C ALIFORNIA S TATE U NIVERSITY, B AKERSFIELD (CSUB) D EPARTMENT OF E LECTRICAL & C OMPUTER E NGINEERING & C OMPUTER S CIENCE ECE 423: D IGITAL C OMMUNICATIONS
Homework 4 Solution
QUESTION 1:(25 POINTS) You are given the baseband signals (i) m(t ) = cos 1000πt ; (ii) m(t ) = 2 cos 1000πt +sin 2000πt ; (iii) m(t ) = cos 1000πt cos 3000πt ; (iv) m(t ) = exp(−10|t |). For each one, do the following.
a) Sketch the spectrum of m(t ). b) Sketch the spectrum of the DSB-SC signal m(t ) cos 10, 000πt . c) Identify the upper sideband (USB) and the lower sideband (LSB) spectra. Chapter 4
Answer:
(i) m (t) = COS Wm t = cos 21rfm t = cos 10007rt -+ fm = 500Hz. M(f) = 0.M(f - 500) + 0.5o(f + 500).
M(j)
(i)
Modulated signal spectrum
500
-500 (ii) Magnitude
IM(j)I
LSB
USB
\
1/2 /(Hz)
l/4
-5.5
LSB
USB
500 1000
-2000
-1000
1/2 l/4
5.5 /(kHz)
USB
LSB
4 4.5
-6 -5.5 -4.5 -4
Modulated signal spectrum
USB
,-114
4.5 Modulated magnitude spectrum
1/2 -500
USB
\
-4.5
1
-1000
LSB
5.5
LSB
LSB
6
USB
1/8
1000 2000
-7 -6
-4 -3
/(kHz)
3 4
6
7
(kHz)
(ii) Phase:
L.M(f)
7r /2
LS(!! rr/ 2
)
'
500 -500
-rr/2
/(Hz)
-5.5
)
-4.5
4.5 -'Tr /2
--
5.5 f (kHz) C)
1
USB LSB
,-114 -2000
-1000
1000 2000
-7 -6
LSB
USB
1/8
-4 -3
3 4
6
7
(kHz)
(ii) Phase:
L.M(f)
7r /2
500 -500
/(Hz)
-rr/2
LS(!! rr/ 2
)
#
'
-5.5
)
66f
-4.5
-'Tr /2
--
5.5 f (kHz)
4.5
C)
66f#V
(ii) m (t) = 2 cos Wm,1t + sin Wm,2t = 2cos 21rJm ,1t + sin 21rfm,2t = 2cos 10001rt + sin 20001rt - 500) +D:f _. M(f) = o(f - 1000) + o(f + 1000) - o.5jo(f o.5jo(f + 500) + o(f + 1000) + o.M(f - 500) + o.M(f + 500) IM(J)I = o(f - 1000)
*(
*(f
f 6f
ff56fff50
56fffffff
d!fHfMI"Nf Qf
$V
V
%=cf
56
6
6f
56fW>c
,_ff^T[f 30fPYf 4_f9f3O\^f-&'0_ff^U[f3'&1` RR Xf_f 3fO\^fGY ,_f ^SZfGY 4_f 3O\^f3/f Kf )'&f )'&f 5'f 5&& @EC@f )'&f )'&f ]FPf 5'f]FPf 5&& 5&f
2
L_M(f) = {
/2, 0,
(iii) m(t) = coswm ,1t·coswm ,2t = cos 10001rt·cos30001rt = f m ,I = lOOOHz f m ,2 = 2000Hz (iv) Since m(t) = e-lOJtl we have ,
f = 500 f = -500 else
-7r /2,
7r
F(m(t)) = M(f)
! (cos21rf
=
m .1t
!
+ cos21rfm .2t) = (cos20001rt + cos 40001rt)--+
20 100+41r2f2
/(Hz) .J-0
20
·20
JO
Spectrum of e .. 1111•1 co� ( 100001TI.)
0
f (Hz)
51
3
(b) Sketch the spectrum of the DSB‐SC signal m(t ) cos 10000πt . (c) Identify the upper sideband (USB) and the lower sideband (LSB) spectra. 2. (4.2‐7)Two signals m (t) and m (t), both band‐limited to 5000 Hz, are to be transmitted
2 QUESTION 2:(25 POINTS) 1 simultaneously over a channel by the multiplexing scheme shown in Fig. 1. The signal at point b Two signalsis the multiplexed signal, which now modulates a carrier of frequency 20,000 Hz. The modulated m 1 (t ) and m 2 (t ), both band-limited to 5000 Hz, are to be transmitted simultaneously over asignal at point c is transmitted over a channel. channel by the multiplexing scheme shown in the following figure. The signal at (a) Sketch signal spectra at points a, b, and c. point b is the multiplexed signal, which now modulates a carrier of frequency 20, 000 Hz. The (b) What must be the bandwidth of the distortionless channel? modulated (c) signal at point c is transmitted over a channel. Design a receiver to recover signals m (t) and m (t) from the modulated signal at point c. 1
2
M1(f)
m1(t) -5000
0
5000
f
Σ
M2(f)
m2(t) -5000
0
5000
b
c
a 2cos(40000πt)
f
2cos(20000πt)
Fig. 1
a) Sketch signal spectra at points a, b, and c. b) What must be the bandwidth of the distortionless channel? c) Design a receiver to recover signals m 1 (t ) and m 2 (t ) from the modulated signal at point c.
Answer:
(b) From the spectrum at point c, it is clear that the channel bandwidth must be at least 30000 Hz (from 5000 Hz to 35000 Hz).
4
(c) The following figure shows the receiver diagram to recover both m 1 (t ) and m 2 (t ) from the modulated signal at point c.
5
QUESTION 3:(25 POINTS) QUESTION POINTS) An amateur audio 3:(25 scrambler/descrambler pair is shown in the following figure. An amateur audio scrambler/descrambler EE456–Digital Communications (Fall 2015) pair is shown in the following figure. ASSIGNMENT M( f )
A
−10 kHz
LPF 0-20 kHz
m( t )
0
10 kHz
f
x (t )
2 cos(ω0t )
2 cos(40,000π t )
z (t )
LPF 0-10 kHz
y (t )
Figure 4: An audio scrambler considered in Question 6.
a) Graphically find and show the spectra of signals x(t ), y(t ), and z(t ) when ω0 = 20, 000π.
(b) Graphically find and show the spectra of signals y(t) and z(t) when ω0 = 30, 000π. a) Graphically find and show the spectra of signals x(t ), y(t ), and z(t ) when ω0 = 20, 000π.
b) Graphically findwhether and show theyou spectra of signals z(t) y(t ),toand z(t ) m(t). when ω0 = 30, 000π. (b) Show or not can descramble recover
b) Graphically andorshow the of signals y(t ), m(t and). z(t ) when ω0 = 30, 000π. c) Showfind whether not you canspectra descramble z(t ) to recover c) Show whether or not you can descramble z(t ) to recover m(t ). Answer: (a) X(/)
_,/
·20
10
·10
·'
20
/(kHz)
Y(/1
/o • ··� ��
-30
-20
-10
10
/�/
20
(lt�z)
30
If',,'·· -10 University of Saskatchewan
10
/(kHz)
Page 3
3
6
(b)
(c) We are able to recover m(t ) from z(t ) in part (a) as shown in the following figure.
But we are not able to recover m(t ) from z(t) in part (b).
7
QUESTION 4(25 POINTS) A modulating signal m(t ) is given by:
a) m(t ) = cos 100πt + 2 cos 300πt b) m(t ) = sin 100πt sin 500πt In each case:
i. Sketch the spectrum of m(t ). ii. Find and sketch the spectrum of the DSB-SC signal 2m(t ) cos 1000πt . iii. From the spectrum obtained in part (ii), suppress the LSB spectrum to obtain the USB spectrum.
iv. Knowing the USB spectrum in part (ii), write the expression φU SB (t ) for the USB signal. v. Repeat part (iii) and (iv) to obtain the LSB signal φLSB (t ). Answer: To generate a DSB-SC signal from m(t ), we multiply m(t ) by cos(ωc t ). However, to generate the signals of the same relative magnitude, it is convenient to multiply m(t ) by 2 cos(ωc t ). This also avoids the nuisance of the fractions 1/2, and yields the DSB-SC spectrum M (ω − ωc ) + M (ω + ωc ) We suppress the USB spectrum (above We and below −ωc ) to obtain the LSB spectrum. Similarly, to obtain the USB spectrum, we suppress the LSB spectrum (between −ωc and ωc ) from the DSB-SC spectrum. The following figures show the three cases.
8
I 1 �I I
f IP-1/1
�J
fi
-ISO -SO
fso
150
__J_tJTL .. -4SO -JSO
o I
350 450
-6SO -5SO
f
I
-1.50 -350 0
JSO -4SO
5SO
6SO
f j O>,-(Jl
l_J____ --- - ��________J_l
-6SO -5SO
-4SO -JSO O
JSO 4SO
(a) We can express
usB (t) = cos (I I001rt) + 2 cos ( 13001rt). (b) We can express:
LSB (t) =
! [cos (4007Tt)+ cos (6007Tt)]
and usa (t) =
1 I r�·I I ,
·'.!00 -200
ll
.)00
-200
0
I
0
200
JOO
I
! [cos (14001rt) + cos (16007Tt)].
11 1I
-800 -700
O>,.,.(J)
11
4
I l ..
200
�
I
11
-MOO
-700
-300 -200
l '" 11
'l "
200 JOO
0
u
O>,,..(/)
I1
700
IIOO
I
�
a>,,.(J)
II
700
800
I
�
9 = [cos (100,rt)+ 2cos (3007Tt)] cos (lOOOt)+ [sin (I001rt)+ 2sin (3001rt)] sin (lOOOt) = cos (1000 - 100,r)t+ 2cos (1000 - 3001r)t (t) usa , = [cos (1001rt) + 2cos (3007Tt)] cos (IOOOt) - (sin (l001rt)+ 2sin (3001rt)) sin (lOOOt) = cos (1000 + 100,r)t + 2cos (1000 + 300,r)t
66