Improper_integrals_2019.pdf

  • Uploaded by: Linh Phan
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Improper_integrals_2019.pdf as PDF for free.

More details

  • Words: 5,123
  • Pages: 75
IMPROPER INTEGRALS ELECTRONIC VERSION OF LECTURE

HoChiMinh City University of Technology Faculty of Applied Science, Department of Applied Mathematics

HCMC — 2019. (HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

1 / 33

OUTLINE

1

T YPE 1: INFINITE INTERVALS

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

2 / 33

OUTLINE

1

T YPE 1: INFINITE INTERVALS

2

T YPE 2: INFINITY DISCONTINUOUS INTEGRANDS

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

2 / 33

OUTLINE

1

T YPE 1: INFINITE INTERVALS

2

T YPE 2: INFINITY DISCONTINUOUS INTEGRANDS

3

MATL AB

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

2 / 33

Type 1: Infinite intervals

R Definition of an improper integral of type 1 a+∞ f (x)d x

DEFINITION 1.1 Let f (x) be defined for every number x Ê a and be integrable on every interval [a, b]. Then Φ(b) =

b

Z a

f (x)d x is defined on the interval [a, +∞).

The limit I = lim Φ(b) = lim b→+∞

Z

b→+∞ a

b

(1)

f (x)d x

is called an improper integral of type 1 of function f (x) on the interval [a, +∞) and denoted by +∞

Z

f (x)d x. a (HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

3 / 33

Type 1: Infinite intervals

R Definition of an improper integral of type 1 a+∞ f (x)d x

DEFINITION 1.2 1

If the limit I = lim

Z

b

f (x)d x exists (as a finite Z +∞ number) then the improper integrals f (x)d x b→+∞ a

are called convergent.

(HCMUT-OISP)

IMPROPER INTEGRALS

a

HCMC — 2019.

4 / 33

Type 1: Infinite intervals

R Definition of an improper integral of type 1 a+∞ f (x)d x

DEFINITION 1.2 1

If the limit I = lim

Z

b

f (x)d x exists (as a finite Z +∞ number) then the improper integrals f (x)d x b→+∞ a

a

are called convergent. 2

If the limit I = lim

Z

b→+∞ a

b

f (x)d x does not exist or is

equal to ∞ then the improper integrals Z +∞

f (x)d x are called divergent.

a

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

4 / 33

Type 1: Infinite intervals

Geometric meaning

GEOMETRIC MEANING If f (x) Ê 0, ∀x ∈ [a, +∞) and the integral

Z

convergent then the improper integrals

+∞

f (x)d x is aZ

+∞

f (x)d x a

can be interpreted as an area of the region S = {(x, y)|x Ê a, 0 É y É f (x)}.

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

5 / 33

Type 1: Infinite intervals

Geometric meaning

According to geometric meaning of an improper Z +∞

integral of type 1:

f (x)d x , if

a

lim f (x) = A 6= 0

x→+∞

and f (x) is integrable on every interval Z[a, b] ⊂ [a, +∞), then the improper integrals +∞

f (x)d x are divergent.

a

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

6 / 33

Type 1: Infinite intervals

Geometric meaning

According to geometric meaning of an improper Z +∞

integral of type 1:

f (x)d x , if

a

lim f (x) = A 6= 0

x→+∞

and f (x) is integrable on every interval Z[a, b] ⊂ [a, +∞), then the improper integrals +∞

f (x)d x are divergent.

a

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

6 / 33

Type 1: Infinite intervals

Newton-Leibniz’s Formula

THEOREM 1.1 (NEWTON-LEIBNIZ’S FORMULA) Suppose that f (x) has antiderivative F (x) on the interval [a, +∞) and is intergrable on Zevery interval +∞

[a, b]. The improper integral of type 1

f (x)d x is

a

convergent if and only if lim F (b) = F (+∞) exists as a b→+∞

finite number. Then +∞

Z a

(HCMUT-OISP)

¯+∞ ¯ f (x)d x = F (+∞) − F (a) = F (x)¯ a

IMPROPER INTEGRALS

HCMC — 2019.

(2)

7 / 33

Type 1: Infinite intervals

Newton-Leibniz’s Formula

EXAMPLE 1.1 Evaluate I =

Z

+∞

cos xd x. 0

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

8 / 33

Type 1: Infinite intervals

Newton-Leibniz’s Formula

EXAMPLE 1.1 Evaluate I =

Z

+∞

cos xd x. 0

SOLUTION ¯+∞ ¯ I = sin x ¯ = lim sin b − sin 0 = lim sin b. 0

(HCMUT-OISP)

b→+∞

IMPROPER INTEGRALS

b→+∞

HCMC — 2019.

8 / 33

Type 1: Infinite intervals

Newton-Leibniz’s Formula

EXAMPLE 1.1 Evaluate I =

Z

+∞

cos xd x. 0

SOLUTION ¯+∞ ¯ I = sin x ¯ = lim sin b − sin 0 = lim sin b. 0

b→+∞

b→+∞

The limit lim sin b does not exist. Therefore the b→+∞

improper integral I is divergent.

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

8 / 33

Type 1: Infinite intervals

Newton-Leibniz’s Formula

EXAMPLE 1.2 Evaluate I =

Z

+∞

2

xe −x d x

0

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

9 / 33

Type 1: Infinite intervals

Newton-Leibniz’s Formula

EXAMPLE 1.2 Evaluate I =

Z

+∞

2

xe −x d x

0

SOLUTION ¯ 1 −x 2 ¯¯+∞ e d (−x ) = − e ¯ 2 0 0 1 −b 2 1 1 = lim − e + = b→+∞ 2 2 2

1 I =− 2

Z

+∞

−x 2

2

So the given integral I is convergent.

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

9 / 33

Type 1: Infinite intervals

Newton-Leibniz’s Formula

EXAMPLE 1.3 For what values of α is the integral +∞

Z I= 1

dx xα

convergent?

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

10 / 33

Type 1: Infinite intervals

Newton-Leibniz’s Formula

EXAMPLE 1.3 For what values of α is the integral +∞

Z I= 1

dx xα

convergent? If α 6= 1 then 1 I =− α−1

(HCMUT-OISP)

µ lim

1

b→+∞ b α−1

IMPROPER INTEGRALS



1



1α−1

HCMC — 2019.

10 / 33

Type 1: Infinite intervals

Newton-Leibniz’s Formula

EXAMPLE 1.3 For what values of α is the integral +∞

Z I= 1

dx xα

convergent? If α 6= 1 then 1 I =− α−1

If α > 1, then lim

1

b→+∞ b α−1

µ lim

1

b→+∞ b α−1



1α−1

= 0. Therefore I =

the integral I converges. (HCMUT-OISP)



1

IMPROPER INTEGRALS

1 and so α−1 HCMC — 2019.

10 / 33

Type 1: Infinite intervals

If α < 1, then lim diverges.

(HCMUT-OISP)

1

b→+∞ b α−1

Newton-Leibniz’s Formula

= +∞ and so the integral I

IMPROPER INTEGRALS

HCMC — 2019.

11 / 33

Type 1: Infinite intervals

If α < 1, then lim

1

b→+∞ b α−1

Newton-Leibniz’s Formula

= +∞ and so the integral I

diverges. If α = 1, then I = lim ln |b| − ln 1 = +∞ and so the b→+∞

integral I diverges.

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

11 / 33

Type 1: Infinite intervals

If α < 1, then lim

1

b→+∞ b α−1

Newton-Leibniz’s Formula

= +∞ and so the integral I

diverges. If α = 1, then I = lim ln |b| − ln 1 = +∞ and so the b→+∞

integral I diverges. SUMMARY 1

If α > 1 then I =

Z 1

(HCMUT-OISP)

+∞

dx converges. xα

IMPROPER INTEGRALS

HCMC — 2019.

11 / 33

Type 1: Infinite intervals

If α < 1, then lim

1

b→+∞ b α−1

Newton-Leibniz’s Formula

= +∞ and so the integral I

diverges. If α = 1, then I = lim ln |b| − ln 1 = +∞ and so the b→+∞

integral I diverges. SUMMARY 1

2

+∞

dx converges. xα 1 Z +∞ dx If α É 1 then I = diverges. xα 1

If α > 1 then I =

(HCMUT-OISP)

Z

IMPROPER INTEGRALS

HCMC — 2019.

11 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

A COMPARISON TEST FOR IMPROPER INTEGRALS OF TYPE 1 THEOREM 1.2 Suppose that f and g are continuous functions on every interval [a, b] ⊂ [a, +∞) with 0 É g (x) É f (x), ∀x Ê a. Z 1

If

+∞

f (x)d x is convergent, then

a

g (x)d x is a

convergent.

(HCMUT-OISP)

+∞

Z

IMPROPER INTEGRALS

HCMC — 2019.

12 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

A COMPARISON TEST FOR IMPROPER INTEGRALS OF TYPE 1 THEOREM 1.2 Suppose that f and g are continuous functions on every interval [a, b] ⊂ [a, +∞) with 0 É g (x) É f (x), ∀x Ê a. Z 1

+∞

If

f (x)d x is convergent, then

a

If

+∞

Z

g (x)d x is divergent then a

+∞

Z

f (x)d x is a

divergent. (HCMUT-OISP)

g (x)d x is a

convergent. 2

+∞

Z

IMPROPER INTEGRALS

HCMC — 2019.

12 / 33

Type 1: Infinite intervals

(HCMUT-OISP)

A comparison test for improper integrals of type 1

IMPROPER INTEGRALS

HCMC — 2019.

13 / 33

Type 1: Infinite intervals

1

A comparison test for improper integrals of type 1

If the area under the top curve y = f (x) is finite, then so is the area under the bottom curve y = g (x).

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

13 / 33

Type 1: Infinite intervals

1

A comparison test for improper integrals of type 1

If the area under the top curve y = f (x) is finite, then so is the area under the bottom curve y = g (x).

2

If the area under y = g (x) is infinite, then so is the area under y = f (x). (HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

13 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

EXAMPLE 1.4 DetermineZ whether the integral is convergent or +∞

divergent

1

(HCMUT-OISP)

1 + e −x dx x

IMPROPER INTEGRALS

HCMC — 2019.

14 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

EXAMPLE 1.4 DetermineZ whether the integral is convergent or +∞

divergent

1

SOLUTION

Since +∞

Z 1

Z 1

+∞

1 + e −x dx x

1 + e −x 1 > x x

1 d x is divergent, so the integral x

1 + e −x d x is divergent. x (HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

14 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

THEOREM 1.3 Suppose f (x), g (x) be integrable on every [a, b] ⊂ [a, +∞) and f (x), g (x) Ê 0, ∀x Ê a. Evaluate f (x) =λ x→∞ g (x) lim 1

If λ = 0 and converges.

(HCMUT-OISP)



Z

g (x)d x converges then a



Z

f (x)d x a

IMPROPER INTEGRALS

HCMC — 2019.

15 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

THEOREM 1.3 Suppose f (x), g (x) be integrable on every [a, b] ⊂ [a, +∞) and f (x), g (x) Ê 0, ∀x Ê a. Evaluate f (x) =λ x→∞ g (x) lim 1

2

If λ = 0 and converges.



Z

If λ > 0 then

g (x)d x converges then a

g (x)d x and a

converges or diverges.

(HCMUT-OISP)

f (x)d x a



Z



Z



Z

f (x)d x either a

IMPROPER INTEGRALS

HCMC — 2019.

15 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

THEOREM 1.3 Suppose f (x), g (x) be integrable on every [a, b] ⊂ [a, +∞) and f (x), g (x) Ê 0, ∀x Ê a. Evaluate f (x) =λ x→∞ g (x) lim 1

2

If λ = 0 and converges.



Z

If λ > 0 then

g (x)d x converges then a

g (x)d x and a

converges or diverges. 3

If λ = +∞ and diverges. (HCMUT-OISP)

f (x)d x a



Z



Z



Z

f (x)d x either a



Z

g (x)d x diverges then a



Z

f (x)d x a

IMPROPER INTEGRALS

HCMC — 2019.

15 / 33

Type 1: Infinite intervals

INDETERMINATE FORM

1

2

A comparison test for improper integrals of type 1

∞ ∞

xα lim = 0 (a > 1) x→+∞ a x lnα x lim = 0 (∀α > 0, β > 0) x→+∞ x β

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

16 / 33

Type 1: Infinite intervals

INDETERMINATE FORM

1

2

A comparison test for improper integrals of type 1

∞ ∞

xα lim = 0 (a > 1) x→+∞ a x lnα x lim = 0 (∀α > 0, β > 0) x→+∞ x β lnα x << x β << a x , (α, β > 0, a > 1)

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

16 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

DEFINITION 1.3 Functions f (x) and g (x) are called equivalent as x → a, if f (x) =1 x→a g (x)

(3)

lim

x→a

Denote by f (x) ∼ g (x).

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

17 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

EXAMPLE 1.5 Determine whether the integral is convergent or Z +∞

divergent I =

1

(HCMUT-OISP)

p

dx

x 2 − 2x + 3

IMPROPER INTEGRALS

HCMC — 2019.

18 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

EXAMPLE 1.5 Determine whether the integral is convergent or Z +∞

divergent I =

1

We have p

p

where

x 2 − 2x + 3

1 x 2 − 2x + 3 p

Z

dx

+∞

1

(HCMUT-OISP)

> 0, ∀x Ê 1 and 1

x 2 − 2x + 3

x→+∞



1 , x

dx diverges, therefore I diverges. x IMPROPER INTEGRALS

HCMC — 2019.

18 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

EXAMPLE 1.6 Determine whether the integral is convergent or Z +∞

divergent I =

2

(HCMUT-OISP)

(x + 1)d x p 3 x 7 − 3x − 2

IMPROPER INTEGRALS

HCMC — 2019.

19 / 33

Type 1: Infinite intervals

A comparison test for improper integrals of type 1

EXAMPLE 1.6 Determine whether the integral is convergent or Z +∞

divergent I =

2

We have p 3

x +1 x 7 − 3x − 2 p 3

where

Z

(x + 1)d x p 3 x 7 − 3x − 2

+∞

2

(HCMUT-OISP)

> 0, ∀x Ê 2 and

x +1

x→+∞

x 7 − 3x − 2



x x 7/3

=

1 x 4/3

,

dx converges, therefore I converges. x 4/3 IMPROPER INTEGRALS

HCMC — 2019.

19 / 33

Type 2: Infinity discontinuous integrands

R Definition of an improper integral of type 2 ab f (x)d x on [a, b)

Suppose that f is defined on a finite interval [a, b) but has a vertical asymptote as x → b − and f is integrable on every interval [a, η] ⊂ [a, b). Then Z Φ(η) =

η

f (x)d x is defined on the interval [a, b).

a

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

20 / 33

Type 2: Infinity discontinuous integrands

R Definition of an improper integral of type 2 ab f (x)d x on [a, b)

Suppose that f is defined on a finite interval [a, b) but has a vertical asymptote as x → b − and f is integrable on every interval [a, η] ⊂ [a, b). Then Z Φ(η) =

η

f (x)d x is defined on the interval [a, b).

a

DEFINITION 2.1 The limit of function Φ(η) as η → b − is called an improper integral of type 2 on the interval [a, b) b

Z a

(HCMUT-OISP)

f (x)d x = lim− Φ(η) = lim− η→b

η→b

IMPROPER INTEGRALS

η

Z

f (x)d x

(4)

a

HCMC — 2019.

20 / 33

Type 2: Infinity discontinuous integrands

R Definition of an improper integral of type 2 ab f (x)d x on [a, b)

DEFINITION 2.2 1

If lim− Φ(η) = lim− η→b

η→b

η

Z

f (x)d x exists (as a finite a

number) then the improper integral of type 2 b

Z

f (x)d x converges. a

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

21 / 33

Type 2: Infinity discontinuous integrands

R Definition of an improper integral of type 2 ab f (x)d x on [a, b)

DEFINITION 2.2 1

If lim− Φ(η) = lim− η→b

η→b

η

Z

f (x)d x exists (as a finite a

number) then the improper integral of type 2 b

Z

f (x)d x converges. Z η If lim− Φ(η) = lim− f (x)d x does not exist or is a

2

η→b

η→b

a

equal to ∞ then the improper integral of type 2 b

Z

f (x)d x diverges. a

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

21 / 33

Type 2: Infinity discontinuous integrands

Geometric meaning

GEOMETRIC MEANING If f (x) Ê 0, ∀x ∈ [a, b) and the integral

b

Z

f (x)d x is Z b convergent then the improper integrals f (x)d x a

a

can be interpreted as an area of the region S = {(x, y)|a É x < b, 0 É y É f (x)}, where x = b is the vertical asymptote of the graph of function f (x)

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

22 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

NEWTON-LEIBNIZ’S FORMULA Suppose that f (x) has antiderivative F (x) on every intervals [a, η] ⊂ [a, b) and lim− f (x) = ∞. The x→b

improper integral of type 2

b

Z

f (x)d x is convergent if a

and only if lim− F (η) = F (b − 0) exists as a finite η→b

number. Then b

Z a

(HCMUT-OISP)

¯b − ¯ f (x)d x = F (b − 0) − F (a) = F (x)¯ . a

IMPROPER INTEGRALS

HCMC — 2019.

(5)

23 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.1 Evaluate I =

Z 0

(HCMUT-OISP)

1

dx x

IMPROPER INTEGRALS

HCMC — 2019.

24 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.1 Evaluate I =

Z

1

0

dx x

SOLUTION 1 We have lim = +∞. Therefore x = 0 is vertical x→0+

asymptote.

(HCMUT-OISP)

x

IMPROPER INTEGRALS

HCMC — 2019.

24 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.1 Evaluate I =

Z

1

0

dx x

SOLUTION 1 We have lim = +∞. Therefore x = 0 is vertical x→0+

x

asymptote. Since ¯1 ¯ I = ln |x|¯ = ln 1 − lim ln |a| = +∞. 0

a→0+

so improper integral I is divergent.

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

24 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.2 Evaluate I =

(HCMUT-OISP)

1

arccos x dx p 2 −1 1−x

Z

IMPROPER INTEGRALS

HCMC — 2019.

25 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.2 Evaluate I =

1

arccos x dx p 2 −1 1−x

Z

arccos x

SOLUTION We have lim p x→−1+

1 − x2

= +∞. Therefore

x = −1 is vertical asymptote.

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

25 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.2 Evaluate I =

1

arccos x dx p 2 −1 1−x

Z

arccos x

SOLUTION We have lim p x→−1+

1 − x2

= +∞. Therefore

x = −1 is vertical asymptote.In other hand, x = 1 is arccos x not vertical asymptote because lim p = 1. x→1− 1 − x2

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

25 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.2 Evaluate I =

1

arccos x dx p 2 −1 1−x

Z

arccos x

SOLUTION We have lim p x→−1+

1 − x2

= +∞. Therefore

x = −1 is vertical asymptote.In other hand, x = 1 is arccos x not vertical asymptote because lim p = 1. x→1− 1 − x2

Since

1

¯1 1 ¯ 2 I =− arccos xd (arccos x) = − · (arccos x)¯ −1 2 −1 2 1 π = − (arccos2 1 − lim arccos2 a) = a→−1+ 2 2 so improper integral I is convergent. Z

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

25 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.3 Evaluate I =

(HCMUT-OISP)

b

Z a

dx , (a < b) (b − x)α

IMPROPER INTEGRALS

HCMC — 2019.

26 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.3 Evaluate I =

b

Z a

dx , (a < b) (b − x)α

SOLUTION η

¯η dx 1 −α+1 ¯ I = lim− =− lim (b − x) ¯ α a η→b −α + 1 η→b − a (b − x) 1 1 lim− (b − η)−α+1 + (b − a)−α+1 = α − 1 η→b −α + 1 Z

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

26 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.3 Evaluate I =

b

Z a

dx , (a < b) (b − x)α

SOLUTION η

¯η dx 1 −α+1 ¯ I = lim− =− lim (b − x) ¯ α a η→b −α + 1 η→b − a (b − x) 1 1 lim− (b − η)−α+1 + (b − a)−α+1 = α − 1 η→b −α + 1 Z

If α < 1 then lim− (b − η)−α+1 = 0. η→b

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

26 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

EXAMPLE 2.3 Evaluate I =

b

Z a

dx , (a < b) (b − x)α

SOLUTION η

¯η dx 1 −α+1 ¯ I = lim− =− lim (b − x) ¯ α a η→b −α + 1 η→b − a (b − x) 1 1 lim− (b − η)−α+1 + (b − a)−α+1 = α − 1 η→b −α + 1 Z

If α < 1 then lim− (b − η)−α+1 = 0. η→b

If α > 1 then lim− (b − η)−α+1 = ∞. η→b

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

26 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

If α = 1 then Zη I = lim− η→b

a

¯η dx ¯ = − lim− ln |b − x|¯ a η→b b−x

= − lim− ln |b − η| + ln(b − a) = ∞. η→b

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

27 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

If α = 1 then Zη I = lim− η→b

a

¯η dx ¯ = − lim− ln |b − x|¯ a η→b b−x

= − lim− ln |b − η| + ln(b − a) = ∞. η→b

SUMMARY 1

If α < 1, then improper integral converges.

(HCMUT-OISP)

IMPROPER INTEGRALS

b

Z a

dx (b − x)α

HCMC — 2019.

27 / 33

Type 2: Infinity discontinuous integrands

Newton-Leibniz’s formula

If α = 1 then Zη I = lim− η→b

a

¯η dx ¯ = − lim− ln |b − x|¯ a η→b b−x

= − lim− ln |b − η| + ln(b − a) = ∞. η→b

SUMMARY 1

2

If α < 1, then improper integral converges.

Z

If α Ê 1, then improper integral

Z

diverges. (HCMUT-OISP)

IMPROPER INTEGRALS

b

dx (b − x)α

b

dx (b − x)α

a

a

HCMC — 2019.

27 / 33

Type 2: Infinity discontinuous integrands

A comparison test for improper integrals of type 2

THEOREM 2.1 Suppose f (x), g (x) be integrable on every [a, η] ⊂ [a, b) and not be bounded as x → b − . Moreover, for every f (x) =λ x→b g (x) Z b Z b f (x)d x g (x)d x converges then If λ = 0 and

x ∈ [a, b), we have 0 É f (x), 0 É g (x), lim− 1

converges.

(HCMUT-OISP)

a

a

IMPROPER INTEGRALS

HCMC — 2019.

28 / 33

Type 2: Infinity discontinuous integrands

A comparison test for improper integrals of type 2

THEOREM 2.1 Suppose f (x), g (x) be integrable on every [a, η] ⊂ [a, b) and not be bounded as x → b − . Moreover, for every f (x) =λ x→b g (x) Z b Z b f (x)d x g (x)d x converges then If λ = 0 and

x ∈ [a, b), we have 0 É f (x), 0 É g (x), lim− 1

converges. 2

If λ > 0 then

a

a

b

Z

g (x)d x and a

converges or diverges.

(HCMUT-OISP)

b

Z

f (x)d x either a

IMPROPER INTEGRALS

HCMC — 2019.

28 / 33

Type 2: Infinity discontinuous integrands

A comparison test for improper integrals of type 2

THEOREM 2.1 Suppose f (x), g (x) be integrable on every [a, η] ⊂ [a, b) and not be bounded as x → b − . Moreover, for every f (x) =λ x→b g (x) Z b Z b f (x)d x g (x)d x converges then If λ = 0 and

x ∈ [a, b), we have 0 É f (x), 0 É g (x), lim− 1

converges. 2

If λ > 0 then

a

a

b

Z

g (x)d x and a

converges or diverges. 3

If λ = +∞ and diverges. (HCMUT-OISP)

b

Z

f (x)d x either a

b

Z

g (x)d x diverges then a

b

Z

f (x)d x a

IMPROPER INTEGRALS

HCMC — 2019.

28 / 33

Type 2: Infinity discontinuous integrands

Some basic equivalent functions

As x → 0 the following functions are equivalent 1

2

3

4

5

6

1 sin x ∼ x, tan x ∼ x, 1 − cos x ∼ x 2 2 arctan x ∼ x, arcsin x ∼ x a x − 1 ∼ x. ln a, (a > 0, a 6= 1), e x − 1 ∼ x x loga (1 + x) ∼ x loga e = , (a > 0, a 6= 1), ln(1 + x) ∼ x ln a p x (1 + x)µ − 1 ∼ µ.x, (µ ∈ R), 1 + x − 1 ∼ , 2 p x n 1 + x − 1 ∼ , (n ∈ N) n x2 sinh x ∼ x, cosh x − 1 ∼ 2 (HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

29 / 33

Type 2: Infinity discontinuous integrands

Some basic equivalent functions

EXAMPLE 2.4 Determine whether the integral is convergent or Z 1

divergent I =

0

(HCMUT-OISP)

cos2 x dx p 3 1 − x2

IMPROPER INTEGRALS

HCMC — 2019.

30 / 33

Type 2: Infinity discontinuous integrands

Some basic equivalent functions

EXAMPLE 2.4 Determine whether the integral is convergent or Z 1

divergent I =

0

cos2 x dx p 3 1 − x2

cos2 x cos2 x 1 =∞ lim− p = lim . p x→1 3 1 − x 2 x→1− 3 1 + x (1 − x)1/3

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

30 / 33

Type 2: Infinity discontinuous integrands

Some basic equivalent functions

EXAMPLE 2.4 Determine whether the integral is convergent or Z 1

divergent I =

0

cos2 x dx p 3 1 − x2

cos2 x cos2 x 1 =∞ lim− p = lim . p x→1 3 1 − x 2 x→1− 3 1 + x (1 − x)1/3 2 cos2 x 1 cos2 x 1 x→1− cos 1 =p ∼ . . . p p 3 3 3 1 + x (1 − x)1/3 2 (1 − x)1/3 1 − x2 1 We have α = < 1, therefore I converges. 3 (HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

30 / 33

Type 2: Infinity discontinuous integrands

Some basic equivalent functions

EXAMPLE 2.5 Determine whether thepintegral is convergent or divergent I =

Z

0

(HCMUT-OISP)

1

ln(1 + 3 x) dx e sin x − 1

IMPROPER INTEGRALS

HCMC — 2019.

31 / 33

Type 2: Infinity discontinuous integrands

Some basic equivalent functions

EXAMPLE 2.5 Determine whether thepintegral is convergent or divergent I =

Z

0

1

ln(1 + 3 x) dx e sin x − 1

p ln(1 + 3 x) x 1/3 1 lim+ sin x = lim+ = lim+ 2/3 = ∞ x→0 x→0 x→0 x e −1 x

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

31 / 33

Type 2: Infinity discontinuous integrands

Some basic equivalent functions

EXAMPLE 2.5 Determine whether thepintegral is convergent or divergent I =

Z

0

1

ln(1 + 3 x) dx e sin x − 1

p ln(1 + 3 x) x 1/3 1 lim+ sin x = lim+ = lim+ 2/3 = ∞ x→0 x→0 x→0 x e −1 x p ln(1 + 3 x) x→0+ x 1/3 1 ∼ = e sin x − 1 x x 2/3 Due to α = 32 < 1 so I converges. (HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

31 / 33

MatLab

EVALUATING INTEGRALS

1

>> s yms x; >> i nt (1/(1 + x 2 ), 0, i n f ) ⇒ Ans = pi /2

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

32 / 33

MatLab

EVALUATING INTEGRALS

1

>> s yms x; >> i nt (1/(1 + x 2 ), 0, i n f ) ⇒ Ans = pi /2

2

>> s yms x; >> i nt (1/(1 + x), 0, i n f ) ⇒ Ans = I n f

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

32 / 33

MatLab

EVALUATING INTEGRALS

1

>> s yms x; >> i nt (1/(1 + x 2 ), 0, i n f ) ⇒ Ans = pi /2

2

>> s yms x; >> i nt (1/(1 + x), 0, i n f ) ⇒ Ans = I n f

3

>> s yms x; >> i nt (1/sqr t (x), 0, 1) ⇒ Ans = 2

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

32 / 33

MatLab

EVALUATING INTEGRALS

1

>> s yms x; >> i nt (1/(1 + x 2 ), 0, i n f ) ⇒ Ans = pi /2

2

>> s yms x; >> i nt (1/(1 + x), 0, i n f ) ⇒ Ans = I n f

3

>> s yms x; >> i nt (1/sqr t (x), 0, 1) ⇒ Ans = 2

4

>> s yms x; >> i nt (1/x, 0, 1) ⇒ Ans = I n f

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

32 / 33

MatLab

THANK YOU FOR YOUR ATTENTION

(HCMUT-OISP)

IMPROPER INTEGRALS

HCMC — 2019.

33 / 33

More Documents from "Linh Phan"