Table of Integrals
∫
(a + bx) n dx = dx
(a + bx) n +1 b(n + 1)
for n ≠ −1
1
∫ (a + bx) = b ln a + bx xdx 1 ∫ (a + bx) = b [a + bx − a ln a + bx ] 2
dx
∫ (a + bx)
2
=−
2
=
xdx
∫ (a + bx) dx
∫ (a + bx) ∫
1/ 2
1 b(a + bx)
1 b2
a ln(a + bx) + (a + bx)
2 = (a + bx) 1 / 2 b
xdx 2 (a + bx) 3 / 2 = − a(a + bx) 1 / 2 1/ 2 2 3 (a + bx) b 3/ 2
=
−2 b(a + bx) 1 / 2
3/ 2
=
2 a (a + bx) 1 / 2 + 2 1/ 2 b (a + bx)
dx
∫ (a + bx) xdx
∫ (a + bx)
∫ (a ∫ (a ∫ (a ∫ (a ∫ (a ∫ (a ∫ (a ∫ (a
2
dx 1 x = tan −1 + x2 ) a a
xdx 1 = ln(a 2 + x 2 ) + x2 ) 2
2
2
2
2
1 dx x x tan −1 = + + x 2 ) 2 2a 2 ( a 2 + x 2 ) 2a 3 a xdx 1 =− 2 2 2 +x ) 2( a + x 2 ) 1 dx a+x ln = 2 − x ) 2a a − x
xdx 1 = − ln a 2 − x 2 2 2 −x )
2
2
2
1 dx x a+x = 2 2 + 3 ln 2 2 2 a−x 2a ( a − x ) 4a −x ) xdx 1 = 2 2 2 −x ) 2(a − x 2 )
dx
∫
x2 + a2 xdx
∫
2
x +a
2
x 2 dx
∫
x2 + a2
x 3 dx
∫
x2 + a2
∫x
= x2 + a2
=
x x2 + a2 a2 − ln( x + x 2 + a 2 ) 2 2
=
(x 2 + a 2 )3/ 2 − a2 x2 + a2 3
dx
∫x ∫x
x = ln( x + x 2 + a 2 ) = sinh −1 a
x2 + a2
dx 2
x2 + a2 dx
3
x2 + a2
=−
1 a + x 2 + a 2 ln a x
=−
=−
x2 + a2 a2x x2 + a2 2
2a x
2
+
a + x2 + a2 ln x 2a 1
3
x x2 + a2 a2 + ln( x + x 2 + a 2 ) 2 2
∫
x 2 + a 2 dx =
∫
x x 2 + a 2 dx =
∫
x 2 x 2 + a 2 dx =
x( x 2 + a 2 ) 3 / 2 a 2 x x 2 + a 2 a 4 − − ln( x + x 2 + a 2 ) 4 8 8
∫
x 3 x 2 + a 2 dx =
(x 2 + a 2 )5 / 2 a 2 (x 2 + a 2 )3/ 2 − 5 3
(x 2 + a 2 )3/ 2 3
∫
a + x2 + a2 x2 + a2 dx = x 2 + a 2 − a ln x x
∫
x2 + a2 x2 + a2 dx = − + ln( x + x 2 + a 2 ) 2 x x
∫
1 a + x 2 + a 2 x2 + a2 x2 + a2 = − − ln dx x 2a 2x 2 x3
∫ (x ∫ (x
2
2
dx x = 2 3/ 2 2 +a ) a x2 + a2 xdx = + a 2 )3/ 2
−1 2
x + a2
∫
x 2 dx = (x 2 + a 2 )3 / 2
∫
x 3 dx = x2 + a2 + (x 2 + a 2 )3 / 2
∫ x( x
−x 2
x +a
2
+ ln( x + x 2 + a 2 ) a2 x2 + a2
1 1 a + x2 + a2 dx = − 3 ln 2 3/ 2 x +a ) a2 x2 + a2 a
2
dx x2 + a2 x = − − 2 2 2 3/ 2 4 4 x (x + a ) a x a x2 + a2
∫
∫x
3
a + x2 + a2 3 3 −1 dx = − + 5 ln 2 3/ 2 x (x + a ) 2 a 2 x 2 x 2 + a 2 2 a 4 x 2 + a 2 2a 2
1
∫ sin(ax)dx = − a cos(ax)
∫ sin
2
(ax)dx =
x sin( 2ax) − 2 4a
1
∫ cos(ax)dx = a sin(ax)
∫ cos
2
(ax)dx =
x sin(2ax) + 2 4a 1
∫ sin(ax) cos(ax)dx = 2a sin ∫
sin( ax) cos 2 (ax)dx = −
∫
sin 2 (ax) cos(ax)dx =
∫ sin
2
2
(ax)
cos 3 (ax) 3a
sin 3 (ax) 3a
(ax) cos 2 (ax)dx = −
x 1 sin( 4ax) + 32a 8
∫
x sin 2 (ax)dx =
x 2 x sin( 2ax ) cos( 2ax) − − 4 4a 8a 2
∫
x cos 2 (ax )dx =
x 2 x sin( 2ax) cos( 2ax ) + + 4 4a 8a 2
2 2 ∫ x sin ( x)dx =
x 3 x cos(2 x) x 2 1 − − − sin(2 x) 3 4 4 8
∫x
x 3 x cos(2 x) x 2 1 + + − sin(2 x) 3 4 4 8
a
2
cos 2 ( x)dx =
a mπx nπx dx = δ mn sin 2 a a
∫ sin 0
a mπx nπx cos dx = δ mn (note: if m = n = 0, then integral = a) 2 a a
a
∫ cos 0
∫
a
−a
mπx nπx cos cos dx = aδ mn (note: if m = n = 0, then integral = 2a) 2a 2 a
π
1
∫ P (cosθ ) P (cos θ ) sin θdθ = ∫ A
0
∫e
ax
∫ xe
m
PA ( x) Pm ( x)dx =
1 x e a
dx = ax
−1
x 1 dx = e ax − 2 a a
2 2x 2 ax x 2 ax = x e dx e − 2 + 3 ∫ a a a 3 3x 2 6 x 6 3 ax ax x = − + − x e dx e ∫ a 2 a3 a4 a
∫x
∫
∞
∫
∞
∫
∞
∫
∞
∫
∞
∫
∞
∫
∞
∫
∞
0
0
0
0
0
0
0
0
n
e ax dx =
x n e ax n n −1 ax − ∫ x e dx a a
x n e − x / α dx = n !α n +1
π
2 2
e − a x dx =
2a
2 2
x e− a x dx =
1 2a 2
π
2 2
x 2 e − a x dx = 2 2
x 3 e − a x dx = 2 2
x 4 e − a x dx =
4a 3 1 2a 4 3 π 8a 5
2 2
x 2 n +1e − a x dx = 2 2
x 2 n e − a x dx =
n! 2a 2 n + 2
[1× 3 × 5 × ... × (2n − 1)] 2
n +1
a
2 n +1
π
2 δ Am 2A + 1