Hw7

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Hw7 as PDF for free.

More details

  • Words: 2,188
  • Pages: 5
Week 7 Problems: 1)

Find the general solution in real form to  − 3 0 2   x′ =  1 − 1 0  x . − 2 −1 0   Solution:

First find the eigenvalues: −3−λ 1 −2

0 −1 − λ −1

2 0 = −λ3 − 4λ2 − 7λ − 6 = 0 ⇒ λ = −2, − 1 ± i 2 −λ

Next find the eigenvectors:

λ = −2 :  − 1 0 2  x1   0   2         1 0  x 2  =  0  ⇒ x1 = 2 x3 , x1 = − x 2 ⇒ x =  − 2   1  − 2 − 1 2  x   0   1    3      is an eigenvector. λ = −1 + i 2 : − 2 − i 2   1   −2

0 2  x1   0       2  x1 , x1 = i 2 x 2 −i 2 0  x 2  =  0  ⇒ x3 = 1 + i  2       − 1 1 − i 2  x3   0   i 2   0   2        =  1  + i 0  ⇒ x= 1        − 1 + i 2   − 1  2  The general solution is:  0    0    2  2  2              − 2t −t    x = C1  − 2 e + C 2  1  cos 2t −  0  sin 2t e + C 3  1  sin 2t +  0  cos 2t e −t            1    − 1    − 1  2 2          

( )

( )

2)

( )

Find the solution to the initial value problem

( )

( )

 1 0 0  −1      x ′ =  − 4 1 0  x, x ( 0 ) =  2   3 6 2  − 30      Solution: Eigenvalues are λ=1, 1, 2 by inspection. The eigenvectors are:

λ = 2:  − 1 0 0  x1   0   0         − 4 − 1 0  x 2  =  0  ⇒ x1 = x 2 = 0, x3 arbitrary ⇒ x =  0   3 1 6 0  x3   0     is an eigenvector.

λ = 1:  0 0 0  x1   0   0          − 4 0 0  x 2  =  0  ⇒ x1 = 0, 6 x 2 + x3 = 0 ⇒ x =  1   3 6 1  x   0   − 6   3      is an eigenvector and there are no other linearly independent eigenvectors. Two solutions are: 0  0    2t   ( 2) x =  0 e , x =  1 e t 1  − 6     Look for another solution of the form ( 1)

 0 0 0  u1   0       1 x = t ⋅ x + ue ⇒  − 4 0 0  u 2  =  1  ⇒ u1 = − , 3u1 + 6u 2 + u 3 = −6 4  3 6 1  u   − 6    3     1  1 −  −  0      4  4 ⇒ u =  0  ⇒ x ( 3) =  1 te t +  0 e t  − 6  − 21   − 21     4  4     is another solution. Therefore ( 3)

( 2)

t

  1   0  −   0  0    2t   t   t  4  t  x = C1  0 e + C 2  1 e + C 3   1 te +  0 e  1  − 6  − 6  − 21        4        is the general solution. Applying the initial conditions gives 1   − C3    −1  4     C2   =  2  ⇒ C 3 = 4, C 2 = 2, C1 = 3  21     C1 − 6C 2 − C 3   − 30  4     1   0  −   0  0    2t   t   t  4  t  ⇒ x = 3 0 e + 2 1 e + 4  1 te +  0 e  1  − 6  − 6  − 21          4       is the solution. 3)

Let Φ be a fundamental matrix for the problem y ′ = Ay that has the property that   0   I . Show that Z1    t    s  and Z 2    t  s  both satisfy the initial value problem Z   AZ , Z  0, s     s  .

Solution: Since   t  is a fundamental matrix for y   Ay we have   t   A  t     t    s   A  t    s      t    s     A  t    s  . Therefore   t    s  satisfies the equation. We also have   0   s   I   s     s 

For the initial condition. Since   t  is a fundamental matrix for y   Ay we have d  t  s  A  t  s  . dt Therefore   t  s  satisfies the equation. We also have

 ts

d    A    . Let d

  t  s

t 0

   s

so exactly the same initial condition is satisfied. Since linear initial value problems have unique solutions and we find that   t  s  and   t    s  satisfy the same initial value problem we can conclude that they are equal. 4)

Find the general solution to  e −2t   1 1    y   y    t   4  2   2e  by the method of variation of parameters as described in our text and by the method of variation of parameters using the special fundamental matrix Φ as described in class. Solution: A fundamental matrix for the homogeneous equations is easily found and is  e −3t Y =  − 3t  − 4e

e 2t   1 1   X =  2 t  with a corresponding matrix of eigenvectors e   − 4 1  1  − 3t 1 2t . General solutions are found in the form y = C1  e + C 2  e + y p  − 4 1 where now we find the particular solutions by various methods. “Book’s Method”:  1 3t  e = 5  4 e −2t  5

1   1 t 2 4t  − e 3t  − 2t  e + e    e 5  ⇒ Y −1  5   5  Y −1 =  − 2e t   4 − 4t 2 −t  1 −2t    e   e − e  5 5   5  1 t 1 4t   1 t  − 2t − 2t  e + e     e  −1  e −1  e 5 10       ⇒ ∫Y  dt = ⇒ yp = Y ∫Y  dt =  2  t  t   − e −2t   − 1 e − 4t + 2 e −t   − 2e   − 2e      5   5 “Φ”- Method: 1  Y −1 ( 0 ) =  5 4  5

1  1 − 3t 4 2 t −   e + e 5  ⇒ Φ = Y ( t )Y −1 ( 0 ) =  5 5 1  4 − 3 t  − e + 4 e 2t   5  5  5

1 1  − e −3t + e 2t  5 5  4 − 3t 1 2 t  e + e  5 5 

 1 −3( t − s ) 4 2 ( t − s ) + e  e 5 yp = ∫ 5 4 4 − 3 ( t − s ) 0 − e + e 2( t −s )  5  5  1 t 3 −3t 1 2t   e − e − e  10 5  = 2  − e − 2 t + 6 e − 3t − 1 e 2 t    5 5   t

1 1  − e −3( t − s ) + e 2 ( t − s )  e − 2 s  5 5  ds 4 −3( t − s ) 1 2( t − s )  − 2e s  e + e  5 5 

(Note: the last particular solution varies from the other by the addition of homogeneous solutions and is still a valid particular solution.) 5)

Use the method of diagonalization to find a particular solution to Problem 4. Solution: We can use the eigenvalues and eigenvectors found above. 1 1  1  1  1 2t 2 t      2t e  e     1 1 5 5 5 5  e   5 5 1 1 X      X   4 1   X g   4 1  t   4 1 4     2e   e 2t  2 et          5   5 5   5 5   5  1 2t 2 t  e  e   u u  3 0  1    1  5 5          0 2   u2   4 e 2t  2 et   u2    5   5 Let 

1 1  2 A  3 A  5  A  5

u1  Ae 2t  Bet  

 B  3 B  2  B  1  5 10 4 1  2C  2C   C     5 5 u2  Ce 2t  Det    D  2D  2  D  2  5 5  1 2t 1 t  e  e   1 t  e  1 1  5 10 y p  Xu     2    4 1   1 e 2t  2 et   e 2t      5   5

Related Documents

Hw7
August 2019 16
Hw7
June 2020 7
Hw7
August 2019 18
Hw7
December 2019 13
Hw7
June 2020 7
Hw7
November 2019 15