Hypothesis Testing Roadmap ¾ If P > 0.05, then fail to reject HO ¾ If P < 0.05, then reject HO ¾ Ensure the correct sample size is taken.
Contingency Table HO: Data is normal HA: Data is not normal
START >>>
Variable or Attribute Data?
Stat>Basic Stat>Normality Test or Stat>Basic Stat>Descriptive Statistics (graphical summary)
Levene's Test H O : σ 1 = σ 2 = σ 3 ... H A : σ i ≠ σ j for i ≠ j
Attribute
2 Factor
1 or 2 Factor?
HO: FA Independent FB HA: FA Dependent FB Stat>Tables>Chi2 Test
Variable
1 Factor
(or at least one is different)
Stat>ANOVA> Homogeneity of Variance If HO is rejected, then you can go no further
2 or more levels
Fail to reject HO
1, 2 or more levels?
Data not Normal
1 Factor
Is data normal?
1 level
1, 2 or more Factors?
1 or >1 Levels?
1-Proportion Test HO: P 1 = P t HA: P 1 ≠ P t
1 Sample 1 level to test
t = target
Stat>Basic Stat> 1-Proportion
2 or more Factors 2-Proportion Test Data Normal
2 or more levels
2 levels or > 2 levels?
Test median or sigma?
2 levels only
Test for sigmas
Mann-Whitney Test
Chi2 Test
HO: M 1 = M 2 HA: M 1 ≠ M 2
HO: σ1 = σt HA: σ 1 ≠ σ t
Stat>Non-parametric> Mann-Whitney
t = target
Mood's Median Test (used with outliers) H O: M 1 = M 2 = M 3 ... HA: M i ≠ M j for i ≠ j
Test Medians
Stat>Basic Stat>Display Desc> Graphical Summary (if target sigma falls between CI, then fail to reject HO)
(or at least one is different)
Stat>Non-parametric> Mood's test
Kruskal-Wallis Test (assumes outliers) HO: M 1 = M 2 = M 3 ... H A: M i ≠ M j for i ≠ j (or at least one is different)
Stat>Non-parametric> Kruskal-Wallis
More than 2 levels
HO: P 1 = P 2 HA: P 1 ≠ P 2 Stat>Basic Stat> 2-Proportion
Bartlett's Test HO: σ1 = σ2 = σ3 ... HA: σ i ≠ σj for i ≠ j
Test for means
(or at least one is different)
Stat>ANOVA>Homogeneity of Variance If sigmas are NOT equal, proceed with caution or use Welch's Test, which is not available in Minitab
1 level
Test for mean or sigma?
2 levels
Test for mean or sigma?
Test for sigmas
Test for means
(or at least one is different)
Stat>ANOVA>1-Way (then select stacked or unstacked data)
Test for means 1-Sample t Test HO: μ1 = μt HA: μ 1 ≠ μ t
Test for sigmas
t = target
Chi2 Test HO: σ1 = σt HA: σ 1 ≠ σt t = target
Stat>Basic Stat>Display Desc> Graphical Summary (if target sigma falls between CI, then fail to reject HO)
1-Way ANOVA (assumes equality of variances) HO: μ1 = μ2 = μ3 ... HA: μ i ≠ μj for i ≠ j
Is Data Dependent?
No, Data is drawn independently from two populations
Yes, Data is Paired
Stat>Basic Stat> 1-Sample t
t = target
Stat>Non-parametric> and either 1-Sample Sign or 1-Sample Wilcoxon
DoE
1, 2 or >2 levels?
1-Sample Wilcoxon or 1-Sample Sign HO: M 1 = M t HA: M 1 ≠ Mt
2 Samples 2 levels to test for each 2 levels
2-Sample t Test F Test HO: σ1 = σ2 HA: σ 1 ≠ σ2 Stat>ANOVA> Homogeneity of Variance
HO: μ1 = μ2 HA: μ1 ≠ μ 2 Stat>Basic Stat> 2-Sample t (if sigmas are equal, use pooled std dev to compare. If sigmas are unequal compare means using unpooled std dev)
Paired t Test HO: μ1 = μ 2 HA: μ 1 ≠ μ2 Stat>Basic Stat> Paired t