Integration Formulas

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Integration Formulas as PDF for free.

More details

  • Words: 1,250
  • Pages: 7
Integration Formulas Note that a and b are constants. Elementary Forms ∫ a dx = ax ∫(u +v ) dx = ∫u dx +∫v dx ∫ u dv = uv − ∫ v du dv

du

∫ u dx dx = uv − ∫ v dx dx

∫x

dx =

n

x n +1 n +1

n ≠ −1



dx = ln x x



df ( x ) dx dx = ln( f ( x ) ) f ( x)

∫b

ax

dx =

b ax a ln b

Exponential Forms ∫ e dx = e x

∫e

−x

∫e

ax

x

dx = −e −x

dx =

e ax a

b >0

∫ xe

ax

dx =

e ax ( ax −1) a2

Logarithm Forms ∫ln x dx = x ln x − x

∫ x ln x dx = ∫x

2

ln x dx =

∫(ln x )



x2 ln x − 14 x 2 2

2

x3 ln x − 19 x 3 3

dx = x (ln x ) −2 x ln x +2 x 2

( ln x ) n

1 ( ln x ) n +1 n +1

dx =

x

dx

∫ x ln x = ln( ln x )

Forms with a+bx ( a + bx ) n ∫ ( a + bx ) dx = ( n +1)b

n +1

dx

n ≠ −1

1

∫ a + bx = b ln( a + bx ) dx

∫ a + bx

=

2

dx

∫ ( a + bx )

2

=−

1 b( a + bx )

3

=−

1 2 2b( a + bx )

dx

∫ ( a + bx )

 x ab  1  tan −1   a  ab  

ab > 0

∫x

2

dx 1  x −a  = ln   2 −a 2a  x + a 

∫ ( a + bx ) x dx

∫ a + bx

dx =

=

x dx

∫ a + bx

n

2

2

( a + bx ) n +1

n ≠ −1

( n +1)b

1 ( a + bx − a ln(a + bx ) ) b2

=

x dx

∫ ( a + bx )

x2 > a2

1 ln (a + bx 2 ) 2b

=

1  a  ln ( a + bx ) +  b2  a + bx 

x dx 1 ∫ ( a + bx ) = b ( ( a + bx ) 2

1 2

3

x 2 dx

∫ ( a + bx ) ∫

2

=

1 b3

a + bx dx =

∫x ∫x

2



a 2 − x 2 dx =

∫x



)

( a + bx ) 3

2 ( 3bx − 2a ) 15b 2

a + bx dx =

( a + bx ) 3

2 (8a 2 −12abx +15b 2 x 2 ) 105b 3

 1  x a 2 − x 2 + a 2 sin −1  x a 2  

a 2 − x 2 dx = −

dx 2 = b a + bx

− 2a ( a + bx ) + a 2 ln ( a + bx )

 a2   a + bx − 2a ln ( a + bx ) − a + bx    

2 3b

a + bx dx =

2

1 3

a + bx

(a

2

− x2 )

3

   

( a +bx ) 3



x dx 2( 2a − bx ) =− 3b 2 a + bx



x 2 dx 2(8a 2 − 4abx + 3b 2 x 2 ) = 15b 3 a + bx



a2 − x2



x2 ± a2

∫x

∫x ∫

dx

= sin −1

=ln x + x 2 ± a 2

dx x2 −a2

dx a2 ± x2

x dx x2 ± a2

a + bx

x a

(

dx

a + bx

)

1 x sec −1 a a

=

=−

1  a + a2 ± x2 ln a  x 

= x2 ± a2

Trigonometric Forms 1

∫ sin ax dx = − a cos ax 1

∫ cos ax dx = a sin ax 1

∫ tan ax dx = − a ln(cos ax ) 1

∫ cot ax dx = a ln(sin ax ) 1

∫ sec ax dx = a ln(sec ax + tan ax ) 1

∫ csc ax dx = a ln(csc ax − cot ax )

   

∫ sin

2

ax dx =

x sin 2ax − 2 4a

cos ax ( 2 + sin 2 ax ) 3a

∫ sin

3

ax dx = −

∫ sin

4

ax dx =

3 x sin 2ax sin 4ax − + 8 4a 32a

ax dx =

x sin 2ax + 2 4a

ax dx =

sin x ( 2 + cos 2 ax ) 3a

ax dx =

3 x sin 2ax sin 4ax + + 8 4a 32a

∫ cos

2

∫ cos

3

∫ cos

4

∫sin ax sin bx dx =

sin ( ( a − b) x ) sin( ( a + b) x ) − 2( a − b ) 2( a + b )

∫ cos ax cos bx dx = ∫ sin ax cos ax dx =

sin ( ( a − b) x ) sin ( ( a + b) x ) + 2( a − b ) 2( a + b )

2

ax cos 2 ax dx =

1

cos( ( a − b) x ) cos( ( a + b) x ) − 2( a − b ) 2( a + b )

x sin 4ax − 8 32a

x cos ax a

∫ x sin ax dx = a

2

∫x

2x a2 x2 −2 sin ax − cos ax 2 a a3

2

sin ax dx =

1

∫ x cos ax dx = a

2

a 2 ≠ b2

sin 2 ax 2a

∫sin ax cos bx dx = − ∫ sin

a 2 ≠ b2

sin ax −

cos ax +

x sin ax a

a 2 ≠ b2

∫x

2

cos ax dx =

2x a 2 x 2 −2 cos ax + sin ax 2 a a3

1 tan ax − x 2a

∫ tan

2

ax dx =

∫ tan

3

ax dx =

1 1 tan 2 ax + ln ( cos ax ) 2a a

∫ tan

4

ax dx =

1 1 tan 3 ax − tan x + x 3a a

dx 1 = − cot ax 2 ax a

∫ sin

dx

∫ cos

∫ sin

2

ax

−1

=

1 tan ax a

ax dx = x sin −1 ax +

1 a

1 −a 2 x 2

∫ cos

−1

ax dx = x cos −1 ax −

1 a

∫ tan

−1

ax dx = x tan −1 ax −

1 ln (1 + a 2 x 2 ) 2a

1 −a 2 x 2

Hyperbolic Trigonometric Forms ∫sinh x dx = cosh x ∫cosh x dx = sinh x ∫ tanh x dx = ln(cosh x ) ∫ x sinh x dx = x cosh x −sinh x ∫ x cosh x dx = x sinh x −cosh x

Related Documents

Integration Formulas
November 2019 2
Formulas
May 2020 26
Formulas
December 2019 37
Formulas
June 2020 24
Formulas
May 2020 16