Int J Adv Manuf Technol (2014) 73:749–771 DOI 10.1007/s00170-014-5826-3
ORIGINAL ARTICLE
A fuzzy DEMATEL-based solution approach for facility layout problem: a case study Serkan Altuntas & Hasan Selim & Turkay Dereli
Received: 20 August 2013 / Accepted: 31 March 2014 / Published online: 8 May 2014 # Springer-Verlag London 2014
Abstract Facility layout in production systems is a difficult activity since both qualitative and quantitative factors affect the location decision, and also influence and causal relationship between these factors should be determined for a better location. In this respect, it is demonstrated in this study that fuzzy decision-making trial and evaluation laboratory (fuzzy DEMATEL) method can effectively be used in handling facility layout problems in practice. The qualitative factors that described by linguistic terms can be taken into account through fuzzy structure of the method. Considering this, a fuzzy DEMATEL-based solution approach for facility layout problem is proposed in this study. The proposed approach takes into account both qualitative and quantitative location factors. To address the need in practice, six important location factors are considered in this study. These are material flow, information flow, personnel flow, equipment flow, environmental condition, and supervision of personnel. This study differs from the previous works in that it applies fuzzy DEMATEL method to facility layout problem. To explore the viability of the proposed approach, a real world problem in a machinery industry firm is handled.
S. Altuntas (*) Faculty of Engineering, Department of Industrial Engineering, Bayburt University, 69000 Bayburt, Turkey e-mail:
[email protected] S. Altuntas e-mail:
[email protected] H. Selim Faculty of Engineering, Department of Industrial Engineering, Dokuz Eylul University, 35397 Izmir, Turkey e-mail:
[email protected] T. Dereli Faculty of Engineering, Department of Industrial Engineering, University of Gaziantep, 27310 Gaziantep, Turkey e-mail:
[email protected]
Keywords Facility layout . Fuzzy DEMATEL . Machine allocation
1 Introduction Facility layout is one of the most important issues for modern manufacturing systems [1]. Engineers, workers, and decision makers at enterprises have researched the best or appropriate location to establish their departments/machines or locate their facilities in a layout in view of the fact that their located spaces affect material flow distance, total product produced, cycle time, waiting time, facility utilization, etc. Researchers classified facility layout problem into three types, namely, static facility layout problem [2, 3], dynamic facility layout problem [4, 5], and stochastic facility layout problem [6, 7]. In this study, we handle the static facility layout problem that deals with the question of where m numbers of facilities (each with area ai) are arranged within a given location when there is no variability in product demand. Herein, the facilities having the high level of relation have to be located adjacently. Several approximate or heuristic approaches were proposed for facility layout problem such as genetic algorithms [8] and particle swarm optimization [9]. The reader can refer to review studies [7, 10-15] for the details on facility layout problem. In handling facility layout problem in practice, qualitative factors should be taken into account effectively. As in our current study, some researchers used fuzzy logic-based solution approaches for facility layout problem. Among these studies, Grobelny [16] proposed a fuzzy constructive-type algorithm based on HC-66 method. The algorithm takes into account the relationship degrees for facility, costs of installation of each facility in each possible place, and the distance between location places in the form of fuzzy sets. In another study, Grobelny [17] presented a linguistic pattern approach based on possibility theory and Lukasiewiez multivalued implication formula. Evans et al. [18] presented a constructive-
750
type heuristic-based on fuzzy sets for layout design. Raoot and Rakshit [19] formulated a multiple criteria facility layout problem based on a linguistic pattern approach. They illustrated their solution methodology with a numerical example by considering material flow, service link, organization link, environment link, and different facility size. Cheng et al. [20] introduced the concept of fuzzy interflow into facility layout problem. They presented material flows among facilities as fuzzy numbers. The solution was performed by genetic algorithm. Dweiri and Meier [21] introduced a new fuzzy decision-making-based solution approach for facility layout problem and presented a numerical example by considering three factors; material flow, information flow, and equipment flow. Szwarc et al. [22] considered fuzzy demand and machine capacity for cell formation. Aiello and Enea [23] proposed a fuzzy approach for facility layout in uncertain production environments. The approach considers production capacity of each facility and fuzzy demand for each product. Turkbey [24, 25] proposed a fuzzy method for the multiobjective machine sequencing problem. Deb and Bhattacharyya [26, 27] proposed a fuzzy decision support system for manufacturing facilities layout planning. The decision support system considers four factors: material flow, supervision link, information link, and environment link. They also considered pickup and drop-off points between the facilities. Enea et al. [28] treated uncertain production demand through fuzzy numbers. They implemented genetic algorithm to model the facility layout problem. Karray et al. [48] proposed an approach based on fuzzy logic and genetic algorithms for the facility layout. They took three factors, material flow, information flow, and equipment flow into account for layout arrangement. Grobelny [49] presented a fuzzy approach for facility layout problem and the proposed approach was verified using a simple example. Sangwan [29] presented a multicriteria heuristic model in a fuzzy environment to solve facility layout problem taking into account quantitative and qualitative factors, namely, material flow, safety rating, and noise rating. Altuntas et al. [30] proposed fuzzy weighted association rulebased data mining approaches for facility layout problem. Aksaraylı and Altuntas [50] compared the basic layout types using simulation technique. Raoot and Rakshit [51] presented a fuzzy approach based on experts’ opinions for constructiontype facility layout problem. They considered flow, control, process, organization personnel, and environmental relationships between facilities. Mohamadghasemi and HadiVencheh [52] proposed an integrated synthetic value of fuzzy judgments and a nonlinear programming methodology for ranking the facility layout patterns. They incorporated qualitative criteria besides the quantitative criteria into facility layout design problem. In addition, multicriteria decisionmaking (MCDM) based solution approaches were proposed for facility layout problem. For instance, Ertugrul and Karakasoglu [31] used fuzzy analytic hierarchy process (fuzzy
Int J Adv Manuf Technol (2014) 73:749–771
AHP) and fuzzy technique for order preference by similarity to ideal solution (fuzzy TOPSIS) for the selection of the location of a textile company in Turkey. Bashiri and Hosseininezhad [32] can be referred for the details on the applications of MCDM techniques to facility layout problem. Facility location in production systems is a difficult activity since there exist both qualitative and quantitative factors that affect the location decision. In addition, influence and causal relationship between these factors should be determined for a better location. In this regard, we assert that fuzzy decisionmaking trial and evaluation laboratory (fuzzy DEMATEL) method can effectively be used in handling facility layout problems in practice. Additionally, qualitative factors that described by linguistic terms can be taken into account easily through fuzzy structure of the method. Fuzzy DEMATEL method is applied to various problems in practice such as evaluation of R&D projects [33], development of a cause and effect model of municipal solid waste management [34], analysis of supplier selection criteria [35], and evaluation of critical success factors in agile new product development [36]. On the other hand, to our knowledge, DEMATEL and fuzzy DEMATEL methods have not been employed to solve the facility layout problem. Considering this gap, a fuzzy DEMATEL-based solution approach for facility layout problem is proposed in this study. We utilize this approach to find the closeness ratings between the facilities to be located. This paper is further organized as follows. Section 2 describes fuzzy DEMATEL method. In Section 3, the proposed approach is introduced. A real world case study is presented in Section 4. Finally, conclusions and future research directions are given in Section 5.
2 Fuzzy DEMATEL method In this section, DEMATEL method is described briefly before presenting fuzzy DEMATEL method. 2.1 DEMATEL Method DEMATEL is a comprehensive method for analyzing and building a structural model involving causal relationships between complex factors. Basic steps of DEMATEL method is presented in the following [37, 38]. Step 1: Compute the average initial direct-relation matrix (A). Herein, generally a survey is conducted by asking related experts. The survey includes the comparison scale to find influence and direction among criteria with respect to expert opinions. Comparison scale includes four levels: (0) no influence, (1) low influence, (2) medium influence, and (3) high
Int J Adv Manuf Technol (2014) 73:749–771
751
influence. The notations to compute A=[aij] are presented in the following. n H xkij
number of factors number of respondents (experts) degree to which respondent k believes factor i affects factor j Herein, aij can be computed as follows.
aij ¼ ð1=H Þ
H X
Table 1 Linguistic variables and corresponding triangular fuzzy numbers Linguistic variables
Corresponding triangular fuzzy numbers
No influence (NI) Very low influence (VLI) Low influence (LI) High influence (HI)
(0, 0.1, 0.3) (0.1, 0.3, 0.5) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9)
Very high influence (VHI)
(0.7, 0.9, 1)
ð1Þ
xkij
k¼1
Step 2: Compute normalized initial direct-relation matrix (D). S ¼ 1=ð max
1< i< n
n X
aij Þ
&
ð2Þ
k ak Δmax min ¼ max a3ij − min 1ij xak1ij ¼ ak1ij −min ak1ij =Δmax min k k k xa2ij ¼ a2ij −min a1ij =Δmax min k k k xa3ij ¼ a3ij −min a1ij =Δmax min
j¼1
D¼AS
ð3Þ
Step 3: Compute factor total-influence matrix (T). T ¼ DðI−DÞ−1 I
ð4Þ
Normalization:
&
identity matrix
Step 4: Compute C, R, C+R, and R−C values and also set threshold value to obtain digraph of showing causal relations among criteria, where C and R denote the column sum and the row sum of matrix T, respectively.
ð5Þ
Compute left side (ls) and right side (rs) normalized values: xlskij ¼ xak2ij = 1 þ xak2ij − xak1ij xrskij ¼ xak3ij = 1 þ xak3ij − xak2ij
ð6Þ
2.2 Fuzzy DEMATEL method Qualitative factors that affect real-life facility layout problems cannot be fairly taken into consideration in most of the modeling approaches, while they can be modeled easily and effectively using fuzzy DEMATEL method. Steps of fuzzy DEMATEL method are presented in the following. Step 1: Compute average initial direct-relation matrix (A). In this study, we use the linguistic scale and corresponding triangular fuzzy numbers that are defined by Wang and Chang [39] and Chen [40] (see Table 1). The fuzzy numbers corresponding to expert’s assessment of facility pair with respect to each factor should be defuzzified. In this work, “Converting the Fuzzy data into Crips Scores” (CFCS) method, developed by Opricovic and Tzeng [41], is employed for the defuzzification process. CFCS method consists of the following four steps [42]. Let wkij =(ak1ij, ak2ij, and ak3ij), there exist k experts, wkij presents the fuzzy weight of ith criteria that affects the jth criteria evaluated by kth expert.
&
Compute total normalized crisp value:
xkij ¼ ½xlskij ð1 − xlskij Þ þ xrskij xlskij =½1 − xlskij þ xrskij ð7Þ &
Compute crisp values:
xkij ¼ min ak1ij þ xkij Δmax min
ð8Þ
Equation (1) is used to compute average initial directrelation matrix (A) after each fuzzy responds is defuzzified. Step 2: Compute the normalized initial direct-relation matrix (D) using Eqs. (2) and (3). Step 3: Compute factor total-influence matrix (T) using Eq. (4). Step 4: This step is exactly the same as step 4 of DEMATEL method.
752
Int J Adv Manuf Technol (2014) 73:749–771
3 The proposed approach There exist basically two type of approaches for facility layout problem, namely, constructive type and improvement type [43, 44, 45]. Constructive-type approaches do not need any initial layout to establish facility’s location because these type of approaches are used when a layout is developed for the first time, while improvement-type approaches need an initial layout to improve that layout. The main aim of the constructive-type approaches is to find appropriate facility layout with respect to some
prespecified factors. Both of these approaches consist of two main stages. The first stage responds to which facility to be assigned with which order to facility layout. The second stage responds to which facility to be located with which area. A constructive-type approach that considers both qualitative and quantitative factors is proposed in this study. The proposed fuzzy DEMATEL-based approach can be implemented to facility layout problem in two stages. The first stage of the proposed approach consists of ten steps, which are presented in the following in a stepwise manner.
Step 1: Determine the factors that affect facility layout. Step 2: Establish linguistic description of the factors. Step 3: Compute matrix A for each qualitative factors by using expert’s assessment. Step 4: Compute matrix D for each qualitative factors. Step 5: Compute matrix T for each qualitative and also quantitative factor by using flow data. Step 6: Normalize the values of all T matrices to interval 0-1. Step 7: Weight all factors by using an appropriate method. Step 8: Multiply each normalized matrix T by corresponding factor weight. The final matrix is called matrix K. Step 9: Compute closeness ratio matrix C by summing all matrices of K . This step gives closeness ratings between the facilities. Step 10: Sort all facility pairs in descending order in terms of their closeness rating and add this ordered facility pairs to “list A” that denotes the order of allocation and stop.
Herein, the location factors could be weighted using subjective weighting methods such as analytic hierarchy process (AHP) and the simple multi-attribute rating technique (SMART). In the second stage of the proposed approach, we implement Altuntas and Selim’s [46] location algorithm for static facility layout problem. The algorithm can cope with difficulty in providing flexibility in assigning machine pairs to facility layout. In addition, it can be modified easily in handling static facility layout problem in cellular manufacturing systems. Therefore, Altuntas and Selim’s [46] location algorithm is employed in this study to assign machine pairs to facility layout. The algorithm applies four rules. Three of these rules, namely, “New facility cluster generation rule,” “Adoption rule,” and “Merging rule” are proposed by Chan et al. [47], and the last one, namely, “Final assembly rule” is proposed by Altuntas and Selim [46]. Details of these rules are presented in the following. –
New facility cluster generation rule: A facility pair is assigned to a new temporary layout (cluster) if there are not any connection between this facility pair and already located facility/facilities.
– –
–
Adoption rule: If the selected facility pair has relation with an already established layout, it is allocated adjacent to that layout to improve the closeness rating. Merging rule: If the selected facility pair has relation with two facility layouts, these two layouts are combined. When two facility clusters are merged, most related facilities have to be allocated as closely as possible. Final assembly rule: If there exist more than one layout when all facilities are located, the layouts have to be merged to obtain final layout. Herein, one of the layouts has to be determined as the main layout. The layout including the largest number of facility is selected as the main layout. In case of equal number of facilities, the facility location order is considered in determining the main layout. The other clusters called temporary clusters. Starting from the first facility pair, all facility pairs in the temporary clusters are located to appropriate locations in the main layout. Finally, a single cluster that is called “final facility layout” is obtained by applying final assembly rule. The algorithm is presented in the following.
Int J Adv Manuf Technol (2014) 73:749–771
753
Step 1: Pick out the facility pair in the top of list A. Step 2: Is there more than one facility pair with the same value? If the answer is yes, select one of them randomly. Otherwise, go to step 3. Step 3: Has selected facility pair already been located to the same cluster in the workspace? If the answer is yes, go to step 9. Otherwise, go to step 4. Step 4: Is this first facility pair to be located in the workspace? If the answer is yes, go to step 5. Otherwise, go to step 6. Step 5: Locate this facility pair adjacently and go to step 9. Step 6: Is there a connection to any cluster in the workspace? If the answer is yes, apply “Adoption rule”. Otherwise, go to step 8. Step 7: Is there a connection to two facility clusters in the workspace? If the answer is yes, apply “Merging rule”. Otherwise, go to step 8. Step 8: Apply “New facility cluster generation rule”. Step 9: Have all facilities been located? If the answer is yes, go to step 10. Otherwise, go to step 1. Step 10: Are there two or more facility clusters in the workspace? If answer is yes, apply “Final assembly rule”. Otherwise, stop.
4 Case study To explore the viability of the proposed approach, a real world case study in the machinery industry is presented in this section. The manufacturing firm under concern produces twelve types of machine parts (products) for grouting machines using eleven types of totally 25 machines. Types and number of the machines are as follows: lathe (13 machines), honing (2 machines), gear shaper, milling (2 machines), drill, sanding, polishing, welder, sawing, grinding, and shaper. The current facility layout is illustrated in Fig. 1. Adjacency between the machines is represented by dashed arrows in the figure. There exist three different types of lathe machines, namely, CNC lathe, vertical lathe, and horizontal lathe, in the production system. Therefore, three different illustrations are used for lathe machines in Fig. 1. Currently, facility layout of the production system is not structured by a systematic approach. The routes, demand, and transfer batch size of the products are reported in Table 2. Application of the proposed approach is explained in a stepwise manner in the following. Initially, implementation of first stage is explained. Step 1: Six key location factors are determined in this application. These are material flow, information flow, personnel flow, equipment flow, environmental condition, and supervision of the personnel. Step 2: Descriptions of the location factors are presented in the following. Herein, explanation of the qualitative factors is based on Dweiri and Meier’s [21] study.
Material flow: Total material flow between facilities is a quantitative factor and it is computed by “demand/transfer batch size” formula. Information flow: Communication level between facilities can be used as a surrogate for information flow. Experts may evaluate the information flow by using linguistic variables such as no influence (NI) for no communication, very low influence (VLI) for very low communication, low influence (LI) for low communication, high influence (HI) for high communication, and very high influence (VHI) for very high communication. Personnel flow: It denotes the intensity of employees that perform tasks in both facilities under concern. Experts may evaluate personnel flow by using linguistic variables such as no influence (NI) for no personnel flow, very low influence (VLI) for very low personnel flow, low influence (LI) for low personnel flow, high influence (HI) for high personnel flow, and very high influence (VHI) for very high personnel flow. Equipment flow: It denotes the intensity of equipments used to perform task in both facilities under concern. Experts may evaluate equipment flow by using linguistic variables as in the same manner of the personnel flow. Environmental condition: It denotes the level of hazard or inconvenience involved such as high level of noise, temperature, and vibration. Experts may evaluate environmental condition by using linguistic variables such as no influence (NI) for very high hazard, very low influence (VLI) for high hazard, low influence (LI) for low
754
Int J Adv Manuf Technol (2014) 73:749–771 HONING_1 LATHE_1
HONING_2
SANDING
LATHE_2
LATHE_3 GEAR SHAPER LATHE_5
LATHE_6
LATHE_7
POLISHING
SAWING
WELDER
LATHE_8
LATHE_4
MILLING_1
GRINDING LATHE_9
MILLING_2
SHAPER DRILL
CNC_LATHE
LATHE_10
LATHE_11
LATHE_12
Fig. 1 The current facility layout
hazard, high influence (HI) for very low hazard, and very high influence (VHI) for no hazard. Supervision of the personnel: It denotes the intensity of employees that come together under a common supervision. Experts may evaluate supervision of personnel by using linguistic variables such as no influence (NI) for no supervision of personnel, very low influence (VLI) for very low level of supervision, low influence (LI) for
low level of supervision, high influence (HI) for high level of supervision, and very high influence (VHI) for very high level of supervision. Explanations on the location factors expose that except material flow, all of the location factors are qualitative. Step 3: In our case, two experts evaluate association between the machines with respect to the location factors
Table 2 The routes, demand, and transfer batch size of the products Products
Routea
Product1 Product2 Product3
Lathe6 (6) Lathe11 (11) Sawing (23)
Honing1 (13) Honing1 (13) Lathe6 (6)
Lathe4 (4) Lathe4 (4) Honing1 (13)
Honing2 (14) Honing2 (14) Lathe10 (10)
Milling1 (15) Milling2 (16) Milling1 (15)
Product4 Product5 Product6 Product7 Product8 Product9 Product10 Product11 Product12
Lathe6 (6) Lathe6 (6) Lathe1 (1) Lathe5 (5) CNC Lathe (18) Lathe8 (8) Lathe3 (3) Lathe12 (12) Lathe12 (12)
Honing1 (13) Honing1 (13) Sanding (20) Grinding (24) Lathe9 (9) Milling1 (15) Milling2 (16) Milling2 (16) Drill (19)
Lathe7 (7) Shaper (25) Lathe2 (2) Sanding (20) Grinding (24) Grinding (24)
Lathe4 (4) Milling1 (15) Polishing (21) Polishing (21) Sanding (20) Gear Shaper (17)
Milling1 (15) Lathe4 (4)
Milling1(15)
Welder(22)
a
The numbers in the brackets denote the machine numbers
Polishing (21) Sanding (20)
Welder (22)
Polishing (21)
Demand
Transfer batch size
160 160 160
3 3 3
160 150 190 190 190 190 150 150 150
3 3 5 5 5 5 25 25 10
0 NI VLI NI NI NI NI LI NI NI NI NI NI NI
VLI VLI NI NI NI VLI VLI NI NI NI NI
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25
1
VLI VLI NI NI NI VLI VLI NI NI NI NI
NI 0 VLI NI NI NI NI LI NI NI NI NI NI NI
2
VLI VLI NI NI NI VLI VLI NI NI NI NI
NI NI 0 NI VLI NI NI LI NI NI NI NI NI NI
3
VLI VLI NI NI NI VLI VLI NI NI NI NI
NI NI NI 0 VLI VLI VLI NI NI HI LI NI VLI VLI
4
VLI VLI NI NI NI VLI VLI NI NI NI NI
VLI LI VLI LI 0 NI NI NI NI NI NI NI NI NI
5
VLI VLI NI NI NI VLI VLI NI NI NI NI
NI LI VLI LI VLI 0 NI NI NI HI LI NI LI LI
6
Table 3 Expert1’s assessment for information flow
VLI VLI NI NI NI VLI VLI NI NI NI NI
NI LI VLI NI VLI NI 0 LI NI NI NI NI NI NI
7
VLI VLI NI NI NI VLI VLI NI NI NI NI
NI NI NI NI NI NI NI 0 NI NI NI NI NI NI
8
VLI VLI NI HI NI VLI VLI NI NI NI NI
NI NI NI NI NI NI NI HI 0 NI NI NI NI NI
9
VLI VLI NI NI NI VLI VLI NI NI NI VLI
NI NI NI LI VLI NI NI NI NI 0 VLI NI LI LI
10
VLI VLI NI NI NI VLI VLI NI NI NI VLI
NI VLI NI LI NI NI NI NI NI NI 0 NI NI NI
11
VLI VLI NI NI LI VLI VLI NI NI NI NI
NI NI NI NI NI NI NI NI NI NI NI 0 NI NI
12
VLI VLI NI NI NI NI NI NI NI NI VLI
NI VLI LI HI NI HI NI NI NI VLI VLI NI 0 HI
13
NI NI NI NI NI NI NI NI NI NI VLI
NI VLI LI HI NI HI NI NI NI VLI VLI NI HI 0
14
0 VHI NI NI VLI NI NI NI NI NI NI
NI VLI VLI VLI NI VLI LI VLI VLI NI VLI NI NI NI
15
VHI 0 NI NI VLI NI NI NI NI NI NI
NI VLI VLI VLI NI VLI LI VLI VLI NI VLI NI NI NI
16
NI NI 0 NI NI NI NI NI NI NI NI
NI NI VLI NI NI NI NI NI NI NI NI NI VHI VHI
17
NI NI NI 0 NI NI NI NI NI NI NI
NI NI NI NI NI NI NI VHI HI NI NI NI NI NI
18
LI LI NI NI 0 NI NI NI NI NI NI
NI NI NI NI NI NI NI NI NI NI NI LI NI NI
19
NI NI NI NI NI 0 NI NI NI NI NI
NI NI NI NI NI NI NI VLI LI NI NI NI NI NI
20
NI NI NI NI NI NI 0 NI NI NI NI
VLI NI NI NI NI NI NI NI NI NI NI NI NI NI
21
NI NI NI NI NI NI NI 0 NI NI NI
VLI NI NI VLI VLI NI NI NI NI NI NI NI NI NI
22
NI NI NI NI NI NI NI NI 0 VHI NI
NI NI NI NI NI NI NI NI NI NI NI NI NI NI
23
NI NI NI NI NI NI NI NI VHI 0 NI
VLI NI VLI NI NI NI VLI NI NI NI NI NI NI NI
24
NI NI NI NI NI NI NI NI NI NI 0
NI NI NI NI NI NI NI NI NI VLI VLI NI VLI VLI
25
Int J Adv Manuf Technol (2014) 73:749–771 755
0 NI VLI NI NI NI NI VLI NI NI NI NI NI NI
LI LI NI NI NI NI NI NI NI VLI NI
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25
1
LI LI NI NI NI NI NI NI NI NI NI
NI 0 VLI NI NI NI NI VLI NI NI NI NI NI NI
2
LI LI NI NI NI VLI NI NI NI VLI NI
NI NI 0 NI VLI NI NI VLI NI NI NI NI LI LI
3
LI LI NI NI NI NI NI NI NI NI NI
NI NI NI 0 VLI VLI VLI NI NI LI VLI NI VLI VLI
4
LI LI NI NI NI NI NI NI NI NI VLI
VLI LI LI HI 0 NI NI NI NI NI NI NI NI NI
5
LI LI NI NI NI NI LI LI NI NI NI
NI LI LI HI VLI 0 NI NI NI NI NI NI NI NI
6
Table 4 Expert2’s assessment for information flow
LI LI NI NI NI NI NI NI NI NI NI
NI HI VLI NI VLI NI 0 VLI NI NI NI NI NI NI
7
LI LI NI NI NI LI NI NI NI LI NI
NI NI NI NI NI NI VLI 0 NI NI NI NI VLI VLI
8
LI LI NI LI NI LI NI NI NI NI NI
NI NI NI NI NI NI NI LI 0 VLI NI NI VLI VLI
9
LI LI NI NI NI NI NI NI NI NI VLI
NI NI NI HI LI NI NI NI NI 0 NI NI NI NI
10
LI LI NI NI NI NI NI NI NI NI NI
NI LI NI LI NI NI NI NI NI NI 0 NI LI LI
11
LI LI NI NI NI NI NI NI NI NI NI
NI NI NI NI NI NI NI NI NI NI NI 0 NI NI
12
NI NI NI NI NI NI NI NI VLI NI VLI
NI VLI LI HI NI LI VLI NI NI LI LI NI 0 VHI
13
NI NI NI NI NI NI NI NI VLI NI VLI
NI VLI LI HI NI LI VLI NI NI LI LI NI VHI 0
14
0 VLI NI NI NI NI NI NI NI NI NI
NI VLI LI LI NI VLI LI VLI VLI VLI LI VLI NI NI
15
VLI 0 NI NI LI NI NI NI NI NI NI
NI VLI LI LI NI VLI LI VLI VLI VLI LI VLI NI NI
16
NI NI 0 NI LI NI NI NI NI NI NI
NI NI VLI NI NI NI NI VLI VLI NI NI NI LI LI
17
NI NI NI 0 NI NI NI NI NI NI NI
NI NI NI NI NI NI NI NI VHI NI NI NI NI NI
18
VLI VLI NI NI 0 NI NI NI NI NI NI
NI NI NI NI NI NI NI NI NI NI NI NI NI NI
19
NI NI NI NI NI 0 NI NI VLI NI NI
LI NI VLI NI NI NI NI LI LI NI NI NI NI NI
20
NI NI NI NI NI VLI 0 NI NI NI NI
NI NI VLI NI NI NI NI LI LI NI NI NI NI NI
21
NI NI NI NI NI NI NI 0 NI NI NI
VLI NI NI VLI HI VLI VLI NI NI NI NI NI NI NI
22
NI NI NI NI NI VLI NI NI 0 NI NI
NI NI NI NI NI NI NI NI NI NI NI NI NI NI
23
NI NI NI NI NI NI NI NI NI 0 NI
VLI NI VLI NI NI NI NI LI LI NI NI NI NI NI
24
NI NI NI NI NI NI NI LI NI NI 0
NI NI NI NI NI NI NI NI NI VLI VLI NI NI NI
25
756 Int J Adv Manuf Technol (2014) 73:749–771
Int J Adv Manuf Technol (2014) 73:749–771
757
Table 5 The weights for the location factors
Step 4: Matrix D for information flow is presented in Table 8 in the Appendix. Step 5: Matrices T for material flow and information flow are presented in Tables 9 and 10 in the Appendix, respectively. As reported in Table 9, there is no material flow between most of the machine pairs (see Table 2). Step 6: Normalized T matrices for material flow and information flow are presented in Tables 11 and 12 in the Appendix, respectively. Step 7: We determine the weights of the location factors by averaging the weights assigned by the experts. The weights are reported in Table 5. Step 8: Matrices K for material flow and information flow are presented in Tables 13 and 14 in the Appendix, respectively. Step 9: Closeness rating matrix (matrix C) is reported in Table 15 in the Appendix. Step 10: List A that is obtained by sorting all machine pairs in descending order in terms of their closeness rating is presented in Table 6. The first 40 machine pairs that have the highest closeness rating are presented in the table. As recalled, list A responds to which facility to be assigned with which order to facility layout.
Factors
Assigned weight
Material flow Information flow Personnel flow Equipment flow Environmental condition Supervision of the personnel Total
Expert1
Expert2
0.30 0.20 0.10 0.25 0.05 0.10 1
0.40 0.15 0.15 0.10 0.10 0.10 1
Average weight
0.350 0.175 0.125 0.175 0.075 0.100 1
using linguistic variables. Corresponding triangular fuzzy numbers have already been presented in Table 1. To determine the associations between machines, a survey was conducted. In this regard, pairwise comparisons were made by the experts. To improve the readability and due to the space limitation, we only present the results on “information flow” and “material flow” in this study. Tables 3 and 4 report the experts’ assessment, while Table 7 presented in the Appendix presents “matrix A” for “information flow.” It should be recalled here that, matrix T for material flow is constructed using demand/transfer batch size formula. Table 6 Closeness rating of the machine pairs (list A)
P indicates that the machine pair is located adjacently in the proposed layout; C indicates that the machine pair is located adjacently in the current layout
Figure 2 illustrates the final facility layout obtained by the proposed approach. As stated before, dashed arrows in the figure represent adjacency between the machines. Due to the fuzzy
No
Machine pair
Closeness rating
No
Machine pair
Closeness rating
1 2 3 4 5 6 7 8 9 10 11 12 13 14
6–13 (P) 4–14 (P) 13–4 (P) 20–21 (P,C) 15–22 (P) 4–15 (P) 11–13 (P) 7–4 (P) 13–10 (P) 13–7 10–15 (P) 14–15 14–16 (P) 23–6 (P)
0.047960 0.027414 0.027007 0.019203 0.016290 0.014361 0.014282 0.014280 0.014163 0.014094 0.014081 0.014061 0.014041 0.013934
21 22 23 24 25 26 27 28 29 30 31 32 33 34
20–2 (P) 1–20 (P) 9–24 (P) 2–21 15–24 (C) 5–24 (P) 17–20 24–17 (P) 19–15 12–19 (P) 3–16 (P) 12–16 13–14 (C) 15–16 (C)
0.007231 0.007219 0.007205 0.007152 0.007131 0.007091 0.007061 0.007016 0.003649 0.003411 0.002426 0.002116 0.001944 0.001933
15 16 17 18
24–20 (P) 15–4 (P) 13–25 25–15 (P)
0.013040 0.009463 0.009142
35 36 37
14–13 (C) 4–6 16–15 (C)
0.001928 0.001923 0.001923
19 20
8–15 (C) 18–9 (P)
0.009062 0.007504 0.007327
38 39 40
4–5 (C) 8–9 (P, C) 4–13 (P)
0.001862 0.001835 0.001831
758
Int J Adv Manuf Technol (2014) 73:749–771 LATHE_3
LATHE_7
MILLING_2
HONING_1
LATHE_4
HONING_2
LATHE_10
MILLING_1
LATHE_11
SAWING
LATHE_6
DRILL LATHE_12
SHAPER
WELDER LATHE_8
LATHE_5
LATHE_9
LATHE_2
SANDING POLISHING
GRINDING
CNC_LATHE GEAR SHAPER
LATHE_1
Fig. 2 Facility layout obtained by the proposed approach
structure of the problem under concern, there does not exists an objective performance measure for evaluation of the facility layouts. In addition, different multicriteria decision making methods treat uncertainties distinctively. Therefore, we could not compare the results of the proposed method to the ones of other methods. However, we compare the current and proposed facility layouts using total closeness rating, the output of fuzzy DEMATEL method, of the adjacent machine pairs with respect to each layout. The results reveal that total closeness ratings of the current and proposed facility layouts are 0.1195 and 0.3822, respectively. It means that the proposed approach provides a considerably improved facility layout in terms of the aforementioned six location factors. The case study explores that the proposed fuzzy DEMATEL-based solution approach can effectively and straightforwardly be applied in real world facility layout problems under uncertainty.
5 Conclusion Facility layout is quite important for enterprises due to its direct effects on productivity and efficiency. However, facility layout in production systems is a difficult activity since both qualitative and quantitative factors affect the location decision. In addition, influence and causal relationship between these factors should be determined for a better location. In this respect, we demonstrated in this study that fuzzy DEMATEL method can effectively be used in handling facility layout problems in
practice. We take into account easily qualitative factors which are described by linguistic terms through the method. Fuzzy DEMATEL method is applied to various problems in practice. However, to the authors’ knowledge, DEMATEL or fuzzy DEMATEL methods have not been employed to solve facility layout problems. Considering this gap, a fuzzy DEMATEL-based solution approach for the facility layout problem is proposed in this study. The method is utilized to find the closeness ratings between the facilities to be located. The proposed approach takes both qualitative and quantitative location factors into account. To address the need in practice, six essential location factors are considered in this study. These are material flow, information flow, personnel flow, equipment flow, environmental condition, and supervision of the personnel. This study differs from the previous works in that it applies fuzzy DEMATEL method to the facility layout problem. To explore the viability of the proposed approach, a real world case study is presented. Results of the case study reveal that the proposed approach can effectively be used in solving practical facility layout problems. In addition, by means of the proposed approach, qualitative location factors can effectively be treated. As a future study, application of the proposed approach to dynamic or stochastic facility layout problems is of worth.
Acknowledgments The authors would like to thank the anonymous reviewers for their insightful comments and suggestions that have significantly improved the paper. The authors would also like to thank Fatih Dülgeroğlu for his help in conducting the survey.
0.000 0.125 0.310 0.125 0.125 0.125 0.125 0.405 0.125 0.125
0.125 0.125 0.125 0.125 0.405 0.405 0.125 0.125 0.125 0.217 0.217 0.125 0.125 0.217 0.125
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1
0.125 0.125 0.125 0.125 0.405 0.405 0.125 0.125 0.125 0.217 0.217 0.125 0.125 0.125 0.125
0.125 0.000 0.310 0.125 0.125 0.125 0.125 0.405 0.125 0.125
2
0.125 0.125 0.313 0.313 0.405 0.405 0.125 0.125 0.125 0.310 0.217 0.125 0.125 0.217 0.125
0.125 0.125 0.000 0.125 0.310 0.125 0.125 0.405 0.125 0.125
3
0.405 0.125 0.310 0.310 0.405 0.405 0.125 0.125 0.125 0.217 0.217 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.000 0.310 0.310 0.310 0.125 0.125 0.595
4
0.125 0.125 0.125 0.125 0.405 0.405 0.125 0.125 0.125 0.217 0.217 0.125 0.125 0.125 0.217
0.310 0.500 0.405 0.595 0.000 0.125 0.125 0.125 0.125 0.125
5
Table 7 Matrix A for information flow
Appendix
0.313 0.125 0.313 0.313 0.405 0.405 0.125 0.125 0.125 0.217 0.405 0.313 0.125 0.125 0.125
0.125 0.500 0.405 0.595 0.310 0.000 0.125 0.125 0.125 0.408
6
0.125 0.125 0.125 0.125 0.405 0.405 0.125 0.125 0.125 0.217 0.217 0.125 0.125 0.125 0.125
0.125 0.595 0.310 0.125 0.310 0.125 0.000 0.405 0.125 0.125
7
0.125 0.125 0.217 0.217 0.405 0.405 0.125 0.125 0.125 0.405 0.217 0.125 0.125 0.313 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.217 0.000 0.125 0.125
8
0.125 0.125 0.217 0.217 0.405 0.405 0.125 0.595 0.125 0.405 0.217 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.595 0.000 0.217
9
0.217 0.125 0.313 0.313 0.405 0.405 0.125 0.125 0.125 0.217 0.217 0.125 0.125 0.125 0.310
0.125 0.125 0.125 0.595 0.405 0.125 0.125 0.125 0.125 0.000
10
0.000 0.125 0.313 0.313 0.405 0.405 0.125 0.125 0.125 0.217 0.217 0.125 0.125 0.125 0.217
0.125 0.405 0.125 0.500 0.125 0.125 0.125 0.125 0.125 0.125
11
0.125 0.000 0.125 0.125 0.405 0.405 0.125 0.125 0.313 0.217 0.217 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
12
0.405 0.125 0.000 0.783 0.217 0.217 0.125 0.125 0.125 0.125 0.125 0.125 0.217 0.125 0.310
0.125 0.310 0.500 0.690 0.125 0.595 0.217 0.125 0.125 0.405
13
0.405 0.125 0.783 0.000 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.217 0.125 0.310
0.125 0.310 0.500 0.690 0.125 0.595 0.217 0.125 0.125 0.405
14
0.405 0.217 0.125 0.125 0.000 0.592 0.125 0.125 0.217 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.310 0.405 0.405 0.125 0.310 0.500 0.310 0.310 0.217
15
0.405 0.217 0.125 0.125 0.592 0.000 0.125 0.125 0.405 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.310 0.405 0.405 0.125 0.310 0.500 0.310 0.310 0.217
16
0.125 0.125 0.687 0.687 0.125 0.125 0.000 0.125 0.313 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.310 0.125 0.125 0.125 0.125 0.217 0.217 0.125
17
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.000 0.125 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.500 0.783 0.125
18
0.125 0.313 0.125 0.125 0.405 0.405 0.125 0.125 0.000 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
19
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.000 0.125 0.125 0.217 0.125 0.125
0.313 0.125 0.217 0.125 0.125 0.125 0.125 0.405 0.500 0.125
20
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.217 0.000 0.125 0.125 0.125 0.125
0.217 0.125 0.217 0.125 0.125 0.125 0.125 0.313 0.313 0.125
21
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.000 0.125 0.125 0.125
0.310 0.125 0.125 0.310 0.500 0.217 0.217 0.125 0.125 0.125
22
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.217 0.125 0.125 0.000 0.500 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
23
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.500 0.000 0.125
0.310 0.125 0.310 0.125 0.125 0.125 0.217 0.313 0.313 0.125
24
0.310 0.125 0.217 0.217 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.313 0.125 0.125 0.000
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.310
25
Int J Adv Manuf Technol (2014) 73:749–771 759
0.000 0.017 0.043 0.017 0.017 0.017 0.017 0.056 0.017 0.017 0.017 0.017 0.017 0.017
0.056 0.056 0.017 0.017 0.017 0.030 0.030 0.017 0.017 0.030 0.017
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25
1
0.056 0.056 0.017 0.017 0.017 0.030 0.030 0.017 0.017 0.017 0.017
0.017 0.000 0.043 0.017 0.017 0.017 0.017 0.056 0.017 0.017 0.017 0.017 0.017 0.017
2
0.056 0.056 0.017 0.017 0.017 0.043 0.030 0.017 0.017 0.030 0.017
0.017 0.017 0.000 0.017 0.043 0.017 0.017 0.056 0.017 0.017 0.017 0.017 0.043 0.043
3
0.056 0.056 0.017 0.017 0.017 0.030 0.030 0.017 0.017 0.017 0.017
0.017 0.017 0.017 0.000 0.043 0.043 0.043 0.017 0.017 0.083 0.056 0.017 0.043 0.043
4
0.056 0.056 0.017 0.017 0.017 0.030 0.030 0.017 0.017 0.017 0.030
0.043 0.069 0.056 0.083 0.000 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
5
Table 8 Matrix D for information flow
0.056 0.056 0.017 0.017 0.017 0.030 0.056 0.043 0.017 0.017 0.017
0.017 0.069 0.056 0.083 0.043 0.000 0.017 0.017 0.017 0.057 0.043 0.017 0.043 0.043
6
0.056 0.056 0.017 0.017 0.017 0.030 0.030 0.017 0.017 0.017 0.017
0.017 0.083 0.043 0.017 0.043 0.017 0.000 0.056 0.017 0.017 0.017 0.017 0.017 0.017
7
0.056 0.056 0.017 0.017 0.017 0.056 0.030 0.017 0.017 0.043 0.017
0.017 0.017 0.017 0.017 0.017 0.017 0.030 0.000 0.017 0.017 0.017 0.017 0.030 0.030
8
0.056 0.056 0.017 0.083 0.017 0.056 0.030 0.017 0.017 0.017 0.017
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.083 0.000 0.030 0.017 0.017 0.030 0.030
9
0.056 0.056 0.017 0.017 0.017 0.030 0.030 0.017 0.017 0.017 0.043
0.017 0.017 0.017 0.083 0.056 0.017 0.017 0.017 0.017 0.000 0.030 0.017 0.043 0.043
10
0.056 0.056 0.017 0.017 0.017 0.030 0.030 0.017 0.017 0.017 0.030
0.017 0.056 0.017 0.069 0.017 0.017 0.017 0.017 0.017 0.017 0.000 0.017 0.043 0.043
11
0.056 0.056 0.017 0.017 0.043 0.030 0.030 0.017 0.017 0.017 0.017
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.000 0.017 0.017
12
0.030 0.030 0.017 0.017 0.017 0.017 0.017 0.017 0.030 0.017 0.043
0.017 0.043 0.069 0.096 0.017 0.083 0.030 0.017 0.017 0.056 0.056 0.017 0.000 0.109
13
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.030 0.017 0.043
0.017 0.043 0.069 0.096 0.017 0.083 0.030 0.017 0.017 0.056 0.056 0.017 0.109 0.000
14
0.000 0.082 0.017 0.017 0.030 0.017 0.017 0.017 0.017 0.017 0.017
0.017 0.043 0.056 0.056 0.017 0.043 0.069 0.043 0.043 0.030 0.056 0.030 0.017 0.017
15
0.082 0.000 0.017 0.017 0.056 0.017 0.017 0.017 0.017 0.017 0.017
0.017 0.043 0.056 0.056 0.017 0.043 0.069 0.043 0.043 0.030 0.056 0.030 0.017 0.017
16
0.017 0.017 0.000 0.017 0.043 0.017 0.017 0.017 0.017 0.017 0.017
0.017 0.017 0.043 0.017 0.017 0.017 0.017 0.030 0.030 0.017 0.017 0.017 0.095 0.095
17
0.017 0.017 0.017 0.000 0.017 0.017 0.017 0.017 0.017 0.017 0.017
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.069 0.109 0.017 0.017 0.017 0.017 0.017
18
0.056 0.056 0.017 0.017 0.000 0.017 0.017 0.017 0.017 0.017 0.017
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.043 0.017 0.017
19
0.017 0.017 0.017 0.017 0.017 0.000 0.017 0.017 0.030 0.017 0.017
0.043 0.017 0.030 0.017 0.017 0.017 0.017 0.056 0.069 0.017 0.017 0.017 0.017 0.017
20
0.017 0.017 0.017 0.017 0.017 0.030 0.000 0.017 0.017 0.017 0.017
0.030 0.017 0.030 0.017 0.017 0.017 0.017 0.043 0.043 0.017 0.017 0.017 0.017 0.017
21
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.000 0.017 0.017 0.017
0.043 0.017 0.017 0.043 0.069 0.030 0.030 0.017 0.017 0.017 0.017 0.017 0.017 0.017
22
0.017 0.017 0.017 0.017 0.017 0.030 0.017 0.017 0.000 0.069 0.017
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
23
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.069 0.000 0.017
0.043 0.017 0.043 0.017 0.017 0.017 0.030 0.043 0.043 0.017 0.017 0.017 0.017 0.017
24
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.043 0.017 0.017 0.000
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.043 0.043 0.017 0.030 0.030
25
760 Int J Adv Manuf Technol (2014) 73:749–771
Int J Adv Manuf Technol (2014) 73:749–771
761
Table 9 Matrix T for material flow 1
2
3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 a
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
38 38 6 160c
80 38
290b 80 38 38 80 80 6 160a
80
15
80
50 80
80 95f
50 38 38 15 114e
38
80+80=160
b
80+80+80+50=290
c
80+80=160
d
38+38=76
e
38+38+38=114
f
80+15=95
80 38 50
76d
38
0.039 0.072 0.105 0.087 0.062 0.067 0.069 0.118 0.068 0.068 0.071 0.053 0.075 0.068
0.132 0.132 0.048 0.053 0.058 0.080 0.074 0.051 0.055 0.069 0.055
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25
1
0.130 0.130 0.048 0.052 0.057 0.079 0.073 0.051 0.053 0.056 0.055
0.055 0.054 0.104 0.086 0.061 0.066 0.068 0.117 0.067 0.067 0.070 0.053 0.074 0.067
2
0.140 0.140 0.052 0.057 0.062 0.097 0.079 0.056 0.060 0.073 0.061
0.061 0.081 0.073 0.100 0.091 0.076 0.075 0.124 0.074 0.075 0.079 0.057 0.106 0.099
3
0.155 0.155 0.057 0.063 0.068 0.093 0.088 0.062 0.065 0.065 0.070
0.067 0.093 0.101 0.101 0.102 0.108 0.107 0.096 0.080 0.148 0.126 0.063 0.117 0.110
4
0.148 0.148 0.054 0.059 0.065 0.089 0.083 0.058 0.061 0.063 0.075
0.087 0.132 0.130 0.162 0.055 0.077 0.079 0.094 0.076 0.081 0.083 0.060 0.086 0.079
5
Table 10 Matrix T for information flow
0.168 0.168 0.063 0.069 0.075 0.102 0.120 0.092 0.071 0.072 0.075
0.074 0.149 0.148 0.188 0.111 0.076 0.091 0.108 0.088 0.133 0.123 0.069 0.127 0.119
6
0.143 0.143 0.052 0.057 0.062 0.086 0.080 0.056 0.058 0.061 0.060
0.061 0.142 0.114 0.096 0.092 0.072 0.057 0.127 0.073 0.073 0.077 0.057 0.081 0.074
7
0.132 0.132 0.049 0.054 0.058 0.104 0.074 0.052 0.057 0.081 0.057
0.058 0.075 0.084 0.090 0.063 0.070 0.082 0.066 0.071 0.070 0.073 0.054 0.088 0.081
8
0.144 0.144 0.054 0.122 0.064 0.114 0.081 0.058 0.061 0.063 0.063
0.063 0.081 0.091 0.100 0.069 0.076 0.077 0.157 0.065 0.089 0.081 0.059 0.096 0.089
9
0.148 0.148 0.055 0.060 0.066 0.089 0.084 0.060 0.062 0.063 0.090
0.064 0.087 0.096 0.171 0.110 0.082 0.080 0.091 0.077 0.068 0.099 0.061 0.113 0.106
10
0.143 0.143 0.053 0.058 0.063 0.085 0.080 0.057 0.060 0.060 0.075
0.061 0.119 0.092 0.151 0.069 0.078 0.077 0.089 0.074 0.080 0.065 0.058 0.109 0.102
11
0.125 0.125 0.046 0.050 0.080 0.074 0.070 0.049 0.051 0.052 0.052
0.052 0.068 0.076 0.082 0.058 0.063 0.064 0.075 0.064 0.064 0.067 0.034 0.069 0.063
12
0.140 0.140 0.061 0.067 0.072 0.088 0.083 0.068 0.081 0.071 0.098
0.070 0.123 0.156 0.198 0.085 0.152 0.099 0.102 0.084 0.133 0.134 0.067 0.085 0.131
13
0.125 0.125 0.060 0.065 0.069 0.086 0.081 0.066 0.080 0.069 0.096
0.069 0.120 0.153 0.195 0.083 0.150 0.096 0.099 0.081 0.131 0.131 0.065 0.135 0.075
14
0.116 0.192 0.062 0.069 0.087 0.089 0.082 0.067 0.070 0.072 0.073
0.071 0.125 0.146 0.158 0.083 0.115 0.139 0.132 0.110 0.105 0.133 0.081 0.148 0.093
15
0.188 0.112 0.060 0.067 0.108 0.087 0.080 0.065 0.067 0.069 0.070
0.069 0.121 0.140 0.151 0.081 0.109 0.136 0.129 0.108 0.100 0.128 0.079 0.097 0.088
16
0.101 0.101 0.035 0.057 0.085 0.072 0.066 0.056 0.060 0.060 0.063
0.059 0.080 0.116 0.103 0.067 0.080 0.071 0.097 0.082 0.079 0.080 0.057 0.157 0.152
17
0.090 0.090 0.046 0.039 0.053 0.067 0.059 0.049 0.051 0.054 0.053
0.053 0.067 0.073 0.080 0.058 0.062 0.062 0.129 0.151 0.064 0.065 0.050 0.070 0.065
18
0.123 0.123 0.045 0.049 0.037 0.060 0.056 0.048 0.050 0.051 0.051
0.051 0.067 0.074 0.080 0.056 0.062 0.063 0.073 0.062 0.062 0.066 0.074 0.068 0.062
19
0.088 0.088 0.046 0.053 0.053 0.048 0.059 0.049 0.064 0.054 0.052
0.077 0.066 0.086 0.079 0.058 0.062 0.061 0.115 0.112 0.063 0.064 0.049 0.069 0.065
20
0.082 0.082 0.043 0.049 0.050 0.073 0.038 0.046 0.048 0.050 0.049
0.062 0.062 0.081 0.074 0.055 0.058 0.058 0.096 0.084 0.059 0.061 0.047 0.065 0.061
21
0.089 0.089 0.046 0.050 0.053 0.063 0.059 0.032 0.051 0.052 0.053
0.078 0.070 0.076 0.108 0.109 0.074 0.074 0.074 0.061 0.065 0.066 0.049 0.069 0.064
22
0.076 0.076 0.042 0.045 0.048 0.068 0.052 0.044 0.032 0.098 0.048
0.049 0.060 0.067 0.071 0.053 0.056 0.055 0.067 0.058 0.057 0.058 0.045 0.061 0.057
23
0.090 0.090 0.047 0.052 0.054 0.066 0.060 0.050 0.103 0.040 0.053
0.078 0.068 0.100 0.081 0.060 0.063 0.075 0.103 0.088 0.064 0.066 0.050 0.070 0.066
24
0.083 0.083 0.044 0.048 0.051 0.060 0.056 0.072 0.050 0.050 0.035
0.051 0.066 0.071 0.082 0.058 0.061 0.059 0.070 0.059 0.087 0.088 0.048 0.079 0.075
25
762 Int J Adv Manuf Technol (2014) 73:749–771
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25
1
0 0 0 0 0 0.017 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
2
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
3
0.023 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.037 0 0 0 0 0 0.073 0
4
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
5
0 0 0 0 0 0 0 0 0.037 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
6
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.037 0
7
Table 11 Normalized T matrix for material flow
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
8
0 0 0 0.017 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
9
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.037 0
10
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
11
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
12
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.133 0 0 0 0 0.037 0 0 0
13
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.073 0 0 0 0 0 0 0 0 0 0
14
0 0 0 0 0.007 0.000 0 0 0 0 0.023
0 0 0 0.037 0 0 0 0.017 0 0.037 0 0 0 0.037
15
0 0 0 0 0 0 0 0 0 0 0
0 0 0.003 0 0 0 0 0 0 0 0 0.003 0 0.037
16
0 0 0 0 0 0 0 0 0 0.017 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
17
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
18
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.007 0 0
19
0 0 0.017 0 0 0 0 0 0 0.035 0
0.017 0 0 0 0 0 0 0 0 0 0 0 0 0
20
0 0 0 0 0 0.052 0 0 0 0 0
0 0.017 0 0 0 0 0 0 0 0 0 0 0 0
21
0.043 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
22
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
23
0.017 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.017 0 0 0 0.017 0 0 0 0 0
24
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.023 0
25
Int J Adv Manuf Technol (2014) 73:749–771 763
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0.0014 0.0025 0.0029 0.0032 0.0017 0.0023 0.0028 0.0026 0.0022 0.0021 0.0027 0.0016 0.0030 0.0019 0.0023 0.0038
15
0.0008 0.0014 0.0021 0.0017 0.0012 0.0013 0.0014 0.0024 0.0014 0.0013 0.0014 0.0011 0.0015 0.0014 0.0026 0.0026 0.0010 0.0011 0.0011 0.0016 0.0015 0.0010 0.0011 0.0014 0.0011
1
0.0011 0.0011 0.0021 0.0017 0.0012 0.0013 0.0014 0.0023 0.0013 0.0013 0.0014 0.0010 0.0015 0.0013 0.0026 0.0026 0.0010 0.0010 0.0011 0.0016 0.0015 0.0010 0.0011 0.0011 0.0011
2
0.0014 0.0024 0.0028 0.0030 0.0016 0.0022 0.0027 0.0026 0.0021 0.0020 0.0026 0.0016 0.0019 0.0018 0.0037 0.0022
16
0.0012 0.0016 0.0015 0.0020 0.0018 0.0015 0.0015 0.0025 0.0015 0.0015 0.0016 0.0011 0.0021 0.0020 0.0028 0.0028 0.0010 0.0011 0.0012 0.0019 0.0016 0.0011 0.0012 0.0014 0.0012
3
0.0012 0.0016 0.0023 0.0021 0.0013 0.0016 0.0014 0.0019 0.0016 0.0016 0.0016 0.0011 0.0031 0.0030 0.0020 0.0020
17
0.0013 0.0019 0.0020 0.0020 0.0020 0.0022 0.0021 0.0019 0.0016 0.0029 0.0025 0.0013 0.0023 0.0022 0.0031 0.0031 0.0011 0.0012 0.0014 0.0018 0.0018 0.0012 0.0013 0.0013 0.0014
4
Table 12 Normalized T matrix for information flow
0.0011 0.0013 0.0015 0.0016 0.0012 0.0012 0.0012 0.0026 0.0030 0.0013 0.0013 0.0010 0.0014 0.0013 0.0018 0.0018
18
0.0017 0.0026 0.0026 0.0032 0.0011 0.0015 0.0016 0.0019 0.0015 0.0016 0.0017 0.0012 0.0017 0.0016 0.0030 0.0030 0.0011 0.0012 0.0013 0.0018 0.0017 0.0012 0.0012 0.0012 0.0015
5
0.0010 0.0013 0.0015 0.0016 0.0011 0.0012 0.0013 0.0014 0.0012 0.0012 0.0013 0.0015 0.0014 0.0012 0.0025 0.0025
19
0.0015 0.0030 0.0029 0.0037 0.0022 0.0015 0.0018 0.0021 0.0018 0.0027 0.0025 0.0014 0.0025 0.0024 0.0034 0.0034 0.0013 0.0014 0.0015 0.0020 0.0024 0.0018 0.0014 0.0014 0.0015
6 0.0012 0.0028 0.0023 0.0019 0.0018 0.0014 0.0011 0.0025 0.0015 0.0015 0.0015 0.0011 0.0016 0.0015 0.0028 0.0028 0.0010 0.0011 0.0012 0.0017 0.0016 0.0011 0.0012 0.0012 0.0012
7
0.0015 0.0013 0.0017 0.0016 0.0012 0.0012 0.0012 0.0023 0.0022 0.0013 0.0013 0.0010 0.0014 0.0013 0.0018 0.0018
20
0.0011 0.0015 0.0017 0.0018 0.0012 0.0014 0.0016 0.0013 0.0014 0.0014 0.0015 0.0011 0.0017 0.0016 0.0026 0.0026 0.0010 0.0011 0.0012 0.0021 0.0015 0.0010 0.0011 0.0016 0.0011
8
0.0012 0.0012 0.0016 0.0015 0.0011 0.0012 0.0011 0.0019 0.0017 0.0012 0.0012 0.0009 0.0013 0.0012 0.0016 0.0016
21
0.0013 0.0016 0.0018 0.0020 0.0014 0.0015 0.0015 0.0031 0.0013 0.0018 0.0016 0.0012 0.0019 0.0018 0.0029 0.0029 0.0011 0.0024 0.0013 0.0023 0.0016 0.0011 0.0012 0.0013 0.0013
9
0.0016 0.0014 0.0015 0.0022 0.0022 0.0015 0.0015 0.0015 0.0012 0.0013 0.0013 0.0010 0.0014 0.0013 0.0018 0.0018
22
0.0013 0.0017 0.0019 0.0034 0.0022 0.0016 0.0016 0.0018 0.0015 0.0013 0.0020 0.0012 0.0023 0.0021 0.0030 0.0030 0.0011 0.0012 0.0013 0.0018 0.0017 0.0012 0.0012 0.0012 0.0018
10
0.0010 0.0012 0.0013 0.0014 0.0010 0.0011 0.0011 0.0013 0.0011 0.0011 0.0012 0.0009 0.0012 0.0011 0.0015 0.0015
23
0.0012 0.0024 0.0018 0.0030 0.0014 0.0016 0.0015 0.0018 0.0015 0.0016 0.0013 0.0012 0.0022 0.0020 0.0028 0.0028 0.0011 0.0012 0.0013 0.0017 0.0016 0.0011 0.0012 0.0012 0.0015
11 0.0010 0.0014 0.0015 0.0016 0.0012 0.0013 0.0013 0.0015 0.0013 0.0013 0.0013 0.0007 0.0014 0.0013 0.0025 0.0025 0.0009 0.0010 0.0016 0.0015 0.0014 0.0010 0.0010 0.0010 0.0010
12
0.0016 0.0014 0.0020 0.0016 0.0012 0.0012 0.0015 0.0021 0.0018 0.0013 0.0013 0.0010 0.0014 0.0013 0.0018 0.0018
24
0.0014 0.0024 0.0031 0.0040 0.0017 0.0030 0.0020 0.0020 0.0017 0.0027 0.0027 0.0013 0.0017 0.0026 0.0028 0.0028 0.0012 0.0013 0.0014 0.0018 0.0017 0.0014 0.0016 0.0014 0.0020
13
0.0010 0.0013 0.0014 0.0016 0.0012 0.0012 0.0012 0.0014 0.0012 0.0017 0.0018 0.0009 0.0016 0.0015 0.0017 0.0017
25
0.0014 0.0024 0.0030 0.0039 0.0017 0.0030 0.0019 0.0020 0.0016 0.0026 0.0026 0.0013 0.0027 0.0015 0.0025 0.0025 0.0012 0.0013 0.0014 0.0017 0.0016 0.0013 0.0016 0.0014 0.0019
14
764 Int J Adv Manuf Technol (2014) 73:749–771
17 18 19 20 21 22 23 24 25
0.0012 0.0014 0.0017 0.0018 0.0016 0.0013 0.0014 0.0014 0.0015
15
Table 12 (continued)
0.0012 0.0013 0.0022 0.0017 0.0016 0.0013 0.0013 0.0014 0.0014
16 0.0007 0.0011 0.0017 0.0014 0.0013 0.0011 0.0012 0.0012 0.0013
17 0.0009 0.0008 0.0011 0.0013 0.0012 0.0010 0.0010 0.0011 0.0011
18 0.0009 0.0010 0.0007 0.0012 0.0011 0.0009 0.0010 0.0010 0.0010
19 0.0009 0.0011 0.0011 0.0010 0.0012 0.0010 0.0013 0.0011 0.0010
20 0.0009 0.0010 0.0010 0.0014 0.0008 0.0009 0.0010 0.0010 0.0010
21 0.0009 0.0010 0.0010 0.0013 0.0012 0.0006 0.0010 0.0010 0.0011
22 0.0008 0.0009 0.0010 0.0014 0.0010 0.0009 0.0006 0.0019 0.0009
23 0.0009 0.0010 0.0011 0.0013 0.0012 0.0010 0.0020 0.0008 0.0011
24
0.0009 0.0010 0.0010 0.0012 0.0011 0.0014 0.0010 0.0010 0.0007
25
Int J Adv Manuf Technol (2014) 73:749–771 765
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25
1
0 0 0 0 0 0.006 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
2
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
3
0.008 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.013 0 0 0 0 0 0.026 0
4
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
5
Table 13 Matrix K for material flow
0 0 0 0 0 0 0 0 0.013 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
6
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.013 0
7
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
8
0 0 0 0.006 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
9
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.013 0
10
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
11
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
12
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.046 0 0 0 0 0.013 0 0 0
13
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.026 0 0 0 0 0 0 0 0 0 0
14
0 0 0 0 0.002 0 0 0 0 0 0.008
0 0 0 0.013 0 0 0 0.006 0 0.013 0 0 0 0.013
15
0 0 0 0 0 0 0 0 0 0 0
0 0 0.001 0 0 0 0 0 0 0 0 0.001 0 0.013
16
0 0 0 0 0 0 0 0 0 0.006 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
17
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
18
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.002 0 0
19
0 0 0.006 0 0 0 0 0 0 0.012 0
0.006 0 0 0 0 0 0 0 0 0 0 0 0 0
20
0 0 0 0 0 0.018 0 0 0 0 0
0 0.006 0 0 0 0 0 0 0 0 0 0 0 0
21
0.015 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
22
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
23
0.006 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.006 0 0 0 0.006 0 0 0 0 0
24
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.008 0
25
766 Int J Adv Manuf Technol (2014) 73:749–771
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0.00025 0.00044 0.00051 0.00055 0.00029 0.00040 0.00049 0.00046 0.00038 0.00037 0.00046 0.00028 0.00052 0.00032 0.00040 0.00067
15
0.00014 0.00025 0.00037 0.00030 0.00022 0.00023 0.00024 0.00041 0.00024 0.00024 0.00025 0.00019 0.00026 0.00024 0.00046 0.00046 0.00017 0.00018 0.00020 0.00028 0.00026 0.00018 0.00019 0.00024 0.00019
1 0.00021 0.00028 0.00026 0.00035 0.00032 0.00026 0.00026 0.00043 0.00026 0.00026 0.00027 0.00020 0.00037 0.00035 0.00049 0.00049 0.00018 0.00020 0.00022 0.00034 0.00027 0.00019 0.00021 0.00025 0.00021
3
0.00024 0.00042 0.00049 0.00053 0.00028 0.00038 0.00047 0.00045 0.00038 0.00035 0.00045 0.00028 0.00034 0.00031 0.00065 0.00039
16
0.00019 0.00019 0.00036 0.00030 0.00021 0.00023 0.00024 0.00041 0.00023 0.00023 0.00025 0.00018 0.00026 0.00023 0.00045 0.00045 0.00017 0.00018 0.00020 0.00027 0.00025 0.00018 0.00019 0.00019 0.00019
2
Table 14 Matrix K for information flow
0.00021 0.00028 0.00040 0.00036 0.00023 0.00028 0.00025 0.00034 0.00029 0.00027 0.00028 0.00020 0.00055 0.00053 0.00035 0.00035
17
0.00023 0.00033 0.00035 0.00035 0.00036 0.00038 0.00037 0.00033 0.00028 0.00051 0.00044 0.00022 0.00041 0.00038 0.00054 0.00054 0.00020 0.00022 0.00024 0.00032 0.00031 0.00022 0.00023 0.00023 0.00024
4
0.00018 0.00023 0.00026 0.00028 0.00020 0.00022 0.00022 0.00045 0.00053 0.00022 0.00023 0.00017 0.00024 0.00023 0.00031 0.00031
18
0.00030 0.00046 0.00045 0.00057 0.00019 0.00027 0.00027 0.00033 0.00027 0.00028 0.00029 0.00021 0.00030 0.00027 0.00052 0.00052 0.00019 0.00021 0.00023 0.00031 0.00029 0.00020 0.00021 0.00022 0.00026
5
0.00018 0.00023 0.00026 0.00028 0.00020 0.00022 0.00022 0.00025 0.00021 0.00022 0.00023 0.00026 0.00024 0.00022 0.00043 0.00043
19
0.00026 0.00052 0.00052 0.00066 0.00039 0.00026 0.00032 0.00038 0.00031 0.00046 0.00043 0.00024 0.00044 0.00041 0.00059 0.00059 0.00022 0.00024 0.00026 0.00036 0.00042 0.00032 0.00025 0.00025 0.00026
6 0.00021 0.00050 0.00040 0.00033 0.00032 0.00025 0.00020 0.00044 0.00026 0.00025 0.00027 0.00020 0.00028 0.00026 0.00050 0.00050 0.00018 0.00020 0.00022 0.00030 0.00028 0.00019 0.00020 0.00021 0.00021
7
0.00027 0.00023 0.00030 0.00028 0.00020 0.00021 0.00021 0.00040 0.00039 0.00022 0.00022 0.00017 0.00024 0.00023 0.00031 0.00031
20
0.00020 0.00026 0.00029 0.00031 0.00022 0.00024 0.00029 0.00023 0.00025 0.00024 0.00026 0.00019 0.00031 0.00028 0.00046 0.00046 0.00017 0.00019 0.00020 0.00036 0.00026 0.00018 0.00020 0.00028 0.00020
8
0.00022 0.00022 0.00028 0.00026 0.00019 0.00020 0.00020 0.00034 0.00029 0.00021 0.00021 0.00016 0.00023 0.00021 0.00028 0.00028
21
0.00022 0.00028 0.00032 0.00035 0.00024 0.00027 0.00027 0.00055 0.00023 0.00031 0.00028 0.00021 0.00034 0.00031 0.00050 0.00050 0.00019 0.00043 0.00022 0.00040 0.00028 0.00020 0.00021 0.00022 0.00022
9
0.00027 0.00024 0.00026 0.00038 0.00038 0.00026 0.00026 0.00026 0.00021 0.00023 0.00023 0.00017 0.00024 0.00022 0.00031 0.00031
22
0.00022 0.00030 0.00033 0.00060 0.00038 0.00029 0.00028 0.00032 0.00027 0.00024 0.00035 0.00021 0.00039 0.00037 0.00052 0.00052 0.00019 0.00021 0.00023 0.00031 0.00029 0.00021 0.00022 0.00022 0.00031
10 0.00018 0.00024 0.00026 0.00029 0.00020 0.00022 0.00022 0.00026 0.00022 0.00022 0.00023 0.00012 0.00024 0.00022 0.00044 0.00044 0.00016 0.00017 0.00028 0.00026 0.00024 0.00017 0.00018 0.00018 0.00018
12
0.00017 0.00021 0.00023 0.00025 0.00018 0.00019 0.00019 0.00024 0.00020 0.00020 0.00020 0.00016 0.00021 0.00020 0.00026 0.00026
23
0.00021 0.00041 0.00032 0.00053 0.00024 0.00027 0.00027 0.00031 0.00026 0.00028 0.00023 0.00020 0.00038 0.00035 0.00050 0.00050 0.00018 0.00020 0.00022 0.00030 0.00028 0.00020 0.00021 0.00021 0.00026
11
0.00027 0.00024 0.00035 0.00028 0.00021 0.00022 0.00026 0.00036 0.00031 0.00022 0.00023 0.00018 0.00024 0.00023 0.00031 0.00031
24
0.00025 0.00043 0.00054 0.00069 0.00030 0.00053 0.00035 0.00036 0.00029 0.00047 0.00047 0.00023 0.00029 0.00046 0.00049 0.00049 0.00021 0.00023 0.00025 0.00031 0.00029 0.00024 0.00028 0.00025 0.00034
13
0.00018 0.00023 0.00025 0.00029 0.00020 0.00021 0.00021 0.00024 0.00021 0.00030 0.00031 0.00017 0.00028 0.00026 0.00029 0.00029
25
0.00024 0.00042 0.00053 0.00068 0.00029 0.00052 0.00033 0.00035 0.00028 0.00046 0.00046 0.00023 0.00047 0.00026 0.00043 0.00043 0.00021 0.00023 0.00024 0.00030 0.00028 0.00023 0.00028 0.00024 0.00034
14
Int J Adv Manuf Technol (2014) 73:749–771 767
17 18 19 20 21 22 23 24 25
0.00022 0.00024 0.00030 0.00031 0.00029 0.00023 0.00024 0.00025 0.00026
15
Table 14 (continued)
0.00021 0.00023 0.00038 0.00030 0.00028 0.00023 0.00023 0.00024 0.00024
16 0.00012 0.00020 0.00030 0.00025 0.00023 0.00019 0.00021 0.00021 0.00022
17 0.00016 0.00014 0.00019 0.00023 0.00021 0.00017 0.00018 0.00019 0.00018
18 0.00016 0.00017 0.00013 0.00021 0.00020 0.00017 0.00017 0.00018 0.00018
19 0.00016 0.00018 0.00018 0.00017 0.00020 0.00017 0.00022 0.00019 0.00018
20 0.00015 0.00017 0.00017 0.00025 0.00013 0.00016 0.00017 0.00017 0.00017
21 0.00016 0.00017 0.00018 0.00022 0.00021 0.00011 0.00018 0.00018 0.00018
22 0.00015 0.00016 0.00017 0.00024 0.00018 0.00015 0.00011 0.00034 0.00017
23 0.00016 0.00018 0.00019 0.00023 0.00021 0.00017 0.00036 0.00014 0.00019
24
0.00015 0.00017 0.00018 0.00021 0.00019 0.00025 0.00017 0.00017 0.00012
25
768 Int J Adv Manuf Technol (2014) 73:749–771
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0.1202 0.1421 0.1488 1.4361 0.1236 0.1349 0.1432 0.7504 0.1348 1.4081 0.1402 0.1163
15
0.1160 0.1513 0.1581 0.1523 0.1336 0.1355 0.1362 0.1549 0.1374 0.1323 0.1361 0.1244 0.1270 0.1230 0.1396 0.1393 0.1137 0.1001 0.1071 0.1152 0.1099 0.1071 0.1048 0.1056 0.1057
1
0.1426 0.1241 0.1577 0.1520 0.1334 0.1352 0.1358 0.1545 0.1370 0.1320 0.1358 0.1242 0.1267 0.1228 0.1392 0.1389 0.1135 0.0998 0.1069 0.7231 0.1097 0.1069 0.1044 0.1011 0.1054
2
0.1193 0.1404 0.2426 0.1529 0.1224 0.1326 0.1418 0.1409 0.1336 0.1259 0.1383 0.2116
16
0.1397 0.1490 0.1294 0.1557 0.1432 0.1378 0.1376 0.1563 0.1387 0.1343 0.1380 0.1252 0.1371 0.1330 0.1417 0.1414 0.1141 0.1009 0.1079 0.1205 0.1109 0.1078 0.1058 0.1064 0.1070
3
Table 15 Closeness rating matrix (×10−2)
0.1111 0.1218 0.1337 0.1342 0.1127 0.1181 0.1143 0.1250 0.1199 0.1140 0.1177 0.1040
17
0.1346 0.1465 0.1531 0.1400 0.1517 0.1516 1.4280 0.1454 0.1399 0.1587 0.1580 0.1265 2.7007 0.1358 0.9463 0.1458 0.1153 0.1021 0.1093 0.1184 0.1135 0.1094 0.1070 0.1031 0.1093
4
0.0995 0.1068 0.1086 0.1130 0.1005 0.1021 0.1019 0.1267 0.1343 0.0999 0.1023 0.0926
18
0.1447 0.1633 0.1666 0.1862 0.1216 0.1462 0.1408 0.1478 0.1416 0.1381 0.1418 0.1280 0.1327 0.1285 0.1468 0.1465 0.1176 0.1036 0.1111 0.1199 0.1146 0.1202 0.1084 0.1048 0.1151
5
0.0988 0.1067 0.1087 0.1131 0.0999 0.1020 0.1023 0.1070 0.1031 0.0992 0.1026 0.3411
19
0.1411 0.1702 0.1783 0.1923 0.1588 0.1313 0.1462 0.1536 0.1469 0.1573 0.1567 0.1321 0.1484 0.1438 0.1549 0.1545 0.1219 0.1078 0.1156 0.1255 0.1445 0.1242 1.3934 0.1090 0.1152
6 0.1346 0.1743 0.1549 0.1512 0.1440 0.1374 0.1214 0.1640 0.1452 0.1342 0.1380 0.1259 1.4094 0.1250 0.1435 0.1431 0.1151 0.1016 0.1087 0.1175 0.1120 0.1086 0.1062 0.1029 0.1074
7
0.7219 0.1127 0.1190 0.1192 0.1060 0.1077 0.1073 0.1275 0.1266 0.1052 0.1081 0.0980
20
0.1349 0.1524 0.1460 0.1511 0.1353 0.1379 0.1482 0.1281 0.1548 0.1343 0.1382 0.1260 0.1335 0.1295 0.1412 0.1408 0.1159 0.1017 0.1089 0.1254 0.1117 0.1091 0.1071 0.1113 0.1078
8
0.1042 0.7152 0.1138 0.1131 0.1007 0.1113 0.1018 0.1169 0.1125 0.0997 0.1025 0.0929
21
0.1351 0.1450 0.1471 0.1525 0.1363 0.1389 0.1453 0.1835 0.1267 0.1399 0.1394 0.1267 0.1348 0.1306 0.1439 0.1436 0.1159 0.7327 0.1096 0.1272 0.1127 0.1095 0.1072 0.1038 0.1085
9
0.1126 0.1126 0.1141 0.1277 0.1225 0.1107 0.1102 0.1118 0.1074 0.1043 0.1082 0.0965
22
0.1313 0.1417 0.1446 0.1770 0.1462 0.1366 0.1360 0.1412 0.1363 0.1171 0.1474 0.1235 1.4163 0.1317 0.1412 0.1409 0.1120 0.0992 0.1060 0.1148 0.1097 0.1063 0.1039 0.1001 0.1143
10
0.1039 0.1105 0.1125 0.1165 0.1042 0.1057 0.1053 0.1111 0.1076 0.1030 0.1060 0.0965
23
0.1294 0.1519 0.1421 0.1647 0.1313 0.1347 0.1341 0.1396 0.1345 0.1376 0.1179 0.1220 0.1336 0.1294 0.1385 0.1382 0.1103 0.0977 0.1044 0.1129 0.1079 0.1046 0.1023 0.0985 0.1081
11 0.1246 0.1325 0.1347 0.1390 0.1256 0.1277 0.1280 0.1331 0.1292 0.1250 0.1284 0.1004 0.1181 0.1139 0.1303 0.1300 0.1101 0.0932 0.1082 0.1072 0.1024 0.1001 0.0975 0.0939 0.0987
12
0.1083 0.1072 0.1178 0.1132 0.7091 0.1022 0.1063 0.1176 0.7205 0.0998 0.1025 0.0927
24
0.1270 0.1488 0.1601 0.1831 0.1309 4.7959 0.1359 0.1391 0.1325 0.1442 1.4282 0.1180 0.1339 0.1928 0.1428 0.1423 0.1510 0.1049 0.1129 0.1182 0.1140 0.1132 0.1147 0.1064 0.1209
13
0.1048 0.1129 0.1144 0.1208 0.1063 0.1080 0.1067 0.1121 0.1084 0.1135 0.1259 0.0976
25
0.1254 0.1468 0.1579 2.7414 0.1293 0.1530 0.1338 0.1370 0.1306 0.1425 0.1458 0.1164 0.1944 0.1288 0.1366 0.1362 0.1459 0.1038 0.1115 0.1168 0.1127 0.1120 0.1135 0.1052 0.1197
14
Int J Adv Manuf Technol (2014) 73:749–771 769
0.1081 0.0984 0.0863 0.0923 0.0954 0.0919 0.1260 0.0907 0.0870 0.0808 0.1164 0.0919 0.0815 0.0741 0.0899 0.0865 0.0869 0.0851 0.0822 0.0860
0.1093 0.7061 0.0874 0.0922 0.0859 0.0920 0.0990 0.1173 1.3040 0.0918
0.1036 0.0935 0.0830 0.0881 1.9203 0.0752 0.0882 0.0864 0.0835 0.0871
0.1083 0.0967 0.0852 0.0911 0.0946 0.0912 0.0802 0.0893 0.0861 0.1127
0.1049 0.0966 0.0848 0.0905 0.1266 0.0897 0.0917 0.0790 0.1030 0.0897
0.1047 0.0926 0.0828 0.0878 0.0919 0.0876 0.0876 0.1035 0.0706 0.0868
References
The results are multiplied by 100 in order to improve readability
0.1047 0.0924 0.0702 0.0877 0.0923 0.0876 0.0874 0.0857 0.0833 0.0866 0.1179 0.0984 0.0926 0.1078 0.1033 0.0991 0.0996 0.0980 0.7016 0.0996 0.1923 0.1118 0.1001 0.3649 0.1123 0.1076 0.1061 0.1043 0.1010 0.9061 16 17 18 19 20 21 22 23 24 25
0.1233 0.1109 0.0991 0.1282 0.1111 0.1064 0.1051 0.1031 0.1000 0.1045
0.1040 0.1016 0.7131 0.1068 0.1045 0.1052 0.1081 0.1056 1.6290 0.1042 0.1019 0.1040 0.1094 0.1070 0.1096 0.1033 0.1003 0.1167 0.1040 0.1015 0.1050 0.1740 0.1659 0.1183 0.1280 1.4041 0.1933 0.1460 1.4061 0.1253 13 14 15
24 23 22 21 20 19 18 17 16 15
Table 15 (continued)
0.9142 0.1117 0.1084
Int J Adv Manuf Technol (2014) 73:749–771
25
770
1. Sahin R, Turkbey O (2009) A simulated annealing algorithm to find approximate Pareto optimal solutions for the multiobjective facility layout problem. Int J Adv Manuf Technol 41(9–10):1003–1018 2. Kusiak A, Heragu SS (1987) The facility layout problem. Eur J Oper Res 29(3):229–251 3. Meller R, Gau KY (1996) The facility layout problem: recent and emerging trends and perspectives. J Manuf Syst 15(5):351– 366 4. Koren Y, Heisen U, Jovane F, Moriwaki T, Pritschow G, Ulusoy G et al (1999) Reconfigurable manufacturing system. Ann CIRP 48(2): 527–540 5. Moslemipour G, Lee TS, Rilling D (2012) A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. Int J Adv Manuf Technol 60(1–4):11–27 6. Krishnan KK, Jithavech I, Liao H (2009) Mitigation of risk in facility layout design for single and multi-period problems. Int J Prod Res 47(21):5911–5940 7. Snyder LV (2006) Facility location under uncertainty: a review. IIE Trans 38(7):537–554 8. Hu MH, Wang MJ (2004) Using genetic algorithms on facilities layout problems. Int J Adv Manuf Technol 23(3–4):301–310 9. Paul CR, Asokan P, Prabhakar VI (2006) A solution to the facility layout problem having passages and inner structure walls using particle swarm optimization. Int J Adv Manuf Technol 29(7–8): 766–771 10. Farahani RZ, Seifi MS, Asgari N (2010) Multiple criteria facility location problems: a survey. Appl Math Model 34(7):1689–1709 11. Singh SP, Sharma RRK (2006) A review of different approaches to the facility layout problems. Int J Adv Manuf Technol 30(5–6):425– 433 12. Canen AG, Williamson GH (1998) Facility layout overview: towards competitive advantage. Facilities 16(7/8):198–203 13. Drira A, Pierreval H, Hajri-Gabouj S (2007) Facility layout problems: a survey. Annu Rev Control 31(2):255–267 14. Current J, Min H, Schilling D (1990) Multiobjective analysis of facility location decisions. Eur J Oper Res 49(3):295–307 15. Meller R, Gau KY (1996) The facility layout problem: recent and emerging trends and perspectives. J Manuf Syst 15(5):351–366 16. Grobelny J (1987) On one possible fuzzy approach to facility layout problems. Int J Prod Res 25(8):1123–1141 17. Grobelny J (1988) The ‘linguistic pattern’ method for a workstation layout analysis. Int J Prod Res 26(10):1779–1798 18. Evans GW, Wilhelm MR, Karwowski W (1987) A layout design heuristic employing the theory of fuzzy sets. Int J Prod Res 25(10): 1431–1450 19. Raoot AD, Rakshit A (1993) The linguistic pattern approach for multiple criteria. Facility layout problems. Int J Prod Res 31(1): 203–222 20. Cheng R, Gent M, Tozawa T (1995) Genetic search for facility layout design under interflows uncertainty. IEEE International Conference on Evolutionary Computation, 29 Nov.-1 Dec. Perth, WA, 1: 400– 405 21. Dweiri F, Meier FA (1996) Application of fuzzy decisionmaking in facilities layout planning. Int J Prod Res 34(11): 3207–3225 22. Szwarc D, Rajamani D, Bector CR (1997) Cell formation considering fuzzy demand and machine capacity. Int J Adv Manuf Technol 13(2): 134–147 23. Aiello G, Enea M (2001) Fuzzy approach to the robust facility layout in uncertain production environments. Int J Prod Res 39(18):4089– 4101
Int J Adv Manuf Technol (2014) 73:749–771 24. Turkbey O (2003) A multi-objective fuzzy set approach in the machine sequencing problems. J Fac Eng Archit Gazi Univ 18(2): 63–77 25. Turkbey O (2003) A fuzzy robust method for the multi-goal machine sequencing problem. Dokuz Eylul Univ J Eng Sci 15(3):81–98 (in Turkish) 26. Deb SK, Bhattacharyya B (2003) Facilities layout planning based on fuzzy multiple criteria decision-making methodology. Int J Prod Res 41(18):4487–4504 27. Deb SK, Bhattacharyya B (2005) Fuzzy decision support system for manufacturing facilities layout planning. Decis Support Syst 40(2): 305–314 28. Enea AM, Galante G, Panasci AE (2005) The facility layout problem approached using a fuzzy model and a genetic search. J Intell Manuf 16(3):303–316 29. Sangwan KS (2010) Fuzziness in materials flow and plant layout. Kahraman C, Yavuz M (eds) Production engineering and management under fuzziness, studies in fuzziness and soft computing (Studfuzz 252) Springer, Berlin. pp 359–380 30. Altuntas S, Dereli T, Selim H (2012) Fuzzy weighted association rule based solution approaches to facility layout problem in cellular manufacturing system. Int J Ind Syst Eng 15(3):253–271 31. Ertugrul I, Karakasoglu N (2008) Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. Int J Adv Manuf Technol 39(7–8):783–795 32. Bashiri M, Hosseininezhad SJ (2009) A fuzzy group decision support system for multifacility location problems. Int J Adv Manuf Technol 42(5–6):533–543 33. Lin CJ, Wu WW (2008) A causal analytical method for group decisionmaking under fuzzy environment. Exp Syst Appl 34(1):205–213 34. Tseng ML, Lin YH (2009) Application of fuzzy DEMATEL to develop a cause and effect model of municipal solid waste management in Metro Manila. Environ Monit Assess 158(1–4):519–533 35. Chang B, Chang CW, Wu CH (2011) Fuzzy DEMATEL method for developing supplier selection criteria. Exp Syst Appl 38(3):1850–1858 36. Fekri R, Aliahmadi A, Fathian M (2009) Identifying the cause and effect factors of agile NPD process with fuzzy DEMATEL method: the case of Iranian companies. J Intell Manuf 20(6):637–648 37. Liou JJH, Tzeng GH, Chang HC (2007) Airline safety measurement using a hybrid model. J Air Transp Manag 13(4):243–249
771 38. Wu WW (2008) Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Exp Syst Appl 35(3):828–835 39. Wang MJJ, Chang TC (1995) Tool steel materials selection under fuzzy environment. Fuzzy Sets Syst 72(3):263–270 40. Chen CT (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst 114(1):1–9 41. Opricovic S, Tzeng GH (2003) Defuzzification within a multi-criteria decision model. Int J Uncertain Fuzzy 11(5):635–652 42. Tseng ML (2009) Using the extension of DEMATEL to integrate hotel service quality perceptions into a cause–effect model in uncertainty. Exp Syst Appl 36(5):9015–9023 43. Edwards HK, Gillett BE, Hale ME (1970) Modular Allocation Technique (MAT). Manag Sci 17(3):161–169 44. Scriabin M, Vergin RC (1975) Comparison of computer algorithms and visual based methods for plant layout. Manag Sci 22(2):172–181 45. Domschke W, Krispin G (1997) Location and layout planning: a survey. OR Spectr 19(3):181–194 46. Altuntas S, Selim H (2012) Facility layout using weighted association rule-based data mining algorithms: evaluation with simulation. Exp Syst Appl 39(1):3–13 47. Chan WM, Chan CY, Ip WH (2002) A heuristic algorithm for machine assignment in cellular layout. Comput Ind Eng 44(1):49–73 48. Karray F, Zaneldin E, Hegazy T, Shabeeb AHM, Elbeltagi E (2000) Tools of soft computing as applied to the problem of facility layout planning. IEEE Trans Fuzzy Syst 8(4):367–379 49. Grobelny J (1987) The fuzzy approach to facility layout problems. Fuzzy Sets Syst 23(2):175–190 50. Aksarayli M, Altuntas S (2009) The comparison of layout arrangements for the material flow ordering planning in production systems through simulation analysis. PAJES 15(2): 203–214 (In Turkish) 51. Raoot AD, Rakshit A (1991) A ‘fuzzy’ approach to facilities layout planning. Int J Prod Res 29(4):835–857 52. Mohamadghasemi A, Hadi-Vencheh A (2012) An integrated synthetic value of fuzzy judgments and nonlinear programming methodology for ranking the facility layout patterns. Comput Ind Eng 62(1): 342–348
Copyright of International Journal of Advanced Manufacturing Technology is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.