Hw7

  • Uploaded by: Tikhon Bernstam
  • 0
  • 0
  • August 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Hw7 as PDF for free.

More details

  • Words: 3,753
  • Pages: 9
1

Assignment 7 — Solutions 3/7/04 Problem 5.2 (a)

For a single loop of current I on the x-y plane centered at the origin and observation point at f = 0: ÷” ÷”£ ÷” m0 I ÷ ” R ÿ a B1 = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅ “ W , W = ® ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 4p R3 S ` ÷ ” a£ = v£ v£ f£ z£ ` £ , ÷R” = x” £ - x” ` + z z` , x” £ = v£ v x” = v v R2 = †x” £ §2 - †x” §2 - 2 x” £ ÿ x” = v£2 + v2 + z2 - 2 v£ v cos f£

JK R S x

K x

z JK da′

JK x′

y

For z ∫ 0: W = ‡

2p

0

f£ ‡

2p ∑W ÅÅÅÅÅÅÅÅÅÅÅÅ = ‡ f£ ∑z 0

= ‡

0

2p

f£

2p ∑W ÅÅÅÅÅÅÅÅÅÅÅÅ = ‡ f£ ∑v 0

-z v£ v£ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 0 Hv£2 + v2 + z2 - 2 v£ v cos f£ L3ê2 b 3 z v£ v£ y £ jij- ÅÅÅÅ v Å ÅÅÅ Å Å + ÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 2 zzz ‡ 3 5 R 2 R k { 0 £ £2 2 2 b v - 2 z - 2 v£ v cos f£ L £ -v Hv +ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ‡ v ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 0 Hv£2 + v2 + z2 - 2 v£ v cos f£ L5ê2 b 3 z v£ H2 v - 2 v£ cos f£ L £ ÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ v ‡ 2 Hv£2 + v2 + z2 - 2 v£ v cos f£ L5ê2 0 b

∑W ÅÅÅÅÅÅÅÅÅÅÅÅ = 0 ∑f We can imagine the solenoid to be made up of an infinite stack of circular current loops each carrying current I . Since the system is azimuthally symmetric, fix the observation point x” at f = 0, and since the solenoid is infinitely long fix z = 0. The total magnetic field is the superposition of fields due to each loop, which we have from above as a function of relative position of the observation point from a given loop. Thus ¶ ¶ m0 I N ÷” ÷” BHvL = ‡ z N B1 Hv, zL = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ‡ z 4p -¶ -¶

ij ` ∑W ` ∑W y jz ÅÅÅÅÅÅÅÅÅÅÅÅ + v ÅÅÅÅÅÅÅÅÅÅÅÅ zz ∑v { k ∑z

∑W ê ∑v is odd in z in the range -¶ < z < +¶, so that integral vanishes. ∑W ê ∑ z is even in the same range, so for some infinitesimal e > 0:

Printed by Mathematica for Students

2

m0 I N ÷” BHvL = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 4p m0 I N = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 4p

-e e ¶ i ∑W y z N jjz` ÅÅÅÅÅÅÅÅÅÅÅÅ zz ì ‡ z = ‡ z = - ‡ z k ∑z { -¶ -e e -¶ ¶ e ÄÅ ÉÑ e I N ∑W m Å Ñ 0 ` Å Ñ` ‡ z z ÅÅÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ lim+ W - lim- WÑÑÑÑ z zØ0 4 p ∑ z Ç Ö zØ0 -e

J‡

-e

z + ‡

e

z + ‡



The splitting of ranges was necessary because W is discontinuous at z = 0, so ∑W ê ∑ z is proportional to a d-function. For v > a (observation point outside solenoid) limzØ0≤ W = 0 since no angle is subtended by a surface in the same plane but not inclusive of the observation point. For v < a, the area subtended approaches the entire hemisphere:

JK da′

JK da′

JK R

ε lim W = 2 p

zØ0+

JK R

−ε

lim W = -2 p

zØ0-

ï

lim W - lim- W = 4 p

zØ0+

÷” B m0 I N z` , v < a I N z` , v < a ÷” ÷÷÷” BHvL = : ï H HvL ª ÅÅÅÅÅÅÅÅÅ = : 0 , v>a 0 , v>a m0

zØ0

(b) Let's assume that a "realistic solenoid" is an infinite helix of outer radius a and with N turns per unit length, its axis being the z-axis. For a circular Amperian loop concentric with the solenoid and with radius v > a, the plane of the loop is pierced exactly once by the wire (geometrical property of helical curves), so 2p ÷” ” a f Bf Hv > a, f, zL = m0 I ‡ B ÿ l = ‡

÷” For any B -field related quantity f Hv, f, zL, define the average of f over a segment of length L of the solenoid as X f Hv, f, zL\ ª AŸzz+L z£ f Hv, f, z£ LE ë L. We can argue that X f \ is only a function of v in the limit L Ø ¶: 0

X f \ cannot depend on z because the solenoid is infinite so providing we average over enough turns X f \ should be invariant under translations in z, which can only be if it is independent of z.

X f \ cannot depend on f because when averaging over sufficiently many turns, a helix is symmetrical under rotations about its axis so the averaged quantity X f \ must also be independent of f. Thus

Printed by Mathematica for Students

3 z+L z+L 2p 2p 1 1 Xm0 I\ = ÅÅÅÅÅ ‡ z£ m0 I = ÅÅÅÅÅ ‡ z£ ‡ v f Bf Ha, f, z£ L = [‡ a f Bf _ L z L z 0 0 2p z+L 2p 1 1 ÅÅÅÅÅÅ m0 I L = ‡ v f ÅÅÅÅÅÅ ‡ z£ Bf Ha, f, z£ L = ‡ v f XBf \v>a L L z 0 0

m0 I = XBf \v>a ‡ 0 m0 I XBf \v>a = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 2pv

2p

v f = 2 p XBf \v>a

Similarly an Amperian loop of radius v < b, where b is the inner radius of the solenoid encloses no current, so XBf \v
We can show by contradiction that XBv \ = 0 everywhere. Suppose that XBv \ ∫ 0. Since XBv \ is independent of f and z, for a cylindrical Gaussian surface concentric with the solenoid ÷” ` 3 ÷ ” ÷” ‡  x “ ÿ XB\ = ® XB\ ÿ n a V S r 2p = ‡

0

+‡

v ‡

0

z0 +L z0

z

v f HXBz \z=z0 +L - XBz \z=z0 L

z ‡

2p

0

nˆ = zˆ z=z +L

r

0

z0 + L

r f XBv \v=r

nˆ = ϖˆ ϖ =r

S

z0

nˆ = − zˆ z =z

0

The integrand in the first term vanishes since XBz \ is independent of z. XBv \ is independent of f and z so ÷ ” ÷” 3 ÷ ” ÷” ‡  x “ ÿ XB\ = 2 p r L XBv \ ∫ 0 ï “ ÿ XB\ ∫ 0 somewhere V

But this is a contradiction of the fact that

z+L L 1 1 ÷ ” ÷” ÷ ” ÷” ÷ ” ÷” 0 = Y“ ÿ B] = ÅÅÅÅÅÅ ‡ z£ “ ÿ BHv, f, z£ L = ÅÅÅÅÅÅ ‡ z£ “ ÿ B Hv, f, z£ L ÷ ” ÷” L 0 L z “ ÿB = 0 ï L ÷” i 1 ÷ ” ÷” ÷” y = “ ÿ jj ÅÅÅÅÅÅ ‡ z£ BHv, f, z£ Lzz = “ ÿ XB\ kL 0 {

So it cannot be true that XBv \ ∫ 0.

For a rectangular Amperian loop G lying on a f-constant plane with the "left" edge within the solenoid and the "right" edge off at infinity:

Printed by Mathematica for Students

4 z0 +L ÷” ” z£ HBz §v - Bz §v+l L ‡ B ÿ l = ‡ G

z0

+‡

v+L

v

v£ HBv §z0 +L - Bv §z0 L

m0 Ienc = L XBz \ + ‡ Ienc = :

z

v+L

v

ϖˆ

v£ HBv §z0 +L - Bv §z0 L



NIL , va

Xm0 Ienc \ = XL XBz \\ + ‡

v+L

v

−ϖˆ

z0 + L

− zˆ z0

l

ϖ v£ HXBv \ §z0 +L - XBv \ §z0 L ï m0 Ienc = L XBz \

Finally we get l m0 I N z` , v < b o o ÷” o m0 I ` XB\ = m o o o ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ f , v > a n 2pv

Problem 5.3 Let z be the distance from the observation point (chosen to be at the origin) to one of the loops in the solenoid (carrying current I flowing clockwise as seen in the x-y plane), which then subtends an angle q: W = ‡

2p

f£ ‡

q

= 2 p H1 - cos qL ∑W ÷” “ W = ÅÅÅÅÅÅÅÅÅÅÅÅ z` ∑z 0

0

q£ sin q£ = -2 p ‡

1

cos q

Hcos q£ L

z

a

θ1

L1

Integrate over all loops using the formula in problem 5.1 to get the magnetic field:

L1 L1 m0 I ÷ ” m0 N I ∑W m0 N I ÷” z N ÅÅÅÅÅÅÅÅÅÅÅÅÅ “ W = ‡ z ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ z` = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ HW §z=-L2 - W §z=L1 L B = ‡ 4p 4p ∑z 4p -L2 -L2 m0 N I m0 N I = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅ @2 p - cosHp - q2 L - 2 p + cos q1 D = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Hcos q1 + cos q2 L 2 2

Printed by Mathematica for Students

0

θ2

L2

5

Problem 5.6

÷” For any cylinder of radius R with constant current density J = J z` , Ampere's law for a circular loop G of radius ` ÷” v < R concentric with the sylinder and on a constant-z plane gives [with B = B HvL f from azimuthal symmetry]: ÷” ” ÷” ÷” = m0 J p v2 BHvL 2 p v = ® B ÿ l = m0 ‡ J ÿ a 1 1 ` ÷” B = ÅÅÅÅÅ m0 J v f = ÅÅÅÅÅ m0 J H- y x` + x y` L 2 2 G

S

Displacing the cylinder by x0 along the x-axis is accomplished by substituting x Ø x - x0 . By superposition

y

y

JK J = J zˆ d

a

x

=

y

JJK J ′ = −J zˆ d

x

JJK J ′′ = J zˆ

+

x

b 1 1 1 ÷” ÷”£ ÷”≥ B = B + B = - ÅÅÅÅÅ m0 J @- y x` + Hx - dL y` D + ÅÅÅÅÅ m0 J H- y x` + x y` L = ÅÅÅÅÅ m0 J d y` , v < b 2 2 2

Problem 5.14

÷” Neglecting end effects we have a 2D problem, i.e. the z = 0 slice taking the cylinder axis as along the z-axis. J = 0 ÷” ÷” everywhere means we can write B = -“ F where the magnetic scalar potential F satisfies Laplace's equation and can be expanded in Legendre polynomials: F = ‚ IAl vl + Bl v-Hl+1L M Pl Hcos fL

l FI , v § a o o o o II = m F , a§v§b o o o III o , b§v nF ` ÷” lim F = B0 x = B0 v cos f lim B = B0 x ï vض l=0

JK B0 = B0 xˆ

y



ΦΙΙΙ

vض

The asymptotic form of F implies only the l = 1 term is nonzero in FIII :

Printed by Mathematica for Students

ΦΙΙ

ΦΙ a

µ0

µ

b

x

6

i BIII y FIII = jjjjB0 v + ÅÅÅÅÅÅÅÅÅÅÅÅÅ zzzz cos f v { k Continuity at the II-III and I-II boundaries similarly restricts the expansions to the l = 1 terms. Also in region I finiteness at v = 0 forces us to drop the 1 ê v term: i BII y FII = jjjj AII v + ÅÅÅÅÅÅÅÅÅÅ zzzz cos f ï FI = AI v cos f v { k

The boundary conditions are that B¦ = -∑F ê ∑v and H˛ = -@1 ê m HvL vD ∑F ê ∑f be continuous: -B¦

Region I

v§a

II

a§v§b

III

b§v

AIII cos f

BII zy jij AII - ÅÅÅÅÅÅÅÅ ÅÅ zz cos f jj 2z v k { III ij B y jjB0 - ÅÅÅÅÅÅÅÅÅÅÅÅÅ zzz cos f z j v2 { k

-H˛ 1 - ÅÅÅÅÅÅÅÅÅ AIII sin f m0

BII zy jij AII + ÅÅÅÅÅÅÅÅ ÅÅ zz sin f jj 2z v k { III i 1 B y - ÅÅÅÅÅÅÅÅÅ jjjjB0 + ÅÅÅÅÅÅÅÅÅÅÅÅÅ zzzz sin f m0 k v2 { 1 - ÅÅÅÅÅ m

BII v = a : AII - ÅÅÅÅÅÅÅÅÅÅ = AIII a2 m0 m0 i BII y BII i m - m0 y AII + ÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅ AIII = ÅÅÅÅÅÅÅÅÅ jjjj AII - ÅÅÅÅÅÅÅÅÅÅ zzzz ï BII = a2 jj ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ zz AIII 2 2 m m k a { a k 2 m0 { BIII BII v = b : B0 - ÅÅÅÅÅÅÅÅÅÅÅÅÅ = AII - ÅÅÅÅÅÅÅÅÅÅ b2 b2 III B m0 i BII y B0 + ÅÅÅÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅ jjjj AII + ÅÅÅÅÅÅÅÅÅÅ zzzz b2 m k b2 {

ï

m0 + m m0 - m BII B0 = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ AII + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ 2m 2m b2 m0 + m i m0 - m y BIII = b2 jj ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ zz AII + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ BII 2m k 2m {

4 m0 m b2 B0 AI = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = 4 m0 m b B0 b2 Hm0 + mL2 - a2 Hm - m0 L2

2 m Hm + m0 L b2 B0 AII = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = 2 m Hm + m0 L b B0 b2 Hm0 + mL2 - a2 Hm - m0 L2

2 m Hm + m0 L b2 a2 B0 BII = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = 2 m Hm - m0 L a2 b B0 b2 Hm0 + mL2 - a2 Hm - m0 L2

-b2 Hm2 + m20 L Hb2 - a2 L B0 BIII = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = -Im2 + m20 M Ib2 - a2 M b B0 b2 Hm0 + mL2 - a2 Hm - m0 L2

Printed by Mathematica for Students

1 b ª ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ b2 Hm0 + mL2 - a2 Hm - m0 L2

7

FI = 4 m0 m b B0 cos f v i a2 y FII = 2 m b B0 jjjjHm + m0 L v + Hm - m0 L ÅÅÅÅÅÅÅÅÅ zzzz cos f v{ k by i FIII = B0 jjv - Im2 + m20 M Ib2 - a2 M ÅÅÅÅÅÅÅÅ zz cos f k v{ Region I

1 ∑F Hv = - ÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ m ∑v -4 m b B0 cos f

i a2 y -2 b B0 jjjjHm + m0 L - Hm - m0 L ÅÅÅÅÅÅÅÅÅÅ zzzz cos f v2 { k b y B0 i - ÅÅÅÅÅÅÅÅÅ jj1 - Im2 + m20 M Ib2 - a2 M ÅÅÅÅÅÅÅÅÅÅ zz cos f m0 k v2 {

II III

1 ∑F Hf = - ÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ m v ∑f 4 m b B0 sin f

i a2 y 2 b B0 jjjjHm + m0 L + Hm - m0 L ÅÅÅÅÅÅÅÅÅÅ zzzz sin f v2 { k B0 i b y ÅÅÅÅÅÅÅÅÅ jj1 - Im2 + m20 M Ib2 - a2 M ÅÅÅÅÅÅÅÅÅÅ zz sin f m0 k v2 {

÷÷÷” ÷” ÷” Along the axis †H §v=0 = 4 m b B0 = †B§v=0 ë m so †B§v=0 = 4 m2 b B0 , i.e. ÷” †B§v=0 4 m2 b2 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ B0 b2 Hm0 + mL2 - a2 Hm - m0 L2 4 m2r = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Hmr + 1L2 - Ha ê bL2 Hmr - 1L2

÷” †B§v=0 log10 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = log10 H4L + 2 log10 Hmr L B0 -log10 AHmr + 1L2 - Ha ê bL2 Hmr - 1L2 E

÷” †B§v=0 log10 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ B0 4 log10 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 1 - Ha ê bL2

Problem 5.17 (a) and (b)

mr ª m ê m0 ÷” J Hx, y, zL = Jx Hx, y, zL x` + J y Hx, y, zL y` + Jz Hx, y, zL z` mr - 1 ÷”* J Hx, y, zL ª ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ @Jx Hx, y, -zL x` + J y Hx, y, -zL y` + Jz Hx, y, -zL z` D mr + 1

We need to show that the field

Printed by Mathematica for Students

a2 êb2 =0.5 a2 êb2 =0.1

log10 Hmr

8

l m0 x” - x” £ ÷”> ÷” ” £ ÷”* ” £ o 3 £ o ÅÅÅÅÅÅÅÅÅ , z ¥ 0 B ª ÅÅÅÅÅÅÅÅÅÅ ‡  x AJ Hx L + J Hx LEä ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ o o o 4p o ÷” †x” - x” £ §3 BHx, y, zL ª m o o m0 2 mr x” - x” £ ÷”< o 3 £ ÷” ” £ o o ÅÅÅÅÅÅÅÅÅ , z§0 o B ª ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ‡  x J Hx Lä ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 4 p mr + 1 †x” - x” £ §3 n

(1)

satisfies

÷” l ÷ ” ÷” o m0 J , z > 0 “ äB = m o0 , z<0 n

(2)

÷ ” ÷” “ ÿB = 0

(3)

÷”> ÷”< < IB - B M ÿ z` •z=0 = 0 ï B> z §z=0 = Bz §z=0

(4)

< mr B> x §z=0 = Bx §z=0 ÷÷÷”> ÷÷÷”< ` `z äIH - H M ÿ z•z=0 = 0 ï mr B>y • = B
(5)

÷” (3) is automatic since we've written B in terms of currents. Since z=0

z=0

x” - x” £ ÷ ” m0 ÷è” ÷è” ” £ “ ä ÅÅÅÅÅÅÅÅÅÅ ‡ 3 x£ J Hx” £ Lä ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ Å ÅÅÅÅ = m J 0 Hx L 4p †x” - x” £ §3

÷è” for any J , we have

÷” ÷”* ÷” l m0 J + m0 J = m0 J , z > 0 o o o ÷ ” ÷” o “ äB = m 2 mr ÷” o o , z<0 o o ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ m0 J = 0 n mr + 1

÷”* ÷” since J §z>0 = 0 and J §z<0 = 0. Thus (2) is satisfied.

ƒƒ x` y` z` ƒƒƒƒ ƒƒ ƒ ƒ ÷” ƒ Jy Jz ƒ§ J ä Hx” - x” £ L = †ƒ Jx ƒƒ ƒƒ ƒƒƒ x - x£ y - y£ z - z£ ƒƒƒƒ = x` @Hz - z£ L J y - Hy - y£ L Jz D + y` @Hx - x£ L Jz - Hz - z£ L Jx D + z` @Hy - y£ L Jx - Hx - x£ L J y D

For conciseness in the following integrals the arguments to a function f Hx£ , y£ , z£ L being integrated over will be suppressed when there is no ambiguity. The image function f Hx£ , y£ , -z£ L will be written as f H-z£ L. "################################ ################## Hx - x£ L2 + Hy - y£ L2 + z£2 m0 mr - 1 mr - 1 3 £ £ ij £ £ yz £ ij £ £ yz B> z §z=0 = ÅÅÅÅÅÅÅÅÅÅ ‡  x Hy - y L j Jx Hz L + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Jx H-z Lz - Hx - x L j J y Hz L + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ J y H-z Lz mr + 1 mr + 1 4p k { k { r0 ª

Printed by Mathematica for Students

1 ÅÅÅÅÅÅÅÅ r30

9

A change of variables -z£ Ø z£ takes Ÿ x£ f Hx£ , y£ , -z£ L gHr0 L = Ÿ x£ f Hx£ , y£ , z£ L gHr0 L for any function f and function g of r0 only, since the range is over all space and r0 is invariant under -z£ Ø z£ . Performing this on the integrals involving Ji H-z£ L: m0 B> z §z=0 = ÅÅÅÅÅÅÅÅÅÅ 4p

mr - 1 zy jij1 + ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ z ‡ 3 x£ @Hy - y£ L Jx - Hx - x£ L J y D m + 1¨¨¨¨¨{Æ k ¨¨¨¨¨¨¨≠r¨¨¨¨¨¨¨¨ ´¨¨¨¨¨¨¨¨ 2 mr êH1+mr L

1 ÅÅÅÅÅÅÅÅ r30

Evaluating (1) at z = 0 gives m0 2 mr 3 £ £ £ B< z §z=0 = ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ‡  x @Hy - y L Jx - Hx - x L J y D 4 p 1 + mr

1 ÅÅÅÅÅÅÅÅ r30

which verifies (4). B> x §z=0 =

É ÄÅ m0 mr - 1 mr - 1 ÅÅ £ ij yz ij yzÑÑÑÑ 3 £ £ £ £ £ £ Å ÅÅÅÅÅÅÅÅÅÅ ‡  x ÅÅ-z jJ y Hz L + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ J y H-z Lz - Hy - y L jJz Hz L - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Jz H-z LzÑÑ ÅÅÇ mr + 1 mr + 1 4p { k {ÑÑÖ k

1 ÅÅÅÅÅÅÅÅ r30

Again we change variables -z£ Ø z£ in the second and last integrals, under which the J y H-z£ L term picks up a minus sign and the rest are unchanged: m0 B> x §z=0 = ÅÅÅÅÅÅÅÅÅÅ 4p

mr - 1 yz ij j1 - ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ z ‡ 3 x£ @-z£ J y - Hy - y£ L Jz D + 1¨¨¨¨¨{Æ k´¨¨¨¨¨¨¨¨¨¨¨¨¨¨m¨≠r¨¨¨¨¨¨¨¨ 2êH1+mr L

1 ÅÅÅÅÅÅÅÅ r30

Comparing this to (1) at z = 0: m0 2 mr 3 £ £ £ B< x §z=0 = ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ‡  x @-z J y - Hy - y L Jz D 4 p 1 + mr

1 ÅÅÅÅÅÅÅÅ = mr B> x §z=0 r30

which verifies the part of (5) involving Bx . An identical computation with x ¨ y (there is only an overall sign switch) shows that the part involving B y is satisfied. Thus we've shown that this choice of image currents defines ÷” the correct B field for the boundary conditions (and other conditions that must be satisfied by any magnetic field). Incidentally (because we've "cheated" and used the answer) the z < 0 part of (1) is manifestly the field due to a ÷” current H2 mr ê mr + 1L J in m0 (unit relative permeability) space, thus solving (b).

Printed by Mathematica for Students

Related Documents

Hw7
August 2019 16
Hw7
June 2020 7
Hw7
August 2019 18
Hw7
December 2019 13
Hw7
June 2020 7
Hw7
November 2019 15

More Documents from ""