Instrumentasi & Pengukuran: • Karakteristik Statik • Karakteristik Dinamik

  • Uploaded by: Hariansyah Hari
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Instrumentasi & Pengukuran: • Karakteristik Statik • Karakteristik Dinamik as PDF for free.

More details

  • Words: 3,057
  • Pages: 33
INSTRUMENTASI & PENGUKURAN • Karakteristik Statik • Karakteristik Dinamik

Karakteristik Statik • • • • • •

Kalibrasi statik Akurasi Presisi Bias Ketidakpastian Sensitivitas

• • • • • •

Threshold Resolusi Histerisis Offset Jangkah Linearitas

Karakteristik Dinamik • Karakteristik alat ukur terhadap sebuah perubahan dari satu pengukuran ke pengukuran lain – Respon kecepatan: kecepatan mengikuti dan memberikan tanggapan atas besaran ukur yang ditangkap sebagai sebuah sinyal masukan – Fidelity: kecepatan menunjukkan nilai pengukuran baru dengan tepat saat terjadi perubahan nilai objek ukur

Karakteristik Dinamik • Model matematis sistem pengukuran – Persamaan fungsi alih – Persamaan ruang-keadaan

• Instrumen orde nol • Instrumen orde satu • Instrumen orde dua

Model Matematis Sistem Masukan (x) Besaran yang diukur

Alat Pengukuran

Keluaran (y) Besaran yang terukur

• Hubungan masukan dan keluaran alat atau instrumen pengukuran dinyatakan sebagai fungsi persamaan diferensial dalam domain waktu

• Bentuk persamaan differensial umum dalam domain waktu: 𝑑𝑛 𝑦 𝑑𝑛−1 𝑦 𝑑 𝑑𝑚 𝑑 𝑚−1 𝑎𝑛 𝑛 + 𝑎𝑛_1 𝑛−1 + ⋯ + 𝑎1 𝑦 + 𝑎0 𝑦 = 𝑏𝑚 𝑚 𝑥 + 𝑏𝑚_1 𝑑𝑑𝑡 𝑥 + ⋯ 𝑏1 𝑥 𝑚−1 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 + 𝑏0 𝑥

untuk D =

𝑑 , 𝑑𝑡

maka fungsi alih:

𝑦 𝑏𝑚 𝐷𝑚 + 𝑏𝑚_1 𝐷𝑚−1 + ⋯ + 𝑏1 𝐷 + 𝑏0 𝐷 = 𝑥 𝑎𝑛 𝐷𝑛 + 𝑎𝑛_1 𝐷𝑛−1 + ⋯ + 𝑎1 𝐷 + 𝑎0

• Instrumen orde nol 𝑦 𝑏0 𝐷 = = 𝑲𝒑 𝑥 𝑎0

• Instrumen orde satu 𝑲𝒑 𝑦 𝑏0 𝐷 = = 𝑥 𝑎1 𝐷 + 𝑎0 𝜏𝐷 + 1

– –

𝒃𝟎 𝑲𝒑 = 𝒂𝟎 𝒂𝟏 𝝉𝒑 = 𝒂𝟎

: Penguatan statis (static gain) : Tetapan waktu (time constant)

• Instrumen orde dua 𝒅 𝒚 𝒅𝟐 𝒚 𝐛. 𝐟 𝐭 = 𝒂𝟎 𝒚 + 𝒂𝟏 + 𝒂𝟐 𝟐 𝒅𝒕 𝒅𝒕

𝐛. 𝐟 𝐭 = 𝒂𝟎 𝒚 + 𝒂𝟏

– –

𝒃 𝑲𝒑 = 𝒂𝟎 𝒂𝟏 𝝉𝒑 = 𝒂𝟎

constant)

𝒅 𝒚

𝒅𝒕 𝒅 𝒚 𝑲𝒑 . 𝐟 𝐭 = 𝒚 + 𝝉𝒑 𝒅𝒕

: Penguatan statis (static gain) : Tetapan waktu (time

Sistem Orde Nol

𝒃

𝑲𝒑 = 𝒂𝟎 : Penguatan statis (static gain) 𝟎

Semua tetapan kecuali a0 dan b0 menjadi nol. 𝑦 𝑏0 𝐷 = = 𝑲𝒑 𝑥 𝑎0

y (t )  Kx(t )

a0 y(t )  b0 x(t )

Karakteristiknya bergantung dari static sensitivity, Kp dan tetap tidak berubah (tidak bergantung dari frekuensi masukkan): karakteristik dinamis ideal Untuk K = static sensitivity = b0/a0

x m

Vr

+ x=0

y=V -

x V  Vr  here, K  Vr / xm xm Untuk 0  x  xm dan Vr tegangan referensi

Potentiometer linear dipakai sebagai sensor posisi merupakan sensor orde nol

Sistem Orde Satu Semua a dan b selain a1, a0 and b0 bernilai nol. a1

dy (t )  a0  b0 x(t ) dt



dy (t )  y (t )  Kx(t ) dt

y K ( D)  x D  1

Untuk K = b0/a0 : static sensitivity  = a1/a0 : konstanta waktu sistem (dimension of time)

Sistem Orde Satu: Step Response Misalkan, untuk t < 0, y = y0 , pada waktu = 0 nilai masukan, x naik tajam sehingga bernilai A. demikian pula untuk t > 0 0 t  0 x(t )  AU (t )   A t  0



dy (t )  y (t )  KAU (t ) dt

y(t )  Cet /  KA

Solution lengkap: 2

U(t)

yocf Transient response

yopi Steady state response

1

Applying the initial condition, diperoleh C = y0-KA, sehingga: 0 -1

0

1

2 Time, t

3

4

5

y (t )  KA  ( y0  KA)e

t /

Sistem Orde Satu: Step Response Error pembagian didefinisika sebagai:

y (t )  KA y (t )  y ()   e t /  y0  KA y (0)  y ()

1.0

1.0

.8

.8 Error fraction, em

Output Signal, (y(t)-y0)/(KA-y0)

em (t ) 

0.632

.6

y (t )  y0  1  e t /  KA  y0

.4 .2

y (t )  KA t / e y (0)  KA

.6 .4

0.368

.2

0.0

0.0

0

1

2

3 t/

4

5

0

1

3

2 t/

Non-dimensional step response of first-order instrument

4

5

Penentuan Konstanta Waktu y (t )  KA t  e t / ln em  2.3 log em   y (0)  KA  1

y (t )  KA  e t /  y (0)  KA

0.368

Error fraction, em

em 

.1

Slope = -1/

.01

.001 0

1

2

3 t

4

5

Sistem Orde Satu: Ramp Response Misalkan pada keadaan awal, y dan x = 0, pada waktu = 0, nilai masukan mulai berubah dengan laju tetap, sehingga didapat qis

Maka Solusi lengkap:

0 t  0 x(t )   qist t  0 dy (t )   y (t )  KqistU (t ) dt y (t )  Cet /  Kqis (t   ) Transient response

y (t )  Kqis (e t /  t   )

Memasukan kondisi awal: Kesalahan pengukuran

Steady state response

em  x(t ) 

y (t )  qise t /  qis K Transient error

Steady state error

Sistem Orde Satu: Ramp Response 10

Output signal, y/K

8 6 Steady state time lag = 

4 Steady state error = qis

2 0 0

2

4

6

8

10

t/

Non-dimensional ramp response of first-order instrument

Sistem Orde Satu: Frequency Response x(t )  A sin t Dari respon sistem orde satu untuk masukan sinus: diperoleh dy   y  KA sin t D 1y(t )  KAsin t

dt

Solusi lengkapnya :

y (t )  Cet / 

KA 1  ( ) 2

Transient response

sin t  tan 1  

Steady state response

=

Frequency response

Jika yang dicari hanya steady state response , persamaan umumnya: y(t )  Cet /  B( ) sin t   ( )

B( ) 

KA

1  ( ) 

2 1/ 2

 ( )   tan 1 

Untuk B() = amplitudo steady state response; () = pergeseran fasa

First-Order Instrument: Frequency Response M ( )  1

The amplitude ratio M ( ) 

B 1  KA 1   2 1/ 2



( ) 2  1



The phase angle is

Dynamic error

1.2

 ( )   tan 1 ( )

0

.8

-2

-3 dB

0.707

.6

-4

.4

-6 -8 -10

.2

Cutoff frequency

-20 0.0 .01

.1

1 

10

100

-20 Phase shift, ()

0 Decibels (dB)

Amplitude ratio

-10 1.0

-30 -40 -50 -60 -70 -80 -90 .01

.1

Frequency response of the first order system

1

10

100



Dynamic error, () = M(): a measure of an inability of a system to adequately reconstruct the amplitude of the input for a particular frequency

Dynamic Characteristics Frequency Response describe how the ratio of output and input changes with the input frequency. (sinusoidal input)

Dynamic error, () = 1- M() a measure of the inability of a system or sensor to adequately reconstruct the amplitude of the input for a particular frequency

Bandwidth the frequency band over which M()  0.707 (-3 dB in decibel unit) Cutoff frequency: the frequency at which the system response has fallen to 0.707 (-3 dB) of the stable low frequency.

tr 

0.35 fc

First-Order Systems: Frequency Response Ex: Inadequate frequency response

Suppose we want to measure x(t )  sin 2t  0.3 sin 20t

x(t)

With a first-order instrument whose  is 0.2 s and static sensitivity K Superposition concept: For  = 2 rad/s: B(2 rad/s ) 

y(t)/K

For  = 20 rad/s: B(20 rad/s ) 

K   21.8o  0.93K  21.8o 0.16  1 K   76o  0.24 K  76o 16  1

Therefore, we can write y(t) as y(t )  (1)(0.93K ) sin( 2t  21.8o )  (0.3)(0.24K ) sin( 20t  76o ) y(t )  0.93K sin( 2t  21.8o )  0.072K sin( 20t  76o )

Dynamic Characteristics Example: A first order instrument is to measure signals with frequency content up to 100 Hz with an inaccuracy of 5%. What is the maximum allowable time constant? What will be the phase shift at 50 and 100 Hz?

Solution: Define

Qo (i ) K  M ( )  Qi (i )  2 2  1

  M ( )  M (0) 1  Dynamic error  100%    1 100% 2 2 M (0)    1  From the condition |Dynamic error| < 5%, it implies that 0.95 

1

  1 2 2

 1.05

But for the first order system, the term 1 /  2 2  1can not be greater than 1 so that the constrain becomes 1

0.95 

Solve this inequality give the range

  1 2 2

1

0    0.33

The largest allowable time constant for the input frequency 100 Hz is   The phase shift at 50 and 100 Hz can be found from

   arctan 

This give  = -9.33o and = -18.19o at 50 and 100 Hz respectively

0.33  0.52 ms 2 100 Hz

Second-Order Systems In general, a second-order measurement system subjected to arbitrary input, x(t) 2

a2

d y(t ) dy (t )  a  a0 y(t )  b0 x(t ) 1 2 dt dt

 D 2 2   2  D  1 y(t )  Kx(t )  n n 

1 d 2 y(t ) 2 dy(t )   y(t )  Kx(t ) 2 2 n dt n dt The essential parameters K



b0 a0

a1 2 a0 a2

n 

a0 a2

= the static sensitivity = the damping ratio, dimensionless

= the natural angular frequency

Second-Order Systems Consider the characteristic equation 1 2 2 D  D 1  0 2 n n This quadratic equation has two roots:

S1, 2  n  n  2 1 Depending on the value of , three forms of complementary solutions are possible     2 1  t   n

    2 1  t   n

Overdamped ( > 1):

yoc (t )  C1e

Critically damped ( = 1):

yoc (t )  C1e nt  C2tent

Underdamped (< 1): :

yoc (t )  Ce nt sin n 1   2 t  



 C2 e



Second-Order Systems Case I Underdamped (< 1):

Case 2 Overdamped ( > 1):





S1, 2   n  n  2  1

S1, 2      2 1 n

   j d

Case 3 Critically damped ( = 1):

yt

Ae

S1, 2  n

 t

t

sin( d t   )

yt

 1

 1 t

Second-order Systems Example: The force-measuring spring consider a spring with spring constant Ks under applied force fi and the total mass M. At start, the scale is adjusted so that xo = 0 when fi = 0; forces=(mass)(acceleration)

dxo d 2 xo fi  B  K s xo  M 2 dt dt ( MD 2  BD  K s ) xo  fi the second-order model:

K

1 Ks

m/N

Ks rad/s M B  2 Ks M

n 

Second-order Systems: Step Response  D 2 2   2  D  1 y(t )  KAU (t )   n n 

1 d 2 y 2 dy   y  KAU (t ) For a step input x(t) 2 2 n dt n dt

With the initial conditions: y = 0 at t = 0+, dy/dt = 0 at t = 0+

The complete solution:

Overdamped ( > 1):

   2  1    y(t )  e 2 KA 2  1

Critically damped ( = 1):

y (t )  (1  nt )e nt  1 KA

Underdamped (< 1): :

y(t ) e  nt  sin 1   2 nt    1 KA 1  2



 2 1 nt 



   2 1 2  1 2



e

    2 1  t   n



1

  sin 1 1   2



Second-order Instrument: Step Response Ringing frequency:

Output signal, y(t)/KA

2.0

1.5

Td 

2 d

d  n 1   2

=0

Ringing frequency:

0.25

Rise time decreases  with but increases ringing

0.5

1.0

Optimum settling time can be obtained from  ~ 0.7

.5

1.0

Practical systems use 0.6<  <0.8

2.0

0.0 0

2

4

6

8

10

nt

Non-dimensional step response of second-order instrument

Dynamic Characteristics 1.4 overshoot

Output signal, y(t)/KA

1.2 100%  5%

1.0 .8 .6 .4

settling time

.2

rise time

0.0 0

5

10

15

Time, t (s) Typical response of the 2nd order system

20

Second-order System: Ramp Response For a ramp input x(t )  qistU (t )

1 d 2 y 2 dy   y  KqistU (t ) 2 2 n dt n dt

 nt   nt 1  e (1  )  2 

qo 2q  qist  is K n

With the initial conditions: y = dy/dt = 0 at t = 0+ The possible solutions:

Overdamped:

2qis  2 2  1  2  2  1    y (t )  qist  1 e 2 K n  4   1 

Critically damped:

Underdamped:

 2 2  1  2  2  1 4   1 2

e

 2 1  n t 

    2 1  t   n

   

2q  t y(t )   qist  is 1  (1  n )ent  K n  1 





 2qis  y(t ) e  nt 2  qist  sin 1   nt    1  2 K n  2 1   

2 1   2   tan 2 2  1 1

Second-order Instrument: Step Response Steady state error =

Output signal, y(t)/K

10 8

Steady state 2  time lag =

Ramp input

n

6 4

 = 0.3 1.0 2.0

2

0.6

0 0

2

4

2qis n

6

8

Time, t (s)

Typical ramp response of second-order instrument

10

Second-order Instrument: Frequency Response The response of a second-order to a sinusoidal input of the form x(t) = Asint KA y(t )  yoc (t )  sin t   ( ) 1/ 2 2 2 2 1   / n   2 / n 







where  ( )   tan 1

2  / n  n / 

The steady state response of a second-order to a sinusoidal input ysteady (t )  B( ) sin t   ( )

B( ) 

KA

1  /     2 /    2 2

n

2

1/ 2

 ( )   tan 1

n

2  / n  n / 

Where B() = amplitude of the steady state response and () = phase shift M ( ) 

B 1  KA 1   /  2 2  2 /  2 1/ 2 n n







Second-order Instrument: Frequency Response The phase angle

The amplitude ratio M ( ) 

1

 ( )   tan 1

1  /     2 /    2 2

2

n

1/ 2

n

2  / n  n / 

0 6

0.3

1.5

3 0.5

1.0

0 -3 -6 -10 -15

1.0

.5 2.0

0.0 .01

.1

1

10

100

0 = 0.1

-20 Phase shift, 

 = 0.1

Decibel (dB)

Amplitude ratio

2.0

0.3

-40

0.5

-60 -80

1.0 2.0

-100 -120 -140 -160 -180 .01

.1

n

Magnitude and Phase plot of second-order Instrument

1 n

10

100

Second-order Systems For overdamped ( >1) or critical damped ( = 1), there is neither overshoot nor steady-state dynamic error in the response.

In an underdameped system ( < 1) the steady-state dynamic error is zero, but the speed and overshoot in the transient are related.

Maximum overshoot:

M p  exp  / 1   2

Peak time:

tp 



 d

Resonance  r   n 1  2 2 frequency: 1 Resonance M r  2 1   2 amplitude:

Td

overshoot



1.2 1.0

o

tr 

Output signal, q (t)/Kqis

arctan( d /  ) d

Rise time:

1.4

.8 peak time

.6 .4

settling time

.2

rise time

0.0 0

where  = n ,  d   n 1   2 , and   arcsin( 1   2 )

5

10 Time, t (s)

15

20

Dynamic Characteristics Speed of response: indicates how fast the sensor (measurement system) reacts to changes in the input variable. (Step input)

Rise time: the length of time it takes the output to reach 10 to 90% of full response when a step is applied to the input

Time constant: (1st order system) the time for the output to change by 63.2% of its maximum possible change.

Settling time: the time it takes from the application of the input step until the output has settled within a specific band of the final value.

Dead time: the length of time from the application of a step change at the input of the sensor until the output begins to change

Related Documents


More Documents from "masdidin"