ( # &   s ∈ Sx Pr(s) = θx (1 − θ)n−x s Sx  %  "  ' # % % 

%



 #  #

 !  $

 

n



pX (x) = P(X = x) = P(Sx )     =( Sx ) · θx (1 − θ)n−x   n x θ (1 − θ)n−x = x

 

 

    





#   "   &  % $  #  # (      & '  #  n=1  #   !  # (      ! % $  #  %&  % ' 

  %  % '    % #  % ' X∼ (θ) X∼ (θ) pX (x) = θx (1 −θ)1−x x ∈ {0, 1}   %&  #  # (     " $&  % "" !  % $ "" %" '  $           ! '   X1 ∼ (n1 , θ) X2 ∼ (n2 , θ) X 1 ⊥ X2 '  #   # ! % $      $   #   X3% = X1 + X2 X3    $    . # % % %"   . # %" X3 ∼ (n1 + n2 , θ)  n1 + n2 "" # ( # &  %  "   ,$   - . # %" % ,!  !   θ  # # # % # %  % $,&   . !  .  # " X ⊥ X2 X , $ & %  $   ' # % & 1'- #     %& "  %  , # 3 %   '  $  %   !     # & &    %  $   ' n=1



X

   ' %     



%

  !





Y ∼

θ



 

X ∼  (n, θ) ! $  n MX (t) = θet + (1 − θ)

%

'

(θ) 

# 

MY (t) = E[etY ] = θet + (1 − θ).

Pn # %

 "  X = i=1 Yi "%   '   '

#

 %

Yi 

 ' '! '



%

(θ)

 !    " 

   ' %    "     



 X1 ∼  (n1 , θ) X2 ∼  (n1 , θ)

   

X3 ∼  (n1 + n2 , θ) !

X3 = X1 + X2 ! $

%



#



 %"

X1 ⊥ X2 !

!

 %

 %    

MX3 (t) = MX1 (t)MX2 (t)  n  n = θet + (1 − θ) 1 θet + (1 − θ) 2  n1 +n2 = θet + (1 − θ)

 $ "  

 %

# "   # % $ " ""  





'

#   !   # % &  ' '  &    #     !% $ ' (n1 + n2 , θ)  # % &  ' ' # % &

   #

    & " !%

# &   # $   "$ " !    $   '  '   # % &  ' %   #  % $ " !  (  # (%   !  ! %! ! (  

 ' 

   ' %     





X ∼  (n, θ) ! $

 



     



 





! E[X] = nθ ! ! Var(X) = nθ(1 − θ) ! p

! SD(X) = nθ(1 − θ) ! %

 #  %  %    (  %" % '      #  E[X] X ∼ (n, θ) X = !  Pn  % & $$ ""   !   !  ' # %  # %  %  ! # X ∼ (θ) Xi  X  %i=1   i # % & i  '  '  $





Var(X) = n Var(Xi )



Var(Xi ) = E(Xi2 ) − E(Xi )2 = θ − θ2 = θ(1 − θ). '

Var(X) = nθ(1 − θ) 

""   & & !  "  '

# % $ " %

SD(X)  &   # $ "   $    %  %     #  & " !% $  '     %&       &        &          $    # ""  # % % & "% $    %  %    &        % &       '  # # % ! % $   $     %   # % # "      # % '







   

   

               

   

       

                                                   

 



             

     





   

      



                &       &    &    &           

 



   





       

      





 



     & 





          

    

    

 

 

  

 

    



  

     "!   # 

  

&   



     

-

"!   # 



   &       



 

      & 

        & 

 

    &              

        



            &              &                       &   &           











   &         & &  &          

 &               &   







 



        &              &                   &                            











 

 



    





     



    





 &                      

                     &                           &        





           &              





    

 & 

 





     





      



     $   !     !         $ $        



     



                                                                                              &                                                                                                               $                        







   $ %  '  #    #   & "  &  %  ( %" ("$      ! '  x n p #  %    !     "%  % #  &  "     %   "  "   %& "  ! '

p

n

#   #  %"  &  # % & '    ' '! '  % ' #  Y1 , . . . , Yn ∼ P (p)  ! % $  #  # &  # ! % $   ! #  %"   " %&Y"i   &  # % &  ""X $  #  P "    %  ' n→∞   %    !  #  &  Y"i    & % %& "  #   " #   #  n p = .5 '   ! #   $  ( %    $ ! % #  %"  &  # % & p = .05      %  #  # ! % $  #  & %   & & % '



   $ %  '     % ! $  !

Yi





                                             

           

       # (    (  '  ( !  (&#% (   # ('   # % #     !(  # $ & %  %"    %&  %  "" & &  $ #   $    %"



 

    



n=5, p=.5

0.05

0.0

1

2

3

4

5

0

1

2

3

4

x

n=20, p=.05

n=20, p=.5

p(x)

0.2 0.0

0.1

5

0.05 0.10 0.15

x

0.3

0

p(x)

0.15

p(x)

0.4 0.2

p(x)

0.6

0.25

0.8

n=5, p=.05

1

2

3

4

5

6

8

10

12

x

n=80, p=.05

n=80, p=.5

p(x)

0.02

0.05

14

0.06

x

0.15

0

p(x)

 

0

2

4

6

8

30

35

x

  $ %  '

40 x



#

 & "  & 

45

50





     







$ "   %     ! $ & %  $    #   #  ( ! '   #   # r   " $ & %  "$ %   # % ! & (% "  !  !  # ( #   N  " ! % $ (   &  #  %&  %    %  '

   (r, θ) N∼ (r, θ)   %   & $# %   #  # " $ & %  %"   #  # r  ! !  

,  (   & " ! % $ '.   &  "    & " % N#+  #    ' #  %    ! $  & %  $     "  # ! "  " %  $ "   '   #     ' # $ & %  "$ %  $" #     % ! & r=1   !  #N(   & % ! % $  #  %&   !  #  ( % r=1 N  %   %   '     $       '  % ("$   % θ N ∼ (θ) θ N ( !   #   & "" & "" ("$   % ( !   #   "%  ' # θ N θ   %  "  $  

 

pN (k) = P(N = k) $    #  % %" = P(r − 1 k+r−1  ! # %"   $   k + r )   k+r−1 r θ (1 − θ)k = r−1 %

k = 0, 1, . . .

'

  '''   !  '''

  

   N1 ∼ (r1 , θ) Nt ∼ (rt , θ) N1 Nt  !   !   # # % ' #    &       $   %"  "   # P # (   P  $   '  # $& %  "$ %  % (N + r ) ri N #  #1 $ & %  "$ %  % # # $ i i ' ' ' r1  N1 + · · · + Nt   P  # $ & %  "$ %  # $   '    ( !  #  r1 + · · · + rt  P N≡ Ni % # # $   $ % ! # % % #  '

   





r≡

   ' %      

r(1 − θ)/θ ! 2

%

   !

ri 

Y ∼

N∼

 

 (r, θ)

 

$      %( # % $ " %

E[Y ] = r(1 − θ)/θ

'

r=1 

(r, θ)



#  # % $ " %

Var(Y ) =

r>1

 ""

 

  "" 





    

# %    %  $ &   !

E[N] = =

∞ X

n=0 ∞ X n=1



# % &   ' !  ' ' %



r=1



n P[N = n] n(1 − θ)n θ

= θ(1 − θ)

∞ X

n(1 − θ)n−1

n=1 ∞ X

= −θ(1 − θ)

n=1

d (1 − θ)n dθ ∞

d X = −θ(1 − θ) (1 − θ)n dθ n=1

d 1−θ dθ θ −1 = −θ(1 − θ) 2 θ 1−θ = θ = −θ(1 − θ)



#

%    % 

#  %&   ! %((  #    #   #

%! % 



     

/

$& &  ! ! %((    ""  $  $ " ' 2

E(N ) =

∞ X

,





%      '

n2 P[N = n]

n=0

= θ(1 − θ) = θ(1 − θ) =

∞ X

n=1 ∞ X n=1

(n(n − 1) + n) (1 − θ)n−1 n(1 − θ)n−1 + θ(1 − θ)2 ∞ X d2

1−θ + θ(1 − θ)2 (1 − θ)n 2 θ θ n=1

∞ X n=1

n(n − 1)(1 − θ)n−2

∞ 2 X 1−θ 2d = (1 − θ)n + θ(1 − θ) 2 θ θ n=1

1−θ d2 1 − θ + θ(1 − θ)2 2 θ θ θ 1−θ θ(1 − θ)2 = +2 θ θ3 2 − 3θ − 2θ2 = θ2 =



# % % 

Var(N) = E[N 2 ] − (E[N])2 =

1−θ . θ2



# $   %  %     # #   (   & " ! % $ %                 !    '    $ %  ' !   "   #  (   & "  ! ! ""$%  # $      '    $ %  '    % ! $  !  # #

""         '

                                        

 

                    " #  "# 

  0.020

0.00

0.04

0.08

r = 1, θ = 0.1

0 20 40

probability

probability



probability

N

r = 5, θ = 0.1

60 100

350



0.010

20 N

r = 30, θ = 0.1

200 N

'  % $  

0.000

0.05

0.02 0.06 0.10 0.14

0.0

4 6

0.05

0.15

r = 1, θ = 0.5

2

14 probability

0.02 0.06 0.10

0.4

N

8

probability

0.2

0

4

45

r = 5, θ = 0.5

0 N

r = 30, θ = 0.5

30

N

probability

0.25

0.2

0.4

0.6

0.8

1.0

4

2.0

r = 1, θ = 0.8

0.0 N

2

N

12

r = 5, θ = 0.8

0

6 N

r = 30, θ = 0.8

2

 &  "   &    (   

0.03

15

#

0.01

 

0.006

probability

     

0.002

probability



probability

- 

     





&         " #  "#     &          " #  "#                              &               





     #  " ' # $       $ '  $ %  #  #  " #     "  /   !%

 ! & % # "&   # •

 -





                   

# & $ "& " ! % $   %"   #  & " ! % $  #        ' "" # & " ! % $   "   #  # $&    " ("$  # & $" & " !% $    "   #  # %" #         '  &  &  "  % $&   %" #  & % #       " $&



  " " %"  #     ! &  % !  % &   $ $ ""     %& " % &  %   ! %!  %" % &  '   %  #    &  % !  # % $    "$ %  %    % ! '   %   $ %  $     !   #   $  % # %        $  ! % &  &   & (      % # % %  '

 !(  ($ !  % ( !&



 % &   % #

&

 # % '

 $



%""  # $ ( %""  # %     "  %

    # ($ &  # 

 &    ( %" (% '  ( %   % #          #     &  % " !    % " '   #  %  $    ! % !    % "  &    #  # #       {a, c}   !          ' #  %  "" ! #  %      ' a c    #  %   &  "   ! % !  %" '    &   $  #   &      " # ( #     '

 ' !(# ($ !  $ (   $      ! !   #



"   #  %  %  % # % #   $ "  &  %  #  %   %  $  ! ! ! '

- 

 

 



#    $  # $& %  $&   #    '   # % % k   " $&  #  # % $"   ( % # %  # $& % y1 , . . . , yk yi  '  &  #  $&  $ % !  !  # $& %  %" i y1 + · · · + yk = n !   #  %  "   #   %   # p ≡ (p1 , . . . , pk )  k n   $ & %  %" '   %  $ " '    %$ "%  Y ∼ (n, p) Y ≡ (Y , . . . , Yk )   ( %  "   # '  $    ( %        1

k

Y

E[Y ] = µ = (µ1 , . . . , µk ) ≡ (E[Y1 ], . . . , E[Yk ]) = (np1 , . . . , npk ). # #  %!       % ! & (% "      %  # '  $ i Y Y  # $ $ & %  & i  $&  $ %% !  %"   ! % $ i i n       %  '.  '. Yi ∼ (n, pi ). , ,  "# $  # #  % ""   & "  #  %   !   !  '   % ""   Yi   #    #  & $ !   !  '  #   Y1 = n Y = ··· = Y = 0 Yi  # %   &  2  #   # k  !  " !% $      (  Y2 , . . . , Yk   #       # % &   %( ! #    % ' Y1    ' %  





Y ∼



 

(n, p)

 

fY (y1 , . . . , yk ) =   

%



n y1 ···yk



 n py1 · · · pykk y1 · · · yk 1

     & $ " & "     

n y1 · · · yk



n! =Q yi !



%&  % %% ! $  # %   # % # "  %  !  abkdbg · · · f  # $&    ! ( ! $ " %" '  $#   $     ""

!

 #  # %"   & $ " & " n    $    $&  $# 

· · a} |b ·{z · · }b · · · k · · k} |a ·{z | ·{z y1    y2    

yk    

#  %  "   #  %$ "%   $      ' ' '     #  # &  %  "  '   a yk k   

fY (y1 , . . . , yk ) = (

$ &



%  $ #   $   

Q



pyi i

Y

'

 ( %

pyi i

=

  $    #



y1

Y n pyi i . y1 · · · yk

-

     

   ' %       

Y ∼



 

(n, p)



p∗i = pi /(1 − p1 ) %

   %  / '



  

(Y2 , . . . , Yk | Y1 = y1 ) ∼

  





 

(n − y1 , (p∗2 , . . . , p∗k ))

i = 2, . . . , k !

!

  $    % #





& $" & " !% $ %     !    '  '    ( %   %  "  '        ! %    &  "    m # % $ "   & %  '  # "$ &    ! %    # "$& $&  k × m   ' # $ % !           !  %&  !     &   '



n 





#



k

              

  ! %  $  $  !  &  ! " $   #

• • • • •

#

%   ! &   $ !  $ $ ""  

(  %  

# #

 " 

""    $  '

   % & '

&   "  % !& "    # ! &  '

%   $ ! %"    % 

 ##

(  % '

% !     (%  ( % # ! &  '

#

 $ %     (     "    ! `1  $ %     (     # % "  '

`2



 !   #

  # " $&  %  (  #  %  # ! &  ' #     y Y ! %  $  # % %&  %   %    '  # &  



Y ∼

λ

e−λ λy y!  # &    ! %( !   #   %  

%

pY (y) =



y = 0, 1, . . .

%   '   

E[Y ] = λ.

         

Y ∼

%

(λ) ! $

(λ)

 t

MY (t) = eλ(e −1)

     

%



 

! ∞ X

tY

MY (t) = E[e ] =

ty

e pY (y) =

y=0

=

∞ X y=0

e e−λ (λet )y = −λet y! e

=e

Y ∼

%

(λ) ! $

ety

e−λ λy y!

y=0 ∞ −λ X −λet

λ(et −1)

         

∞ X

e

y=0

(λet )y y!



Var(Y ) = λ

%

$  % $    "" %( # # % &    ! #!   # & &    %  $   '

  

    2

E[Y ] =

∞ X

y=0 ∞ X

y2

e−λ λy y! ∞

e−λ λy X e−λ λy = y(y − 1) y + y! y! y=0 y=0 = =

∞ X

y=2 ∞ X z=0 2

y(y − 1)

e−λ λz+2 +λ z!

=λ +λ 

e−λ λy +λ y!

Var(Y ) = E[Y 2 ] − (E[Y ])2 = λ

'

  % ! % " 



  

    

   

  

     d2 E[Y ] = 2 MY (t) t=0 dt d2 λ(et −1) = 2e dt t=0 d t λ(et −1) = λe e t=0 hdt i t t = λet eλ(e −1) + λ2 e2t eλ(e −1) 2

t=0

=λ+λ



2

Var(Y ) = E[Y 2 ] − (E[Y ])2 = λ

'

          

%

           YiP ∼ (λi ) iP = 1, . . . , n

     %

Yi n n Y = Y λ = λ Y ∼ (λ) ! ! 1 i 1 i ! $ %

   # % &   '  !  '  # ( ! 

 # #

MY (t) =

Y

 # &    #  

 $





MYi (t) =

(λ)

Y

t

t

eλi (e −1) = eλ(e −1)

! %  $ '

  # $ &  %  (   $ %%    i = 1, . . . , n Yi ! &    '  $

 #  % !   ! #  % Di Y i ∼ (λP i) !  !  '    # $ & D%i  (  %   Yi ' Y = Y D = ∪Di P  # "    # $  $i   #    # % ' # Y ∼ (λ) λ= λi % &  '   $ %  $  #  ( %  #    %  %% "  #  !    ! ! Y # ( #   ! %  $ '   # %     $        ! (λ) Y ∼ (λ)  # ! ( !$ " (  #  $  % % ! & "  ! ( ! !        Y  ! %!      & " ! %  $$   # %&  %  #   Y1 Y θ   2  !   !  ' Y1 ∼ Y ∼ (λ(1 − θ)) Y1 ⊥ Y2   $ %(λθ) '    %   #  ' #   2 #   &  % = 1, 4, 16, 64 λ

&  "    %   " %& " '  #    λ   $     # % &  '    !

   # % &  '    "" $    #  %"  &   # % & '  #  Y Pλ #    # % #∼ (λ)  ' & $      % Y Y = ∼ (1) λ % #    %  ' i=1  #Yi #  %"Yi &   # % &  "" $  #   "" Y  

% &  " %& "  #   "%  ' λ %

   # %"  $   #   ! %  $        $            α       $# %%! !    %   '   

%"   , "$ & $ " $   %   %   !    $%  ' α

0.04

pY(y) 0.08

0.0

0.1

0.2

0.3

0 2

λ=1

y 4

λ = 16

10 15 20 25

y

6

pY(y) 0.02

0.04

0.00

0.05

0.10

0.15

0.20

0 2 6

λ=4

4 y

λ = 64

8

50 60 70 80

y

λ = 1, 4, 16, 64

0.00

pY(y)



%    &        '  % $  

0.00

     

pY(y)

  



    

   

  

                      

* (* *(  '+ *   *  + ( '   ' ( *  ()' '  )' )'   '       (* '  &()'  '*+'   *(' &     ' (    ()'*  20            !   "  (*  + ()' (* ' '  *(('  * (* '  (  ' α   &   

     #*( $ * *  (  ' ( '(( '  )'()'      * (*  *&  &* ( *  %&  &  )'()'  &  ()'  (*  '& *  + '' '(  *() &()'    * *( &'('      & 

     * ( * (*  (* '    ' +' * () ( ( ' (* * (' *  &   (* ' α ' ' ) ' &'  (   &() * '+  (  '  ()'   (*  'α (  *+)(& '  '* '  ' )  '  () ( ()' '  * * &        

     (* '  *+ )( ' * *( (' ()' * * ('+ (*   '*+ ) && *  +  (   α   ' (  *( * (*   & (* '  (  *  ' *() ()'  *  &'    &  * *( &    *  &     α   &         + ()'  '*+' ' + *  + ( () '' ()*  + *  ()'* (* '  )'  , ' * & (* '  (  ' - ()'  , ' +  *  + (  (  ! (* ' '  * *     ' α   &&  &

  &   &*  + &(  ()'   -      + *  + ( ' * ' ()' * ( * (*  (* ' '  * *   α   , ' + * + (  '(*&&  &* ( ()'  & '()' (   ()' * (*           &    &  '( '(  .' ' ()'  '   * ' ()'* ' ) ' *   &      & " )'  ' * (*    * ('  *()  *    &   

    &  &   & /     )* )  ' *  * '  ' ) )  (' (  '  ' (  ' '  *  & )*  '  ''&  )' * (* & (*  ' '  & (' * ()'    0  &()'   & ' * (* & (*     & '   *  + (  * &('  12 * ('   ' '  (' &     &    &   " )' &  * + ')  ' *  *  ( (*  ()' '  ( ( *  '  )'      '    '   +* '  *  ()'  ) & * ( & * '   '  & (  ()'    * (* (*&   ' *'0 * ('  &  4 &'      &    &   &  &&  &  3 &    & (

 * (' 5 6

& * 86  *  * () 47 () *



4 3 4 8 7 2 8 3 7

6 47 7 68 4 76 6  6  8 8 47 8 9 7 : ' +' 4   '  '  +'   

 8   74 8     8  8 9   7  *  ('          &   

( '  *  ('  4   68  687  78 6  6  7 

     



:  )' ' ()'  ' * ' ()'* ()' '(* '  (     &        &  " )' * ( * (*  (* ' *  + ( ()'  * *( α  &    

  &      

    *   ' (     ('    )'  ()'  (* ()' & / * '/ '    (' &(  ()*  '     ('   ) )     ' &  (* '    +* '  &* &('  () ( * & ' ()' ( '  & ' +' *  + x  ()'  ''     

 '  &()'

    ( ( * *( () ( 

 (* ' '&  '  ' *  ()'   &  ' *&('  * +*'  xn −x n α   &    &   * )' '  ) '    '   )* ) &  )  '   & *(* '   'n! e  n (&   )'    '  * '('  * '    (* +& +'  & '  ∞ x  *  (*    '   * ('  *   '   )'  (*   *  * * &+   ()' &  * *( &    (* '  *  ()' + * ' *('     &     ()'  (  ' ' α            ('  n ()' ()'  *&      ' ' (  ('   # $ )* ' * (*   ' 4  )  ()'* (  :   &  &    &  ()'     '*+'  ' ) *  5 &          !   "   '  *'  ' ()' ( '   '  '  *   (  ()' '  (   )*  ) ' + * '  '  ('  &*  )  &*  (    ( &    &  &    &    0    &  "  ' )  '  ''      ( * ('   *  ('  *      &     

38   & 

12  )* ) 6 (* '  ' '  ('  ()'    ' * ('  6 

 () (& ( α (* ' 3  α 4   & *  *  + ()'      *( *  ''  * &('  &  8 ( *  * +   (* '   ()'&   & &' (*   ' () ( 6892 (*  '&' '  '  ' 3 44   &)'    '     (' &    &  '       ()'α '  (* &   ()'   * & 4 84 *   & & 0 8  *   )  * ()'  '*+'  ' ()'* (   ()' '(* *%   * *( *()  ! (   )* ) ' '   '   *+  ' 4   )'* & ( *  (*    )'    * &5          &  7     &  " (  * ' ''  () (   ()'  ) '  ()'   ' ) ' *  ' ( ' *  ' ) ' % ' (   &      '    '  ' (     ' () ( ()' * ( * (*     ()'   &   * *( (* ' *  (*  ' * * & + ''  ' (  *() α() ( ()'    & (* ' & ' '*((' (       :&  (     ()'* α  '  *  +  *  (* ' &  '   ()'   ' ' ( ' *(' ' (    (' (* &+ ()' &  &  &   * *(  &  &' % ')  '  '()   

   

& *  ' &*      '   ('& * *  + ()'  * (*  *    (*(*' (   &     &    &    ' *    &   &&

   



    



  

 



 

      

      

    

 

                  

    

 

           















      

α

 

            

                  

       

           

 

    

 

    

 

               

!   ! %  % #  $  '  "  

   

" ! #                                                

   

  

   !  % 

α





400 300 200 0

100

Number of Groups

500

     

0

2

4

6

8

10

12

Number of Particles in Interval

 $ %

%%!  !    %    $ %

"  $ "   %"  ! %  $  '

 & %  # % " "!

 $#

α

%"

$  '

  

 

 



    

   

  

                

                   # ! %  $  %& ! %  $  # !%  $ #   (   $ "    #  #   % '   % 1, . . . , n '  # &   Y ∼  (1, n)  ' p(y) = 1/n

% '  # !%  $ %& ! %  $  $  !  &  ! "  % y = 1, . . . , n & "  !  %""  %   # % %&    ## # $&  % ! & !  $ ""  " " '  # "  %&  %  '        ""  $  $ " ! %  $  %"  %  $   $n !  ""$ %      & "    ' %  

" ! & "  %   '

                    # $ $  $  %& ! %  $  # ! %  $  # !   ( % #  %(" '   % [a, b] '  "# $  # #   &   #  $  !  # # ! %  Y ∼  (a, b) $  %&  #    ""  !  # #  &  '  # !  p(y) = 1/(b − a)

% '  # &   (%    ! & &    %  $   % "  y ∈ [a, b]  %   '  $

     %(  % ! & & " %& '  #   y1 , . . . , yn (a, b)  # & '" ' ' ˆ  #  !    

(ˆ a, b)

p(y1 , . . . , yn ) =

(

0



n 1 b−a

a ≤ y(1)

# %  

 # #  &  &   !    $    (a, b)  # $ &    #  !    '  #$  



 !

b ≥ y(n)

  & "" 

b−a ! ˆ ' b = y(n) a ˆ = y(1)

 



  "

                          

            # $

%   % "  % & # & " $   !   ! 



Γ

Γ(α) =

 & &  '  #         ! 

R+ Z ∞ 0

tα−1 e−t dt

   "

                    

 

 %&    $ #  & &  $      ! %  %       ' % $ % $ %    # 

 

$  !  & # &    %





%

%

 

(

Γ(α + 1) = αΓ(α) α>0 % (   % Γ(n) = (n − 1)! n √ Γ(1/2) = π

$ &  %

α

p(y) =

!

 #  & & 

1 y α−1e−y/β Γ(α)β α

  %  & ' Y ∼ (α, β)   $%  ' #     & &  β

β

α, β)

%



y≥0

!    % $ % ("$  

'



! %  $ # 

α

!  '

! $ % ("$  



#  "    $ %  ' # $ %(  % !   %   # ( !   %  α

#   '  & &   "" ! #   %&  %  #  & &  α  ! %  $ '

 # $%  " "  ! "   % #   '  ' '  # $ % $ %(  #   $ !   %   #   %& #  "  # ( # & α = .5 "  '  # !   %  "  %%   !  !   %  ("$   ' % β # %   "" !    %&  % '     !% "  %& !  !    $   'β #    " %&  %  $  β p(y) y  "  # %$  # # % '  # !   " %&  %  &   !  ! y/β   # % &  '  '    ' % & %  " %&  % '

  $ %  '   % ! $ 

!



# ""     

 '

                 !  "         !  "#  $ %&  "     "    "     "   !    % %& ' "&#"   ( ) $  " *%+,$    -  ,'. $    ," *%+

  



β=1 1.5

3.0

β = 0.5

1.0

α = 0.5 α=1 α=2 α=4

0.0

0.5

p(y) 0.0

1.0

p(y)

2.0

α = 0.5 α=1 α=2 α=4

2

3

4

5

0

4

6

8

y

β=2

β=4 0.4

y

α = 0.5 α=1 α=2 α=4

0.1 0.0

0.0

0.2

0.4

p(y)

0.3

α = 0.5 α=1 α=2 α=4

0.6

2

0.2

1

0.8

0

p(y)

       

    

0

5

10 15 20 y

  $ %  '  & & 

0

10 20 30 40 y

!   % (%$  ("$  

α

 !

β

'

                    

 



 

 )  '   )$  "&#.  &         %&     &    %&    &   # )   "" *%+   . ".  )   &  .)  "   %&".. *%+  )"    )    "#&   )$,   $  & * &  &+   "#&   "# 

        !!







X∼   # % &  '  '



(α, β)

pX (x) =



 

Y = cX x = y/c

 !

  



Y = cX  

Y ∼



(α, cβ) 

1 xα−1 e−x/β , Γ(α)β α

dx/dy = 1/c

 

1 (y/c)α−1e−y/cβ cΓ(α)β α 1 (y)α−1e−y/cβ = Γ(α)(cβ)α

pY (y) =

 # #

 #

!    '  " 

 &

%  '

(α, cβ)  # &   &     ! (%  % % %! !  # 

        !!

 

Y ∼



(α, β) 





  ( %" # % &  '

E[Y ] = αβ 



Z



1 y α−1 e−y/β dy α Γ(α)β 0 Z 1 Γ(α + 1)β ∞ y α e−y/β dy = α+1 Γ(α) Γ(α + 1)β 0 = αβ.

E[Y ] =

#

y

"  $ "  ""    $     ! #   % ! Γ(α+1) = αΓ(α)    & &  !     #   %"   '

  



    

       

#

" %  # %   %           % !   !    !  "$ !   #  #   %"     ( %  $ $" ' %      '

      

 

   !          ! 



Y ∼ (α, β)   ! MY (t) = (1 − tβ)−α t < 1/β 

  !!



Z



1 y α−1 e−y/β dy α Γ(α)β 0 β α Z ∞ ( 1−tβ ) 1−tβ 1 α−1 −y β y e dy = β βα Γ(α)( 1−tβ )α 0

MY (t) =

ety

= (1 − tβ)−α

     

 

Y ∼



(α, β)  



Var(Y ) = αβ 2

  SD(Y ) =   !!









αβ.

%   '

        $#  •



       

  # (

 ! "

 #

$  

# " &    & # & $ "     ! (  # 



 # &  $ ! & " %    " ! %  $ % $# $   #

 !   ! %  $ '    # & $ " #  & !   % # (  Y  $% '   #  

 " ! %  $ #  % & # !  Y λ>0 

Y

pY (y) = λ−1 e−y/λ

%

y≥0

'

 !   %

'  #  !    $% !    $ %  '  %   Y ∼ (λ)   $ %  ' % $ % ("$   '  #

 " ! %  $  #  "

λ



 

                    

 

  #  & &  ! %  $  #  '  # &     ! &   % α=1 SD  (    # % &   '   ' ' #

 " !   #   &  & $ &   ! ! %   &   y=0 ""  '  # ("$  !  %&   # ("$  ! # %  λ p (0 | λ) ! %  ' $ ""   $      '  & "" ("$   Y % ( !   % "%  λ y ("$    "%  ("$   % ( !   % & "" ("$   '

λ

λ

10

y

0

2

4

p(x)

6

8

lambda = 2 lambda = 1 lambda = 0.2 lambda = 0.1

0.0

0.5

1.0

1.5

2.0

x

  $ %  '







" !   

                 

                         /                

  

 

     

       

         %                         

  

          %

6 6                    238  8 2             8 7          % 6        239    α        % 64 2358        +  ..      α  %&   

  #    %.  %&8 "%                   

                Y

       

      

)                           :                                       & λ(         %        0             

    λ m P[Y ≤ m] =       %              P[Y ≥ m] = 0.5 m            







Z







 

m

λ−1 e−y/λ dy = 0.5.

0

     λ log 2 %      % 6m =              4   λ   6 9 7 

8  2 %  6   



7 73      %                    4 λ          8       87   

                      ! !   

  "    !        !             !    (λ) #     !    # !   $ !      $           "  T

    $         !         " "  "       t T ≥t S !  !       " "  "             #  S = T −t S      !    

T > t

r>0

P[S > r | T ≥ t] = P[T ≥ t + r | T ≥ t] = =



P[T ≥ t + r, T ≥ t] P[T ≥ t]

λ−1 e−(t+r)/λ P[T ≥ t + r] = = e−r/λ . P[T ≥ t] λ−1 e−t/λ

        

                    S (λ)

    $     !     "               #  

          "    

         t  $     # !               $      !     #    !          "  #           

    $$  (λ)

!    #  "

   %

T

 +          

, )         /    

                     

 





  %       %       $            ! !             "     $     $ !   

$  !  $  $ " 

    $  $$      $ λ

 

"   !   #       !   # $       !    T             

(λT )

" #        !        !   # $   I I2 I1   1    #    !   # $  "

I2

$               $  #    !  !  !   " 

     !     $   !  "       !  #   t0 T1   $  #      !        $  "    t0 Y1 = T1 − t0 T1 Y1    !    "             #        !  

  

y

Y1



  

Pr[Y > y] = Pr[

  $ 

  $        #   



 

[t0 , t0 + y]] = e−λy

  

 !  "

 

Pr[Y1 > y] = e−λy ⇒ Pr[Y ≤ y] = 1−e−λy ⇒ pY (y) = λe−λy ⇒ Y1 ∼

        $  #

t0





(1/λ)

  !     $   $       !  #   $   T2

  "             #    

Y2 = T2 − t0

#    

Y2

y>0

$ 

Pr[Y2 > y] = Pr[ [t0 , y]] $    $   = Pr[ [t0 , y]] + Pr[ [t0 , y]] = e−λy + yλe−λy    # 



 !

pY2 (y) = λe−λy − λe−λy + yλ2e−λy =

λ2 ye−λy Γ(2)

"        !        $       !     Y (n, 1/λ)   "    #$    !n  #   #      ! "

Y2 ∼

  %  % 

     α ≡

(2, 1/λ)



P



Y1 , . . . , Yn Y ≡

αi 



             

X

Yi ∼



(α, β)

Yi ∼



(αi , β) 



  

  !!







$

     

       

"

     !  "         !        !  Yi

   !         " αi

                        

β

    

    %             ! !            2          $          β =    ! α = p/2        #p #  ! "     2"

 %



p

  %  %  X ∼ χ2n    !!



 



  

 !



 

Y ∼ χp 

Y1 , . . . , Yn ∼   

    

(0, 1) 

 $ 



 

X =

 " "

P

Yi2  



        

     !                         α β (α, β) #      !            "         Y

pY (y) =

Γ(α + β) α−1 y (1 − y)β−1 Γ(α)Γ(β)

   !   "     (α, β) Y       !  " "



  %  % 



 

Y ∼





(α, β)  

E[Y ] = Var(Y ) =   !!





 "

$

"



#

(α, β)

"

y ∈ [0, 1]



!      $

α α+β αβ (α +

β)2 (α

+ β + 1)

       !        " $       #          !  !   "       # !                   !  $                #    # α β   "  #          !    "         α>1 β>1 p(y) (1, 1) !         "



 (0, 1)

      

 

                      #     $ # !         "    " " " "           x1 , . . . , xn ∼  (0, 1)         $    (0,1)        $ # # # 

x(1) x(1)            # " FX(1) (x) = P[X(1) ≤ x] 

 

= 1 − P[ Xi

= 1 − (1 − x)n

  #   pX(1) (x) =

   

x]

Γ(n + 1) d FX(1) (x) = n(1 − x)n−1 = (1 − x)n−1 dx Γ(1)Γ(n)

  $          "           #         $ (1, n)  $  "    %       %   %   %   %            $        ! !        #      ! "

  %  % 

 

 

X1 ∼ Y ≡

  !!



(α1 , β)  X2 ∼

X1 ∼ X1 + X2





(α2 , β) 



 

X 1 ⊥ X2 

(α1 , α2 )

 $  " 

      !  "              !    X X #                  1   2    "



β

 





 • • •

  



    

        

                       

  !  



 

"





 

 !     !    



 

 !     ! ! $ 



      !      

 

  

 

     

       

8

a

4 0

2

p(y)

6

(a,b) = (0.3,1.2) (a,b) = (1,4) (a,b) = (3,12) (a,b) = (10,40)

0.0

0.2

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

y

4

b

2 0

1

p(y)

3

(a,b) = (0.3,0.3) (a,b) = (1,1) (a,b) = (3,3) (a,b) = (10,10)

0.0

0.2

0.4 y

6

(a,b) = (0.3,0.03) (a,b) = (1,0.11) (a,b) = (3,0.33) (a,b) = (10,1.11)

0

2

4

p(y)

8 10

c

0.0

0.2

0.4 y

    "               !   "    !  "         !  "





 

  

      





              "

                    "  $      $ #    !    !        "    $ ! !            # !     $        !                       "     !       !     $  #  

   !     ! "



 !  $   

   %

µ∈R

 

σ>0

p(x | µ, σ) = √

    !    

  "

1 x−µ 2 1 e− 2 ( σ ) . 2πσ

  %   %   %     %       % 

              4            2                          

 



 8    

      )                  µ ≈ 8.08 σ ≈ 0.94                                 -      8





      

     -             ◦ ◦ 44 46 ◦                  7  3 ◦         −21    −19 

0.2 0.0

density

0.4

 

4

6

8

10

12

temperature



 

 "   !   ◦   ◦      "       $ 

19 − 21

       !     44 −46◦    "  "     "

  



     

       



                        

            

      %                          8◦   ◦           /       45 20   

        

   

  /        

              t        2 2 7                 8.5◦    9.0◦   / 

   2 2  7                         ◦ t 8.5      ◦               



9.0













P [t ∈ (8.5, 9.0]] =



Z

9.0 8.5



 "

1 t−8.08 2 1 e− 2 ( 0.94 ) dt ≈ 0.16. 2π 0.94

            4 4                 !    &         !    :    &     

          %  &            !       $      &  $ &          

&  ,  •               $ * + $ * +   $       % $           •        

  + +   +   



$ * $ *



 $ *&+ $ *& 

               19/112 ≈ 0.17 



          8               2 2  7  

      ,      .                %  2 2  7       



      ◦ ◦  7.5    8.0    



    

 



P [t ∈ (7.5, 8.0]] =



Z

8.0 7.5



1 t−8.08 2 1 e− 2 ( 0.94 ) dt ≈ 0.20. 2π 0.94

 4              

  

8 

                          2 2  7     



  %  % 



 

Y ∼ (µ, σ)  



MY (t) = e

σ 2 t2 +µt 2

.

15/112 ≈ 0.13



 



      

  !!

 



Z

1 2 1 e− 2σ2 (y−µ) dy 2πσ Z 1 2 2 2 1 √ e− 2σ2 (y −(2µ−2σ t)y+µ ) dy = 2πσ Z 2 (µ−σ 2 t)2 µ2 1 2 1 − 2 √ = e 2σ e− 2σ2 (y−(µ−σ t)) + 2σ2 dy 2πσ

MY (t) =

=e =e

  %  % 

 

ety √

−2µσ 2 t+σ 4 t2 2σ 2

σ 2 t2 +µt 2

Y ∼

(µ, σ)  

E[Y ] = µ   !!

 



.



 

Var(Y ) = σ 2 .

  !   

E[Y ] = MY0 (0) = (tσ 2 + µ)e

 

σ 2 t2 +µt 2

t=0

   $  2

MY00 (0)

E[Y ] =

2

=σ e

σ 2 t2 +µt 2

2



2

+ (tσ + µ) e

σ 2 t2 +µt 2

= µ.



t=0

 

Var(Y ) = E[Y 2 ] − E[Y ]2 = σ 2 .

= σ 2 + µ2 .

     $        !          ! "  

   !  "        !              #  $     #        !        "    !      $   !              $  !  "    $  " "



(0, 1)

  % % 





 X ∼

 Y ∼



(0, 1)

(µ, σ)

   

Y = σX + µ

 

X = (Y − µ)/σ

Y ∼

 

(µ, σ) 

X ∼ (0, 1) 

  

           

  !!

"



 

X ∼  (0, 1)

 

Y = σX + µ

"



   !

MY (t) = eµt MX (σt) = eµt e "

 

Y ∼  (µ, σ)

 

X = (Y − µ)/σ

"

σ 2 t2 2

"   

MX (t) = e−µt/σ MY (t/σ) = e−µt/σ e

σ 2 (t/σ)2 +µt/σ 2

t2

=e2

 $   "    $   2                 $ $ χ #    ! !      "    2          $$    ! χ #    #      !  "        !  "       

 "

  % %   

X ∼ χ2n    !!





Y1 , . . . , Yn ∼   

      $

n=1

(0, 1) 



 

X =

"

Z

y2 1 2 MX (t) = E[e ] = ety √ e− 2 dy 2π Z 1 1 2 √ e− 2 (1−2t)y dy = 2π Z √ 1 − 2t − 1 (1−2t)y2 −1/2 √ = (1 − 2t) dy e 2 2π = (1 − 2t)−1/2

tY12



 !

"

X∼ (1/2, 2) = χ2 #       1 "  n>1 MX (t) = MY12 +···+Yn2 (t) = (1 − 2t)−n/2



X∼

 !

(n/2, 2) = χ2n

"

P

Yi2  

 

     



  ~ X



  

!   " Σ~    X

        

n



             

 !        ! $    ! 

  

µX~

  $ $

~    !     !        #     X

pX~ (~x) =

1

1

(2π)n/2 |Σ|

1 2

t

e− 2 (~x−µX~ ) Σ

−1 (~ x−µX ~)

 " 

#     !   #   !   "        ~ ∼  (µ, Σ) " |Σ| X   !    #        "            " Σ            #   #!  "    !        $ $ !     $ #   $   $ 2 " Σ σ    $!  !   #!      !    !                   $      $ $ !       

 2 σ1 0  0 σ22  Σ=  0" 0" ""

 ··· · ·" · "" ""   

0 0 "

""

· · · σn2

   $        

pX~ (~x) =

1

1

1 2

t

e− 2 (~x−µX~ ) Σ

−1 (~ x−µX ~)

(2π)n/2 |Σ|  n Y  1 Pn (xi −µi )2 n  − 1 1 i=1 σ2 i = √ e 2 σ 2π i i=1 “ ”2  n  Y x −µ 1 − 12 iσ i i √ , = e 2πσ i i=1

      $ #        !     !         #  $  n  !   "   #                !        Xi    "    $  " i ∼  (µi , σi ) X         !       !  " · · · = σn = 1 Σ n In      σ1 =     ~   ~    µ1 = · · · = µn = 0 X ∼  (0, In ) X              ! !         ! " n

 #           !        !   X1 X2 X1 ⊥ X2        !   "     Cov(X1 , X2 ) = 0 Cov(X1 , X2 ) = 0 X 1 ⊥ X2 #       !           !  $      " X1 X2 

           



 " " #      (X1 , X2 ) ∼  (µ, Σ) Cov(X1 , X2 ) = 0 X ⊥ !           $            !1 "

  % %    ~ !    !  !   X = (X1 , . . . , Xn ) ∼



(µ, Σ)

X2

  

"  #$ 

   Σ      !  

 Σ11 012 ··· 01m  021 Σ22 ··· 02m    Σ =             0m1 · · · 0mm−1 Σmm 

   Σii   ni × ni      0ij   ni × nj     !     Pm ni = n  1      ! ~ ! ! !      Σ      Y~i   Y~1 = (X1 , . . . , Xn )  Y~2 = X       ~ 1

(Xn1 +1 , . . . , Xn1 +n2 )    Ym = (Xn1 +···+nm−1 +1 , . . . , Xnm ) νi ν1 =    (µ1 , . . . , µn1 ) ν2 = (µn1 +1 , . . . , µn1 +n2 )    νm = (µn1 +···+nm−1 +1 , . . . , µnm )  

 

 

 ~   

Yi

 ~  Yi ∼

     !   !     

(νi , Σii )

  !!     # !       

~ → (Y~1 , . . . , Y ~m)          #!   X

pY~1 ,...,Y~m (~y1 , . . . , ~ym) = pX~ (~y1 , . . . , ~ym) = =

(2π)

1 Q m n/2

i=1

1

1

(2π)n/2 |Σ| 1

|Σii |

1 2

e− 2

=

1 2

t

e− 2 (~y−µ) Σ

−1 (~ y −µ)

Pm

m Y

yi −νi )t Σ−1 yi −νi ) i=1 (~ ii (~

1

1

1

ni /2 |Σ | 2 ii i=1 (2π)

t

e− 2 (~yi −νi ) Σii

−1

(~ yi −νi )

    !          !   !            $   #  !  $    "        $  $     " "  pX~ {~x : pX~ (~x) = c} c                        $ # !  t −1 xi (~x − µ) Σ (~x − µ) #!   $          $  $    "       

pX~

Σ

     



P               (~x − µ)t Σ−1 (~x − µ) = n1 (xi − µi )2 /σi2 pX~ (~x) = c #      $      $$$  !        µ " σi /σj                                

    !    "     "          !     "    #      $ !      $      #                $  !      !   # !           "   $   E[X1 ] =    $      "         E[X2 ] = 0 σX1 = σX2 = 1 σX1 =         "             1; σX2 = 2 σ 1 = 1/2; σX2 = 2  $   !    $   X      $     $  #      !    "           $          !  $      !          !                            $   "   

 "  

    $     #     $   "

        

 ) 

)  ". 

$  '    "&#.   $   '    "&#.     &    &   $         &    &   $  &  .   &      &  &.   $  $    &  .  $"%     )"%     %&      $"  $ %& $ * +   )"  $ %& $ * +      &          &      

".        $"%     )"%     %&      $"  $ %& $ * +   )"  $ %& $ * +        $         &  &.   $  $    &  .  $"%     )"%     %&      $"  $ %& $ * +   )"  $ %& $ * +   

 &    &   &  .   & 

   &       

".        $"%     )"%     %&     



           

2 −4 0

2

4

−4

0

x1

x1

(c)

(d)

2

4

2

4

2 −4 0

2

4

−4

−2

0

x1

x1

(e)

(f)

2 −4

0

x2

2 0 −4 −4

−2

0 x1

2

4

−4

−2

0 x1

 "    !    " "  E[X1 ] = E[X2 ] = 0   "      σX1 = σX2 = 1 " σX1 = 1; σX2 = 2 %   " σX1 = 1/2; σX2 = 2     % $    #        "        !   # !        "   

4

4

−2

4

−4



2

0

x2

2 0 −4

x2

−2

4

−2

4

−4

x2

0

x2

0 −4

x2

2

4

(b)

4

(a)

  

     



$"  $ %& $ * +   )"  $ %& $ * +          &   $      .   &      &  &.   $  $    &  .  $"%     )"%     %&      $"  $ %& $ * +   )"  $ %& $ * +  

 &  &

   &       

".        $"%     )"%     %&      $"  $ %& $ * +   )"  $ %& $ * +      





   $   !          #   #$             X X #    $ $              1   2   ! !   "



 &      &       !  

 !           & 



ij

               



pY~ (~y ) =

Σ

1 (2π)n/2 |ΣY~ |

 !  #  &     &  " *%+ ,  &  * + "

        " 1

1 2

t

e− 2 (~y−µY~ ) ΣY~

−1

 

(~ y −µY~ )

 

Y ∼  (µY~ , ΣY~ )



,

   ~ ∼  (0, I ) " X ~      $ $ #         (0, 1)    ! X    "  $ n # $          !         $       "

 

(n − 1) "           1/2 ~ ~ pZ~ = pY~ Z = Σ X +µ

 #    ~   Y~     !          #     Z !    !     ! $     !               #!   #      !    !     ! $  "               !  " "    $   #    # !  # !

pZ~ = pY~  ~  |Σ|1/2         #    !   # Σ "   #   Z  pZ~ (~y ) = pX~ Σ−1/2 (~y − µ) |Σ|−1/2 1 −1/2 t −1/2 = √ n e−1/2(Σ (~y−µ)) (Σ (~y−µ)) |Σ|−1/2 2π 1 1 t −1 = e− 2 (~y−µ) Σ (~y−µ) n/2 1/2 (2π) |Σ| = pY~ (~y )

~ X

           



  

    $         !   !     !     ~  Y                 !            #!   #       !    !    "        !   !                     !     "     "           !     "    #      $  !      $      #                $ !      !   # !             "   $   E[X ] =    $   1     "         E[X2 ] = 0 σ1 = σ2 = 1 σ1,2 = 0         "

σ1,2 = .5   

"

σ1,2 = −.8

       $     #   

         & .     %   

 ) 

 $   "

)  ". 

$  '    "&#.& .   $   '    "&#.& .    %#  )   %# * +     %# * +     %# * +     &

 

                    

 .   . %$     & .   & .  

  % %&    %#   %# *% +  %# %&  "   %#   . %$ %&     %& & .      %& & .   $    $ * +  $  * + 

'.  , %,  .  %#   ,  &  . *  +   $    , . $   ,   %# %&  ,  $  &.   $  $    &  .  $"%     )"%      "  "   $"  $ %& $ * +  

     

2 −4 0

2

4

−4

0

x1

x1

c

d

2

4

2

4

2

4

2 −4

0

x2

2 0 −4

0

2

4

−4

−2

0

x1

x1

e

f

2 −4

−4

0

x2

2

4

−2

4

−4

0

x2

−2

4

−2

4

−4

x2

0

x2

0 −4

x2

2

4

b

4

a

−4

−2

0 x1

2

4

−4

−2

0 x1

 "     !    " "  E[X1 ] = E[X2 ] = 0 σ1 = σ2 = 1   "      σ1,2 = 0 " σ1,2 = .5 %   " σ1,2 = −.8    % $   #       "        !   # !        "   



           

  

)"  $ %& $ * +   %&".. * ,% +     . %$  &    , %       %      %#  ,  

".   * +   * +      $"%     )"%     $"  $ %& $ * +   )"  $ %& $ * +   %&".. * ,%+ 



$  $     $   !    !        !    !              #   "

  % %    ~    

 X ∼  (µ, Σ)

A    Y ∼ (Aµ, AΣAt )    !!







n

   !  "  "



     !    n    

!      !  

Y = AX 



n



 

pY~ (~y ) = pX~ (A−1 ~y )|A−1 | 1 t −1 (A−1 ~ − 12 (A−1 y ~ −µX y −µX ~) Σ ~) = 1 e n/2 (2π) |A||Σ| 2 1 t −1 (A−1 (~ y −AµX y −AµX − 12 (A−1 (~ ~ )) Σ ~ )) = 1 e n/2 (2π) |A||Σ| 2 1 t −1 )t Σ−1 A−1 (~ y −AµX y −AµX − 12 (~ ~ ) (A ~) = 1 e n/2 (2π) |A||Σ| 2 1 t t −1 (~ y −AµX y −AµX − 21 (~ ~ ) (AΣA ) ~) = 1 e n/2 t 2 (2π) |AΣA |

  $   $           

 

 (Aµ, AΣAt )

  "





   n    

    (µ,  Σ)    A n n b  

    t Y = AX + b   Y ∼ (Aµ + b, AΣA ) 

  !!



   $

~ ∼ X

"

   ! !      !

 !  !    



n

     

 

   

¯ 2    X ¯ ⊥ S2  X)   !!





X1 , . . . , Xn ∼   

(µ, σ) 



 

S2 ≡

         ! $ 

 Y~ = (Y1 , . . . , Yn )t ¯ Y 1 = X1 − X ¯ Y 2 = X2 − X

Pn

i=1 (Xi



"" "

¯ Yn−1 = Xn−1 − X ¯ Yn = X

     # #         " " "

S2

  #  $     #

(Y1 , . . . , Yn−1)t ⊥ Yn

"   # "

Pn

S 2 ⊥ Yn

(Y1 , . . . , Yn−1)t

 " "    #  $  #

Yn

"

"

"

P ¯ = 0 "   #   (Xn − X) ¯ = − n−1 (Xi − X) ¯ "  (X − X) i=1

i=1 i  #

S2 =

n−1 X i=1

¯ 2+ (Xi − X)

  #  $  #

n−1 X i=1

(Y1 , . . . , Yn−1 )

¯ (Xi − X)

t"

!2

=

n−1 X

Yi2 +

i=1

n−1 X i=1

Yi

!2

"

  1 − n1 − n1 − n1 · · · − n1  −1 1 − 1 −1 · ·" · −"n1   ""n "" n ""n "" ""   " ~ " " ~ ~ Y =  X ≡ AX   1  −n − n1 · · · 1 − n1 − n1  1 1 1 1 ··· n n n n

     !  

           $ 

     

A    #  $        2 t "      ~ Y ∼  (Aµ, σ AA ) n−1 A      "   # 

t

AA =   



 Σ11 ~0 ~0t 1/n

   !          !    ~0 (n−1)×(n−1) (n−1) $  #   "          !  "  " (Y , . . . , Y )t ⊥ Y

Σ11



1

n−1

n



    ! !   #!

"









  

           



t



t

 

"

        

F

      

          !     # $       !  #   !       "    " " "                   X1 , . . . , Xn ∼  (µ, σ) µ σ           !  " ¯       !  "  !   µ µ ˆ=X √      ¯ ∼  (µ, σ/ n)        X

t

¯ −µ X √ ∼  (0, 1) σ/ n

     

                   $$    $ !  √ !   #   !  " "      $  !          µ µ ±2σ/ n          ! !    #   !   $            "



    ! 

σ



−1

σˆ = n

P

¯ 2 (Xi − X)



1/2   

σ

¯ −µ X √ ∼  (0, 1), σ ˆ/ n

√     ! "    $       $       # ¯ −µ)/(ˆ (X σ / n)             !      !   "          #!       "    ¯ "    !  "           # 2 X ⊥ σ ˆ S = P       ! !  " 2 2"

nˆ σ =

% 

¯ (Xi − X)

  

 

 

 

= W1 + W2   V1 ⊥ V2   V = V 1 +V 2   W     !       W1 ⊥ W2  V W V1 W1 

        !                  ! V2 W2 

    !!







!  ! 

 

#  $   

MV2 (t) = MV (t)/MV1 (t) = MW (t)/MW1 (t) = MW2 (t)







T



F

   % %    X1 , . . . , Xn ∼      ¯ 2

(µ, σ) 



 

S2 =

X)     !!



S2 ∼ χ2n−1 . 2 σ

  V =

2 n  X Xi − µ σ

i=1

  

V ∼

  χ2

Pn

i=1 (Xi



.

n

n  X ¯ + (X ¯ − µ) 2 (Xi − X) V = σ i=1 ¯  2  n n X X ¯ 2 X −µ Xi − X ¯ − µ) ¯ +n + 2(X (Xi − X) = σ σ i=1 i=1 2  ¯ 2 n  X ¯ Xi − X X −µ √ = + σ σ/ n i=1

≡   

S2 + V2 σ2

S 2 /σ 2 ⊥ V2 V =

 

V2 ∼ χ21



σ

W1 ⊥ W2 W1 ∼ χ2n−1

 ! !   " "

 

2 n−1  X Xi − µ i=1

  

"

 

+

 



Xn − µ σ "

2

W2 ∼ χ21 

≡ W1 + W2

    $ $   #     

 

T ≡

n−1 n

¯  √ ¯ n(X − µ)/σ X −µ √ =p . σ ˆ/ n S 2 /(n − 1)σ 2

          #       !  "   T        "        U/ V /(n − 1) U ∼  (0, 1) V ∼ χ2n−1 U ⊥V  $               # # ! "     " t n−1 T ∼ tn−1   !  "       "

    

p

    "

r

  % %    U ∼ p 2      

U/ V /p ∼ χp



(0, 1) V ∼ χ2p

p



 

− p+1 )p 2 2 ) Γ( p+1 Γ( p+1 2 2 2 √ = pT (t) = t + p p p √ Γ( 2 ) π Γ( 2 ) pπ   !!

  

           





U ⊥ V



 

T ≡

 − p+1 2 t2 . 1+ p

    

U T =p V /p

Y =V             #

  !       # !  

(U, V ) → (T, Y )       !       # "      # !    T 1

 

XY 2 U= √ p

V =Y

   $   

dU dT dV dT

         #

(U, V )

dU dY dV dY



21 Y√ = p 0

Y 12 = √ p 1 1

T Y√− 2 2 p

p u2 1 1 −1 − v2 2 e . pU,V (u, v) = √ e− 2 v p Γ( p2 )2 2 2π

  #         #

(T, Y )



1

2 t2 y p 1 1 −1 − y2 y 2 y pT,Y (t, y) = √ e− p e √ p p Γ( p2 )2 2 2π

(T, Y )





T





F

    !       #

pT (t) =

Z

T



pT,Y (t, y) dy

1 =√ p√ 2πΓ( 2p )2 2 p

Z



y

p+1 −1 2

y t2

e− 2 ( p +1) dy

0

  p+1 2 p+1 2p ) Γ( =√ p+1 √ 2 t2 + p πΓ( 2p )2 2 p Z ∞ y p+1 1 −1 − 2p/(t2 +p) 2 y e × dy p+1   2 0 2p p+1 Γ( 2 ) t2 +p 1

− p+1 )pp/2 2 Γ( p+1 2 2 = t +p p √ Γ( 2 ) π  − p+1 2 ) Γ( p+1 t2 2 = p √ 1+ . Γ( 2 ) pπ p

    " "          #              # #  !  t       "               (0, 1) "        !       ! ! $             t !     !      !   !            "  (0, 1) "    !                 $   p→∞ tp  (0, 1)   "        $  $$ "    $ "   

 " "

      $     #        "

 $  '       "&#.  &    %&    . $     . $ !    . $      . $  !    &  $   . ".  $   &   .)  "   )"    & %.)   $"   .   ".)      "  "#&   $   ) !  ".)      "#&    .        !    !    "   

           

  

0.4



0.2 0.0

0.1

density

0.3

df = 1 df = 4 df = 16 df = 64 Normal

−4

−2

0

2

4

t   

"

t

   #  #      # #  !    

 (0, 1)

  

      



         #  $   " "         √ ¯   n(X − µ)/ˆ σ             ! "    !  "         #  (0, 1)       √   $             $" ¯ − µ)/ˆ n − 1(X σ tn−1     " "        !             "            t   !                  $   #$    (0, 1) σ      !  "            " "       !     n σ                  $ " #   

T ∼ tp

Z

) Γ( p+1 2 E[T ] = t p √ −∞ Γ( 2 ) pπ ∞

 " 

 − p+1 2 t2 dt 1+ p

   !               −p   $  "      t→∞ t #     # "                          p > 1 t      ! ! "        !      !  "   1 p > 1 E[T ] = 0 

!    !               $ #      # " tp p > 2       "         !  !  p > 2 Var(T ) = p/(p − 2) T k "  #     #  k

E[T ] < ∞

  

"

p>k



F 

      

      

 

   !

 "

"  #     !

  !  !    #  $   "

 " "

            #    #      "

         

"   !                !    #             #             # $   "  !      #       !  " #              !      $        # !   "

    

 

     # !       

#  ! "

!     #           !  "        # !   #              !      $  #  ! "

    



           

  

$         # !   #                $ #          !      $

 ! !        $    !  "         # !   #              $$!     # "

 "  

                     !     $ #   #         !    "      $  $   $  "  " "     #     #                             (3)      !                       "



    

(n, p)

n = 13



p

!    !         !  $         #$ #  "

    

 !   # $ $$          "

  





  #            $     !                        $        "

$ 

 

 

#            !     "

    

"

     $   #

!    #

$   

        %  

       

  !     $$      !     



 

$  

 

   "

  "          "

  "

                    $$  "

     !  ! $ # !   #          $$  "

"

  

 !          "             #   # !    (λ)   $ "   !       !          !        (3, 22)       "



                    $   "         !  "  $ !    $  $ #        " #          #          "      !    # !           $                $    "



    $ 





   !   # !         !   # !         !   #           



      

"



    #       

   !   #          

 

   !   # !     $$                     

  !    # !       

     

       !    # !                   !    # !       

   

             #       !   # !                   

  $  



 #      !   # $     #      # !   "   !   !                                $                        $             "                   "   "    "  #            $            $"                  !     $ #   #       !    "      $  $   $  "  " "    #                                "  (3) (λ) λ !      $ $     !              "







"

       !   #           !             !   #           !      $       !   #             !             !   # !                $        !   #             $   #      !                           $     $       !        $ $      $    ! $    "     $   !   

     #                                 $ "                $ !          $             $        !       !    #                   $ "       !   #      !       $   $    "         $ $        #        !     

 



           

  

  $ "         !   #     $          $      !   $   "

          $    

 

   !    #          # 

   $            #     !          # 

 



              # !     $            $$    "

" "

 

   !

"

 

! ! 

 

      !  "        E[Y 2 ]         !  " "

       !  "        E[Y 2 ] #  $   " "

#  $   "   $       

 

!  ! 

 

 

     " "           %  % %   %  $!       !   # # !     !   #    !     !            "        "           !    $!  $ $ "

    

      $  !   # # !      !   #   

     $    

      $    !   # # !        !  

!  

 

   !    #       !   # # !      

 !  

 

  !           # !   !      # !    !  "    # !          " #                # !     $ !           !  "

   



 # !          " #                 # !     $   !       # !       $ "

"

 !         !           #     $         $$     $! 

     #  $ #   !            $!    "       $ $      #    $$          $   #      !   !   # !      "

      



         !     $   !                    "  $         $             !  !   # !                      "

     

     $     #    !   # !                             $     



 $ 

    

         !            #    !   # !                      $   #       $$ 

$   

#!                          !           !         !           "

"

      

 $                   !       !        $       # !      "         $  $  !      !     $               #     $   #       !    # !     $                  $$      "  !     # $       !    "   #            "       #    #   !   $      $ #            $             #     "



      $ !          #         $ !        ! $     $                                   !  !  #      # "    #    #               !              #   $   $   $    $ $          !   "  $          $                  $     $                   "          $            $ $     $   $  $                        !   "

 $      !    

$  $ # 

  "

   $                        $  #   $               $          

" 



           

  

   #     $    #   $      $    

!   !  $   #   $ #       "   $  !      $ $ $       #    !  $     !      #   #    $    #    !                $  ! "     #       $   #                     !    #                 #$    "



"



   

 



    #  

  



 %     % %       %   %  %         !                 !                     ! #       !  $  "

   ! 

   $  # ! 



         

 "

 



  #   !                    $       !              $  "            #                 " "  "

"

     

     

  

    $  $ #    



    $  $ "

  X ∼  (λ) " Pr[X ≤ 7] = "

 "  "

  X

P7

−λ x λ /x! x=−∞ e P7 −λ x e λ /x! Px=0 7 −λ x λ /x! λ=0 e

        #!            "

 

Y Pr[X ≤ .5|Y ≤ .25] = "

 "

.5 .25

 " $    # !    #!  



$  X ∼  ! (µ, σ 2 ) " Pr[X > µ + σ]  "  !     "

 "     "

 "



      

 " $    # !    # ! 

 "



  X , . . . , X ∼  (0, 1) " X¯ ≡ (X + · · · + X )/100 " Y ≡ (X + 1 100 1 100 1 "  $  · · · + X100 ) "

¯ ≤ .2] Pr[−.2 ≤ X Pr[−.2 ≤ Xi ≤ .2]  " Pr[−.2 ≤ Y ≤ .2]  " ¯ ≤ 2] Pr[−2 ≤ X " Pr[−2 ≤ Xi ≤ 2] " Pr[−2 ≤ Y ≤ 2]   " ¯ ≤ 20] Pr[−20 ≤ X   " Pr[−20 ≤ Xi ≤ 20]  " Pr[−20 ≤ Y ≤ 20]   X ∼   (100, θ) " P100 f (x|θ) = θ=0  "

"

 "           !     



 " $    # !    # ! 

#  X

  "



Y

       

         "

f (x) =

R1

f (x, y) dx R01 f (x, y) dy  " R0x f (x, y) dy 0  "

f (x, y)

 "

  X , . . . , X ∼  ! ! (r, λ) 1 n

   !           "

f (x1 , . . . , xn ) = "

" "

"

P Q [λr /(r − 1)!]( xi )r−1 e−λ xi Q Q  " [λnr /((r − 1)!)n ]( xi )r−1 e−λ xi P Q  " [λnr /((r − 1)!)n ]( xi )r−1 e−λ xi

     "          $   !      $ !  "               !    "

 

   !

 " "

      $



     #       "      "   "   # !   k=2     ! # #       !  " "      !     ! # # Y1 Y      #  " 2 Y1



           

" " "

  %  



%% 



















   























  





    Y ∼  (1, n)       !  n               "           "     ! " " " "   

  !         Y!  =y ∈6 {1, 2, . . . , n}   nˆ  p(y)  

 y 6∈ {1, 2, . . . , n} 

             !      $ !  # !   #$       !      $  $  # ! "  " "     !        " " " "         !      T  !   #  !                   !   #          $     "   !          $           #  $                       $          ! " " " "



"

 

Y

    $   "  

   $        !          

E[Y ]

"

Var(Y ) MY (t)

Y ∼

 (a, b)

"

"

"

     $            # !                    #     $          " !   $  

 (1, ∞)

      $                #!                  #         !   $   "

 "   "

 

   !

" " 

x1 , . . . , xn ∼

 " " "

    $ "

"

 

   !

" "

"

 

   !

"

"



 (0, 1)

    $    $     #  %  "

"



   !   

"

  

 (−∞, ∞) #    !  " "

          #

x(n)

    

"              # 



      

"



           !      !           n     $ $ !          $ #        !   n    "       !               $  "    " " "            !          !     X X   !1   n " " "       """ "

µ1

µn

σ1

σn

             # $ X " i                 # X  " " "  X " 1 n $                $        

  "

 " "

  # ! #

   !   $    $ $ !   #

       "  "

"      #  

x∈R

X1

 """



Xn



"

 x2 1 lim ptp (x) = √ e− 2 p→∞ 2π

  

           # #  !     p (x) t p  tp      # !   "       !   $  "  $   x         % %   %     %           "  "





           

  

    





                

  #  #      #                                             "     !   $ !  #! $          $   #   #  $  !   $    $ !       !  "     $   $     ! $        $   !        ! $   !      !   #              #     "    !     $       #         $         $  #             "      $  !      $             $     #     θ       $  !    "  $     "    !      θ θ !   # !    $     $  #!      #   !       #!            !    "    $        #          $            $     $  θijk i      "         $             j k i j     $ $  "       #          # µ {θijk }k µ !            ij        #  $   ij"   !  k 



{θijk }k | µij , σk ∼

 " " "

 (µij , σk )

       #        $             $ i $   "       #          #   #   $ µi {µij }j µi   "      $   $           $     j µi #        !           !                µ



 σi

    



     

"         !    $       " " "

{θijk }k | µij , σk ∼  (µij , σk )  " " " {µij }j | µi, σj ∼  (µi , σj )  " " " {µi }i | µ, σi ∼  (µ, σi )

   $      #   !    "

    "  



    "

%  

  

% % %

    $      #  $ $  !    # #



 % %    %   !      $       !    $                      # !                        ! 



  !   # !                 # !  "          !       $ " $ $      !   $ !    " $       !  $          $   $        $   !  "

 

  

            

    

    "      !        $ !     "    #         # !          "

 $    

%   %         !    #     #     ! !          ! $ #       !           $  $  "     !      !      !     !   #  #   #!         # !       #              "



       !     $ $  $  #        2     !    !            !      !   ! $ !   #$  $  "



          $   $ #  !      $      "        !        !   " "                 !  "

       



 



  



 %   %        !        # !    $   !    !     !          " 

 



%

                "

 %  

     !   #        # 



           !          #   

   #       # !     #   "

 

 

   #

      

    %         !      # $                        $    "   !       #         $     "

         !     !   #      "    $ !  # !                            #    !   "  $             ..    





        %   .$.



. " "



  

         $! !           $ $       !  "   $                  "  $   $               #         #       $                   !    "     #         #       $           "   # !    !          $ #   !           !  "     $ !  Y1 , . . . , YT #           "

Yt

    "       $     #   

    "

   !   

". .       .  %&      $"    %   )"     .   

". .      %&   &     )"      

   

". .     .     .  *  +  %&      )"    "%&#   %  

". .   "  .   %&    &# %   )"    &. ")  .   

". .   ")&$  %&  &  %&  )&$   )"   .

%&#   

". .   % &.   %&  % &.    )"   

 "  

". .    .  ".  *   %   %""  +  %&     %   

    



20 40 60 80

1960 1970 1980 1990

DAX

UK Lung Disease

1992

1994

1996

1998

1500

Time

monthly deaths

Time

2000

1974

1976

Time

Canadian Lynx

Presidents approval

7000

Time

1820

1860

1900

1945

1955

1975

1965

1975

1980

1985

250

Sun Spots

0

60

200

UK drivers

1970

1980

Time

number of sunspots

Time

deaths

1978

30

0

320

36.4

CO2 (ppm)

Mauna Loa

0

trappings

Closing Price

Temperature

Beaver

     

1750

1850

Time

1950

Time

    " %   %     !    #     $     !             !     $ $  $  # 

 $   $ #      $    $     !     2   %   % !       # !   $   !   !     !                 !   #    

%   %                %     # $        !         !   "







               

                                      $ ! !   #    !   " •   

            "        #   $ ! !   !  !     #                               #          !               !   " "           " Y Y          $ $         "   $t   t+1   "  #    Yt+1 Yt            "           $                $ "  !        $     !         

        #    #$     !    $   #

        !         $ "          #  $   #  $ !      $    "    #                     "                      

       



   !       ! 



"   #  "" " " $  " $ " $ " " #        $ "  # 

     !        !   

Cor(Y , Y ), Cor(Yt , Yt+1 ), . . . , Cor(Yt , Yt+5 )    #     $    #  t  t   " " "   "       $    $                         " "     "       $     #   

    "

                 %& #'         %& '                

   % '      

   % ( '                 %&   "'       %& '                   

   % '      

   % ( '



    

30 50 70

yt+1

37.0

Presidents

36.4

yt+1

Beaver

36.4 37.0

30

yt     "

Yt+1

    

     

60 yt

Yt

#   

    "       $     #   

  

 

  

   

    "

           &          &          "    &   %  & '  &   %(   ' 

           

   % '          % (  '            

 $ 





!     $                          $ !            ! "        $   #            !      $     !  # !   !     "       "        $         #  $   !     "   $                      $                !   !     $   !      





               

lag = 1

37.2 36.4 36.8

37.2

36.4

lag = 2

lag = 3

37.2 36.4

36.8

Yt+k

36.8

36.8

37.2

36.4

36.8

37.2

lag = 4

lag = 5

37.0 36.6

Yt+k

37.0

37.4

Yt

37.4

Yt

36.6 36.4

36.8

37.2

36.4

Yt

0, . . . , 5

37.2

Yt

36.4

Yt+k

36.4

    "

36.8

Yt

37.2

36.4

Yt+k

36.8

Yt+k

36.8 36.4

Yt+k

37.2

lag = 0

Yt+k

    

36.8

37.2

Yt

Yt

#   

 

       

k =

    



     

   $                    $ $            $ $ !          $                     $ $$     #                           #   $ $ "    !    #   $                 !  #            "   !  #        "



%  %

          !  $ !    $  #        $  "        $      #       " #     $  #   {Yt }      $    #                      Yt+1 Yt      " "     $                 Yt−1 Yt−1 Yt+1 Yt     $              $        "    "   "     "       $   #          "     "       $     #   

    "

   &          &            %  '    %  &  '    %  &  '        

   % & '    

   % '      

   % ( '

     $               Yt+1            #       # Y     t     "   $   !   Yt                   $      $  #    "    #                Y Yt−1 Y $!    t+1   $     t     #  $    "

       !       "  !        Yt−1       !  Yt+1 Yt−1        ! $  

                               !  ! 



" $  

 " " #





#

" "   & "  "  & " "  

    !        !    "  $   Cor(Y , Yt+k | Yt+1, . . . , Yt+k−1 ) #          !  "     "    t     $     





               

Yt 36.4

36.6

36.8

37.0

37.4

36.4 36.8 37.2

36.4

36.8

37.2

Yt+1

36.4

36.8

37.2

36.4 36.8 37.2

37.2

36.4 36.8 37.2

Yt−1     " 

$   #

Yt+1

  #  $  #

Yt−1



Yt

#  

  

  



    

     

   !       $            "        Yt+1 ⊥ Yt−1 | Yt         "      !    #   # ! Y = β0 + β1 Yt + t+1 !       "   $  !     $         t+1 "     #  $  

#     ! "                       "



    &                        !     

                 

   

 " $  $        

         

" "   " 

    "   !          !    

"  Y = β0 + 0.8258Yt + t+1     !   $ #  "  "   t+1 "           ˆ β0 = 36.86 t                 "                $   #  √          $          Yt+1 ∼  (36.86 + .8258Yt, .012)    !       $   #       "                        $ $   !          $   !   "       !    $ !         $!         



Yt =



 

!  

+

   $ $

+

       

.

    $   !      !      !           # !     !    !       $ $ "      !  #     !    !       # t         #    $  "     

  





t

2

gˆ(t) =   

.5yt−6 + yt−5 + · · · + yt+5 + .5yt+6 12

 " 

       !    !  "          t  $! !       $ !    "                "     $ gˆ               "     # !    "   &   

g(t)





               



    "  "         $         !        "      #           #    !         !  #    !  $         # !    !           2 #    !   "       "   "        "                      !     $ "                gˆ g ˆ +      #!      "



    "       $     #   

    "

   &                  &                                           &   &                       &                  &                                                                           (  

   $   $ #    !   $    $         "

Yt t   # $         #   ∗         Y = Yt+1 /Yt $                 $  t  $  !  ∗    " Yt Y     "  #       $  $"             " t !  Y      !     $             $    "t          !   # "  !        #  $   Yt − Yt−1     !  $                        $     $$       "            "  Yt Yt−1                      "          Yt Yt−1 #              #  Yt = β0 + β1 Yt−1 (β0 , β1 ) = (0, 1) (β , β1 ) #      "       0                $  $                    !    #       " Yt ≈ Yt−1            # "         !      







Yt −Yt−1



    

(b)

−2

0

resids

340

−4

320

co2

2

360

4

(a)

     

1980

1960

1980

Time

Time

(c)

(d)

340

co2

0

320

−3 −2 −1

cycle

1

2

360

3

1960

2 4 6 8

12

1960

Index     "   









 



1980 Time



2       

  





       !  



 

               

Yt ∼  (Yt−1 , σ)

   



   !    #     "

1995

1992

1995

(c)

(d)

4000

−200

6000

−3

−1

    "   $   $ "     !   #       #   "

Yt

Yt−1

1

3

Theoretical Quantiles

DAXt−1



1998

0

Time

Sample Quantiles

Time

5000 2000

0

1998

2000

DAXt

1992

−200

5000

DAXt − DAXt−1

(b)

2000

DAX

(a)

Yt − Yt−1

    "       $     #   



Yt



Yt − Yt−1

    "

                                     

     % ' &   % & '        



    

     

     %& '    %& '             % & '      

     % '              "            %& '    %& '                         



    $ ! !       #         $    $  # !   "       % ' & %'  % ' & % '     $ $      $  $ !                   %& ' & %& ' "           !                !     !  $ !    #  "     !              % ' & %'  %#' & % '                      !         "       $   $   #   !      "

    "  #    "            !   "      Yt∗       !       #   $     "      !   # ∗   !       #   $ Y ∗ − Yt−1   "       t    ∗ "               Yt∗ Yt−1     ∗   ∗      ∗      !    #    ∗ Yt   Yt−1 Yt ⊥ Yt−1   "          # ∗ "       !        Y    ∗      !    t#           #         Yt ∼  (µ, σ)             "    !     #   ∗       "    Y    "    ∗ !         !    " Y ∼  (1.0007, 0.01)



    "       $     #   

    "

                                      

      % ' &    % & '               %&  '     %& '       

      % & '      

      % '            



           

             !    #         !           ∗

    

  

Yt ≈ Yt−1     ∗  Y ∼  (1.0007, 0.01) Yt



               



500

0

Yt

1500

(d)

0.98

1.04

0.92

1.00

(c) Sample Quantiles

Time

−3

−1

     "     !   # ∗  Yt       # ∗ ∗"

Yt−1

1

3

Theoretical Quantiles

ratet−1     " ∗  

500

Time

1.00 0.92

0.05

1500

0.92

ratet

0

−0.05

1.00

ratet − ratet−1

(b)

0.92

rate

(a)

Yt



∗ Yt∗ − Yt−1





    

     

!           "   !         $      "     $ #  #      !  "      $  $             "        #  $          #  "  $ !                     "  $  !     !    #             !   #           "    !         #  !            $    "       $                   $   #           $   !       $ !  ! $  $  ! $    !    $ " 

         % 

                                     %

!"



   #$  % &   '

( )  & *

+,-+./012 3 ,40+5   .3  5,/ 5  1214,  60/575 819+05 15 0  13  +05 

!:

;< =  $      ' *$*

!>

( ? & @  $**   A =   & **

  B  

 C D E F   B  

 G H I J I !

?%&

  B  

DN  

 M

A  $# K  L & *

                   

!

   <  #$  %



  L &  ?    $ % K  L & *

205.471+5       204 5 ,95     +,85  . 5  7120   6    6    6    5 ,   ,0  .0/85  8058./- /05804 3 ,40+5  ,8 025  !

  &=  $*& *

1  0  +,85 1/1+1-,75 8, .-7205   1/4    ,3  780 178, ,220  +18.,/5  1/4 ./802  208  ,2 8 0 ,8 02 41815085 ./ .-720   9  1  0  +,85 1/1+1-,75 8, .-720   ,3  780  128.1+ 178, ,220+1  8.,/5  1/4 ./802  208  ,2 8 0 ,8 02 4181 5085 ./ .-720  



620180 1/4  8 1 -,,4 3 ,40+  ,2 9,4  803  02187205 ,  8 0 50 ,/4 901 02 50 8 0 4181508       1    4,05   718.,/  1 021-0 , 02 1  012    .5/ 8 .8   ,2 0  13  +0 



1 

gˆ(t) =  ,2

.5yt−k + yt−k+1 + · · · + yt+k−1 + .5yt+k 2k

5,3 0  k 6= 6 9   13 ./0 gˆ ./   718.,/ 8 0 0/82.05    

 0  ,40  ,2

.-720





50

 .

  ,/81./5 8 0

/0 05512    120 5,3 0 , 

+./05

    &                  &                 

 ,7+4 8 0  ,++,  ./- +./05  ,2  ./58014      &                  &                 

  ,2

 

/,8 



    

     

.5 1 -,,4 .-720  1/4 8 0 1 ,3  1/  ./- 80  8 57--058 8 18 3 ,40+  ,2 8 0   4181  78 8 18 4,05/ 8 5  7120 Y.8t ≈8 Y0t−1 ,9502 18.,/ 8 18 8 0 5 1 0 1 -0/021++  ./ 2015./- 820/4 Yt

1  ./4 1  71/8.818. 0  1  8, 5 ,  8 0 820/4 9   1    8 0   1/1+  5.5 3 .5504 8 0 820/4    3  2, 0 8 0 1/1+  5.5 5, .8 5 ,/5.580/8  .8 8 0 820/4 .-7205  1/4   1/4 8 0 1 ,3  1/  ./- 80  8 1/1+  0 8 0



8.3 0 502.05 15 8 ,7- .8 15 8 0 513 0 5827 8720 8 2,7- ,78 8 0 0/8.20 8.3 0  ,05 8 18 3 1  0 50/50   ./  ,  1/4 .3  +03 0/8 5,3 0  1  ,  ./ 058. -18./-  08 02 8 0 5827 8720 ,  8 0 502.05 1/-05  2,3 012+  8, +180 



6 ,,50 ,/0 ,2 3 ,20 ,  8 0 ,8 02   8,  12  085 8 18 ,3 0  .8 8 0    4181  / 058.-180  08 02 .8 15 8 0 513 0 5827 8720 15 8 0  





1  9 

 

1  0 1  +175.9+0 1/1+  5.5 ,  8 0 7/-  .50150 4181   15 8 0 8 200 4181 5085       1/4     . 120 8 0 8,81+ 4018 5  8 0 4018 5 ,   03 1+05  1/4 8 0 4018 5 ,  3 1+05  , 8 0 4018 5 ,   03 1+05 1/4 3 1+05  ,++,  5.3 .+12 4.582.978.,/1+  18802/5  758.   ,72 1/5  02

1  0 1  +175.9+0 1/1+  5.5 ,  8 0 205.40/85 1   2, 1+ 218./-5 1  9 

1  0 1  +175.9+0 1/1+  5.5 ,  8 0 42. 025 4018 5 

,24./- 8,    6,3  7+5,2   012./- ,  5018 90+85  15 ./82,47 04 ,/  1/     .4 8 18 0  0 8 8 0 /73902 ,  4018 5  758.  ,72 1/5  02    5 8 0 /73902 ,  4018 5 20+1804 8, 8 0 /739 02 ,   .+,3 08025 42. 0/   50 8 0 12.19+0   ./ 8 0     4181 508  758.   ,72 1/5  02

       

      

@ =  A &=#$& *   ;#  #$*#$  *

 !



     

6,/5.402 8 0  ,++,  ./- 8 ,  1 85

08 . . 4 ,. 6 1  802    02 .50  5 ,  04 8 18 Y1 , . . . , Yn ∼ P `(λ) 40  0/45 ,/+  ,/ 1/4(λ) /,8 ,/ 8 0 5  0 .  1+705 ,  8 0 ./4. .471+ Yi 5

Yi 

08 . . 4   6 1  802    02 .50 5 ,  04 8 18 Y1 , . . . , Yn ∼ P `(λ) 40  0/45 ,/+  ,/ 1/4(λ) /,8 ,/ 8 0 5  0 .  1+705 ,  8 0 ./4. .471+ Yi 5

Yi

728 02  5./ 0 71/8. 05 ,  582,/-+  8 0 4181 57   ,28 01 1+70 ,   `(λ)  ,8 02 15  0 85 ,  120 .220+0 1/8 ,2 ./  020/ 0 19 ,78 .8 57  05 8,  /,λ y λ  1/4 8 020  ,20 .8 57  05 8,  /,  P  0 4,/ 8 /004 8,  /,  8 0 `(λ) i ./4. .471+ 5  0 51 8 18 P .5 1 57  Y.0/8 5818.58.  ,2 Yi Yi λ  0 8.,/ 0  13 ./05 8 0 -0/021+ ,/ 0  8 ,  57  .0/   0  ,2  ./ 8 0 ,/80  8 ,  1  1213 082.  13 .+   0 .401 ,  57  .0/  .5  ,23 1+.  04 ./  0  /.8.,/

        9  1  1213 0802 7/  /,  / 08 θ

15

θ

08

90 1  13 .+  ,   2,919.+.8 40/5.8.05 ./40  04

08{p(· | θ)} 9 0 1 513  +0  2,3  ,2 5,3 0 (y1 , . . . , yn ) p(· | θ) 9 y0 1=5818.58. 57 8 18 8 0  ,./8 4.582.978.,/  1 8,25 T (y) Y p(yi | θ) = g(T (y), θ)h(y). 



    

5,3 0  7/ 8.,/5 1/4

 ,2

g

 0

h

 0/

T

             

.5 1++04 1

          

θ



.401 .5 8 18 ,/ 0 8 0 4181 1 0 900/ ,9502 04  .5 1 ,/581/8 h(y) Q 8 18 4,05 /,8 40  0/4 ,   5, θ `(θ) ∝ p(y | θ) = g(T, θ)h(y) ∝ g(T, θ)  020  ,20  ./ ,2402 8,  /,  8 0 +.  0+. ,,4  7/ i8.,/ 1/4 3 1  0 ./  020/ 0 19,78   0 ,/+  /004 8,  /,   /,8 1/  8 ./- 0+50 19 ,78 ,2 ,72 ,.55,/ θ T (y) y P 1/4    ,/0/8.1+ 0  13  +05  0 1/ 81  0 T (y) = yi ,2 1 3 ,20 4081.+04 +,,  18 57  .0/   8 ./  ,  -0/0218./8 200  02/ (θ) 82.1+5 1/ 90 -0/021804  ,9 .,75+   9  -0/0218./y ≡ (y1 , y2, y3 ) y y1 , y2 , y3 50 70/8.1++   0  ,55.9+0 ,78 ,3 05 1/4 8 0.2  2,919.+.8.05 120 

(0, 0, 0)

(1 − θ)3

(1, 0, 0) (0, 1, 0) θ(1 − θ)2 (0, 0, 1) (1, 1, 0) (1, 0, 1) θ2 (1 − θ) (0, 1, 1)  78

y

1/

θ3

(1, 1, 1)

1+5, 9 0 -0/021804 9  1 8 ,  580   2, 04720 

 0/02180 P  .8  2,919.+.8.05 y = 0, 1, 2, 3  3  205  0 8.i 0+ 

θ) θ



1  

9  

P

yi = 0

P

yi = 1

P

yi = 3

19.+.8

  

P

8





(1, 0, 0) (0, 1, 0)



19.+.8yi =2

4  

-0/02180 (0, 0, 0)  -0/02180 



(1−θ)3 3θ(1−θ)2 3θ2 (1−



-0/02180



-0/02180



(1, 1, 0) (1, 0, 1) (1, 1, 1)



,2



,2

(0, 0, 1) (0, 1, 1)

01  .8  2,9  01  .8  2,9 

.5 015  8, 0  8 18 8 0 8 ,  580   2, 04720 -0/021805 01 ,  8 0  ,55.9+0 ,78 ,3 05  .8 8 0 513 0  2,919.+.8.05 15 8 0 ,9 .,75 50 70/8.1+  2, 04720 ,2 -0/0218./8 0 8 ,  2, 047205 120 0 7. 1+0/8 78 ./ 8 0 8 ,  580  y   2, 04720  ,/+  8 0  258 580  40  0/45 ,/  , .   0  1/8 8, 750 8 0 4181 8, θ



             

+012/ 19,78   0 ,/+ /004  /,  8 0 ,78 ,3 0 ,  8 0  258 580   0 50 ,/4 580  .5 .220+0θ 1/8  0   0 ,/+  /004 8,  /,  P  / ,8 02  ,245  P .5 yi yi 57  .0/8  ,2 1/ 0  13  +0 ,  1/,8 02 8   0  +08 . . 4   18 .5 1 y1 , . . . , yn ∼ (0, θ) 57  .0/8 5818.58.  ( .  ,2 1 yi < θ i = 1, . . . , n θn p(y | θ) = ,8 02  .50 5 ,  5 8 18 5818.58.

0 1 = n 1(0,θ) (y(n) ) θ  8 0 3 1  .373 ,  8 0 5 y(n) yi 

.5 1 ,/0 4.3 0/5.,/1+ 57  .0/8

  B     I    I  I IF            I        I  N        I                I       I      I IF I    T    I       IF    D    I        IF     III    I   IF   E  F             I        IF  x1 , . . . , xn  I    I    I I       I      I (n) IF x 

      I I I  I I         ,3 08.3 05 57  .0/8 . . 4  13  0/

x(n)

5818.58. 5 120 .- 02 4.3 0/5.,/1+ 08

(α, β)

Y

5,

p(yi | α, β) =

Y

1 y α−1 e−yi /β = Γ(α)β α i



1 Γ(α)β α

y1 , . . . , yn ∼

n Y  P α−1 yi e− yi /β

.5 1 8 , 4.3 0/5.,/1+ 57  .0/8 5818.58. .5 1 57  .0/8 5818.58.   7  .0/8 5818.58. 5 120 /,8 7/. 70   T = T (y) 1/4 .  .5 1   7/ 8.,/  8 0/ .5 1+5, 57  .0/8  , ./ 8 0 ,.55,/  f f (T ) P    ,/0/8.1+  1/4  02/,7++. 0  13  +05  020 P  15 57  .0/8  yi y¯ = /n .5 1+5, 57  .0/8  78 8 0 +1  ,  7/. 70/055 .5 0 0/ 3 ,20 50 020  0 y i,+0  4181 508 .5 1/  4.3 0/5.,/1+ 57  .0/8 5818.58. 90 1750 Q P T (y) = ( yi , yi )

T (y) = (y)

 020

n Y p(yi | θ) = g(T (y), θ)h(y)

1/4

+5,  8 0          5818.58. +5,  .

g(T (y), θ) = p(y | θ) h(y) = 1 .5 1/,8 02  4.3 0/5.,/1+ 57  .0/8 n (y(1) , . . . , y(n) )

T (y) = .5 1/  T



    

             

.5 1 8 , 4.3 0/5.,/1+ 57  .0/8 ,/0 4.3 0/5.,/1+ 5818.58. 8 0/ 2 = (y1 , T ) 57  .0/8 5818.58.  78 .8 .5 ./87.8. 0+  T+012 8 18 8 050 57  .0/8 5818.58. 5 120 .- 02  4.3 0/5.,/1+ 8 1/ /0 05512   0  1/ 90 2047 04 8, +,  02 4.3 0/  5.,/1+ 5818.58. 5  .+0 2081././- 57  .0/   8 18 .5   .8 ,78 +,5./- ./  ,23 1  8.,/  0  0  .401 ./ 8 0  20 04./-  121-21  .5 8 18 8 0 .- 4.3 0/5.,/1+ 57  .0/8 5818.58. 5 1/ 90 821/5  ,23 04 ./8, 8 0 +,  4.3 0/5.,/1+ ,/05  978 /,8        -  .5 1  7/ 8.,/ ,  978 .5 y¯ (y(1) , . . . , y(n) ) (y(1) , . . . , y(n) ) /,8 1  7/ 8.,/ ,   0  /.8.,/  .5  ,2 5818.58. 5 8 18 1 0 900/ 2047 04 15 37 15  ,55.9+0 y¯ .8 ,78 +,5./- 57  .0/  .5 1++04          .   ,2            57  .0/8 5818.58. T (y) 0 02  ,8 02 57  .0/8 5818.58.  .5 1  7/ 8.,/ ,  T2 T (y)

T2 (y)

 .5 9,,  4,05 /,8 40+ 0 ./8, 3 08 ,45  ,2  /4./- 3 ./.3 1+ 57  .0/8 5818.58. 5  / 3 ,58 1505 8 0 7502 1/ 20 ,-/.  0  08 02 1 5818.58. .5 3 ./.3 1+ 57  .0/8  ,05 8 0 8 0,2  ,  57  .0/  .3  +  8 18 5818.58. .1/5 /004 +,,  ,/+  18 57  .0/8 5818.58. 5 1/4 /,8 18 ,8 02 15  0 85 ,  8 0 4181   ,8 7.80 08 9 0 9./12  21/4,3 12.19+05 1/4 57   ,50  0 14,  8 8 0 3 ,40+ y1 , . . . , yn . . 4  02/  0/  ,2 058.3 18./-  0 /004 +,,  ,/+  18 P y1 , . . . , yn ∼ (θ) θ yi  78 57   ,50 872/ ,78 8, 90

(y1 , . . . , yn )

· · · 0} |1 1 {z · · · 1}, |0 0 {z  

  

. 0  3 1/  5  ,++,  04 9  3 1/  5  7 1 4181508  ,7+4 158 4,798 ,/ 8 0 15573  8.,/ 8 18 8 0 5 120 ./40 0/40/8  74-./-  2,3 8 .5 4181508  .8 +,,  5 yi  37 3 ,20 +.  0+  8 18 8 0 5 ,3 0 ./ 58201  5  , 5818.58. .1/5 5 ,7+4 +,,  yi  18 1++ 8 0 4181  /,8  758 57  .0/8 5818.58. 5  90 1750 +,,  ./- 18 1++ 8 0 4181 1/ 0+  75 20180 1/4 2.8. 70 3 ,40+5  78 ,/ 0 1 3 ,40+ 15 9 00/ 14,  804   8 0/ ./  020/ 0 5 ,7+4 90 91504 ,/ 57  .0/8 5818.58. 5 

                                 

      !

 072.58. 1++  5  01  ./-  15  0 ,++0 8 0 02 3 ,20 4181  0 5 ,7+4 90 19+0 8, +012/ 8 0 8278 0 02 3 ,20 1 72180+  .5 072.58. .5 1  87204  ,23 1++   18 +0158  ,2  1213 0802 058.3 18.,/  9  8 0 /,8.,/ ,  "   #  $  %  , 51  08 02 1/ 058.3 18,2 .5 ,/5.580/8  0 1 0 8, 40  /0 .8  ,2 0 02  513  +0



             

5.  0  , 8 18 0/4  +08 . . 4  ,2 5,3 0 7/  /,  / 40/5.8 1 ./·· ∼ f  /.80 3 01/ 1/4  Y1 , Y 2 ,·,2 01 f +08  0 .5 1 n µ σ n ∈ N Tn : R → R Tn 201+ 1+704  7/ 8.,/ ,  ,2 0  13  +0  .   0 20 82  ./- 8, 058.3 180 (y1 ,P . . . , yn )   0 3 .- 8 81  0 n −1

µ

Tn = n

1

yi

         C   0 50 70/ 0 ,    "  $       $  .   ,2 0 02 

θ

θ

.5 51.4 8, 9 0 058.3 18,25 T1 , T2 , . . . 1/4  ,2 0 02 

"   #  $  $

>0

lim P[|Tn − θ| < ] = 1.

n→∞

 ,2 0  13  +0  8 0 1  ,  12-0  739025   0,203   51  5 8 0 50 70/ 0 Pn ,  513  +0 3 01/5 .5 ,/5.580/8  ,2  .3 .+12+   +08 −1 {T = n y } µ n 1 i P .5 ,/5.580/8  ,2Sn = −1 2 90 8 0 513  +0 12.1/ 0  0/ N {Sn } σ2 (yi − Tn ) i  ,20 -0/021++   3 + 0 5 120 ,/5.580/8

 # #        $ ˆ  $          "        B     $ Y1 , Y2 , · · · ∼ pY (y | θ) θn  $        $   $   "  $#  "    $# "  "  

(y1 , . . . , yn ) g  θ   $ $ "     #$% "  #$# "  

#   "   #  $  $     "   $#   $ "   ˆ {g(θn )}  "  

g(θ)

  ""   0  2,,  20 7.205 20-7+12.8  ,/4.8.,/5 20+18./- 8, 4.  020/8.19.+.8  1/4 8 0 ./802 1/-0 ,  ./80-21+ 1/4 402. 18. 0  8 .5 90  ,/4 8 0 5 ,  0 ,  8 .5 9 ,, 

6,/5.580/  .5 1 -,,4  2,  028  ,/0 5 ,7+4 90  12  ,  1/ ./ ,/5.580/8 058.3 18,2  / 8 0 ,8 02 1/4  ,/5.580/  1+,/0 4,05 /,8 -7121/800 8 18 1 50 70/ 0 ,  058.3 18,25 .5 ,  8.3 1+  ,2 0 0/ 50/5.9+0 ,2 0  13  +0  +08   8 0 3 01/ ,  8 0  258 1+  ,  Rn (y1 , . . . , yn ) = (bn/2c)−1 (y1 + · · · + y bn/2c ) 8 0 ,9502 18.,/5  .5 8 0  ""  ,   8 0 +12-058 ./80-02 /,8 -201802 8 1/ bwc w   0 50 70/ 0 .5 ,/5.580/8  ,2 978 .5 /,8 15 -,,4 15 8 0 50 70/ 0   w {Rn } µ ,  513  +0 3 01/5  8 5003 5 /18721+ 8,  1/8 8 0 513  +./- 4.582.978.,/ ,  1/ 058.3 18,2   8, 90 0/80204 12,7/4 8 0  1213 0802 90./- 058.3 1804  .5 405.4021873 .5 1  87204  ,23 1++   18 +0158  ,2 0/802./- ./ 8 0 50/50 ,  0   0 818.,/  9  8 0 /,8.,/ ,  #  

          G 



71/8.8

ˆ −θ E[θ]

 #    

08 ˆ ˆ 90 1/ 058.3 18,2 ,  1  1213 0802  0 θ = θ(y1, . . . , yn ) .5 1++04 8 0 #   ,  ˆ / 058.3 18,2  ,50 9.15 .5 .5θ 1++04 

θ



    

             

020 120 5,3 0 0  13  +05 . . 4  1/4 ,/5.402         B    08 y1 , . . . , yn ∼ (µ, σ) µ ˆ = y¯ 15 1/ 058.3 180 ,   0 1750  .5 1/ 7/9.1504 058.3 180 , 





  

 

 B    

µ

08

E[¯ y ] = µ y¯

y1 , . . . , yn ∼ σ ˆ 2 = n−1

15 1/ 058.3 180 ,  E[n−1

σ2



. . 4 

X

(µ, σ)

µ

1/4 ,/5.402

(yi − y¯)2

X X (yi − y¯)2 ] = n−1 E[ (yi − µ + µ − y¯)2 ] n X X = n−1 E[ (yi − µ)2 ] + 2E[ (yi − µ)(µ − y¯)] o X + E[ (µ − y¯)2 ]  = n−1 nσ 2 − 2σ 2 + σ 2 = σ 2 − n−1 σ 2 n−1 2 σ = n

 020  ,20 2 .5 1 5818.58. .1/5σˆ  20  02 2

y¯)

9.1504 058.3 18,2 ,  2  8 5 9.15 .5 2  ,3 0 σ −σ /n P  8, 750 8 0 7/9.1504 058.3 18,2 2 −1 σ ˜ = (n−1)

(yi −

. . 4  1/4 ,/5.402 ˆ      B     08 x1 , . . . , xn ∼ (0, θ) θ = x(n) 15 1/ 058.3 180 ,   ˆ .5 8 0 3 + 0  500  0 8.,/     78  θ θ x(n) < θ 8 020  ,20  8 020  ,20 .5 1 9.1504 058.3 18,2 , 

  

E[x(n) ] < θ

x(n)

θ

           



     



                 



       

 ! 



(=   *   = K  #$   *



@  =  K &#&= *

7. 1+0/8  1213 0802.  18.,/5  05  0 .1++     5  08  / 12.1/ 0 ,     5 

 

          !"

    = K  #$  

 !:

  =&  ' A  #? & *$*



B 

  B    

(& *#$  %

          





    





               





        





   

 !>

  A   &  #$     K $  $& *

!

    #$     L

;   &

 K $  $& *

 , 18.,/  5 1+0  13 .+.05  

 <   #$     *

 7/ 8.,/1+5  

   =$    &

 / 12.1/ 0  

 *' K A #  #$  *

 / 201+ +.  0  4181 5085 120  /.80   08  0 ,  80/ 1   01+ 8, 8 0  1  (y1 , . . . , yn ) ,   12-0  739025 ,2 8 0 60/821+  .3 .8  0,203   0,203 5       1/4     . ,/ 02/ 8 0 +.3 .8 ,  1 50 70/ 0 ,  21/4,3 12.19+05 15 n→∞   0 ,  0 .5 8 18  0/ .5 +12-0 8 ,50 8 0,203 5  .++ 80++ 75 5,3 08 ./-  n 18 +0158 1   2, .3 180+   19,78 8 0 4.582.978.,/ ,  8 0 513  +0 3 01/  78

 

    

             

 0 20  1 04  .8 8 0 7058.,/5  ,  +12-0 .5 +12-0   1/4  ,  +,50 .5 8 0  1   2, .3 18.,/    , 81  0 1/ 0  13  +0   0 3 .- 8  1/8 8, 1   +  8 0  1  ,   12-0  739 025 ,2 8 0 60/821+  .3 .8  0,203 8, 1 50 70/ 0 ,  21/4,3 12.19+05 1 , Y2 , . . .  2,3 1 4.582.978.,/  .8 3 01/ 1/4   Y020 120 1  0  ./581/ 05 ,  8 0 µ σ  258 50 021+ 0+03 0/85 ,  57 1 50 70/ 0      

     

   

    



     

        

      

        

     

··· ··· · · ·



 1

50 70/ 0 , 7  .05 ,/0 2,  ,  8 0 1221  0   ./4. 1805 8 18 8 0  ··· 50 70/ 0 ,/8./705 ./  /.80+   0   ./4. 1805 8 18 8 020 120 ./  /.80+  3 1/  57 50 70/ 05  0 /739025  020 -0/021804 9                                          •



 ,50 8, -0/02180 5  2,3 8 0  4.582.978.,/  5,  7504     Yi  (0, 1) 1/4 5,   ,2 8 .5 0  13  +0  1/4  ,50 120 129.8212  ,. 05 µ=0 σ=1  ,7+4 1 0 7504 1/  1+705 ,  1/4 1/4 1/  4.582.978.,/  ,2  . µ σ   /,  ,  8, -0/02180 21/4,3 12.19+05 ,/ 8 0 ,3  7802

  4,05 2,7/4./-  / 8 .5 150  0 20  2./8./- 01 /73902  .8 8 , 40 .3 1+  +1 05

 0 1750 8 020 120 37+8.  +0 50 70/ 05  01  .8 37+8.  +0 0+03 0/85   0 /004 8 , 5795 2.  85 8,  00  821  ,  8 ./-5  2,  02+  08 90 8 0 8 0+03 0/8 ,  j ij 8 0 8 50 70/ 0 ,2 8 0 8 50 70/ 0 ,  21/4,3 Y12.19+05   0 20 ./80205804 i     020 /4 ./ 8 i 0 50 70/ 0 ,  3 01/5  Y¯i1 , Y¯i2, . . . Y¯in = (Yi1 + · · · + √ Yin )/n   0 20 1+5, ./80205804 ./ 8 0 50 70/ 0  020 Zi1 , Zi2 , . . . Z = n(Y¯ − µ)  ,2 8 0 8 200 ./581/ 05 19, 0  8 0 5 1/4 5 1/ 9 0 in2./804  .8 in Y¯in  Zin 



                              

      !       



        

    ,3  7805 1 737+18. 0 573  5,          .0+45 8 0 0  8,2                             2./8 ,78         .  ,7 20 /,8 5720  18 .8 .5   020  ,20            .5 8 0 50  70/ 0 ,  Y¯in 5 ,3  7805 8 0 5 7120 2,,8  , 8 0 50 ,/4   581803 0/8  2./85 • !  8 0 50 70/ 0 ,  5 •

 0



Zin 

2057+85  ,2 8 0 ¯ 5 120 Yin                



1/4  ,2 8 0      

  



 

    

      

      

       

 



    

      

       

    

··· ··· · · ·

       

      

      

       

··· ··· · · ·



5 120

Zin 

      

20 ./80205804 ./ 8 0  ,++,  ./- 7058.,/5     .++ 0 02  50 70/ 0 ,  ¯ 5 ,2 i 5 ,/ 02-0   .5  8 0 +.3 .8 1+,/01 2, Yi,  8 0Z1221 



0

 8 0  ,/ 02-0 

.5 1 7058.,/ 19 ,78 

4, 8 0  1++ 1 0 8 0 513 0 +.3 .8 

  /,8 0 02  50 70/ 0 ,/ 02-05   18  21 8.,/ ,  8 03 ,/ 02-0  ,2  5 ,2 5  18 .5 8 0  2,919.+.8  8 18 1 21/4,3 +  ,50/ 50 70/ 0 ,  Y¯i  Zi   ,/ 02-05   ,2

1   04   18 .5 8 0 4.582.978.,/ ,  ¯ ,2 n 19,78 8 0 4.582.978.,/ 1+,/- ,+73 /5 ,  8 Y0n 1221Zn

 .5

.5 1 7058.,/ 

  ,05 8 0

4.582.978.,/ ,  ¯ ,2 40  0/4 ,/  Yn Zn n   5 8 020 1 +.3 .8./- 4.582.978.,/ 15  n→∞  ,3 0 5.3  +0 0  13  +05 1/4 8 0  82,/-  1  ,   12-0  739025   0,  203    1/5  02 7058.,/5   1/4   ,2 8 0 50 70/ 05 ,  ¯ 5  0 60/821+ Y   5  .3 .8  0,203   0,203    1/5  025 7058.,/   ,2 8 0 50i  70/ 05 ,  



Zi 



    

  .++ 0 02 

.5

             

50 70/ 0 ,  ¯ 5 ,/ 02-0   ,  7   ,50 8 0 50 70/ 0 ,  5  Yi   Yi   0/ ¯ ./ 201505  .8 ,78 +.3 .8 1/4 4,05 /,8 ,/ 02-0 {Y i }

1, 2, 3, . . .

8 0  ,/ 02-0  4, 8 0  1 0 8 0 513 0 +.3 .8  50 70/ 05 ,  5





020 120 8 ,

Yi 

 

 

 0 ,2205  ,/4./-



,

 

··· ···

50 70/ 05 ¯ ,/ 02-0 8, 4. 020/8 +.3 .85 {Y i }   18 .5 8 0  2,919.+.8  ,  ,/ 02-0/ 0   0  2,919.+.8  ,  ,/ 02-0/ 0 .5   18 5 8 0  82,/-  1  ,   12-0  739 025  /  128. 7+12  8 0  2,919.+.8  ,  21/4,3 +  -088./- 1 50 70/ 0 8 18 4,05/ 8 ,/ 02-0  +.  0   .5  78 8 0  82,/-  1  ,   12-0  739025 51  5 0 0/ 3 ,20 1, 2, 3, . . .  8 51  5 P[ lim Y¯n = µ] = 1.

 , 8 0  2,919.+.8  ,  -088./8 18 ,/ 02-0 8, 5,3 08 ./-

n→∞

50 70/ 05 57 15 ,2 1, 1, 1, . . . −1, −1, −1, . . .  ,8 02 8 1/ .5 µ

  0 1//,8 51  ./ -0/021+  8 40  0/45   18 .5 8 0 4.582.978.,/ ,  Zn ,/ 8 0 4.582.978.,/ ,  8 0 ./4.

.471+ 5 Yi    ,05 8 0 4.582.978.,/ ,  40  0/4 ,/   05  0  0  8 ./ 8 0 5  0 .1+ Zn n 150  020   ,2 1++

Yi ∼

(0, 1)

i

  5 8 020 1 +.3 .8./- 4.582.978.,/   05  18 5 8 0 60/821+  .3 .8  0,  203  0-124+055 ,  8 0 4.582.978.,/ ,  8 0  5  15 +,/- 15  Y Var(Yi ) < ∞ 8 0 +.3 .8  15  ,  8 0 4.582.978.,/ ,  i  .5  n→∞

Zn

(0, 1)

 0  1  ,   12-0  739 025 1/4 8 0 60/821+  .3 .8  0,203 120 8 0,203 5 19,78 8 0 +.3 .8 15  0/  0 750 8 ,50 8 0,203 5 ./  21 8. 0  0 n → ∞ ,  0 8 18 ,72 513  +0 5.  0 .5 +12-0 0/,7- 8 18 ¯ 1/4   n Zin ∼ (0, 1) in ≈ µ 1   2, .3 180+   78 ,  +12-0 5 ,7+4 90 9 0  ,20 Y20+  ./- ,/ 8 050 8 0,203 5  1/4 ,  -,,4 .5 8 0 1   2, .3 18.,/ n  0 1/5  02 .5   $      "  $  #  $  # $# "  " $    18 5  18  0 +,,  18 /0  8 Y  , .++7582180   0 i-0/02180 50 70/ 05 ,  5  2,3 8 , 4.582.978.,/5  ,3    780 5 1/4 5  ,2 50 021+  1+705 ,  Y ij1/4 ,3  120  /0 4.582.978.,/ ¯ Yin  Zin  n .5   8 0 ,8 02 .5 1 20 0/80204 1/4 205 1+04 025.,/ ,   0

(0, 1)

(.39, .01)



        

 0 0 40/5.8  5 ,  / ./  .-720    15 ,50/  ,2 .85 15  3 3 0  .01) 82   8 15 1(.39, 3 01/ , 1/4 1 12.1/ 0 ,  .39/.40 = .975 (.39)(.01)/((.40)2(1.40)) ≈  8  15 20 0/80204 1/4 205 1+04 8, 1 0 1 3 01/ ,  1/4 12.1/ 0 ,  .017 .5  8 0 513 0 15 8 0  4.582.978.,/ 1/12 (0, 1)  0/5.8.05 ,  8 0 ¯ 5 120 ./  .-720  5 8 0 513  +0 5.  0 ./ 201505  2,3 8, Yin   8 0 ¯ 5  2,3 9 ,8 4.582.978.,/5 -08 +,502 8, 10 n = 270 Y 8 0.2 0n =0 804

1+70 ,    18 5in8 0  1  ,   12-0  739025 18  ,2   0 13 ,7/8 9   . 8 0  20 , 8 0.2 3 01/ -,05  2,3 19,78 8, 19 ,78 ±.2 ±.04   ,2  /4  /1++   15  18 5 6,2,++12    18  8 0 40/5.8.05 -08 3 ,20 n→∞  ,23 1+  18 5 8 0 60/821+  .3 .8  0,203 18  ,2    ,80 8 18 8 0 40/5.8  ,  8 0 5 402. 04  2,3 8 0  4.582.978.,/ .5 Y¯in  +,50 8,  ,23 1+ 0 0/  ,2 8 0 53 1++058 513  +0 5.  0   .+0(0,8 1)0 40/5.8 ,  8 0 5 402. 04  2,3 8 0  0 4.582.978.,/ .5  1 ,  18 5 9 0 1750 Y¯in  (.39, .01)  .5 5  3 3 082. 1/4 7/.3 ,41+  1/4 8 020  ,20 +,50 8,  ,23 1+ 8, 90-./ (0, 1)  .8   .+0  0 .5  12  2,3 5  3 3 082. 1/4 7/.3 ,41+  1/4 8 020  ,20 (.39, .01)  12  2,3  ,23 1+  8, 9 0-./  .8  ,  0 /0045 1 +12-02 8, 3 1  0 8 0 (.39, .01) 1 -,,4 1   2, .3 18.,/n 60/821+  .3 .8  0,203  ,2   . 0  8, 90  .-720   .5  ,2 8 0 5  8 5 8 0 513 0 15  .-720  0  0  8 8 18 01 Zin  40/5.8 15 900/ 20 0/80204 1/4  205 1+04 8, 1 0 3 01/ 1/4 12.1/ 0   0/  78 ,/ 8 0 513 0 5 1+0  0 1/ 500 8 18 1++ 40/5.8.05 120 ,/ 02-./- 8,

4

6

8



2

(0, 1)

0



0.0

0.2

0.4

 .-720    0  0

0.6 (.39, .01)

0.8

40/5.8

1.0



    

 .-720    15  2,47 04

             

9

   !                                                  .-720   15

-0/021804 9  8 0  ,++,  ./-

 ,40

                                                                                                         !                                                                                     !             !                                                                                                                                                           •

                        



         



        

25 20 15 10 5 0

0

5

10

15

20

25

30

n = 30

30

n = 10

0.0

0.4

0.8

0.0

0.8

25 20 15 10 5 0

0

5

10

15

20

25

30

n = 270

30

n = 90

0.4

0.0

0.4

0.8

0.0

0.4

0.8

                             Y¯in (0, 1) (.39, .01)                     



    





             

    

  

Y1 , . . . , Yn

        

                µ                    µ    

σ

σ

(µ, σ)



               

                 

                  µ σ    

          

            Y1 , . . . , Yn (α, β)    

          

   Y1 , . . . , Yn 



   

(−θ, θ)



             



 

      

0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0

n = 30

1.0

n = 10

−3

−1

1

3

−3

1

3

0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0

n = 270

1.0

n = 90

−1

−3

−1

1

3

−3

−1

1

3

                              Zin (0, 1) (.39, .01)                     



    

             

  

                     

          α      !   "   #       % & $   

   ' (      )    )      *      %     )     "       +  $   , 

     $   +         -   "           -      "       ) 

  

  $   $ ,  "     )        ,       ,     /          -       .   

  "



   

" $

    



    #

 "

  



   #

   

 

   

$

               

        

                

            #         

      

 

 

 # " "

 

$  $# $# 



     

$"

$  $# $# 

 

"

 

$  $# $#



    

#









# 



               $

                $  $# $# #    

$ " $# "

          "  "   

 

    

                         



 

 

  



   

               $  $   $#   $ #  $# "

  







     

 ,     )      .  -           "        *  ,   α         !   "   #        ,     "    

    * *          .      -   "   -               "   "            -                

                  "    "      #  $   

$  $#  $#      



            # " " # 

 



 

   $  $# $# 

      #



" % "

        " " # "  $  # #   

        # #

             

   

$  $# $#

             " #  $# "    

             

           

#  #





#"



 

"

 " $

 



    







# 

$  $# $# 

   

 

  

         

   

  

 

  

          ,        )    ) *  +

  , 



     

 )  ,      ,

   

  

    $      ,

 



 ,     ,  +  ,



  ,    +  ,      +  ,        ,    

 

α

 



     

       

 





                                                                                          



 

       

                                                                                                                  





 









    



  



   

 

       

  

     ,         

        

    

  

   +  

 

     

          

                                 

                                 



                                                              

,   ,         

          

                 $        ,   

      

              

 

 

     

       





                                                                            

      

  



        

                                                           

      

    

         





                              

  

  

+            ,   

    + 

 





  +    

 

    

 



    +  

 





  

                                                                                                              

          

           

 

 



   







 

      

     +  ,     

 ,   

                                                                                                                             







  

   ,       

    +     $   

         *      )

,  

   , 

  

     , 



 

     

      ,      

                                                                                              

                                                               



  



   

   



  

       

 

 )              )         ) )      

     

 

  



                     

 

      



 





 

 

    



  



    

          



   

          

 



 



 

 

Related Documents

Introductions To Ict
May 2020 13
Essay Introductions
April 2020 5
Thought
November 2019 28
Introductions Tata
May 2020 4