Week 7 Problems: 1)
Find the general solution in real form to − 3 0 2 x′ = 1 − 1 0 x . − 2 −1 0 Solution:
First find the eigenvalues: −3−λ 1 −2
0 −1 − λ −1
2 0 = −λ3 − 4λ2 − 7λ − 6 = 0 ⇒ λ = −2, − 1 ± i 2 −λ
Next find the eigenvectors:
λ = −2 : − 1 0 2 x1 0 2 1 0 x 2 = 0 ⇒ x1 = 2 x3 , x1 = − x 2 ⇒ x = − 2 1 − 2 − 1 2 x 0 1 3 is an eigenvector. λ = −1 + i 2 : − 2 − i 2 1 −2
0 2 x1 0 2 x1 , x1 = i 2 x 2 −i 2 0 x 2 = 0 ⇒ x3 = 1 + i 2 − 1 1 − i 2 x3 0 i 2 0 2 = 1 + i 0 ⇒ x= 1 − 1 + i 2 − 1 2 The general solution is: 0 0 2 2 2 − 2t −t x = C1 − 2 e + C 2 1 cos 2t − 0 sin 2t e + C 3 1 sin 2t + 0 cos 2t e −t 1 − 1 − 1 2 2
( )
( )
2)
( )
Find the solution to the initial value problem
( )
( )
1 0 0 −1 x ′ = − 4 1 0 x, x ( 0 ) = 2 3 6 2 − 30 Solution: Eigenvalues are λ=1, 1, 2 by inspection. The eigenvectors are:
λ = 2: − 1 0 0 x1 0 0 − 4 − 1 0 x 2 = 0 ⇒ x1 = x 2 = 0, x3 arbitrary ⇒ x = 0 3 1 6 0 x3 0 is an eigenvector.
λ = 1: 0 0 0 x1 0 0 − 4 0 0 x 2 = 0 ⇒ x1 = 0, 6 x 2 + x3 = 0 ⇒ x = 1 3 6 1 x 0 − 6 3 is an eigenvector and there are no other linearly independent eigenvectors. Two solutions are: 0 0 2t ( 2) x = 0 e , x = 1 e t 1 − 6 Look for another solution of the form ( 1)
0 0 0 u1 0 1 x = t ⋅ x + ue ⇒ − 4 0 0 u 2 = 1 ⇒ u1 = − , 3u1 + 6u 2 + u 3 = −6 4 3 6 1 u − 6 3 1 1 − − 0 4 4 ⇒ u = 0 ⇒ x ( 3) = 1 te t + 0 e t − 6 − 21 − 21 4 4 is another solution. Therefore ( 3)
( 2)
t
1 0 − 0 0 2t t t 4 t x = C1 0 e + C 2 1 e + C 3 1 te + 0 e 1 − 6 − 6 − 21 4 is the general solution. Applying the initial conditions gives 1 − C3 −1 4 C2 = 2 ⇒ C 3 = 4, C 2 = 2, C1 = 3 21 C1 − 6C 2 − C 3 − 30 4 1 0 − 0 0 2t t t 4 t ⇒ x = 3 0 e + 2 1 e + 4 1 te + 0 e 1 − 6 − 6 − 21 4 is the solution. 3)
Let Φ be a fundamental matrix for the problem y ′ = Ay that has the property that 0 I . Show that Z1 t s and Z 2 t s both satisfy the initial value problem Z AZ , Z 0, s s .
Solution: Since t is a fundamental matrix for y Ay we have t A t t s A t s t s A t s . Therefore t s satisfies the equation. We also have 0 s I s s
For the initial condition. Since t is a fundamental matrix for y Ay we have d t s A t s . dt Therefore t s satisfies the equation. We also have
ts
d A . Let d
t s
t 0
s
so exactly the same initial condition is satisfied. Since linear initial value problems have unique solutions and we find that t s and t s satisfy the same initial value problem we can conclude that they are equal. 4)
Find the general solution to e −2t 1 1 y y t 4 2 2e by the method of variation of parameters as described in our text and by the method of variation of parameters using the special fundamental matrix Φ as described in class. Solution: A fundamental matrix for the homogeneous equations is easily found and is e −3t Y = − 3t − 4e
e 2t 1 1 X = 2 t with a corresponding matrix of eigenvectors e − 4 1 1 − 3t 1 2t . General solutions are found in the form y = C1 e + C 2 e + y p − 4 1 where now we find the particular solutions by various methods. “Book’s Method”: 1 3t e = 5 4 e −2t 5
1 1 t 2 4t − e 3t − 2t e + e e 5 ⇒ Y −1 5 5 Y −1 = − 2e t 4 − 4t 2 −t 1 −2t e e − e 5 5 5 1 t 1 4t 1 t − 2t − 2t e + e e −1 e −1 e 5 10 ⇒ ∫Y dt = ⇒ yp = Y ∫Y dt = 2 t t − e −2t − 1 e − 4t + 2 e −t − 2e − 2e 5 5 “Φ”- Method: 1 Y −1 ( 0 ) = 5 4 5
1 1 − 3t 4 2 t − e + e 5 ⇒ Φ = Y ( t )Y −1 ( 0 ) = 5 5 1 4 − 3 t − e + 4 e 2t 5 5 5
1 1 − e −3t + e 2t 5 5 4 − 3t 1 2 t e + e 5 5
1 −3( t − s ) 4 2 ( t − s ) + e e 5 yp = ∫ 5 4 4 − 3 ( t − s ) 0 − e + e 2( t −s ) 5 5 1 t 3 −3t 1 2t e − e − e 10 5 = 2 − e − 2 t + 6 e − 3t − 1 e 2 t 5 5 t
1 1 − e −3( t − s ) + e 2 ( t − s ) e − 2 s 5 5 ds 4 −3( t − s ) 1 2( t − s ) − 2e s e + e 5 5
(Note: the last particular solution varies from the other by the addition of homogeneous solutions and is still a valid particular solution.) 5)
Use the method of diagonalization to find a particular solution to Problem 4. Solution: We can use the eigenvalues and eigenvectors found above. 1 1 1 1 1 2t 2 t 2t e e 1 1 5 5 5 5 e 5 5 1 1 X X 4 1 X g 4 1 t 4 1 4 2e e 2t 2 et 5 5 5 5 5 5 1 2t 2 t e e u u 3 0 1 1 5 5 0 2 u2 4 e 2t 2 et u2 5 5 Let
1 1 2 A 3 A 5 A 5
u1 Ae 2t Bet
B 3 B 2 B 1 5 10 4 1 2C 2C C 5 5 u2 Ce 2t Det D 2D 2 D 2 5 5 1 2t 1 t e e 1 t e 1 1 5 10 y p Xu 2 4 1 1 e 2t 2 et e 2t 5 5