Integration Formulas Note that a and b are constants. Elementary Forms ∫ a dx = ax ∫(u +v ) dx = ∫u dx +∫v dx ∫ u dv = uv − ∫ v du dv
du
∫ u dx dx = uv − ∫ v dx dx
∫x
dx =
n
x n +1 n +1
n ≠ −1
∫
dx = ln x x
∫
df ( x ) dx dx = ln( f ( x ) ) f ( x)
∫b
ax
dx =
b ax a ln b
Exponential Forms ∫ e dx = e x
∫e
−x
∫e
ax
x
dx = −e −x
dx =
e ax a
b >0
∫ xe
ax
dx =
e ax ( ax −1) a2
Logarithm Forms ∫ln x dx = x ln x − x
∫ x ln x dx = ∫x
2
ln x dx =
∫(ln x )
∫
x2 ln x − 14 x 2 2
2
x3 ln x − 19 x 3 3
dx = x (ln x ) −2 x ln x +2 x 2
( ln x ) n
1 ( ln x ) n +1 n +1
dx =
x
dx
∫ x ln x = ln( ln x )
Forms with a+bx ( a + bx ) n ∫ ( a + bx ) dx = ( n +1)b
n +1
dx
n ≠ −1
1
∫ a + bx = b ln( a + bx ) dx
∫ a + bx
=
2
dx
∫ ( a + bx )
2
=−
1 b( a + bx )
3
=−
1 2 2b( a + bx )
dx
∫ ( a + bx )
x ab 1 tan −1 a ab
ab > 0
∫x
2
dx 1 x −a = ln 2 −a 2a x + a
∫ ( a + bx ) x dx
∫ a + bx
dx =
=
x dx
∫ a + bx
n
2
2
( a + bx ) n +1
n ≠ −1
( n +1)b
1 ( a + bx − a ln(a + bx ) ) b2
=
x dx
∫ ( a + bx )
x2 > a2
1 ln (a + bx 2 ) 2b
=
1 a ln ( a + bx ) + b2 a + bx
x dx 1 ∫ ( a + bx ) = b ( ( a + bx ) 2
1 2
3
x 2 dx
∫ ( a + bx ) ∫
2
=
1 b3
a + bx dx =
∫x ∫x
2
∫
a 2 − x 2 dx =
∫x
∫
)
( a + bx ) 3
2 ( 3bx − 2a ) 15b 2
a + bx dx =
( a + bx ) 3
2 (8a 2 −12abx +15b 2 x 2 ) 105b 3
1 x a 2 − x 2 + a 2 sin −1 x a 2
a 2 − x 2 dx = −
dx 2 = b a + bx
− 2a ( a + bx ) + a 2 ln ( a + bx )
a2 a + bx − 2a ln ( a + bx ) − a + bx
2 3b
a + bx dx =
2
1 3
a + bx
(a
2
− x2 )
3
( a +bx ) 3
∫
x dx 2( 2a − bx ) =− 3b 2 a + bx
∫
x 2 dx 2(8a 2 − 4abx + 3b 2 x 2 ) = 15b 3 a + bx
∫
a2 − x2
∫
x2 ± a2
∫x
∫x ∫
dx
= sin −1
=ln x + x 2 ± a 2
dx x2 −a2
dx a2 ± x2
x dx x2 ± a2
a + bx
x a
(
dx
a + bx
)
1 x sec −1 a a
=
=−
1 a + a2 ± x2 ln a x
= x2 ± a2
Trigonometric Forms 1
∫ sin ax dx = − a cos ax 1
∫ cos ax dx = a sin ax 1
∫ tan ax dx = − a ln(cos ax ) 1
∫ cot ax dx = a ln(sin ax ) 1
∫ sec ax dx = a ln(sec ax + tan ax ) 1
∫ csc ax dx = a ln(csc ax − cot ax )
∫ sin
2
ax dx =
x sin 2ax − 2 4a
cos ax ( 2 + sin 2 ax ) 3a
∫ sin
3
ax dx = −
∫ sin
4
ax dx =
3 x sin 2ax sin 4ax − + 8 4a 32a
ax dx =
x sin 2ax + 2 4a
ax dx =
sin x ( 2 + cos 2 ax ) 3a
ax dx =
3 x sin 2ax sin 4ax + + 8 4a 32a
∫ cos
2
∫ cos
3
∫ cos
4
∫sin ax sin bx dx =
sin ( ( a − b) x ) sin( ( a + b) x ) − 2( a − b ) 2( a + b )
∫ cos ax cos bx dx = ∫ sin ax cos ax dx =
sin ( ( a − b) x ) sin ( ( a + b) x ) + 2( a − b ) 2( a + b )
2
ax cos 2 ax dx =
1
cos( ( a − b) x ) cos( ( a + b) x ) − 2( a − b ) 2( a + b )
x sin 4ax − 8 32a
x cos ax a
∫ x sin ax dx = a
2
∫x
2x a2 x2 −2 sin ax − cos ax 2 a a3
2
sin ax dx =
1
∫ x cos ax dx = a
2
a 2 ≠ b2
sin 2 ax 2a
∫sin ax cos bx dx = − ∫ sin
a 2 ≠ b2
sin ax −
cos ax +
x sin ax a
a 2 ≠ b2
∫x
2
cos ax dx =
2x a 2 x 2 −2 cos ax + sin ax 2 a a3
1 tan ax − x 2a
∫ tan
2
ax dx =
∫ tan
3
ax dx =
1 1 tan 2 ax + ln ( cos ax ) 2a a
∫ tan
4
ax dx =
1 1 tan 3 ax − tan x + x 3a a
dx 1 = − cot ax 2 ax a
∫ sin
dx
∫ cos
∫ sin
2
ax
−1
=
1 tan ax a
ax dx = x sin −1 ax +
1 a
1 −a 2 x 2
∫ cos
−1
ax dx = x cos −1 ax −
1 a
∫ tan
−1
ax dx = x tan −1 ax −
1 ln (1 + a 2 x 2 ) 2a
1 −a 2 x 2
Hyperbolic Trigonometric Forms ∫sinh x dx = cosh x ∫cosh x dx = sinh x ∫ tanh x dx = ln(cosh x ) ∫ x sinh x dx = x cosh x −sinh x ∫ x cosh x dx = x sinh x −cosh x