MEP 1422 ELECTRIC DRIVES
INDUCTION MOTOR Scalar Control (squirrel cage)
Scalar control of induction machine: Control of induction machine based on steady-state model (per phase SS equivalent circuit): Rs
Is
Lls
Llr’ +
+ Vs –
Ir ’
Lm Im
Eag –
Rr’/s
Scalar control of induction machine
Te Pull out Torque (Tmax)
Intersection point (Te=TL) determines the steady –state speed
Te TL
Trated
s
sm
ωω ω rated rotor
ωr s
Scalar control of induction machine
Given a load T–ω characteristic, the steady-state speed can be changed by altering the T–ω of the motor: Pole changing Synchronous speed change with no. of poles Discrete step change in speed
Variable voltage (amplitude), variable frequency Using power electronics converter Operated at low slip frequency
Variable voltage (amplitude), frequency fixed E.g. using transformer or triac Slip becomes high as voltage reduced – low efficiency
Variable voltage, fixed frequency e.g. 3–phase squirrel cage IM
600
V = 460 V 500
Rs= 0.25 Ω
Rr=0.2 Ω Lr = Ls = 0.5/(2*pi*50) Lm=30/(2*pi*50)
400 Torque
f = 50Hz
p=4
300
200
Lower speed → slip higher
100
Low efficiency at low speed
0
0
20
40
60
80 w (rad/s)
100
120
140
160
Variable voltage, variable frequency Constant V/f Approximates constant air-gap flux when Eag is large Eag = k f φag
φag = constant
=
E ag f
≈
V f
Speed is adjusted by varying f - maintaining V/f constant to avoid flux saturation
Variable voltage, variable frequency Constant V/f - assuming constant airgap flux 900 800 50Hz
700 30Hz
600 Torque
500
10Hz
400 300 200 100 0
0
20
40
60
80
100
120
140
160
Variable voltage, variable frequency Constant V/f Vs Vrated
frated
f
Variable voltage, variable frequeny
Constant V/f – open-loop
Rectifier
3-phase supply
VSI
IM
C
f Ramp
ωs*
+
V
Pulse Width Modulator
Variable voltage, variable frequeny
Constant V/f – open-loop Simulation example: 460V, 50Hz, 4 pole, Rs = 0.25Ω, Rr = 0.2Ω, Lr=Ls= 0.0971 H, Lm = 0.0955, 600 500
Steady state T-ω
400 300 200 100 0 100
0
20
40
60
80
100
120
140
160
180
200
Variable voltage, variable frequeny
Constant V/f – open-loop Simulation example: 460V, 50Hz, 4 pole, Rs = 0.25Ω, Rr = 0.2Ω, Lr=Ls= 0.0971 H, Lm = 0.0955, 600 500
Steady state T-ω and transient T-ω characteristic – without ramp limitter
400 300 200 100 0 100
0
20
40
60
80
100
120
140
160
180
200
Variable voltage, variable frequeny
Constant V/f – open-loop Simulation example: 460V, 50Hz, 4 pole, Rs = 0.25Ω, Rr = 0.2Ω, Lr=Ls= 0.0971 H, Lm = 0.0955, 600 500
Steady state T-ω and transient T-ω characteristic – with ramp limitter
400 300 200 100 0 100
0
20
40
60
80
100
120
140
160
180
200
Variable voltage, variable frequency Constant V/f
1
Problems with open-loop constant V/f
At low speed, voltage drop across stator impedance is significant compared to airgap voltage - poor torque capability at low speed Solution: Boost voltage at low speed Maintain Im constant – constant Φag
Variable voltage, variable frequeny
Constant V/f 700 600
50Hz
500 400
Torque
30Hz
300 10Hz
200 100 0
0
20
40
60
80
100
120
140
160
Variable voltage, variable frequeny
Constant V/f with compensation (Is,ratedRs) 700
• Torque deteriorate at low frequency – hence compensation commonly performed at low frequency
600 500 400
Torque
• In order to truly compensate need to measure stator current – seldom performed
300 200 100 0
0
20
40
60
80
100
120
140
160
Variable voltage, variable frequeny
Constant V/f with voltage boost at low frequency
Vrated Linear offset
Boost
Non-linear offset – varies with Is
frated
Variable voltage, variable frequeny
Constant V/f
2
Problems with open-loop constant V/f Poor speed regulation
Solution: Compesate slip Closed-loop control
Variable voltage, variable frequeny Constant V/f – open-loop with slip compensation and voltage boost
Rectifier
3-phase supply
VSI
IM
C
f Ramp
ωs*
+
+ +
Slip speed calculator
Vdc
Idc
V +
Vboost
Pulse Width Modulator
Variable voltage, variable frequeny
Constant air-gap flux A better solution : maintain Φag constant. How? Φag, constant → Eag/f , constant → Im, constant (rated)
Rs
Is
Controlled to maintain Im at rated
Lls
Llr’ +
+ Lm
Vs maintain at rated
–
Ir ’
Im
Eag –
Rr’/s
Variable voltage, variable frequeny
Constant air-gap flux 900 800 50Hz
700 30Hz
600 Torque
500
10Hz
400 300 200 100 0
0
20
40
60
80
100
120
140
160
Variable voltage, variable frequeny
Constant air-gap flux
Im =
Im =
Im =
jω L lr +
Rr s
Is
R jω (L lr + L m ) + r s jω L r +
Rr s
σ R jω r L r + r s 1 + σr jωslip Tr + 1 σ jωslip r Tr + 1 1 + σr
Is
Is ,
σ jωslip r Tr + 1 1 + σr Is = Im , jωslip Tr + 1 • Current is controlled using currentcontrolled VSI • Dependent on rotor parameters – sensitive to parameter variation
Variable voltage, variable frequeny
Constant air-gap flux
3-phase supply
VSI
Rectifier
IM
C
Current controller
ω*
+
PI
-
ω slip +
ωr +
|Is|
ωs