Integrace Subst

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Integrace Subst as PDF for free.

More details

  • Words: 2,105
  • Pages: 29
Substitucˇnı´ metoda Lenka Bara´kova´ 16. srpna 2005

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Obsah Z

Z

Z

//

/

e x +7 dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3

xe1− x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

1 √ dx . . . . . . . . . . . . . . . . . . . . . . . . . . . (2 + x ) 1 + x

18

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

e x +7 dx Z

e x +7 dx =

x+7 = t dx = dt

=

Z

et dt

= e t + c = e x +7 + c

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

e x +7 dx Z

e x +7 dx =

x+7 = t dx = dt

=

Z

et dt

= e t + c = e x +7 + c

Vnitrˇnı´ slozˇka je x + 7. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

e x +7 dx Z

e x +7 dx =

x+7 = t dx = dt

=

Z

et dt

= e t + c = e x +7 + c

Zavedeme substituci x + 7 = t. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

e x +7 dx Z

e x +7 dx =

x+7 = t dx = dt

=

Z

et dt

= e t + c = e x +7 + c

Nalezneme vztah mezi dx a dt. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

e x +7 dx Z

e x +7 dx =

x+7 = t dx = dt

=

Z

et dt

= e t + c = e x +7 + c

Dosadı´me substituci. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

e x +7 dx Z

e x +7 dx =

x+7 = t dx = dt

=

Z

et dt

= e t + c = e x +7 + c

Integrujeme. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

e x +7 dx Z

e x +7 dx =

x+7 = t dx = dt

=

Z

et dt

= e t + c = e x +7 + c

Pouzˇijeme substituci k na´vratu k promeˇnne´ x. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

2

xe1− x dx.

Z

//

/

.

..

2

xe1− x dx

1 − x2 = t

−2x dx = dt 1 x dx = − dt 2 Z 1 =− et dt 2 1 = − et + c 2 2 1 = − e1− x + c 2

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

2

xe1− x dx.

Z

2

xe1− x dx

1 − x2 = t

−2x dx = dt 1 x dx = − dt 2 Z 1 =− et dt 2 1 = − et + c 2 2 1 = − e1− x + c 2

Vy´raz je soucˇinem polynomu a slozˇene´ exponencia´lnı´ funkce. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

2

xe1− x dx.

Z

2

xe1− x dx

1 − x2 = t

−2x dx = dt 1 x dx = − dt 2 Z 1 =− et dt 2 1 = − et + c 2 2 1 = − e1− x + c 2

2

Zkusı´me substituovat za vnitrˇnı´ slozˇku slozˇene´ funkce e 1− x . //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

2

xe1− x dx.

Z

2

xe1− x dx

1 − x2 = t

−2x dx = dt 1 x dx = − dt 2 Z 1 =− et dt 2 1 = − et + c 2 2 1 = − e1− x + c 2

Hleda´me vztah mezi diferencia´ly. Derivujeme obeˇ strany substituce. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

2

xe1− x dx.

Z

2

xe1− x dx

1 − x2 = t

−2x dx = dt 1 x dx = − dt 2 Z 1 =− et dt 2 1 = − et + c 2 2 1 = − e1− x + c 2

Vyja´drˇ´ıme odsud vy´raz x dx, ktery´ figuruje uvnitrˇ integra´lu. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

2

xe1− x dx.

Z

2

xe1− x dx

1 − x2 = t

−2x dx = dt 1 x dx = − dt 2 Z 1 =− et dt 2 1 = − et + c 2 1 1− x 2 +c =− e 2

Dosadı´me. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

2

xe1− x dx.

Z

2

xe1− x dx

1 − x2 = t

−2x dx = dt 1 x dx = − dt 2 Z 1 =− et dt 2 1 = − et + c 2 1 1− x 2 +c =− e 2

Vypocˇteˇte integra´l pomocı´ vzorce. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

2

xe1− x dx.

Z

2

xe1− x dx

1 − x2 = t

−2x dx = dt 1 x dx = − dt 2 Z 1 =− et dt 2 1 = − et + c 2 2 1 = − e1− x + c 2

Pouzˇijeme substituci pro na´vrat k pu˚vodnı´ promeˇnne´. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Prˇ´ıklady s odmocninou z linea´rnı´ho cˇlenu rˇesˇ´ıme vzˇdy druhou substitucˇnı´ metodou. Zbavujeme se tak neprˇ´ıjemne´ odmocniny. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Zavedeme proto substituci t = //

/

.

..



1 + x. c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Odmocninu vzˇdy prˇevedeme umocneˇnı´m na tvar bez odmocniny, prˇecha´zı´me takto vlastneˇ k inverznı´ funkci. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Inverznı´ funkce bude v prˇepisu take´ trˇeba. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Hleda´me vztah mezi diferencia´ly. Derivujeme obeˇ strany inverznı´ substituce. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Vsˇechny vy´razy s x zameˇnı´me pomocı´ substituce za ekvivalentnı´ vy´razy s t. Nejdrˇ´ıve pouzˇijeme za x inverznı´ substituce. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Odmocnina odpovı´da´ t. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Diferencia´l take´ substituujeme. Vsˇechny cˇleny s x jsme nahradili. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Zkra´tı´me a konstantu prˇevedeme prˇed integra´l. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Integrujeme. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Vypocˇteˇte

Z

1 √ dx (2 + x ) 1 + x



Z

1+x = t

1 + x = t2 x = t2 − 1

1 √ dx = (2 + x ) 1 + x

dx = 2t dt Z 1 1 = · 2t dt = 2 dt (2 + t2 − 1) t 1 + t2 √ = 2 arctg t + c = 2 arctg 1 + x + c Z

Navra´tı´me se k pu˚vodnı´ promeˇnne´. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Related Documents

Integrace Subst
November 2019 12
Subst
November 2019 15
Subst
June 2020 5
Subst
November 2019 11
Subst
November 2019 10
Integrace Prima
November 2019 10