Integral Transforms Formula Sheet

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Integral Transforms Formula Sheet as PDF for free.

More details

  • Words: 1,319
  • Pages: 2
Integral Transforms Formula Sheet created by Jaime X. Lopez Definition of the FT and Convolution Z ∞ 1 F {f (x)} = F (k) = √ e−ikx f (x) dx 2π −∞ Z ∞ 1 −1 √ F {F (k)} = f (x) = eikx F (k) dk 2π −∞ Z ∞ 1 f (x) ∗ g (x) = √ f (x − ξ) g (ξ) dξ 2π −∞

Parseval’s Relation Z ∞ Z ∞ f (x) g (x)dx = F (k) G (k)dk −∞ −∞ Z ∞ Z ∞ 2 2 |f (x)| dx = |F (k)| dk −∞

1 0

if x > a if x < a

H (x − a) =  1, a ≤ x ≤ b χ[a,b] (x) = 0, elswhere  1 if x > 0 sgn (x) = −1 if x < 0 Z ∞ f (ξ) δ (ξ − x) dξ = f (x)

(1) (2) (3) (4) (5) (6)

−∞

 d f (x, t) = ikF (k, t) F dx  2  d F f (x, t) = −k 2 F (k, t) dx2  n  d n F f (x, t) = (ik) F (k, t) dxn  n  dn d F f (x, t) = F (k, t) dtn dtn d F {xf (x)} = i F (k) dk dn F {xn f (x)} = in n F (k) dk

(17) (18)

F {f (x) ∗ g (x)} = F (k) G (k)

(19)

x exp (−a |x|) , a > 0

Let F (k) = F {f (x)} and G (k) = F {g (x)}

−∞

(16)

qF (k)

a 2 π k2 +a2

exp (−a |x|) , a > 0

Properties and Identities of the FT

F {F (x)} = f (−k) Z ∞ F (k) g (k) eikx dk = f (ξ) G (ξ − x) dξ

f ∗ (g ∗ h) = (f ∗ g) ∗ h (f + g) ∗ h = f ∗ h + g ∗ h √ f ∗ e = e ∗ f = f, e = 2πδ

f (x)

Z ∞   n 1 exp −nx2 = eikx dk δ (x) = lim n→∞ π 2π −∞   x2 =1 I (x) = lim exp − n→∞ 4n



(15)

Let F (k) = F {f (x)}

r

Z

f ∗g =g∗f

Transform Pairs

−∞

F {f (x − a)} = e−ika F (k)   k 1 F F {f (ax)} = |a| a n o F f (−x) = F {f (x)}  F eiax f (x) = F (k − a)

(14)

−∞

Properties of Convolution

Generalized Functions 

(13)



(7) (8)

|x| exp (−a |x|) , a > 0  exp −ax2 , a > 0  x exp −ax2 , a > 0  x2 exp −ax2 , a > 0  xn exp −ax2 , a > 0 a x2 +a2 , a ax x2 +a2 , a

>0 >0 H (x)

χ[−a,a] (x) δ (x) δ (x − a) 1 x xn exp (iax) x exp (iax) sin ax x

δ (x − a) + δ (x + a) (9) (10) (11) (12)

1 of 2

δ (x − a) − δ (x + a) sgn (x) sin (x) cos (x)  sin ax2  cos ax2

q

−2aik

2

q π (k22+a22)

2

2 a −k π (k2 +a2 )2  2 √1 exp − k 2a  4a 

−ik k2 exp − 4a (2a)3/2  2 k −k2 − 4a 5/2 exp (2a)  2 2 (−ik) exp − k (2a)(2n+1)/2 p π −a|k| 4a e p π2 −a|k| ike  p π 8 1 δ (k) + iπk 2q 2 sin ak π k √1 2π √1 exp(−ika) 2π √

√2πδ (k) i√ 2πδ 0 (k) n i√ 2πδ (n) (k) (k − a) √ 2πδ n (n) 2πi δ (k − a) pπ χ (k) [−a,a] q2 2



cos (ak)

2 i sin (ak) πq 2 1

π ik pπ −i [δ (k + a) − δ (k − a)] pπ2 [δ (k − a) 2  + δ (k + a)] √1 2a √1 2a

sin

cos

k2

 4a2

k 4a





π 4 π 4

Integral Transforms Formula Sheet

Definition of the FCT and FST r Z ∞ 2 Fc {f (x)} = Fc (k) = f (x) cos(kx)dx π 0 r Z ∞ 2 Fc (k) cos(kx)dk Fc−1 {Fc (k)} = f (x) = π 0 r Z ∞ 2 Fs {f (x)} = Fs (k) = f (x) sin(kx)dx π 0 r Z ∞ 2 −1 Fs (k) sin(kx)dk Fs {Fs (k)} = f (x) = π 0

Properties of the Laplace Transform  L e−at f (t) = f¯(s + a) L {tn f (t)} = (−1)n f¯(n) (s)  Z ∞  f (t) = f¯(s)ds L t s L {f (t − a)H(t − a)} = e−as f¯(s) 1 ¯ s  L {f (at)} = f |a| a 0 ¯ L {f (t)} = sf (s) − f (0) L {f 00 (t)} = s2 f¯(s) − sf (0) − f 0 (0)

Convolution Theorems for FCT and FST Z ∞ 1 f (ξ) [g(x + ξ) + g(|x − ξ|)] dξ Fc−1 {Fc Gc } = √ 2π 0 Z ∞ 1 Fc−1 {Fs Gs } = √ f (ξ) [g(ξ + x) + g(ξ − x)] dξ 2π 0 Z ∞ 1 g(ξ) [f (ξ + x) − f (ξ − x)] dξ Fs−1 {Fs Gc } = √ 2π 0 Z ∞ 1 Fs−1 {Fc Gs } = √ f (ξ) [g(ξ + x) − g(ξ − x)] dξ 2π 0

n o L f (n) (t) = sn f¯(s) − sn−1 f (0) − sn−2 f 0 (0) − · · · − sf (n−2) (0) − f (n−1) (0) Z t  f¯(s) L f (τ )dτ = s 0 Convolution for the Laplace Transform  L−1 f¯(s)¯ g (s) = f (t) ∗ g(t) Z t f (t) ∗ g(t) = f (t − τ )g(τ )dτ

Properties of the FCT and FST   k 1 , a>0 Fc a a   k 1 , a>0 Fs {f (ax)} = Fs a a r 2 0 Fc {f (x)} = kFs (k) − f (0) π r 2 0 Fc {f 00 (x)} = −k 2 Fc (k) − f (0) π Fs {f 0 (x)} = −kFc (k) r 2 00 2 Fs {f (x)} = −k Fs (k) − f (0) π Fc {f (ax)} =

(20)

Laplace Convolution also possesses the properties of associativity, commutativity, and distributivity.

(21) Special Functions (22)

Z

(23)

xa−1 e−x dx,

Γ(a + 1) = aΓ(a),

(25)

a>0

Standard Laplace Transforms (26)

f (t) 1

(27) tn (28) sin(bt) (29) cos(bt)

Definition of the Laplace Transform Z ∞ ¯ L {f (t)} = f (s) = e−st f (t)dt, Re(s) > 0

sinh(at) cosh(at)

0 c+i∞ Z

est f¯(s)ds,

a>0

Γ(n + 1) = n!, n ∈ N Z x 2 2 e−α dα erf(x) = √ π 0

(24)

0

 1 L−1 f¯(s) = f (t) = 2πi



Γ(a) = 0

Parseval’s Relation for FCT and FST Z ∞ Z ∞ Fc (k)Gc (k)dk = f (x)g(x)dx 0 Z ∞ Z0 ∞ 2 2 |f (x)| dx |Fc (k)| dk = 0 0 Z ∞ Z ∞ Fs (k)Gs (k)dk = f (x)g(x)dx 0 Z0 ∞ Z ∞ 2 2 |Fs (k)| dk = |f (x)| dx 0

0

eat

c>0

c−i∞

2 of 2

f¯(s) 1 s n! sn+1 b 2 s + b2 s s2 + b2 a s2 − a2 s 2 s − a2 1 s−a

s0 0 0 0 0 0 0 0

Related Documents