Integral Table Master

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Integral Table Master as PDF for free.

More details

  • Words: 4,192
  • Pages: 10
Integral Table

TABLE OF ITEGRALS

Remark:

letter a, b, c, α and β denote contants; n denote positive integer, u denote variabl

Emath2, Emath3, Am1, Am2

0.

⌠   ⌡

ln( u) du → u⋅ ln( u) − u

⌠ ( n+ 1) u  n 1.  u du → ( n + 1) ⌡ ⌠  2.   ⌡ ⌠  3.  ⌡

4.

⌠   ⌡

1 u

right arrow means result from mathcad = means result from direct input

n ≠ −1

du → ln( u)

exp( u) du → exp( u)

u α du →

1 ln( α )

⋅α

u

⌠  5.  ⌡

sin( u) du → −cos ( u)

⌠  6.  ⌡

cos ( u) du → sin( u)

⌠  2 10.  csc( u) du = − cot( u) ⌡

⌠  11.  ⌡

sec ( u) ⋅ tan( u) du → sec ( u)

⌠  12.  ⌡

csc ( u) cot( u) du → −csc ( u)

⌠  13.  ⌡

sec ( u) du → ln( sec ( u) + tan( u) )

⌠  14.  ⌡

csc ( u) du → ln( csc ( u) − cot( u) )

⌠  15.    ⌡ ⌠  16.    ⌡

⌠  7.  tan( u) du → − ln( cos ( u) ) ⌡ ⌠  8.  cot( u) du → ln( sin( u) ) ⌡

17.

1

 u  α

du = asin

2 2 α −u

1 2 α +u

du →

2

⌠   A dB = AB − ⌡

1 α

 u  α

⋅ atan 

⌠   B dA ⌡

⌠  2 9.  sec ( u) du = tan( u) ⌡

Integral Table Master.mcd

Copyright 2009

1/10

Integral Table

Forms Involving α + β ⋅ u

18.

19.

20.

⌠ 1  n n+ 1  ( α + β ⋅ u) du = β ( n + 1) ⋅ ( α + β ⋅ u) ⌡ ⌠    ⌡ ⌠    ⌡

⌠  21.    ⌡

1 α + β ⋅u

du →

⌠  26.   ⌡

n ≠ −1

1

β

du =

1 α

 u    α + β ⋅u

⋅ ln

28. 1 2 u ⋅ ( α + β ⋅ u)

du = −

1

+

α⋅u

β α

2

 α + β ⋅u   u 

23.

24.

25.

⌠    ⌡ ⌠     ⌡

1 u⋅ ( α + β ⋅ u)

2

du =

1 α

⋅ ( α + β ⋅ u) −

 α + β ⋅u ⋅ ln  2  u  a 1

30. u α + β ⋅u

du →

u ( α + β ⋅ u)

⌠   u⋅ ⌡

2

1 β

du →

α + β ⋅ u du →

Integral Table Master.mcd

⋅u −

α β

2

⋅ ln( α + β ⋅ u)

α 2

⌠  2  u ⋅ ⌡ ⌠     ⌡

7  2 2 ⋅  ⋅ ( α + β ⋅ u) 3 7 β 1

α + β ⋅ u du →

2 u

du →

α + β ⋅u

− 2⋅ ( α

5  2 2 ⋅  ⋅ ( α + β ⋅ u) 3 5 β 1



4



3

4 5

⋅α

⋅ ln

29. ⌠  22.    ⌡

du →

α + β ⋅u

3  2 2 ⋅  ⋅ ( α + β ⋅ u) 2 3 β 1

ln( α + β ⋅ u) 27.

u⋅ ( α + β ⋅ u)

u

β ⋅ ( α + β ⋅ u)

+

1 β

2

5  1 2 2 ⋅  ⋅ ( α + β ⋅ u) 2 5 β

3 2 3

⋅ α ⋅ ( α + β ⋅ u)

⌠    ⌡

⌠  31.   ⌡

⋅ ln( α + β ⋅ u)



⌠    ⌡

2

  

Copyright 2009

⌠  32.    ⌡

1 u⋅

α + β ⋅u

1 u⋅

du =

  

⋅ ln

1 α

2

du →

1

α + β ⋅u ( −α )

α + β ⋅u u

du = 2⋅

1 2 u ⋅

α + β ⋅u

du =

2

1   ( α + β ⋅ u) 2 ⋅ atan  1   ( −α) 2 

α + β ⋅u α ⋅u

α 

α + β ⋅u +

⌠  α + β ⋅ u + α ⋅  ⌡ −

α 

α + β ⋅u −

u α + β⋅

⌠  − ⋅ 2⋅ α   ⌡ β

u⋅

2/10

Integral Table

2 2 2 2 Forms Involving u + α , u − α

33.

⌠     ⌡

⌠  34ii.    ⌡ ⌠  34ii.    ⌡

35.

⌠     ⌡

1 2 2 u −α

u 2 2 u +α

u 2 2 u −α

2 u 2 2 u −α

du =

du →

du =

1 2⋅ α

1 2

1 2

⌠  37i.    ⌡

 2 2 ⋅ lnu + α 

⌠  37ii.    ⌡

 2 2 ⋅ lnu − α 

du = u +

Integral Table Master.mcd

⌠  36.    ⌡

u − α  u + α

⋅ ln

α 2

2 u 2 2 u +α

 u  α

du = u − α ⋅ atan 

1

 2 2 u⋅ u + α 

1

 2 2 u⋅ u − α 



1

du =

2⋅ α

du = −

2

   2 2 u + α  

1 2⋅ α

2 u

⋅ ln

2

   2 2 u − α 

⋅ ln

2 u

u − α  u + α

⋅ ln

Copyright 2009

3/10

Integral Table

2 2 u +α ,

Forms Involving

2 2 u −α

⌠  38i.   ⌡

u 2 2 u + α du = ⋅ 2

2  2 2 α u +α + ⋅ lnu + 2

2 2 u +α 

⌠  38ii.   ⌡

u 2 2 u − α du = ⋅ 2

2  2 2 α u −α − ⋅ lnu + 2

2 2 u −α 

⌠   43ii.    ⌡ ⌠  44.    ⌡

3

⌠  39i.  u⋅  ⌡

1  2 2 2 2 u + α du = ⋅ u + α  3

2

⌠  45.    ⌡

3

⌠  39ii.  u⋅  ⌡

1  2 2 2 2 u − α du = ⋅  u − α  3

2

⌠  2 40i.  u ⋅  ⌡

u  2 2 2 2 u + α du = ⋅ 2u + α  ⋅ 8

4  2 2 α u +α − ⋅ ln u + 8

2 2 u +α

 

⌠  2 40ii.  u ⋅  ⌡

u  2 2 2 2 u − α du = ⋅ 2u − α  ⋅ 8

4  2 2 α u −α − ⋅ ln u + 8

2 2 u −α

 

⌠   41.   ⌡ ⌠   42.   ⌡ ⌠   43i.    ⌡

2 2 u −α u

2 2 u +α u

2 2 u +α 2 u

2 α 2 u − α − α ⋅ acos  u

du =

du =

Integral Table Master.mcd



2 2 u +α 



u

α + 2 2 u + α − α ⋅ ln

du =



2 2 u +α u

  



+ lnu +

⌠  46i.    ⌡ ⌠  46ii.    ⌡ ⌠   47i.    ⌡

 

⌠   47ii.    ⌡

2 2 u +α 

Copyright 2009

2 2 u −α 2 u

1

du =

2 2 u −α



u



+ lnu +



2 2 u +α 



2 2 u −α 

du = lnu +

2 u −

2 2 u +α

1

du = lnu +

2 2 u −α

u

du =

2 2 u +α

du =

2 2 u −α

2 2 u +α

u 2 2 u −α

2 u

du =

2 2 u +α

2 u 2 2 u −α

du =

u 2

u 2



2  2 2 α u +α − ⋅ ln u + 2



2  2 2 α u −α + ⋅ ln u + 2

4/10

Integral Table

⌠  48.    ⌡ ⌠  49.    ⌡ ⌠  50i.    ⌡ ⌠  50ii.    ⌡ ⌠  51.    ⌡ ⌠  52.    ⌡ ⌠    53i.  ⌡ ⌠    53ii.  ⌡

1 u⋅

du =

2 2 u −α

1 u⋅

du =

2 2 u +α

1 2 u ⋅

3 u ⋅



α

u

 α +



  2 2 u +α 

⌠  54ii.      ⌡

2 2 u +α

⌠  55i.      ⌡

2 2 u −α 2 α ⋅u

2 2 u −α

du =

2 2⋅ α ⋅ u

2 2 u −α



+

2 2 u +α 2 2α ⋅ u

2 2 u +α

⋅ acos 3  2α 1

+

α u

 α + 1 ⋅ ln 3  2α

⌠  55ii.      ⌡

  

⌠  56i.      ⌡

2 2 u +α 

 

u

3

u2 + α 2  

2 du =

u 8

1 3

u2 + α 2  

u

du =

2 2 u +α

2 α ⋅

2

u

2 α ⋅u

2 2 u −α

du =

⌠  54i.      ⌡

  

⋅ ln

du =

1

α



1

du =

1 3 u ⋅

α

⋅ acos

2 2 u +α

1 2 u ⋅

1

 2 2 ⋅ 2u + 5⋅ α  ⋅

 2 2 3⋅ α u +α + ⋅ lnu + 8 4

2 2 u +α 

⌠  56ii.      ⌡

1 3

u2 − α 2  

3

u2 + α 2  

3

3

3

u2 − α 2  

du =

2

−1

−1 2 2 u −α

du =

−u



+ lnu +

2 u

2 2 u +α

2

2 u

2 2 u −α

2 2 u +α

2

2 u

u2 + α 2  

du =

2

u

u2 − α 2  

2 α ⋅

2

u

−u

du =

du =

−u



+ lnu +

2 u

2 2 u −α

3

u2 − α 2  

2 du =

Integral Table Master.mcd

u 8

 2 2 ⋅ 2u − 5⋅ α  ⋅

4  2 2 3⋅ α u −α + ⋅ lnu + 8

2 2 u −α 

Copyright 2009

5/10

Integral Table

2 2 α −u

Forms Involving

⌠  15.    ⌡ ⌠  57.   ⌡

1

61.

⌠  62.    ⌡ ⌠   63.    ⌡

⌠  65.    ⌡

2

 u 2 α 2 α −u + ⋅ asin  α 2

u 2 2 α − u du = ⋅ 2

1 u⋅

du =

2 α −u 2

1 2 u ⋅

1 α

2 2 α −u 



α

 

2 2 α −u



du =

 α−

⋅ ln

2 α ⋅u

2 2 α −u

3 −1  2 2 2 α − u du = ⋅ α − u  3 2

⌠  2 59.  u ⋅  ⌡

⌠      ⌡

 u  α

du = asin

2 2 α −u

⌠  58.  u⋅  ⌡

⌠   60.   ⌡

⌠  64.    ⌡

u  2 2 2 2 α − u du = ⋅ 2⋅ u − α  ⋅ 8

2 α −u

2 2 α −u 2 u

u

du =

du =

4 2 α  u 2 α −u + ⋅ asin  8 α

 α + 2 2 α − u − α ⋅ ln 

2

u

⌠  66.    ⌡

2

2 2 α −u



u

du = −

2 α −u  2

u

 

⌠  68.      ⌡

 u  α

− asin

⌠  69.      ⌡

2 2 α −u

2 2 α −u

2 u

du =

2 2 α −u

Integral Table Master.mcd

−u 2



⌠    67.  ⌡

⌠  70.      ⌡

2 2 α  u α −u + ⋅ asin  2 α 2

Copyright 2009

1 3 u ⋅

2 2 α −u



du =

2 2 2⋅ α ⋅ u

2 2 α −u

+

 α ⋅ ln 3  2⋅ α 1

3

α 2 − u2  

2 du =

1 3

α 2 − u2  

3

α 2 − u2  

3

α 2 − u2  

2

2  2 ⋅ 5⋅ α − 2u  ⋅

du =

2 2 α −u

u 2 2 α −u

2 α ⋅

1 2 2 α −u

2

2 u

8

du =

2

u

u

du =

u 2 2 α −u

 u  α

− asin

6/10

Integral Table

2 Forms involving au + bu + c , a ≠ 0

2 2 R = au + bu + c , D = b − 4ac ⌠  71.   ⌡ ⌠  72.   ⌡ ⌠  73.   ⌡ ⌠  74.   ⌡ ⌠  75.   ⌡ ⌠  76.  ⌡

1 R

1 R

du =

du =

 2⋅ a⋅ u + b − ⋅ ln D  2⋅ a⋅ u + b +

2 −D

du =

R

1

D>0

D 

 2⋅ a⋅ u + b   −D  

⋅ atan 

⌠ u 1 b  du = ⋅ ln( R) − ⋅ R 2a 2a  ⌡

1

D 

1

1 R

⌠  78.   ⌡

D<0

⌠  79.   ⌡

du

(

1

⌠  77.   ⌡

⋅ ln 2⋅ a⋅ u + b + 2⋅

a⋅

)

⌠  80.   ⌡

a> 0

R

a

du =

R

R du =

 2⋅ a⋅ u + b  ⋅ asin  −a D  

−1

( 2⋅ a⋅ u + b) ⋅

Integral Table Master.mcd

4a

⌠ R D  − ⋅ 8⋅ a   ⌡

⌠  81.   ⌡

a < 0,D > 0

1

u

du =

R

1 u⋅

du = R

1 u⋅

R

R⋅

du = R

u R⋅

du = R

a

−1

  

1 −c

1

du

R

R+

⋅ ln

c

du =

1

⌠ b  − ⋅ 2⋅ a   ⌡

R

c

u

du

Copyright 2009

2⋅

 c 

 b⋅ u + 2⋅c    u⋅ D 

⋅ asin

− 2⋅ ( 2⋅ a⋅ u + b) D⋅

R

2⋅ ( b⋅ u + 2c ) D⋅

R

⌠  3  2⋅ a⋅ u + b  3D  2 82.  R du = ⋅ R − ⋅  8 ⋅ a 8⋅ a   ⌡

R

b

+

2 ⌠  R+ ⋅ 2  128a  ⌡ 3⋅ D

7/10

Integral Table

Forms Involving trigonometric functions

⌠ u sin( u) ⋅ cos ( u)  2 83.  sin( u) du = − 2 2 ⌡

⌠  93.  u⋅ cos ( u) du = cos ( u) + u⋅ sin( u) ⌡

⌠ u sin( u) ⋅ cos ( u)  2 84.  cos ( u) du = + 2 2 ⌡

⌠  2 2  94.  u ⋅ sin( u) du = 2⋅ u⋅ sin( u) − u − 2 ⋅ cos ( u) ⌡

⌠ 3 cos ( u)  3 85.  sin( u) du = − cos ( u) 3 ⌡

⌠  2 2  95.  u ⋅ cos ( u) du = 2⋅ u⋅ cos ( u) + u − 2 ⋅ sin( u) ⌡

⌠ 3 sin( u)  3 86.  cos ( u) du = sin( u) − 3 ⌡

⌠ ⌠ n− 1 − sin( u) ⋅ cos ( u) n− 1   n 96.  sin( u) du = + ⋅  sin n n ⌡ ⌡

⌠ u 1  2 2 87.  sin( α ⋅ u) ⋅ cos ( α ⋅ u) du = − ⋅ sin( 4⋅ α ⋅ u) 8 32 ⋅α ⌡

⌠ ⌠ n− 1 cos ( u) ⋅ sin( u) n− 1   n 97.  cos ( u) du = + ⋅  cos n n ⌡ ⌡

⌠  2 88.  tan( u) du = tan( u) − u ⌡

⌠ n− 1 ⌠ tan( u)  n  n− 2 98.  tan( u) du = −  tan( u) du n− 1 ⌡ ⌡

⌠  2 89.  cot( u) du = − cot( u) − u ⌡

⌠ n− 1 ⌠ − cot( u)  n  n− 2 99.  cot( u) du = −  cot( n) du n− 1 ⌡ ⌡

⌠ 1 1  3 90.  sec ( u) du = ⋅ sec ( u) ⋅ tan( u) + ⋅ ln sec ( u) + tan( u) 2 2 ⌡

)

⌠ −1 1  3 91.  csc( u) du = ⋅ csc( u) ⋅ cot( u) + ⋅ ln csc( u) − cot( u) 2 2 ⌡

)

(

(

⌠ ⌠ n− 2 tan( u) ⋅ sec ( u) n− 2   n 100.  sec ( u) du = + ⋅  sec n− 1 n− 1 ⌡ ⌡ ⌠ ⌠ n− 2 − cot( u) ⋅ csc( u) n− 2   n 101.  csc( u) du = + ⋅ n− 1 n− 1 ⌡ ⌡

⌠  92.  u⋅ sin( u) du = sin( u) − u⋅ cos ( u) ⌡

Integral Table Master.mcd

Copyright 2009

8/10

Integral Table

⌠  m n 102.  cos ( u) ⋅ sin( u) du = ⌡

cos ( u)

m− 1

⋅ sin( u)

n+ 1

m+n

− sin( u)

n− 1

⋅ cos ( u)

⌠ m−1  m− 2 n + ⋅  cos ( u) ⋅ sin( u) du m+n ⌡

m+ 1 +

m+n

− sin( u)

n+ 1

⋅ cos ( u)

m+ 1

m+1

sin( u)

n+ 1

⋅ cos ( u)

n+ 1

m+1 +

⌠ n− 1  m n− 2 ⋅  cos ( u) ⋅ sin( u) du m+n ⌡

⌠ m+ n+ 2  m n− 2 + ⋅  cos ( u) ⋅ sin( u) du m+1 ⌡ ⌠ m+ n+ 2  m n+ 2 ⋅  cos ( u) ⋅ sin( u) du n+ 1 ⌡

2 2 Assume that a ≠ b for #103 -- 104

⌠  108.   ⌡

⌠  109.   ⌡

⌠  110A.    ⌡

1 p + q⋅ sin( α ⋅ u)

1 p + q⋅ sin( α ⋅ u)

  p⋅ tan  ⋅ atan   2 2 p −q  2

du = α⋅

du = α⋅

 α  p⋅ tan 1  ⋅ ln α 2 2  q −p  p⋅ tan  

1 2 2 2 2 p ⋅ sin( α ⋅ u) + q ⋅ cos ( α ⋅ u)

du =

1 α ⋅ p⋅ q

⋅ atan

⌠ 1 sin[ ( − α + β ) ⋅ u] 1 sin[ ( α + β ) ⋅ u]  103.  sin( α ⋅ u) ⋅ sin( β ⋅ u) du → ⋅ − ⋅ 2 ( − α + β ) 2 (α + β) ⌡ ⌠ − 1 cos [ ( α + β ) ⋅ u] 1 cos [ ( − α + β ) ⋅ u]  104.  sin( α ⋅ u) ⋅ cos ( β ⋅ u) du → ⋅ + ⋅ 2 (α + β ) 2 ( −α + β ) ⌡ ⌠ 1 sin[ ( − α + β ) ⋅ u] 1 sin[ ( α + β ) ⋅ u]  105.  cos ( α ⋅ u) ⋅ cos ( β ⋅ u) du → ⋅ + ⋅ 2 ( − α + β ) 2 (α + β ) ⌡

⌠  106A.   ⌡

⌠  107A.   ⌡

1 p + q⋅ cos ( α ⋅ u)

1 p + q⋅ cos ( α ⋅ u)

Integral Table Master.mcd

  α⋅u  tan    2  ⋅ atan ( p − q) ⋅  2 2 2 2 p −q p −q  

2 2 p >q

  α⋅u  tan  1  2  ⋅ ln 2 2   α⋅u q −p  tan    2 

2 2 q >p

2

du = α⋅

du = α⋅

+



q+ p



q− p q+ p



q− p

Copyright 2009

9/10

Integral Table

Form involving exponential functions

⌠ α ⋅u e  α ⋅u 111.  u⋅ e du = ⋅ ( α ⋅ u − 1) 2 ⌡ α

112.

⌠ α⋅u e  α ⋅u 113.  e ⋅ sin( β ⋅ u) du = ⋅ ( α ⋅ sin( β ⋅ u) − 2 2 ⌡ α +β

(

)

⌠ α ⋅u e  α ⋅u 114.  e ⋅ cos ( β ⋅ u) du = ⋅ ( α ⋅ cos ( β ⋅ u) + 2 2 ⌡ α +β

⌠ α ⋅u e  2 α⋅u  2 2  u ⋅ e d u = ⋅ α ⋅ u − 2⋅ α ⋅ u + 2  3 ⌡ α

(

)

Forms involving inverse trigonometric functions α > 0 ⌠   u  u 115.  asin  du = u⋅ asin  + α   α  ⌡ ⌠   u  u 116.  acos  du = u⋅ acos  − α   α  ⌡

⌠ 2 2  2⋅ u − α  u  u u 118.  u⋅ asin  du = ⋅ asin  + ⋅ α   α 4 4  ⌡

2 α −u 2

⌠ 2 2  2⋅ u − α  u  u u 119.  acos  du = ⋅ acos  − ⋅ α   4 α 4  ⌡

2 α −u 2

⌠  1  2  u  u  u⋅ 2 117.  u⋅ atan   du = ⋅ u + α  ⋅ atan   − α 2   α 2  ⌡

⌠   u  u  α  2 2 117.  atan   du = u⋅ atan   − ⋅ lnα + u  α   α 2  ⌡

Integral Table Master.mcd

a

Copyright 2009

10/10

Related Documents

Integral Table Master
June 2020 12
Integral Table
June 2020 13
Integral-table
October 2019 17
Integral Table 3
May 2020 13
Integral Table 1
May 2020 23
Integral Table 2
May 2020 19