Integral Table
TABLE OF ITEGRALS
Remark:
letter a, b, c, α and β denote contants; n denote positive integer, u denote variabl
Emath2, Emath3, Am1, Am2
0.
⌠ ⌡
ln( u) du → u⋅ ln( u) − u
⌠ ( n+ 1) u n 1. u du → ( n + 1) ⌡ ⌠ 2. ⌡ ⌠ 3. ⌡
4.
⌠ ⌡
1 u
right arrow means result from mathcad = means result from direct input
n ≠ −1
du → ln( u)
exp( u) du → exp( u)
u α du →
1 ln( α )
⋅α
u
⌠ 5. ⌡
sin( u) du → −cos ( u)
⌠ 6. ⌡
cos ( u) du → sin( u)
⌠ 2 10. csc( u) du = − cot( u) ⌡
⌠ 11. ⌡
sec ( u) ⋅ tan( u) du → sec ( u)
⌠ 12. ⌡
csc ( u) cot( u) du → −csc ( u)
⌠ 13. ⌡
sec ( u) du → ln( sec ( u) + tan( u) )
⌠ 14. ⌡
csc ( u) du → ln( csc ( u) − cot( u) )
⌠ 15. ⌡ ⌠ 16. ⌡
⌠ 7. tan( u) du → − ln( cos ( u) ) ⌡ ⌠ 8. cot( u) du → ln( sin( u) ) ⌡
17.
1
u α
du = asin
2 2 α −u
1 2 α +u
du →
2
⌠ A dB = AB − ⌡
1 α
u α
⋅ atan
⌠ B dA ⌡
⌠ 2 9. sec ( u) du = tan( u) ⌡
Integral Table Master.mcd
Copyright 2009
1/10
Integral Table
Forms Involving α + β ⋅ u
18.
19.
20.
⌠ 1 n n+ 1 ( α + β ⋅ u) du = β ( n + 1) ⋅ ( α + β ⋅ u) ⌡ ⌠ ⌡ ⌠ ⌡
⌠ 21. ⌡
1 α + β ⋅u
du →
⌠ 26. ⌡
n ≠ −1
1
β
du =
1 α
u α + β ⋅u
⋅ ln
28. 1 2 u ⋅ ( α + β ⋅ u)
du = −
1
+
α⋅u
β α
2
α + β ⋅u u
23.
24.
25.
⌠ ⌡ ⌠ ⌡
1 u⋅ ( α + β ⋅ u)
2
du =
1 α
⋅ ( α + β ⋅ u) −
α + β ⋅u ⋅ ln 2 u a 1
30. u α + β ⋅u
du →
u ( α + β ⋅ u)
⌠ u⋅ ⌡
2
1 β
du →
α + β ⋅ u du →
Integral Table Master.mcd
⋅u −
α β
2
⋅ ln( α + β ⋅ u)
α 2
⌠ 2 u ⋅ ⌡ ⌠ ⌡
7 2 2 ⋅ ⋅ ( α + β ⋅ u) 3 7 β 1
α + β ⋅ u du →
2 u
du →
α + β ⋅u
− 2⋅ ( α
5 2 2 ⋅ ⋅ ( α + β ⋅ u) 3 5 β 1
−
4
−
3
4 5
⋅α
⋅ ln
29. ⌠ 22. ⌡
du →
α + β ⋅u
3 2 2 ⋅ ⋅ ( α + β ⋅ u) 2 3 β 1
ln( α + β ⋅ u) 27.
u⋅ ( α + β ⋅ u)
u
β ⋅ ( α + β ⋅ u)
+
1 β
2
5 1 2 2 ⋅ ⋅ ( α + β ⋅ u) 2 5 β
3 2 3
⋅ α ⋅ ( α + β ⋅ u)
⌠ ⌡
⌠ 31. ⌡
⋅ ln( α + β ⋅ u)
−
⌠ ⌡
2
Copyright 2009
⌠ 32. ⌡
1 u⋅
α + β ⋅u
1 u⋅
du =
⋅ ln
1 α
2
du →
1
α + β ⋅u ( −α )
α + β ⋅u u
du = 2⋅
1 2 u ⋅
α + β ⋅u
du =
2
1 ( α + β ⋅ u) 2 ⋅ atan 1 ( −α) 2
α + β ⋅u α ⋅u
α
α + β ⋅u +
⌠ α + β ⋅ u + α ⋅ ⌡ −
α
α + β ⋅u −
u α + β⋅
⌠ − ⋅ 2⋅ α ⌡ β
u⋅
2/10
Integral Table
2 2 2 2 Forms Involving u + α , u − α
33.
⌠ ⌡
⌠ 34ii. ⌡ ⌠ 34ii. ⌡
35.
⌠ ⌡
1 2 2 u −α
u 2 2 u +α
u 2 2 u −α
2 u 2 2 u −α
du =
du →
du =
1 2⋅ α
1 2
1 2
⌠ 37i. ⌡
2 2 ⋅ lnu + α
⌠ 37ii. ⌡
2 2 ⋅ lnu − α
du = u +
Integral Table Master.mcd
⌠ 36. ⌡
u − α u + α
⋅ ln
α 2
2 u 2 2 u +α
u α
du = u − α ⋅ atan
1
2 2 u⋅ u + α
1
2 2 u⋅ u − α
1
du =
2⋅ α
du = −
2
2 2 u + α
1 2⋅ α
2 u
⋅ ln
2
2 2 u − α
⋅ ln
2 u
u − α u + α
⋅ ln
Copyright 2009
3/10
Integral Table
2 2 u +α ,
Forms Involving
2 2 u −α
⌠ 38i. ⌡
u 2 2 u + α du = ⋅ 2
2 2 2 α u +α + ⋅ lnu + 2
2 2 u +α
⌠ 38ii. ⌡
u 2 2 u − α du = ⋅ 2
2 2 2 α u −α − ⋅ lnu + 2
2 2 u −α
⌠ 43ii. ⌡ ⌠ 44. ⌡
3
⌠ 39i. u⋅ ⌡
1 2 2 2 2 u + α du = ⋅ u + α 3
2
⌠ 45. ⌡
3
⌠ 39ii. u⋅ ⌡
1 2 2 2 2 u − α du = ⋅ u − α 3
2
⌠ 2 40i. u ⋅ ⌡
u 2 2 2 2 u + α du = ⋅ 2u + α ⋅ 8
4 2 2 α u +α − ⋅ ln u + 8
2 2 u +α
⌠ 2 40ii. u ⋅ ⌡
u 2 2 2 2 u − α du = ⋅ 2u − α ⋅ 8
4 2 2 α u −α − ⋅ ln u + 8
2 2 u −α
⌠ 41. ⌡ ⌠ 42. ⌡ ⌠ 43i. ⌡
2 2 u −α u
2 2 u +α u
2 2 u +α 2 u
2 α 2 u − α − α ⋅ acos u
du =
du =
Integral Table Master.mcd
2 2 u +α
u
α + 2 2 u + α − α ⋅ ln
du =
−
2 2 u +α u
+ lnu +
⌠ 46i. ⌡ ⌠ 46ii. ⌡ ⌠ 47i. ⌡
⌠ 47ii. ⌡
2 2 u +α
Copyright 2009
2 2 u −α 2 u
1
du =
2 2 u −α
−
u
+ lnu +
2 2 u +α
2 2 u −α
du = lnu +
2 u −
2 2 u +α
1
du = lnu +
2 2 u −α
u
du =
2 2 u +α
du =
2 2 u −α
2 2 u +α
u 2 2 u −α
2 u
du =
2 2 u +α
2 u 2 2 u −α
du =
u 2
u 2
⋅
2 2 2 α u +α − ⋅ ln u + 2
⋅
2 2 2 α u −α + ⋅ ln u + 2
4/10
Integral Table
⌠ 48. ⌡ ⌠ 49. ⌡ ⌠ 50i. ⌡ ⌠ 50ii. ⌡ ⌠ 51. ⌡ ⌠ 52. ⌡ ⌠ 53i. ⌡ ⌠ 53ii. ⌡
1 u⋅
du =
2 2 u −α
1 u⋅
du =
2 2 u +α
1 2 u ⋅
3 u ⋅
α
u
α +
−
2 2 u +α
⌠ 54ii. ⌡
2 2 u +α
⌠ 55i. ⌡
2 2 u −α 2 α ⋅u
2 2 u −α
du =
2 2⋅ α ⋅ u
2 2 u −α
−
+
2 2 u +α 2 2α ⋅ u
2 2 u +α
⋅ acos 3 2α 1
+
α u
α + 1 ⋅ ln 3 2α
⌠ 55ii. ⌡
⌠ 56i. ⌡
2 2 u +α
u
3
u2 + α 2
2 du =
u 8
1 3
u2 + α 2
u
du =
2 2 u +α
2 α ⋅
2
u
2 α ⋅u
2 2 u −α
du =
⌠ 54i. ⌡
⋅ ln
du =
1
α
1
du =
1 3 u ⋅
α
⋅ acos
2 2 u +α
1 2 u ⋅
1
2 2 ⋅ 2u + 5⋅ α ⋅
2 2 3⋅ α u +α + ⋅ lnu + 8 4
2 2 u +α
⌠ 56ii. ⌡
1 3
u2 − α 2
3
u2 + α 2
3
3
3
u2 − α 2
du =
2
−1
−1 2 2 u −α
du =
−u
+ lnu +
2 u
2 2 u +α
2
2 u
2 2 u −α
2 2 u +α
2
2 u
u2 + α 2
du =
2
u
u2 − α 2
2 α ⋅
2
u
−u
du =
du =
−u
+ lnu +
2 u
2 2 u −α
3
u2 − α 2
2 du =
Integral Table Master.mcd
u 8
2 2 ⋅ 2u − 5⋅ α ⋅
4 2 2 3⋅ α u −α + ⋅ lnu + 8
2 2 u −α
Copyright 2009
5/10
Integral Table
2 2 α −u
Forms Involving
⌠ 15. ⌡ ⌠ 57. ⌡
1
61.
⌠ 62. ⌡ ⌠ 63. ⌡
⌠ 65. ⌡
2
u 2 α 2 α −u + ⋅ asin α 2
u 2 2 α − u du = ⋅ 2
1 u⋅
du =
2 α −u 2
1 2 u ⋅
1 α
2 2 α −u
α
2 2 α −u
−
du =
α−
⋅ ln
2 α ⋅u
2 2 α −u
3 −1 2 2 2 α − u du = ⋅ α − u 3 2
⌠ 2 59. u ⋅ ⌡
⌠ ⌡
u α
du = asin
2 2 α −u
⌠ 58. u⋅ ⌡
⌠ 60. ⌡
⌠ 64. ⌡
u 2 2 2 2 α − u du = ⋅ 2⋅ u − α ⋅ 8
2 α −u
2 2 α −u 2 u
u
du =
du =
4 2 α u 2 α −u + ⋅ asin 8 α
α + 2 2 α − u − α ⋅ ln
2
u
⌠ 66. ⌡
2
2 2 α −u
−
u
du = −
2 α −u 2
u
⌠ 68. ⌡
u α
− asin
⌠ 69. ⌡
2 2 α −u
2 2 α −u
2 u
du =
2 2 α −u
Integral Table Master.mcd
−u 2
⋅
⌠ 67. ⌡
⌠ 70. ⌡
2 2 α u α −u + ⋅ asin 2 α 2
Copyright 2009
1 3 u ⋅
2 2 α −u
−
du =
2 2 2⋅ α ⋅ u
2 2 α −u
+
α ⋅ ln 3 2⋅ α 1
3
α 2 − u2
2 du =
1 3
α 2 − u2
3
α 2 − u2
3
α 2 − u2
2
2 2 ⋅ 5⋅ α − 2u ⋅
du =
2 2 α −u
u 2 2 α −u
2 α ⋅
1 2 2 α −u
2
2 u
8
du =
2
u
u
du =
u 2 2 α −u
u α
− asin
6/10
Integral Table
2 Forms involving au + bu + c , a ≠ 0
2 2 R = au + bu + c , D = b − 4ac ⌠ 71. ⌡ ⌠ 72. ⌡ ⌠ 73. ⌡ ⌠ 74. ⌡ ⌠ 75. ⌡ ⌠ 76. ⌡
1 R
1 R
du =
du =
2⋅ a⋅ u + b − ⋅ ln D 2⋅ a⋅ u + b +
2 −D
du =
R
1
D>0
D
2⋅ a⋅ u + b −D
⋅ atan
⌠ u 1 b du = ⋅ ln( R) − ⋅ R 2a 2a ⌡
1
D
1
1 R
⌠ 78. ⌡
D<0
⌠ 79. ⌡
du
(
1
⌠ 77. ⌡
⋅ ln 2⋅ a⋅ u + b + 2⋅
a⋅
)
⌠ 80. ⌡
a> 0
R
a
du =
R
R du =
2⋅ a⋅ u + b ⋅ asin −a D
−1
( 2⋅ a⋅ u + b) ⋅
Integral Table Master.mcd
4a
⌠ R D − ⋅ 8⋅ a ⌡
⌠ 81. ⌡
a < 0,D > 0
1
u
du =
R
1 u⋅
du = R
1 u⋅
R
R⋅
du = R
u R⋅
du = R
a
−1
1 −c
1
du
R
R+
⋅ ln
c
du =
1
⌠ b − ⋅ 2⋅ a ⌡
R
c
u
du
Copyright 2009
2⋅
c
b⋅ u + 2⋅c u⋅ D
⋅ asin
− 2⋅ ( 2⋅ a⋅ u + b) D⋅
R
2⋅ ( b⋅ u + 2c ) D⋅
R
⌠ 3 2⋅ a⋅ u + b 3D 2 82. R du = ⋅ R − ⋅ 8 ⋅ a 8⋅ a ⌡
R
b
+
2 ⌠ R+ ⋅ 2 128a ⌡ 3⋅ D
7/10
Integral Table
Forms Involving trigonometric functions
⌠ u sin( u) ⋅ cos ( u) 2 83. sin( u) du = − 2 2 ⌡
⌠ 93. u⋅ cos ( u) du = cos ( u) + u⋅ sin( u) ⌡
⌠ u sin( u) ⋅ cos ( u) 2 84. cos ( u) du = + 2 2 ⌡
⌠ 2 2 94. u ⋅ sin( u) du = 2⋅ u⋅ sin( u) − u − 2 ⋅ cos ( u) ⌡
⌠ 3 cos ( u) 3 85. sin( u) du = − cos ( u) 3 ⌡
⌠ 2 2 95. u ⋅ cos ( u) du = 2⋅ u⋅ cos ( u) + u − 2 ⋅ sin( u) ⌡
⌠ 3 sin( u) 3 86. cos ( u) du = sin( u) − 3 ⌡
⌠ ⌠ n− 1 − sin( u) ⋅ cos ( u) n− 1 n 96. sin( u) du = + ⋅ sin n n ⌡ ⌡
⌠ u 1 2 2 87. sin( α ⋅ u) ⋅ cos ( α ⋅ u) du = − ⋅ sin( 4⋅ α ⋅ u) 8 32 ⋅α ⌡
⌠ ⌠ n− 1 cos ( u) ⋅ sin( u) n− 1 n 97. cos ( u) du = + ⋅ cos n n ⌡ ⌡
⌠ 2 88. tan( u) du = tan( u) − u ⌡
⌠ n− 1 ⌠ tan( u) n n− 2 98. tan( u) du = − tan( u) du n− 1 ⌡ ⌡
⌠ 2 89. cot( u) du = − cot( u) − u ⌡
⌠ n− 1 ⌠ − cot( u) n n− 2 99. cot( u) du = − cot( n) du n− 1 ⌡ ⌡
⌠ 1 1 3 90. sec ( u) du = ⋅ sec ( u) ⋅ tan( u) + ⋅ ln sec ( u) + tan( u) 2 2 ⌡
)
⌠ −1 1 3 91. csc( u) du = ⋅ csc( u) ⋅ cot( u) + ⋅ ln csc( u) − cot( u) 2 2 ⌡
)
(
(
⌠ ⌠ n− 2 tan( u) ⋅ sec ( u) n− 2 n 100. sec ( u) du = + ⋅ sec n− 1 n− 1 ⌡ ⌡ ⌠ ⌠ n− 2 − cot( u) ⋅ csc( u) n− 2 n 101. csc( u) du = + ⋅ n− 1 n− 1 ⌡ ⌡
⌠ 92. u⋅ sin( u) du = sin( u) − u⋅ cos ( u) ⌡
Integral Table Master.mcd
Copyright 2009
8/10
Integral Table
⌠ m n 102. cos ( u) ⋅ sin( u) du = ⌡
cos ( u)
m− 1
⋅ sin( u)
n+ 1
m+n
− sin( u)
n− 1
⋅ cos ( u)
⌠ m−1 m− 2 n + ⋅ cos ( u) ⋅ sin( u) du m+n ⌡
m+ 1 +
m+n
− sin( u)
n+ 1
⋅ cos ( u)
m+ 1
m+1
sin( u)
n+ 1
⋅ cos ( u)
n+ 1
m+1 +
⌠ n− 1 m n− 2 ⋅ cos ( u) ⋅ sin( u) du m+n ⌡
⌠ m+ n+ 2 m n− 2 + ⋅ cos ( u) ⋅ sin( u) du m+1 ⌡ ⌠ m+ n+ 2 m n+ 2 ⋅ cos ( u) ⋅ sin( u) du n+ 1 ⌡
2 2 Assume that a ≠ b for #103 -- 104
⌠ 108. ⌡
⌠ 109. ⌡
⌠ 110A. ⌡
1 p + q⋅ sin( α ⋅ u)
1 p + q⋅ sin( α ⋅ u)
p⋅ tan ⋅ atan 2 2 p −q 2
du = α⋅
du = α⋅
α p⋅ tan 1 ⋅ ln α 2 2 q −p p⋅ tan
1 2 2 2 2 p ⋅ sin( α ⋅ u) + q ⋅ cos ( α ⋅ u)
du =
1 α ⋅ p⋅ q
⋅ atan
⌠ 1 sin[ ( − α + β ) ⋅ u] 1 sin[ ( α + β ) ⋅ u] 103. sin( α ⋅ u) ⋅ sin( β ⋅ u) du → ⋅ − ⋅ 2 ( − α + β ) 2 (α + β) ⌡ ⌠ − 1 cos [ ( α + β ) ⋅ u] 1 cos [ ( − α + β ) ⋅ u] 104. sin( α ⋅ u) ⋅ cos ( β ⋅ u) du → ⋅ + ⋅ 2 (α + β ) 2 ( −α + β ) ⌡ ⌠ 1 sin[ ( − α + β ) ⋅ u] 1 sin[ ( α + β ) ⋅ u] 105. cos ( α ⋅ u) ⋅ cos ( β ⋅ u) du → ⋅ + ⋅ 2 ( − α + β ) 2 (α + β ) ⌡
⌠ 106A. ⌡
⌠ 107A. ⌡
1 p + q⋅ cos ( α ⋅ u)
1 p + q⋅ cos ( α ⋅ u)
Integral Table Master.mcd
α⋅u tan 2 ⋅ atan ( p − q) ⋅ 2 2 2 2 p −q p −q
2 2 p >q
α⋅u tan 1 2 ⋅ ln 2 2 α⋅u q −p tan 2
2 2 q >p
2
du = α⋅
du = α⋅
+
−
q+ p
q− p q+ p
q− p
Copyright 2009
9/10
Integral Table
Form involving exponential functions
⌠ α ⋅u e α ⋅u 111. u⋅ e du = ⋅ ( α ⋅ u − 1) 2 ⌡ α
112.
⌠ α⋅u e α ⋅u 113. e ⋅ sin( β ⋅ u) du = ⋅ ( α ⋅ sin( β ⋅ u) − 2 2 ⌡ α +β
(
)
⌠ α ⋅u e α ⋅u 114. e ⋅ cos ( β ⋅ u) du = ⋅ ( α ⋅ cos ( β ⋅ u) + 2 2 ⌡ α +β
⌠ α ⋅u e 2 α⋅u 2 2 u ⋅ e d u = ⋅ α ⋅ u − 2⋅ α ⋅ u + 2 3 ⌡ α
(
)
Forms involving inverse trigonometric functions α > 0 ⌠ u u 115. asin du = u⋅ asin + α α ⌡ ⌠ u u 116. acos du = u⋅ acos − α α ⌡
⌠ 2 2 2⋅ u − α u u u 118. u⋅ asin du = ⋅ asin + ⋅ α α 4 4 ⌡
2 α −u 2
⌠ 2 2 2⋅ u − α u u u 119. acos du = ⋅ acos − ⋅ α 4 α 4 ⌡
2 α −u 2
⌠ 1 2 u u u⋅ 2 117. u⋅ atan du = ⋅ u + α ⋅ atan − α 2 α 2 ⌡
⌠ u u α 2 2 117. atan du = u⋅ atan − ⋅ lnα + u α α 2 ⌡
Integral Table Master.mcd
a
Copyright 2009
10/10