Integrace Prima

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Integrace Prima as PDF for free.

More details

  • Words: 5,599
  • Pages: 60
Prˇ´ıma´ metoda integrace Robert Marˇ´ık a Lenka Bara´kova´ 16. srpna 2005

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Obsah Z Z

Z

Z Z Z Z Z

//

/

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx x x+3 dx . . . . . . . . . . . . . . x2 tg x dx . . . . . . . . . . . . . . . 4x dx . . . . . . . . . . . . . x2 − 5 x+2 dx . . . . . . . . . . x2 + 4x + 5 1 dx . . . . . . . . . . 2 x + 2x + 3 1 dx . . . . . . . . . . . . ( x + 6)3

. . . . . . . . . . . . . . . . . .

3

. . . . . . . . . . . . . . . . . .

20

. . . . . . . . . . . . . . . . . .

26

. . . . . . . . . . . . . . . . . .

31

. . . . . . . . . . . . . . . . . .

34

. . . . . . . . . . . . . . . . . .

38

. . . . . . . . . . . . . . . . . .

42

f ( ax + b) dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

• Integra´l ze soucˇtu je soucˇet integra´lu˚. • Integra´l na´sobku funkce je na´sobek integra´lu. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Vytkneme konstantu prˇed integra´l. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Vytkneme konstantu a prˇepı´sˇeme do mocninne´ funkce. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Vytkneme konstantu a prˇepı´sˇeme do mocninne´ funkce. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Vytkneme konstantu −1.

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x −2 x2 x5/4 +6 − (− cos x ) + e x + c +3 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Z //

x n dx = /

.

..

x n +1 +c n+1 c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x2 x5/4 x −2 − (− cos x ) + e x + c +3 +6 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Z //

x n dx = /

.

..

x n +1 +c n+1 c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x2 x −2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 1 12 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Z //

x n dx = /

.

..

x n +1 +c n+1 c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 1 12 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Z //

sin x dx = − cos x + c /

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 1 12 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Z //

e x dx = e x + c /

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 1 12 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Upravı´me. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Upravı´me. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Upravı´me. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Upravı´me. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte Z

Z

√ 6 (2x + 3 4 + 3 − sin x + e x ) dx. x

√ 6 (2x + 3 4 x + 3 − sin x + e x ) dx xZ Z =2

x dx + 3

1

x 4 dx + 6

Z

x −3 dx −

Z

sin x dx +

Z

e x dx

x5/4 x −2 x2 +3 +6 − (− cos x ) + e x + c 2 5/4 −2 12 1 = x2 + x5/4 − 3 2 + cos x + e x + c 5 x

=2

Upravı´me. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+3 dx. x2 Z

//

/

.

..

x 3 + 2 dx x2 x Z Z 1 1 dx + 3 dx = x x2 x −1 = ln | x | + 3 · +c −1 3 = ln | x | − + c x

x+3 dx = x2

Z

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+3 dx. x2 Z

x 3 + 2 dx x2 x Z Z 1 1 = dx + 3 dx x x2 x −1 = ln | x | + 3 · +c −1 3 = ln | x | − + c x

x+3 dx = x2

Z

Pro integrova´nı´ je vhodneˇjsˇ´ı soucˇet, proto zlomek rozdeˇlı´me na dva. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+3 dx. x2 Z

x 3 + 2 dx x2 x Z Z 1 1 = dx + 3 dx x x2 x −1 = ln | x | + 3 · +c −1 3 = ln | x | − + c x

x+3 dx = x2

Z

Kazˇdy´ scˇ´ıtanec integrujeme zvla´sˇt’, konstanty vytkneme prˇed integra´l. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+3 dx. x2 Z

Z

1 dx = ln | x | + c x

Z //

x 3 + 2 dx x2 x Z Z 1 1 dx + 3 dx = x x2 x −1 = ln | x | + 3 · +c −1 3 = ln | x | − + c x

x+3 dx = x2

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+3 dx. x2 Z

Z //

x n dx = /

.

..

x 3 + 2 dx x2 x Z Z 1 1 dx + 3 dx = x x2 x −1 = ln | x | + 3 · +c −1 3 = ln | x | − + c x

x+3 dx = x2

Z

x n +1 +c n+1 c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+3 dx. x2 Z

x 3 + 2 dx x2 x Z Z 1 1 dx + 3 dx = x x2 x −1 = ln | x | + 3 · +c −1 3 = ln | x | − + c x

x+3 dx = x2

Z

Nakonec vy´raz upravı´me. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

tg x dx. Z

//

/

.

..

sin x dx cos x Z − sin x =− dx cos x Z (cos x )0 =− dx cos x = − ln | cos x | + c

tg x dx =

Z

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

tg x dx. Z

sin x dx cos x Z − sin x =− dx cos x Z (cos x )0 =− dx cos x = − ln | cos x | + c

tg x dx =

Z

V prˇ´ıpadeˇ, zˇe je v integra´lu funkce tangens vzˇdy jej rozepisujeme pomocı´ sinus a cosinus. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

tg x dx. Z

sin x dx cos x Z − sin x =− dx cos x Z (cos x )0 =− dx cos x = − ln | cos x | + c

tg x dx =

Z

• Platı´ (cos x )0 = − sin x. Cˇitatel se tedy lisˇ´ı od derivace jmenovatele jenom konstantı´m na´sobkem. • Vyna´sobı´me a vydeˇlı´me integra´l tı´mto na´sobkem. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

tg x dx. Z

sin x dx cos x Z − sin x =− dx cos x Z (cos x )0 =− dx cos x = − ln | cos x | + c

tg x dx =

Z

Forma´lneˇ pouzˇijeme vztah (cos x ) 0 = − sin x, abychom videˇli vzorec Z 0 f (x) dx = ln | f ( x )| + c. f (x) //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

tg x dx. Z

Z

f 0 (x) dx = ln | f ( x )| + c f (x)

Z //

sin x dx cos x Z − sin x =− dx cos x Z (cos x )0 =− dx cos x = − ln | cos x | + c

tg x dx =

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

4x dx. x2 − 5 Z

//

/

.

..

4x 2x dx = 2 dx x2 − 5 x2 − 5 = 2 ln | x2 − 5| + c Z

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

4x dx. x2 − 5 Z

4x 2x dx = 2 dx x2 − 5 x2 − 5 = 2 ln | x2 − 5| + c Z

V prˇ´ıpadeˇ jednoduche´ ryze lomene´ raciona´lnı´ funkce je vhodne´ pouzˇ´ıt Z 0 f (x) vzorec dx = ln | f ( x )| + c. Funkce f ( x ) = x 2 − 5, proto v f (x) cˇitateli potrˇebujeme f 0 ( x ) = 2x. Vytkneme prˇed integra´l 2. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

4x dx. x2 − 5 Z

//

/

.

..

4x 2x dx = 2 dx x2 − 5 x2 − 5 = 2 ln | x2 − 5| + c Z

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+2 dx. x2 + 4x + 5 Z

//

/

.

..

1 2x + 4 x+2 dx = dx 2 x2 + 4x + 5 x2 + 4x + 5 Z 1 ( x2 + 4x + 5)0 dx = 2 x2 + 4x + 5 1 = ln( x2 + 4x + 5) + c 2 Z

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+2 dx. x2 + 4x + 5 Z

1 2x + 4 x+2 dx = dx 2 x2 + 4x + 5 x2 + 4x + 5 Z 1 ( x2 + 4x + 5)0 dx = 2 x2 + 4x + 5 1 = ln( x2 + 4x + 5) + c 2 Z

• Platı´ ( x2 + 4x + 5)0 = 2x + 4. Cˇitatel se tedy lisˇ´ı od derivace jmenovatele jenom konstantı´m na´sobkem. • Vyna´sobı´me a vydeˇlı´me integra´l tı´mto na´sobkem. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+2 dx. x2 + 4x + 5 Z

1 2x + 4 x+2 dx = dx 2 x2 + 4x + 5 x2 + 4x + 5 Z 1 ( x2 + 4x + 5)0 dx = 2 x2 + 4x + 5 1 = ln( x2 + 4x + 5) + c 2

Prˇepı´sˇeme do tvaru //

/

.

..

Z

Z

f 0 (x) dx. f (x) c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

x+2 dx. x2 + 4x + 5 Z

Z

f 0 (x) dx = ln | f ( x )| + c f (x)

Z //

1 2x + 4 x+2 dx = dx 2 x2 + 4x + 5 x2 + 4x + 5 Z 1 ( x2 + 4x + 5)0 dx = 2 x2 + 4x + 5 1 = ln( x2 + 4x + 5) + c 2

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

1 dx. x2 + 2x + 3 Z

//

/

.

..

1 1 1 dx = dx 2 x2 + 2x + 3 ( x + 1)2 + 2 x+1 1 = √ arctg √ + c 2 2 Z

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

1 dx. x2 + 2x + 3 Z

1 1 1 dx = dx 2 x2 + 2x + 3 ( x + 1)2 + 2 x+1 1 = √ arctg √ + c 2 2 Z

Tentokra´t prˇedchozı´ postup nelze pouzˇ´ıt. V cˇitateli je konstanta. Z 1 1 x Pouzˇijeme proto vzorec dx = arctg 2 2 A A x +A //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

1 dx. x2 + 2x + 3 Z

1 1 1 dx = dx 2 x2 + 2x + 3 ( x + 1)2 + 2 x+1 1 = √ arctg √ + c 2 2 Z

Jmenovatel prˇepı´sˇeme do tvaru ( x + neˇco)2 + zbyla´ konstanta. Tomuto triku rˇ´ıka´me doplneˇnı´ na cˇtverec: x2 + ax + b = //

/

.

..



x+

a 2

2



a2 +b 4 c

Lenka Bara´kova´, 2005 ×

Najdeˇte

1 dx. x2 + 2x + 3

Z

Z

1 1 1 dx = dx 2 x2 + 2x + 3 ( x + 1)2 + 2 x+1 1 = √ arctg √ + c 2 2

Nynı´ pouzˇijeme vzorec f (x) =

x2

1 , tedy +2

Z //

/

.

..

Z

Z

f ( ax + b) dx =

1 F ( ax + b) + c pro a

1 x+1 f ( x + 1) dx = F ( x + 1) + c = √ arctg √ + c. 2 2 c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

1 dx. ( x + 6)3 I=

Z

1 dx ( x + 6)3

=

Z

( x + 6)−3 dx

( x + 6) −2 −2 1 =− +C 2( x + 6)2

=

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

1 dx. ( x + 6)3 I=

Z

1 dx ( x + 6)3

=

Z

( x + 6)−3 dx

( x + 6) −2 −2 1 =− +C 2( x + 6)2

=

Jedna´ se o mocninnou funkci. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

1 dx. ( x + 6)3 I=

Z

1 dx ( x + 6)3

=

Z

( x + 6)−3 dx

( x + 6) −2 −2 1 =− +C 2( x + 6)2 =

Z



f ( ax + b) dx =

1 F ( ax + b), kde F je integra´l z f . a

• V nasˇem prˇ´ıpadeˇ je f ( x ) = x −3 , F ( x ) = //

/

.

..

x −2 a a = 1. −2 c

Lenka Bara´kova´, 2005 ×

Najdeˇte

Z

1 dx. ( x + 6)3 I=

Z

1 dx ( x + 6)3

=

Z

( x + 6)−3 dx

( x + 6) −2 −2 1 =− +C 2( x + 6)2 =

Upravı´me. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. 1 1 dx = ln |2x + 5| + C 2x + 5 2 Z Z 1 dx = (2 − 1 · x )−5 dx (2 − x )5

Z

(2 − x ) −4 1 · −4 −1 1 = +C 4(2 − x )4

=

//

/

.

..

Z

e− x dx = −e− x + C

Z

e3x dx =

1 3x e +C 3

c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. 1 1 dx = ln |2x + 5| + C 2x + 5 2 Z Z 1 dx = (2 − 1 · x )−5 dx (2 − x )5

Z

(2 − x ) −4 1 · −4 −1 1 = +C 4(2 − x )4

=

//

/

Z

e− x dx = −e− x + C

Z

e3x dx =



Z

1 dx = ln | x | x



Z

f ( ax + b) dx =

.

..

1 3x e +C 3

1 F ( ax + b), v nasˇem prˇ´ıpadeˇ a = 2. a c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. 1 1 dx = ln |2x + 5| + C 2x + 5 2 Z Z 1 dx = (2 − 1 · x )−5 dx (2 − x )5 Z

(2 − x ) −4 1 · −4 −1 1 = +C 4(2 − x )4

=

Z

e− x dx = −e− x + C

Z

e3x dx =

1 3x e +C 3

Prˇepı´sˇeme na mocninnou funkci. //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. 1 1 dx = ln |2x + 5| + C 2x + 5 2 Z Z 1 dx = (2 − 1 · x )−5 dx (2 − x )5 Z

(2 − x ) −4 1 · −4 −1 1 = +C 4(2 − x )4 =

Z

//

/



Z



Z .

e− x dx = −e− x + C

1 3x = e3x + C 1 e ndx 3 +1 x dx = x n+1 n

Z

f ( ax + b) dx = ..

1 F ( ax + b), v nasˇem prˇ´ıpadeˇ a = −1. a c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. 1 1 dx = ln |2x + 5| + C 2x + 5 2 Z Z 1 dx = (2 − 1 · x )−5 dx (2 − x )5 Z

(2 − x ) −4 1 · −4 −1 1 = +C 4(2 − x )4

=

//

/

.

..

Z

e− x dx = −e− x + C

Z

e3x dx =

1 3x e +C 3

c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. 1 1 dx = ln |2x + 5| + C 2x + 5 2 Z Z 1 dx = (2 − 1 · x )−5 dx (2 − x )5 Z

(2 − x ) −4 1 · −4 −1 1 = +C 4(2 − x )4

=

//

/

Z

e− x dx = −e− x + C

Z

e3x dx =



Z

e dx = e



Z

f ( ax + b) dx =

.

x

..

x

1 3x e +C 3

1 F ( ax + b), v nasˇem prˇ´ıpadeˇ a = −1. a c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. 1 1 dx = ln |2x + 5| + C 2x + 5 2 Z • e x dx = e x Z 1 dx = (2 − 1 · x )−5 dx (2 − x )5 Z 1 • f ( ax + b) dx = F ( ax + b), v (2nas −ˇxem )−4prˇ´ıpade 1 ˇ a = 3. a = · −4 −1 1 = +C 4(2 − x )4 Z

Z

//

/

.

..

Z

e− x dx = −e− x + C

Z

e3x dx =

1 3x e +C 3

c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. Z

(e x + e− x )2 dx =

Z

(e2x + 2 + e−2x ) dx

1 1 2x e + 2x − e−2x + C 2 2 Z Z 1 1 1 sin(2x ) dx = · · (− cos 2x ) + C sin x cos x dx = 2 2 2 Z Z  i 1  1h 1 1 − cos(2x ) dx = x − sin(2x ) + C sin2 x dx = 2 2 2

=

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. Z

(e x + e− x )2 dx =

Z

(e2x + 2 + e−2x ) dx

1 1 2x e + 2x − e−2x + C 2 2 Z Z 1 1 1 sin(2x ) dx = · · (− cos 2x ) + C sin x cos x dx = 2 2 2 Z Z  i 1  1h 1 1 − cos(2x ) dx = x − sin(2x ) + C sin2 x dx = 2 2 2

=

Upravı´me podle vzorce ( a + b)2 :

(e x + e− x )2 = e2x + 2e x e− x + e−2x = e2x + 2 + e−2x //

/

.

..

c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. Z

(e x + e− x )2 dx =

Z

(e2x + 2 + e−2x ) dx

1 2x 1 e + 2x − e−2x + C 2 2 Z Z 1 1 1 sin(2x ) dx = · · (− cos 2x ) + C sin x cos x dx = 2 2 2 Z Z  i 1  1h 1 2 = 1 − cos ( 2x ) dx = x − sin ( 2x ) +C sin x dx Integrujeme podle vzorcu 2 ˚ 2 2

=

Z Z Z //

/

.

..

f ( ax + b) dx =

e x dx = e x , 1 dx = x ,

1 F ( ax + b) , kde a

Z

f ( x ) dx = F ( x ). c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. Z

(e x + e− x )2 dx =

Z

(e2x + 2 + e−2x ) dx

1 2x 1 e + 2x − e−2x + C 2 2 Z Z 1 1 1 sin(2x ) dx = · · (− cos 2x ) + C sin x cos x dx = 2 2 2 Z Z  i 1  1h 1 1 − cos(2x ) dx = x − sin(2x ) + C sin2 x dx = 2 2 2

=

Pouzˇijeme vzorec //

/

.

..

sin(2x ) = 2 sin x cos x c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. Z

(e x + e− x )2 dx =

Z

(e2x + 2 + e−2x ) dx

1 2x 1 e + 2x − e−2x + C 2 2 Z Z 1 1 1 sin(2x ) dx = · · (− cos 2x ) + C sin x cos x dx = 2 2 2 Z Z  i 1  1h 1 1 − cos(2x ) dx = x − sin(2x ) + C sin2 x dx = 2 2 2

=

Integrujeme podle vzorcu˚ Z

a Z //

/

.

..

f ( ax + b) dx =

sin x dx = − cos x 1 F ( ax + b) , kde a

Z

f ( x ) dx = F ( x ). c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. Z

(e x + e− x )2 dx =

Z

(e2x + 2 + e−2x ) dx

1 2x 1 e + 2x − e−2x + C 2 2 Z Z 1 1 1 sin(2x ) dx = · · (− cos 2x ) + C sin x cos x dx = 2 2 2 Z Z  i 1  1h 1 sin2 x dx = 1 − cos(2x ) dx = x − sin(2x ) + C 2 2 2

=

Vzorec sin2 x = //

/

.

..

1 − cos(2x ) 2 c

Lenka Bara´kova´, 2005 ×

Najdeˇte na´sledujı´cı´ integra´ly. Z

(e x + e− x )2 dx =

Z

(e2x + 2 + e−2x ) dx

1 2x 1 e + 2x − e−2x + C 2 2 Z Z 1 1 1 sin(2x ) dx = · · (− cos 2x ) + C sin x cos x dx = 2 2 2 Z Z  i 1  1h 1 sin2 x dx = 1 − cos(2x ) dx = x − sin(2x ) + C 2 2 2

=

Z Z //

/

.

..

cos x dx = sin x

f ( ax + b) =

1 F ( ax + b) a c

Lenka Bara´kova´, 2005 ×

KONEC

//

/

.

..

c

Lenka Bara´kova´, 2005 ×

Related Documents

Integrace Prima
November 2019 10
Integrace Subst
November 2019 12
Prima
April 2020 24
Prima
December 2019 31
Prima Nota
May 2020 25
Prima 5
April 2020 23