Improper Integrals

  • Uploaded by: hyd arnes
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Improper Integrals as PDF for free.

More details

  • Words: 2,620
  • Pages: 11
Improper Integrals b

In defining the definite integral



f ( x) dx , we dealt with a function f defined on a

a

finite interval [a, b] and we assumed that f does not have an infinite discontinuity. However, we can extend the concept of a definite integral to the case where the interval is infinite and also to the case where f has an infinite discontinuity in [a, b]. In either case the integral is called an improper integral. I. Improper Integral on an Infinite Interval A. Definition ∞

M

1. If



f ( x) dx exists for every number M ≥ a , then

a



f ( x) dx =

a

M

lim

M →∞



f ( x) dx provided this limit exists (as a finite number).

a

b

2. If

b



f ( x) dx exists for every number M ≤ b , then



f ( x) dx =

−∞

M

b

lim

M → −∞



f ( x) dx provided this limit exists (as a finite number).

M



[Note: The integrals

b



f ( x) dx and



f ( x) dx are said to be convergent

−∞

a

if the corresponding limit exists and divergent if the limit does not exist.] ∞

3. If both



a

f ( x) dx and



−∞

used.]

f ( x) dx are convergent, then we define

−∞

a







a

f ( x) dx =



−∞

f ( x) dx +

∫ a

f ( x ) dx . [Note: Any real number a can be

1 B. Examples ∞

1. Evaluate

∫ 1



∫ 1

1 dx . x2 M



1 dx = Mlim →∞ x2

M

x

−2

1

−1   − 1 + 1 = 1 ⇒ dx = Mlim = Mlim  →∞  →∞  M    x 1



∫ 1

1 dx x2

converges to 1. ∞

2. Evaluate

∫ 1



∫ 1



∫ 1

1 x

dx

M

1 x 1 x

dx = Mlim →∞



1

1

x

{

dx = Mlim 2 x →∞

}

M 1

{

}

= Mlim 2 M −2 =∞⇒ →∞

dx diverges.

0

3. Evaluate



e x dx .

−∞ 0



0

e dx = Mlim → −∞ x

−∞

∫e

x

dx = Mlim → −∞

{e } x

0 M

{

e0 − e M = Mlim → −∞

}=

1–0=1 ⇒

M

0



e x dx converges to 1.

−∞ ∞

4. Evaluate



−∞ ∞



−∞

1 dx 1+ x2

1 dx = 1+ x2

0



−∞

1 dx + 1+ x2



∫ 0





1 1 dx = 2 dx (by symmetry) = 2 1+ x 1+ x2 0

2 M

2 Mlim →∞

∫ 0

1 dx = 2 Mlim { arctan x } →∞ 1+ x2

π  arctan M = 2  =π ⇒ 2 Mlim →∞ 2





−∞

M 0

{ arctan M − arctan 0} = = 2 Mlim →∞

1 dx converges to π . 1+ x2



5. Evaluate

∫ ln x dx . 1





M

ln x dx = Mlim →∞

1



ln x dx = Mlim { x ln x − x} 1M = Mlim [ { M ln M − M } – →∞ →∞

1

{1ln 1 − 1} ] = Mlim { M (ln M − 1)} + 1 =  lim M  ⋅ lim (ln M − 1) + 1 = →∞  M →∞

 M →∞





∞ ⋅ ∞ +1 = ∞ ⇒

∫ ln x dx diverges. 1



6. Evaluate



xe − x dx .

0





M

xe

−x

dx = Mlim →∞

0



{

xe − x dx = Mlim − xe − x − e − x →∞

0

}

M 0

−x 1 M = Mlim  x − x0 = →∞ e   e

1  − 0 1  −M − M  lim lim − − − . By L’Hospital’s Rule ,      M = M M 0 0 M →∞ M →∞  e

e 

e

e 

e



1  − 0 1   −1 −M lim lim = 0 − −  0 − 0  = (0 − 0) − (0 − 1) = 1 . . Thus,    M M M  M →∞ M →∞ e 

 e



Thus,

∫ 0

xe − x dx converges to 1.

e 

e

e 

3 II. Improper Integral with Discontinuous Integrand A. Definition b

1. If f is continuous on [ a, b ) and is discontinuous at b, then



f ( x) dx =

a

M

lim

M →b −



f ( x) dx if this limit exists (as a finite number).

a

b

2. If f is continuous on ( a, b ] and is discontinuous at a, then



f ( x) dx =

a

b

lim

M →a +



f ( x) dx if this limit exists (as a finite number).

M

b

[Note: The improper integral



f ( x) dx is called convergent if the

a

corresponding limit exists and divergent if the limit does not exist.] c

3. If f has a discontinuity at c, where a < c < b , and both



f ( x) dx and

a

b



b

f ( x) dx are convergent, then we define

c

∫ a

c

f ( x) dx =



f ( x) dx +

a

b



f ( x) dx .

c

B. Examples 1

1. Evaluate

∫ 0

1

∫ 0

1 dx . x2

1 dx = lim+ M →0 x2

1

∫ M

1  − 1 1  − 1 +  = +∞ ⇒ x −2 dx = Mlim   M = Mlim +  →0 + → 0 M  x 

4 1

∫ 0

1 dx diverges. x2 4



2. Evaluate

1

0

4



1

0

x

dx .

x

4



dx = lim+ M →0

x

4−2 0 = 4⇒



1 x

0

1

3. Evaluate

∫ 0

∫ 0

2

{ }

dx = Mlim 2 x →0 +

4 M

{

}

= Mlim 4−2 M = →0 +

M

4

1

−1

1− x2

dx .

M

1 1− x

1

dx converges to 4.

dx = lim− M →1

2

∫ 0

1 1− x

2

dx = lim− { arcsin x} M →1

lim { arcsin M − arcsin 0} = arcsin 1 − 0 = π ⇒ M →1− 2

1

∫ 0

M 0

1 1− x

=

dx converges to

2

1

4. Evaluate

∫ ln x dx . 0

1

1

∫ ln x dx = lim ∫ ln x dx = lim { x ln x − x} M →0 +

0

M →0 +

1 M

= (1 ln 1 − 1) −

M

lim ( M ln M − M ) = −1 − lim ( M ln M ) + 0 = −1 + lim M ln M . By M →0 M →0

M →0 +

+

+

1

ln M

L’Hospital’s Rule, Mlim M ln M = Mlim 1 →0 →0 +

+

M = = Mlim →0 − 1 M M2 +

π . 2

5

lim (−M ) = 0 . Thus, lim M →0

M →0 +

+

2



5. Evaluate

1

2



1

M

0

∫ ln x dx = −1 ⇒ ∫ ln x dx converges to – 1.

1 dx . x ln x 2



1 dx = Mlim →1+ x ln x

1

1

M

1 dx = Mlim { ln(ln x)} →1+ x ln x

2 M

ln(ln 2) − = Mlim →1+

lim ln(ln M ) = ln(ln 2) − ln(ln(1)) = ln(ln 2) − ln(0) = ln(ln 2) − (−∞) ⇒

M →1+ 2



1 dx diverges. x ln x

1

4



6. Evaluate

0

4



e

x

x

dx .

4

x

x

0

e

dx = lim+ M →0



e

M

x

x 4

2e − 2e = 2e − 2 ⇒ 2

0

2

∫ 0

{

dx = Mlim 2e →0 +

e

x

}

4 M

{

= Mlim 2e →0 +

4

− 2e

x

x

dx converges to 2e 2 − 2 .

Practice Sheet for Improper Integrals 1

(1)

∫ 0

1 1− x2

dx = 6

M

}=

∞ 1

(2)



e x

dx =

x2

1

4

(3)



1

dx =

4− x

0

4

(4)



e x

dx =

x

0



(5)

∫(

1

dx =

x ln x ) 2

e

3

(6)



x

0



(7)



0

dx =

9 − x2

x2 1 + x6

dx =

2

(8)



1

dx =

x x2 − 1

1



(9)



xe − x

dx =

0



(10)

∫ 1

1 1 + x2

dx = 7



(11)



x

dx =

1 + x2

0



(12)



1 xln x

dx =

e



(13)

∫ 0

arctan x

dx =

1+ x2

e

(14)



1 dx = x ln x

1

e

(15)

∫ 1

1 x(ln x) 2

dx =

Solution Key for Improper Integrals 1

(1)



M

1 1− x

0

2

dx =



lim

M → 1−

0

arcsin 1 − arcsin 0 =

π 2

1 1− x

2

dx =

1

. Thus,

∫ 0



(2)

M

1



e x dx = x2

1



∫ 1

lim M→ ∞

∫ 1

1

e x dx = x2

1 1− x

2

{

converges to

e−1

. 8

1

= lim {arcsin M −arcsin 0} M→ 1−

converges to

dx

lim −e M →∞

1

e x dx x2

{arcsin x} 0M

lim

M → 1−

x

}

M

1

{

= lim − e M →∞

1

M

π 2

.

}

+ e = −1 + e

. Thus,

=

4

(3)



M

1

dx =

4− x

0



Thus,

1 4− x

0

(4)

∫ 0

4



e

0



(5)

dx =

x



lim

M → 0+

x

e

dx =

x

M

M

M →4



M →4 −

{

x

lim 2e

M →0

+

}

4 M

{

= lim 2e + M →0

4

− 2e

M

} = 2e

2

−2

. Thus,

x

converges to

dx

x

∫ x( ln x)

2e 2 −2.

M

1

2

∫ x( ln x)

lim M→ ∞

=

dx

e



4− x

lim {−2 4 − x }0 = lim {−2 4 − M + 4} = 4

dx =

converges to 4. 4

x

e

1

0

4

4



lim

M → 4−

1

M

 −1   −1  +1 = 1  = lim  lim  M →∞ ln x e M →∞ ln M 

=

2

e

∫ x( ln x) 1

dx

2

. Thus,

converges to 1.

e

3

(6)



M

x 9− x

0

2

∫ 0



(7)

∫ 0

x2 dx 1 + x6

(8)

∫x 1

1 x −1 2

x 9 − x2

x 9− x

=



lim M→ ∞

0

. Thus,

∫ 0

2

dx

=

M → 1+

dx =

x2 dx = 1+ x6



lim

2

{

2 lim − 9 − x

M →3



}

M

0

{

= lim − 9 − M M →3−

2

}

+3 =

converges to 3.

dx

M

1 π  π 0=  = 3 2  6

2

M → 3−

0

3

3. Thus,



lim

=

dx

x2 dx 1 + x6

∫x M

1 x −1 2

M

1 1 3  3   arctan(M ) − lim  arctan( x ) = Mlim M →∞ 3 →∞ 3 0 

converges to

dx =

9

π 6

.

2 lim {arc sec x} M = arc sec 2 −

M→ 1+

.

π

2

π

lim {arc sec M } = 3 − 0 = 3

∫x

. Thus,

M →1+

1



(9)





xe − x dx



lim M→ ∞

=

0



(10)

∫ 1

π π π − = 2 4 4

π 3

.

lim  M →∞

{0 – 1}=



∫ xe

. Thus,

−x

converges to 1.

dx

0

∫ 1+ x

lim

=

x −1

converges to

1  1  − x − M − x  = lim  M − M  − x M → ∞ e e e e  0  

=

M

1 dx 1+ x2

dx

2

M

xe − x dx

0

 −1  lim  M − 0 + 1 = 1 M →∞ e 

1

M→ ∞

1

2

M {arctan M } −arctan 1 = lim {arctan x}1 = M lim →∞

dx =

M →∞

1



∫ 1+ x

. Thus,

1

2

π

converges to

dx

.

4

1



(11)

∫ 0

M

x dx 1+ x2



lim M→ ∞

=

0

x dx = 1+ x2



0 = ∞ − 0 = ∞

∫ 1+ x

. Thus,

x

2

dx

M

1 1 2  2   ln 1 + x  = lim  ln 1 + M  − lim M →∞ 2 M →∞ 2 

0





diverges.

0



(12)

∫ e

M

1 dx x ln x

∫ x ln x dx =

lim M→ ∞

=

lim {ln ln x

M →∞

}

M

e

{

= lim ln ln M M →∞

e



∞ −0 =∞

1

∫ x ln x dx

. Thus,

1

diverges.

e



(13)

∫ 0

arctan x dx 1 + x2

M

=

lim M→ ∞

∫ 0

arctan x dx = 1+ x2

M

 2  (arctan x )  = lim M →∞ 2 1



10

0

} −ln ln e

=





2

1 π  π2 1 2  (arctan M )  − 0 =   = lim M →∞ 2 22  8 

e

(14)



e

1 dx = x ln x



lim

M → 1+

M

1

0 −( − ∞ ) =∞

M →1+

∫ x ln x dx

. Thus,

0

lim {ln ln x

1 dx = x ln x

e

. Thus,

1

}

e M

arctan x dx 1 + x2

converges to

{

= ln ln e − lim ln ln M + M →1

}=

diverges.

1

e

(15)

∫ 1

e

1 x(ln x)

2

dx =



lim

M → 1+

M

e

− 1+ ∞ = ∞

. Thus,

−1

1 dx = x(ln x) 2

∫ x(ln x) 1

2

dx

e

−1

−1

    − lim   = = lim  1 M →1 ln x M M →1 ln M  +

diverges.

1

11

+

π2 8

.

Related Documents


More Documents from ""

Analiz Iii 10
November 2019 52
Continuous_functions
November 2019 55
Complex Functions
November 2019 66
Anal Iii 6
November 2019 67