Hw4_solution.pdf

  • Uploaded by: Masud Sarker
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Hw4_solution.pdf as PDF for free.

More details

  • Words: 1,563
  • Pages: 9
C ALIFORNIA S TATE U NIVERSITY, B AKERSFIELD (CSUB) D EPARTMENT OF E LECTRICAL & C OMPUTER E NGINEERING & C OMPUTER S CIENCE ECE 423: D IGITAL C OMMUNICATIONS

Homework 4 Solution

QUESTION 1:(25 POINTS) You are given the baseband signals (i) m(t ) = cos 1000πt ; (ii) m(t ) = 2 cos 1000πt +sin 2000πt ; (iii) m(t ) = cos 1000πt cos 3000πt ; (iv) m(t ) = exp(−10|t |). For each one, do the following.

a) Sketch the spectrum of m(t ). b) Sketch the spectrum of the DSB-SC signal m(t ) cos 10, 000πt . c) Identify the upper sideband (USB) and the lower sideband (LSB) spectra. Chapter 4

Answer:

(i) m (t) = COS Wm t = cos 21rfm t = cos 10007rt -+ fm = 500Hz. M(f) = 0.M(f - 500) + 0.5o(f + 500).

M(j)

(i)

Modulated signal spectrum

500

-500 (ii) Magnitude

IM(j)I

LSB

USB

\

1/2 /(Hz)

l/4

-5.5

LSB

USB

500 1000

-2000

-1000

1/2 l/4

5.5 /(kHz)

USB

LSB

4 4.5

-6 -5.5 -4.5 -4

Modulated signal spectrum

USB

,-114

4.5 Modulated magnitude spectrum

1/2 -500

USB

\

-4.5

1

-1000

LSB

5.5

LSB

LSB

6

USB

1/8

1000 2000

-7 -6

-4 -3

/(kHz)

3 4

6

7

(kHz)

(ii) Phase:

L.M(f)

7r /2

LS(!! rr/ 2

)

'

500 -500

-rr/2

/(Hz)

-5.5

)

-4.5

4.5 -'Tr /2

--

5.5 f (kHz) C)

1

USB  LSB 

,-114 -2000

-1000

1000 2000

-7 -6

LSB

USB

1/8

-4 -3

3 4

6

7

(kHz)

(ii) Phase:

L.M(f)

7r /2



500 -500

/(Hz)

-rr/2





    



LS(!! rr/ 2

)

#
'

      





-5.5

)

66f 



-4.5

 -'Tr /2

--

5.5 f (kHz) 



4.5

C)



    

66f#V
(ii) m (t) = 2 cos Wm,1t + sin Wm,2t = 2cos 21rJm ,1t + sin 21rfm,2t = 2cos 10001rt + sin 20001rt   - 500) +D:f  _. M(f) = o(f - 1000) + o(f + 1000) - o.5jo(f o.5jo(f + 500)  + o(f + 1000) + o.M(f - 500) + o.M(f + 500) IM(J)I = o(f - 1000) 





*(

 *(f







    





f 6f

ff56fff50 

56fffffff







d!fHfMI"Nf Qf
$V


V
   





 







 

 

%=cf

56

6



6f

56fW>c





   

 ,_ff^T[f 30fPYf 4_f9f3O\^f-&'0_ff^U[f3'&1` RR Xf_f 3fO\^fGY ,_f ^SZfGY 4_f 3O\^f3/f Kf      )'&f   )'&f    5'f    5&& @EC@f    )'&f   )'&f ]FPf 5'f]FPf 5&& 5&f

2

L_M(f) = {

/2, 0,

(iii) m(t) = coswm ,1t·coswm ,2t = cos 10001rt·cos30001rt = f m ,I = lOOOHz f m ,2 = 2000Hz (iv) Since m(t) = e-lOJtl we have ,

f = 500 f = -500 else

-7r /2,

7r

F(m(t)) = M(f)

! (cos21rf

=

m .1t

!

+ cos21rfm .2t) = (cos20001rt + cos 40001rt)--+

20 100+41r2f2

/(Hz) .J-0

20

·20

JO

Spectrum of e .. 1111•1 co� ( 100001TI.)

0

f (Hz)

51

3

(b) Sketch the spectrum of the DSB‐SC signal  m(t ) cos 10000πt .  (c) Identify the upper sideband (USB) and the lower sideband (LSB) spectra.      2. (4.2‐7)Two signals m (t) and m (t), both band‐limited to 5000 Hz, are to be transmitted 

2 QUESTION 2:(25 POINTS) 1 simultaneously over a channel by the multiplexing scheme shown in Fig. 1. The signal at point b  Two signalsis the multiplexed signal, which now modulates a carrier of frequency 20,000 Hz. The modulated  m 1 (t ) and m 2 (t ), both band-limited to 5000 Hz, are to be transmitted simultaneously over asignal at point c is transmitted over a channel.  channel by the multiplexing scheme shown in the following figure. The signal at (a) Sketch signal spectra at points a, b, and c.  point b is the multiplexed signal, which now modulates a carrier of frequency 20, 000 Hz. The (b) What must be the bandwidth of the distortionless channel?  modulated (c) signal at point c is transmitted over a channel. Design a receiver to recover signals m (t) and m (t) from the modulated signal at point c.                                      1

2

  M1(f)

m1(t) -5000

0

5000

f

Σ

M2(f)

m2(t) -5000

                

0

5000

b

c

a 2cos(40000πt)

f

2cos(20000πt)

   

                                                                                                               Fig. 1                                                  

a) Sketch signal spectra at points a, b, and c.   b) What must be the bandwidth of the distortionless channel?     c) Design a receiver to recover signals m 1 (t ) and m 2 (t ) from the modulated signal at point c.  

Answer:

(b) From the spectrum at point c, it is clear that the channel bandwidth must be at least 30000 Hz (from 5000 Hz to 35000 Hz).

4

(c) The following figure shows the receiver diagram to recover both m 1 (t ) and m 2 (t ) from the modulated signal at point c.

5

QUESTION 3:(25 POINTS) QUESTION POINTS) An amateur audio 3:(25 scrambler/descrambler pair is shown in the following figure. An amateur audio scrambler/descrambler EE456–Digital Communications (Fall 2015) pair is shown in the following figure. ASSIGNMENT M( f )

A

−10 kHz

LPF 0-20 kHz

m( t )

0

10 kHz

f

x (t )

2 cos(ω0t )

2 cos(40,000π t )

z (t )

LPF 0-10 kHz

y (t )

Figure 4: An audio scrambler considered in Question 6.

a) Graphically find and show the spectra of signals x(t ), y(t ), and z(t ) when ω0 = 20, 000π.

(b) Graphically find and show the spectra of signals y(t) and z(t) when ω0 = 30, 000π. a) Graphically find and show the spectra of signals x(t ), y(t ), and z(t ) when ω0 = 20, 000π.

b) Graphically findwhether and show theyou spectra of signals z(t) y(t ),toand z(t ) m(t). when ω0 = 30, 000π. (b) Show or not can descramble recover

b) Graphically andorshow the of signals y(t ), m(t and). z(t ) when ω0 = 30, 000π. c) Showfind whether not you canspectra descramble z(t ) to recover c) Show whether or not you can descramble z(t ) to recover m(t ). Answer: (a) X(/)

_,/

·20

10

·10

·'

20

/(kHz)

Y(/1

/o • ··� ��

-30

-20

-10

10

/�/

20

(lt�z)

30

If',,'·· -10 University of Saskatchewan

10

/(kHz)

Page 3

3

6

(b)

(c) We are able to recover m(t ) from z(t ) in part (a) as shown in the following figure.

But we are not able to recover m(t ) from z(t) in part (b).

7

QUESTION 4(25 POINTS) A modulating signal m(t ) is given by:

a) m(t ) = cos 100πt + 2 cos 300πt b) m(t ) = sin 100πt sin 500πt In each case:

i. Sketch the spectrum of m(t ). ii. Find and sketch the spectrum of the DSB-SC signal 2m(t ) cos 1000πt . iii. From the spectrum obtained in part (ii), suppress the LSB spectrum to obtain the USB spectrum.

iv. Knowing the USB spectrum in part (ii), write the expression φU SB (t ) for the USB signal. v. Repeat part (iii) and (iv) to obtain the LSB signal φLSB (t ). Answer: To generate a DSB-SC signal from m(t ), we multiply m(t ) by cos(ωc t ). However, to generate the signals of the same relative magnitude, it is convenient to multiply m(t ) by 2 cos(ωc t ). This also avoids the nuisance of the fractions 1/2, and yields the DSB-SC spectrum M (ω − ωc ) + M (ω + ωc ) We suppress the USB spectrum (above We and below −ωc ) to obtain the LSB spectrum. Similarly, to obtain the USB spectrum, we suppress the LSB spectrum (between −ωc and ωc ) from the DSB-SC spectrum. The following figures show the three cases.

8

I 1 �I I

f IP-1/1

�J

fi

-ISO -SO

fso

150

__J_tJTL .. -4SO -JSO

o I

350 450

-6SO -5SO

f

I

-1.50 -350 0

JSO -4SO

5SO

6SO

f j O>,-(Jl

l_J____ --- - ��________J_l

-6SO -5SO

-4SO -JSO O

JSO 4SO

(a) We can express usB (t) = cos (I I001rt) + 2 cos ( 13001rt). (b) We can express:

LSB (t) =

! [cos (4007Tt)+ cos (6007Tt)]

and usa (t) =

1 I r�·I I ,

·'.!00 -200

ll

.)00

-200

0

I

0

200

JOO

I

! [cos (14001rt) + cos (16007Tt)].

11 1I

-800 -700

O>,.,.(J)

11

4

I l ..

200



I

11

-MOO

-700

-300 -200

l '" 11

'l "

200 JOO

0

u

O>,,..(/)

I1

700

IIOO

I



a>,,.(J)

II

700

800

I



9 = [cos (100,rt)+ 2cos (3007Tt)] cos (lOOOt)+ [sin (I001rt)+ 2sin (3001rt)] sin (lOOOt) = cos (1000 - 100,r)t+ 2cos (1000 - 3001r)t (t) usa , = [cos (1001rt) + 2cos (3007Tt)] cos (IOOOt) - (sin (l001rt)+ 2sin (3001rt)) sin (lOOOt) = cos (1000 + 100,r)t + 2cos (1000 + 300,r)t
66

More Documents from "Masud Sarker"

Lec6.pdf
April 2020 21
Css.pdf
April 2020 4
Lec9cctfamilies.ppt
April 2020 10
183_eee311lesson2.pdf
April 2020 9