The Imaginary Number I The number i The basic element of the set of imaginary numbers. It is defined as follows: i = \^~T, and fl — - L The number j is used to simplify square roots of negative numbers. For instance, if r is a positive real number, then V - r = z'Vrl Examples: V — 3 = iV? V — 36 — i"V36 = 6i Pure imaginary number Any number of the form bi, b *£ 0. Examples: 3i and i V? CAUTION
o&.
When a and b are negative,
V36 For example: V^ 1 6(- 1) = -6 Correct: xT !2i • 3z = 6z2 To avoid making mistakes, always express the square root of a negative number as a pure imaginary number before performing any other operation. Example 1
Simplify:
a. \/-98
Solution
a. V^W = iV9l
b. ^-9 --^25 b.
r
^9 • V^IS = i-s/9 • /V25 = 3i • 5i = ISi2 = - 15
Simplify. 2. V"31!?: 6. 7i • 5i 10. (-31
S. 3^-~ 9. (6/)2
12. (2/V3)2
Example 2
Simplify:
Solution
To rationalize the denominator of a fraction, you must eliminate the imaginary number i from the denominator. Use the fact mat i2 = - — 1.
a.
5i
a.
10
J_ 5i
10 .
J0_ _ hj5_ i\/5 ' i-s/5
4i
w 4i
lOiVB
4J 5
13.
14. '*
, V24 3/V8
18.
U.
16. 20.