INSTRUMENTASI & PENGUKURAN • Karakteristik Statik • Karakteristik Dinamik
Karakteristik Statik • • • • • •
Kalibrasi statik Akurasi Presisi Bias Ketidakpastian Sensitivitas
• • • • • •
Threshold Resolusi Histerisis Offset Jangkah Linearitas
Karakteristik Dinamik • Karakteristik alat ukur terhadap sebuah perubahan dari satu pengukuran ke pengukuran lain – Respon kecepatan: kecepatan mengikuti dan memberikan tanggapan atas besaran ukur yang ditangkap sebagai sebuah sinyal masukan – Fidelity: kecepatan menunjukkan nilai pengukuran baru dengan tepat saat terjadi perubahan nilai objek ukur
Karakteristik Dinamik • Model matematis sistem pengukuran – Persamaan fungsi alih – Persamaan ruang-keadaan
• Instrumen orde nol • Instrumen orde satu • Instrumen orde dua
Model Matematis Sistem Masukan (x) Besaran yang diukur
Alat Pengukuran
Keluaran (y) Besaran yang terukur
• Hubungan masukan dan keluaran alat atau instrumen pengukuran dinyatakan sebagai fungsi persamaan diferensial dalam domain waktu
• Bentuk persamaan differensial umum dalam domain waktu: 𝑑𝑛 𝑦 𝑑𝑛−1 𝑦 𝑑 𝑑𝑚 𝑑 𝑚−1 𝑎𝑛 𝑛 + 𝑎𝑛_1 𝑛−1 + ⋯ + 𝑎1 𝑦 + 𝑎0 𝑦 = 𝑏𝑚 𝑚 𝑥 + 𝑏𝑚_1 𝑑𝑑𝑡 𝑥 + ⋯ 𝑏1 𝑥 𝑚−1 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 + 𝑏0 𝑥
untuk D =
𝑑 , 𝑑𝑡
maka fungsi alih:
𝑦 𝑏𝑚 𝐷𝑚 + 𝑏𝑚_1 𝐷𝑚−1 + ⋯ + 𝑏1 𝐷 + 𝑏0 𝐷 = 𝑥 𝑎𝑛 𝐷𝑛 + 𝑎𝑛_1 𝐷𝑛−1 + ⋯ + 𝑎1 𝐷 + 𝑎0
• Instrumen orde nol 𝑦 𝑏0 𝐷 = = 𝑲𝒑 𝑥 𝑎0
• Instrumen orde satu 𝑲𝒑 𝑦 𝑏0 𝐷 = = 𝑥 𝑎1 𝐷 + 𝑎0 𝜏𝐷 + 1
– –
𝒃𝟎 𝑲𝒑 = 𝒂𝟎 𝒂𝟏 𝝉𝒑 = 𝒂𝟎
: Penguatan statis (static gain) : Tetapan waktu (time constant)
• Instrumen orde dua 𝒅 𝒚 𝒅𝟐 𝒚 𝐛. 𝐟 𝐭 = 𝒂𝟎 𝒚 + 𝒂𝟏 + 𝒂𝟐 𝟐 𝒅𝒕 𝒅𝒕
𝐛. 𝐟 𝐭 = 𝒂𝟎 𝒚 + 𝒂𝟏
– –
𝒃 𝑲𝒑 = 𝒂𝟎 𝒂𝟏 𝝉𝒑 = 𝒂𝟎
constant)
𝒅 𝒚
𝒅𝒕 𝒅 𝒚 𝑲𝒑 . 𝐟 𝐭 = 𝒚 + 𝝉𝒑 𝒅𝒕
: Penguatan statis (static gain) : Tetapan waktu (time
Sistem Orde Nol
𝒃
𝑲𝒑 = 𝒂𝟎 : Penguatan statis (static gain) 𝟎
Semua tetapan kecuali a0 dan b0 menjadi nol. 𝑦 𝑏0 𝐷 = = 𝑲𝒑 𝑥 𝑎0
y (t ) Kx(t )
a0 y(t ) b0 x(t )
Karakteristiknya bergantung dari static sensitivity, Kp dan tetap tidak berubah (tidak bergantung dari frekuensi masukkan): karakteristik dinamis ideal Untuk K = static sensitivity = b0/a0
x m
Vr
+ x=0
y=V -
x V Vr here, K Vr / xm xm Untuk 0 x xm dan Vr tegangan referensi
Potentiometer linear dipakai sebagai sensor posisi merupakan sensor orde nol
Sistem Orde Satu Semua a dan b selain a1, a0 and b0 bernilai nol. a1
dy (t ) a0 b0 x(t ) dt
dy (t ) y (t ) Kx(t ) dt
y K ( D) x D 1
Untuk K = b0/a0 : static sensitivity = a1/a0 : konstanta waktu sistem (dimension of time)
Sistem Orde Satu: Step Response Misalkan, untuk t < 0, y = y0 , pada waktu = 0 nilai masukan, x naik tajam sehingga bernilai A. demikian pula untuk t > 0 0 t 0 x(t ) AU (t ) A t 0
dy (t ) y (t ) KAU (t ) dt
y(t ) Cet / KA
Solution lengkap: 2
U(t)
yocf Transient response
yopi Steady state response
1
Applying the initial condition, diperoleh C = y0-KA, sehingga: 0 -1
0
1
2 Time, t
3
4
5
y (t ) KA ( y0 KA)e
t /
Sistem Orde Satu: Step Response Error pembagian didefinisika sebagai:
y (t ) KA y (t ) y () e t / y0 KA y (0) y ()
1.0
1.0
.8
.8 Error fraction, em
Output Signal, (y(t)-y0)/(KA-y0)
em (t )
0.632
.6
y (t ) y0 1 e t / KA y0
.4 .2
y (t ) KA t / e y (0) KA
.6 .4
0.368
.2
0.0
0.0
0
1
2
3 t/
4
5
0
1
3
2 t/
Non-dimensional step response of first-order instrument
4
5
Penentuan Konstanta Waktu y (t ) KA t e t / ln em 2.3 log em y (0) KA 1
y (t ) KA e t / y (0) KA
0.368
Error fraction, em
em
.1
Slope = -1/
.01
.001 0
1
2
3 t
4
5
Sistem Orde Satu: Ramp Response Misalkan pada keadaan awal, y dan x = 0, pada waktu = 0, nilai masukan mulai berubah dengan laju tetap, sehingga didapat qis
Maka Solusi lengkap:
0 t 0 x(t ) qist t 0 dy (t ) y (t ) KqistU (t ) dt y (t ) Cet / Kqis (t ) Transient response
y (t ) Kqis (e t / t )
Memasukan kondisi awal: Kesalahan pengukuran
Steady state response
em x(t )
y (t ) qise t / qis K Transient error
Steady state error
Sistem Orde Satu: Ramp Response 10
Output signal, y/K
8 6 Steady state time lag =
4 Steady state error = qis
2 0 0
2
4
6
8
10
t/
Non-dimensional ramp response of first-order instrument
Sistem Orde Satu: Frequency Response x(t ) A sin t Dari respon sistem orde satu untuk masukan sinus: diperoleh dy y KA sin t D 1y(t ) KAsin t
dt
Solusi lengkapnya :
y (t ) Cet /
KA 1 ( ) 2
Transient response
sin t tan 1
Steady state response
=
Frequency response
Jika yang dicari hanya steady state response , persamaan umumnya: y(t ) Cet / B( ) sin t ( )
B( )
KA
1 ( )
2 1/ 2
( ) tan 1
Untuk B() = amplitudo steady state response; () = pergeseran fasa
First-Order Instrument: Frequency Response M ( ) 1
The amplitude ratio M ( )
B 1 KA 1 2 1/ 2
( ) 2 1
The phase angle is
Dynamic error
1.2
( ) tan 1 ( )
0
.8
-2
-3 dB
0.707
.6
-4
.4
-6 -8 -10
.2
Cutoff frequency
-20 0.0 .01
.1
1
10
100
-20 Phase shift, ()
0 Decibels (dB)
Amplitude ratio
-10 1.0
-30 -40 -50 -60 -70 -80 -90 .01
.1
Frequency response of the first order system
1
10
100
Dynamic error, () = M(): a measure of an inability of a system to adequately reconstruct the amplitude of the input for a particular frequency
Dynamic Characteristics Frequency Response describe how the ratio of output and input changes with the input frequency. (sinusoidal input)
Dynamic error, () = 1- M() a measure of the inability of a system or sensor to adequately reconstruct the amplitude of the input for a particular frequency
Bandwidth the frequency band over which M() 0.707 (-3 dB in decibel unit) Cutoff frequency: the frequency at which the system response has fallen to 0.707 (-3 dB) of the stable low frequency.
tr
0.35 fc
First-Order Systems: Frequency Response Ex: Inadequate frequency response
Suppose we want to measure x(t ) sin 2t 0.3 sin 20t
x(t)
With a first-order instrument whose is 0.2 s and static sensitivity K Superposition concept: For = 2 rad/s: B(2 rad/s )
y(t)/K
For = 20 rad/s: B(20 rad/s )
K 21.8o 0.93K 21.8o 0.16 1 K 76o 0.24 K 76o 16 1
Therefore, we can write y(t) as y(t ) (1)(0.93K ) sin( 2t 21.8o ) (0.3)(0.24K ) sin( 20t 76o ) y(t ) 0.93K sin( 2t 21.8o ) 0.072K sin( 20t 76o )
Dynamic Characteristics Example: A first order instrument is to measure signals with frequency content up to 100 Hz with an inaccuracy of 5%. What is the maximum allowable time constant? What will be the phase shift at 50 and 100 Hz?
Solution: Define
Qo (i ) K M ( ) Qi (i ) 2 2 1
M ( ) M (0) 1 Dynamic error 100% 1 100% 2 2 M (0) 1 From the condition |Dynamic error| < 5%, it implies that 0.95
1
1 2 2
1.05
But for the first order system, the term 1 / 2 2 1can not be greater than 1 so that the constrain becomes 1
0.95
Solve this inequality give the range
1 2 2
1
0 0.33
The largest allowable time constant for the input frequency 100 Hz is The phase shift at 50 and 100 Hz can be found from
arctan
This give = -9.33o and = -18.19o at 50 and 100 Hz respectively
0.33 0.52 ms 2 100 Hz
Second-Order Systems In general, a second-order measurement system subjected to arbitrary input, x(t) 2
a2
d y(t ) dy (t ) a a0 y(t ) b0 x(t ) 1 2 dt dt
D 2 2 2 D 1 y(t ) Kx(t ) n n
1 d 2 y(t ) 2 dy(t ) y(t ) Kx(t ) 2 2 n dt n dt The essential parameters K
b0 a0
a1 2 a0 a2
n
a0 a2
= the static sensitivity = the damping ratio, dimensionless
= the natural angular frequency
Second-Order Systems Consider the characteristic equation 1 2 2 D D 1 0 2 n n This quadratic equation has two roots:
S1, 2 n n 2 1 Depending on the value of , three forms of complementary solutions are possible 2 1 t n
2 1 t n
Overdamped ( > 1):
yoc (t ) C1e
Critically damped ( = 1):
yoc (t ) C1e nt C2tent
Underdamped (< 1): :
yoc (t ) Ce nt sin n 1 2 t
C2 e
Second-Order Systems Case I Underdamped (< 1):
Case 2 Overdamped ( > 1):
S1, 2 n n 2 1
S1, 2 2 1 n
j d
Case 3 Critically damped ( = 1):
yt
Ae
S1, 2 n
t
t
sin( d t )
yt
1
1 t
Second-order Systems Example: The force-measuring spring consider a spring with spring constant Ks under applied force fi and the total mass M. At start, the scale is adjusted so that xo = 0 when fi = 0; forces=(mass)(acceleration)
dxo d 2 xo fi B K s xo M 2 dt dt ( MD 2 BD K s ) xo fi the second-order model:
K
1 Ks
m/N
Ks rad/s M B 2 Ks M
n
Second-order Systems: Step Response D 2 2 2 D 1 y(t ) KAU (t ) n n
1 d 2 y 2 dy y KAU (t ) For a step input x(t) 2 2 n dt n dt
With the initial conditions: y = 0 at t = 0+, dy/dt = 0 at t = 0+
The complete solution:
Overdamped ( > 1):
2 1 y(t ) e 2 KA 2 1
Critically damped ( = 1):
y (t ) (1 nt )e nt 1 KA
Underdamped (< 1): :
y(t ) e nt sin 1 2 nt 1 KA 1 2
2 1 nt
2 1 2 1 2
e
2 1 t n
1
sin 1 1 2
Second-order Instrument: Step Response Ringing frequency:
Output signal, y(t)/KA
2.0
1.5
Td
2 d
d n 1 2
=0
Ringing frequency:
0.25
Rise time decreases with but increases ringing
0.5
1.0
Optimum settling time can be obtained from ~ 0.7
.5
1.0
Practical systems use 0.6< <0.8
2.0
0.0 0
2
4
6
8
10
nt
Non-dimensional step response of second-order instrument
Dynamic Characteristics 1.4 overshoot
Output signal, y(t)/KA
1.2 100% 5%
1.0 .8 .6 .4
settling time
.2
rise time
0.0 0
5
10
15
Time, t (s) Typical response of the 2nd order system
20
Second-order System: Ramp Response For a ramp input x(t ) qistU (t )
1 d 2 y 2 dy y KqistU (t ) 2 2 n dt n dt
nt nt 1 e (1 ) 2
qo 2q qist is K n
With the initial conditions: y = dy/dt = 0 at t = 0+ The possible solutions:
Overdamped:
2qis 2 2 1 2 2 1 y (t ) qist 1 e 2 K n 4 1
Critically damped:
Underdamped:
2 2 1 2 2 1 4 1 2
e
2 1 n t
2 1 t n
2q t y(t ) qist is 1 (1 n )ent K n 1
2qis y(t ) e nt 2 qist sin 1 nt 1 2 K n 2 1
2 1 2 tan 2 2 1 1
Second-order Instrument: Step Response Steady state error =
Output signal, y(t)/K
10 8
Steady state 2 time lag =
Ramp input
n
6 4
= 0.3 1.0 2.0
2
0.6
0 0
2
4
2qis n
6
8
Time, t (s)
Typical ramp response of second-order instrument
10
Second-order Instrument: Frequency Response The response of a second-order to a sinusoidal input of the form x(t) = Asint KA y(t ) yoc (t ) sin t ( ) 1/ 2 2 2 2 1 / n 2 / n
where ( ) tan 1
2 / n n /
The steady state response of a second-order to a sinusoidal input ysteady (t ) B( ) sin t ( )
B( )
KA
1 / 2 / 2 2
n
2
1/ 2
( ) tan 1
n
2 / n n /
Where B() = amplitude of the steady state response and () = phase shift M ( )
B 1 KA 1 / 2 2 2 / 2 1/ 2 n n
Second-order Instrument: Frequency Response The phase angle
The amplitude ratio M ( )
1
( ) tan 1
1 / 2 / 2 2
2
n
1/ 2
n
2 / n n /
0 6
0.3
1.5
3 0.5
1.0
0 -3 -6 -10 -15
1.0
.5 2.0
0.0 .01
.1
1
10
100
0 = 0.1
-20 Phase shift,
= 0.1
Decibel (dB)
Amplitude ratio
2.0
0.3
-40
0.5
-60 -80
1.0 2.0
-100 -120 -140 -160 -180 .01
.1
n
Magnitude and Phase plot of second-order Instrument
1 n
10
100
Second-order Systems For overdamped ( >1) or critical damped ( = 1), there is neither overshoot nor steady-state dynamic error in the response.
In an underdameped system ( < 1) the steady-state dynamic error is zero, but the speed and overshoot in the transient are related.
Maximum overshoot:
M p exp / 1 2
Peak time:
tp
d
Resonance r n 1 2 2 frequency: 1 Resonance M r 2 1 2 amplitude:
Td
overshoot
1.2 1.0
o
tr
Output signal, q (t)/Kqis
arctan( d / ) d
Rise time:
1.4
.8 peak time
.6 .4
settling time
.2
rise time
0.0 0
where = n , d n 1 2 , and arcsin( 1 2 )
5
10 Time, t (s)
15
20
Dynamic Characteristics Speed of response: indicates how fast the sensor (measurement system) reacts to changes in the input variable. (Step input)
Rise time: the length of time it takes the output to reach 10 to 90% of full response when a step is applied to the input
Time constant: (1st order system) the time for the output to change by 63.2% of its maximum possible change.
Settling time: the time it takes from the application of the input step until the output has settled within a specific band of the final value.
Dead time: the length of time from the application of a step change at the input of the sensor until the output begins to change