Integral Transforms Formula Sheet created by Jaime X. Lopez Definition of the FT and Convolution Z ∞ 1 F {f (x)} = F (k) = √ e−ikx f (x) dx 2π −∞ Z ∞ 1 −1 √ F {F (k)} = f (x) = eikx F (k) dk 2π −∞ Z ∞ 1 f (x) ∗ g (x) = √ f (x − ξ) g (ξ) dξ 2π −∞
Parseval’s Relation Z ∞ Z ∞ f (x) g (x)dx = F (k) G (k)dk −∞ −∞ Z ∞ Z ∞ 2 2 |f (x)| dx = |F (k)| dk −∞
1 0
if x > a if x < a
H (x − a) = 1, a ≤ x ≤ b χ[a,b] (x) = 0, elswhere 1 if x > 0 sgn (x) = −1 if x < 0 Z ∞ f (ξ) δ (ξ − x) dξ = f (x)
(1) (2) (3) (4) (5) (6)
−∞
d f (x, t) = ikF (k, t) F dx 2 d F f (x, t) = −k 2 F (k, t) dx2 n d n F f (x, t) = (ik) F (k, t) dxn n dn d F f (x, t) = F (k, t) dtn dtn d F {xf (x)} = i F (k) dk dn F {xn f (x)} = in n F (k) dk
(17) (18)
F {f (x) ∗ g (x)} = F (k) G (k)
(19)
x exp (−a |x|) , a > 0
Let F (k) = F {f (x)} and G (k) = F {g (x)}
−∞
(16)
qF (k)
a 2 π k2 +a2
exp (−a |x|) , a > 0
Properties and Identities of the FT
F {F (x)} = f (−k) Z ∞ F (k) g (k) eikx dk = f (ξ) G (ξ − x) dξ
f ∗ (g ∗ h) = (f ∗ g) ∗ h (f + g) ∗ h = f ∗ h + g ∗ h √ f ∗ e = e ∗ f = f, e = 2πδ
f (x)
Z ∞ n 1 exp −nx2 = eikx dk δ (x) = lim n→∞ π 2π −∞ x2 =1 I (x) = lim exp − n→∞ 4n
∞
(15)
Let F (k) = F {f (x)}
r
Z
f ∗g =g∗f
Transform Pairs
−∞
F {f (x − a)} = e−ika F (k) k 1 F F {f (ax)} = |a| a n o F f (−x) = F {f (x)} F eiax f (x) = F (k − a)
(14)
−∞
Properties of Convolution
Generalized Functions
(13)
(7) (8)
|x| exp (−a |x|) , a > 0 exp −ax2 , a > 0 x exp −ax2 , a > 0 x2 exp −ax2 , a > 0 xn exp −ax2 , a > 0 a x2 +a2 , a ax x2 +a2 , a
>0 >0 H (x)
χ[−a,a] (x) δ (x) δ (x − a) 1 x xn exp (iax) x exp (iax) sin ax x
δ (x − a) + δ (x + a) (9) (10) (11) (12)
1 of 2
δ (x − a) − δ (x + a) sgn (x) sin (x) cos (x) sin ax2 cos ax2
q
−2aik
2
q π (k22+a22)
2
2 a −k π (k2 +a2 )2 2 √1 exp − k 2a 4a
−ik k2 exp − 4a (2a)3/2 2 k −k2 − 4a 5/2 exp (2a) 2 2 (−ik) exp − k (2a)(2n+1)/2 p π −a|k| 4a e p π2 −a|k| ike p π 8 1 δ (k) + iπk 2q 2 sin ak π k √1 2π √1 exp(−ika) 2π √
√2πδ (k) i√ 2πδ 0 (k) n i√ 2πδ (n) (k) (k − a) √ 2πδ n (n) 2πi δ (k − a) pπ χ (k) [−a,a] q2 2
qπ
cos (ak)
2 i sin (ak) πq 2 1
π ik pπ −i [δ (k + a) − δ (k − a)] pπ2 [δ (k − a) 2 + δ (k + a)] √1 2a √1 2a
sin
cos
k2
4a2
k 4a
−
−
π 4 π 4
Integral Transforms Formula Sheet
Definition of the FCT and FST r Z ∞ 2 Fc {f (x)} = Fc (k) = f (x) cos(kx)dx π 0 r Z ∞ 2 Fc (k) cos(kx)dk Fc−1 {Fc (k)} = f (x) = π 0 r Z ∞ 2 Fs {f (x)} = Fs (k) = f (x) sin(kx)dx π 0 r Z ∞ 2 −1 Fs (k) sin(kx)dk Fs {Fs (k)} = f (x) = π 0
Properties of the Laplace Transform L e−at f (t) = f¯(s + a) L {tn f (t)} = (−1)n f¯(n) (s) Z ∞ f (t) = f¯(s)ds L t s L {f (t − a)H(t − a)} = e−as f¯(s) 1 ¯ s L {f (at)} = f |a| a 0 ¯ L {f (t)} = sf (s) − f (0) L {f 00 (t)} = s2 f¯(s) − sf (0) − f 0 (0)
Convolution Theorems for FCT and FST Z ∞ 1 f (ξ) [g(x + ξ) + g(|x − ξ|)] dξ Fc−1 {Fc Gc } = √ 2π 0 Z ∞ 1 Fc−1 {Fs Gs } = √ f (ξ) [g(ξ + x) + g(ξ − x)] dξ 2π 0 Z ∞ 1 g(ξ) [f (ξ + x) − f (ξ − x)] dξ Fs−1 {Fs Gc } = √ 2π 0 Z ∞ 1 Fs−1 {Fc Gs } = √ f (ξ) [g(ξ + x) − g(ξ − x)] dξ 2π 0
n o L f (n) (t) = sn f¯(s) − sn−1 f (0) − sn−2 f 0 (0) − · · · − sf (n−2) (0) − f (n−1) (0) Z t f¯(s) L f (τ )dτ = s 0 Convolution for the Laplace Transform L−1 f¯(s)¯ g (s) = f (t) ∗ g(t) Z t f (t) ∗ g(t) = f (t − τ )g(τ )dτ
Properties of the FCT and FST k 1 , a>0 Fc a a k 1 , a>0 Fs {f (ax)} = Fs a a r 2 0 Fc {f (x)} = kFs (k) − f (0) π r 2 0 Fc {f 00 (x)} = −k 2 Fc (k) − f (0) π Fs {f 0 (x)} = −kFc (k) r 2 00 2 Fs {f (x)} = −k Fs (k) − f (0) π Fc {f (ax)} =
(20)
Laplace Convolution also possesses the properties of associativity, commutativity, and distributivity.
(21) Special Functions (22)
Z
(23)
xa−1 e−x dx,
Γ(a + 1) = aΓ(a),
(25)
a>0
Standard Laplace Transforms (26)
f (t) 1
(27) tn (28) sin(bt) (29) cos(bt)
Definition of the Laplace Transform Z ∞ ¯ L {f (t)} = f (s) = e−st f (t)dt, Re(s) > 0
sinh(at) cosh(at)
0 c+i∞ Z
est f¯(s)ds,
a>0
Γ(n + 1) = n!, n ∈ N Z x 2 2 e−α dα erf(x) = √ π 0
(24)
0
1 L−1 f¯(s) = f (t) = 2πi
∞
Γ(a) = 0
Parseval’s Relation for FCT and FST Z ∞ Z ∞ Fc (k)Gc (k)dk = f (x)g(x)dx 0 Z ∞ Z0 ∞ 2 2 |f (x)| dx |Fc (k)| dk = 0 0 Z ∞ Z ∞ Fs (k)Gs (k)dk = f (x)g(x)dx 0 Z0 ∞ Z ∞ 2 2 |Fs (k)| dk = |f (x)| dx 0
0
eat
c>0
c−i∞
2 of 2
f¯(s) 1 s n! sn+1 b 2 s + b2 s s2 + b2 a s2 − a2 s 2 s − a2 1 s−a
s0 0 0 0 0 0 0 0