Hollow Retaining Wall.pdf

  • Uploaded by: Anonymous 0x2pwMCWgj
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Hollow Retaining Wall.pdf as PDF for free.

More details

  • Words: 3,326
  • Pages: 9
Project

Job no.

Calcs for

Start page no./Revision

1 Calcs by

F

Calcs date

Checked by

Checked date

Approved by

Approved date

23/03/2017

RETAINING WALL ANALYSIS In accordance with AS4678-2002 incorporating Amendment No.2 dated August 2008 Tedds calculation version 2.6.04

Retaining wall details Stem type;

Cantilever

Stem height;

hstem = 2600 mm

Stem thickness;

tstem = 450 mm

Angle to rear face of stem;

 = 90 deg

Stem density;

stem = 23.6 kN/m3

Toe length;

ltoe = 950 mm

Heel length;

lheel = 1250 mm

Base thickness;

tbase = 350 mm

Base density;

base = 23.6 kN/m3

Height of retained soil;

hret = 1800 mm

Angle of soil surface;

 = 0 deg

Depth of cover;

dcover = 500 mm

Depth of excavation;

dexc = 200 mm

Retained soil properties Soil type;

Medium dense well graded sand

Soil conditions;

In situ

Moist density;

mr = 21 kN/m3

Saturated density;

sr = 23 kN/m3

Effective internal friction angle;

'r = 30 deg

External wall friction angle;

r = 0 deg

Base soil properties Soil type;

Medium dense well graded sand

Soil conditions;

In situ

Moist density;

mb = 18 kN/m3

Effective cohesion;

c'b = 0 kN/m2

Effective internal friction angle;

'b = 30 deg

External wall friction angle;

b = 15 deg

External base friction angle;

bb = 30 deg

Ultimate design bearing capacity;

Pbearing = 200 kN/m2

Loading details Live surcharge load;

SurchargeQ = 10 kN/m2

Project

Job no.

Calcs for

Start page no./Revision

2 Calcs by

Calcs date

F 950

Checked by

Checked date

Approved by

Approved date

23/03/2017 450

1250

300

15 kN/m2

350

500

200

2650

1800

2600

5.8 kN/m2

32.8 kN/m2

58.8 kN/m2

67.1 kN/m2

2650

Calculate retaining wall geometry Base length;

lbase = ltoe + tstem + lheel = 2650 mm

Moist soil height;

hmoist = hsoil = 2300 mm

Length of surcharge load;

lsur = lheel = 1250 mm

- Distance to vertical component;

xsur_v = lbase - lheel / 2 = 2025 mm

Effective height of wall;

heff = hbase + dcover + hret = 2650 mm

- Distance to horizontal component;

xsur_h = heff / 2 = 1325 mm

Area of wall stem;

Astem = hstem  tstem = 1.17 m2

- Distance to vertical component;

xstem = ltoe + tstem / 2 = 1175 mm

Area of wall base;

Abase = lbase  tbase = 0.927 m2

- Distance to vertical component;

xbase = lbase / 2 = 1325 mm

Area of moist soil;

Amoist = hmoist  lheel = 2.875 m2

- Distance to vertical component;

xmoist_v = lbase - (hmoist  lheel2 / 2) / Amoist = 2025 mm

- Distance to horizontal component;

xmoist_h = heff / 3 = 883 mm

Area of base soil;

Apass = dcover  ltoe = 0.475 m2

- Distance to vertical component;

xpass_v = lbase - (dcover  ltoe (lbase - ltoe / 2)) / Apass = 475 mm

- Distance to horizontal component;

xpass_h = (dcover + hbase) / 3 = 283 mm

Area of excavated base soil;

Aexc = hpass  ltoe = 0.285 m2

- Distance to vertical component;

xexc_v = lbase - (hpass  ltoe (lbase - ltoe / 2)) / Aexc = 475 mm

- Distance to horizontal component;

xexc_h = (hpass + hbase) / 3 = 217 mm

Material strength uncertainty factors for Soil - Table 5.1(A) Uncertainty factor for friction of the retained soil;

ur = 0.85

Project

Job no.

Calcs for

Start page no./Revision

3 Calcs by

F

Calcs date

Checked by

Checked date

Approved by

Approved date

23/03/2017

Uncertainty factor for friction of the base soil;

ub = 0.85

Uncertainty factor for cohesion of the base soil;

uc = 0.7

Retained soil properties Design effective internal friction angle;

r = atan(ur  tan('r)) = 26.1 deg

Design external wall friction angle;

r = atan(ur  tan(r)) = 0 deg

Base soil properties Design effective internal friction angle;

b = atan(ub  tan('b)) = 26.1 deg

Design cohesion;

cb = uc  c'b = 0 kN/m2

Design external wall friction angle;

b = atan(ub  tan(b)) = 12.8 deg

Design external base friction angle;

bb = atan(ub  tan(bb)) = 26.1 deg

Using Coulomb theory Active pressure coefficient;

KA = sin( + r)2 / (sin()2  sin( - r)  [1 + [sin(r + r)  sin(r ) / (sin( - r)  sin( + ))]]2) = 0.388

Passive pressure coefficient;

KP = sin(90 - b)2  cos(b) / (sin(90 + b)  [1 - [sin(b + b)  sin(b) / (sin(90 + b))]]2) = 3.696

Load combinations for stability limit states - Appendix J3 Load combination 1;

1.25  DeadC + 1.5  LiveC < 0.8  DeadR

Sliding check Vertical forces on wall Wall stem;

Fstem = 0.8  Astem  stem = 22.1 kN/m

Wall base;

Fbase = 0.8  Abase  base = 17.5 kN/m

Moist retained soil;

Fmoist_v = 0.8  Amoist  mr = 48.3 kN/m

Base soil;

Fexc_v = 0.8  Aexc  mb = 4.1 kN/m

Total;

Ftotal_v = Fstem + Fbase + Fmoist_v + Fexc_v = 92 kN/m

Horizontal forces on wall Surcharge load;

Fsur_h = KA  1.5  SurchargeQ  heff = 15.4 kN/m

Moist retained soil;

Fmoist_h = 1.25  KA  mr  heff2 / 2 = 35.8 kN/m

Total;

Ftotal_h = Fmoist_h + Fsur_h = 51.2 kN/m

Check stability against sliding Base soil resistance;

Fexc_h = 0.8  KP  cos(b)  mb  (hpass + hbase)2 / 2 = 10.9 kN/m

Base friction;

Ffriction = Ftotal_v  tan(bb) = 45.2 kN/m

Resistance to sliding;

Frest = Fexc_h + Ffriction = 56 kN/m

Factor of safety;

FoSsl = Frest / Ftotal_h = 1.093 PASS - Resistance to sliding is greater than sliding force

Overturning check Vertical forces on wall Wall stem;

Fstem = 0.8  Astem  stem = 22.1 kN/m

Wall base;

Fbase = 0.8  Abase  base = 17.5 kN/m

Moist retained soil;

Fmoist_v = 0.8  Amoist  mr = 48.3 kN/m

Base soil;

Fexc_v = 0.8  Aexc  mb = 4.1 kN/m

Total;

Ftotal_v = Fstem + Fbase + Fmoist_v + Fexc_v = 92 kN/m

Horizontal forces on wall Surcharge load;

Fsur_h = KA  1.5  SurchargeQ  heff = 15.4 kN/m

Project

Job no.

Calcs for

Start page no./Revision

4 Calcs by

F

Calcs date

Checked by

Checked date

Approved by

Approved date

23/03/2017

Moist retained soil;

Fmoist_h = 1.25  KA  mr  heff2 / 2 = 35.8 kN/m

Base soil;

Fexc_h = -0.8  KP  cos(b)  mb  (hpass + hbase)2 / 2 = -10.9 kN/m

Total;

Ftotal_h = Fmoist_h + Fexc_h + Fsur_h = 40.4 kN/m

Overturning moments on wall Surcharge load;

Msur_OT = Fsur_h  xsur_h = 20.5 kNm/m

Moist retained soil;

Mmoist_OT = Fmoist_h  xmoist_h = 31.6 kNm/m

Base soil;

Mexc_OT = -Fexc_h  xexc_h = 2.4 kNm/m

Total;

Mtotal_OT = Mmoist_OT + Mexc_OT + Msur_OT = 54.4 kNm/m

Restoring moments on wall Wall stem;

Mstem_R = Fstem  xstem = 26 kNm/m

Wall base;

Mbase_R = Fbase  xbase = 23.2 kNm/m

Moist retained soil;

Mmoist_R = Fmoist_v  xmoist_v = 97.8 kNm/m

Base soil;

Mexc_R = Fexc_v  xexc_v = 1.9 kNm/m

Total;

Mtotal_R = Mstem_R + Mbase_R + Mmoist_R + Mexc_R = 148.9 kNm/m

Check stability against overturning Factor of safety;

FoSot = Mtotal_R / Mtotal_OT = 2.736 PASS - Maximum restoring moment is greater than overturning moment

Bearing pressure check Vertical forces on wall Wall stem;

Fstem = 1.25  Astem  stem = 34.5 kN/m

Wall base;

Fbase = 1.25  Abase  base = 27.4 kN/m

Surcharge load;

Fsur_v = 1.5  SurchargeQ  lheel = 18.8 kN/m

Moist retained soil;

Fmoist_v = 1.25  Amoist  mr = 75.5 kN/m

Base soil;

Fpass_v = 1.25  Apass  mb = 10.7 kN/m

Total;

Ftotal_v = Fstem + Fbase + Fmoist_v + Fpass_v + Fsur_v = 166.8 kN/m

Horizontal forces on wall Surcharge load;

Fsur_h = KA  1.5  SurchargeQ  heff = 15.4 kN/m

Moist retained soil;

Fmoist_h = 1.25  KA  mr  heff2 / 2 = 35.8 kN/m

Base soil;

Fpass_h = -0.8  KP  cos(b)  mb  (dcover + hbase)2 / 2 = -18.6 kN/m

Total;

Ftotal_h = max(Fmoist_h + Fpass_h + Fsur_h - Ftotal_v  tan(bb), 0 kN/m) = 0 kN/m

Moments on wall Wall stem;

Mstem = Fstem  xstem = 40.6 kNm/m

Wall base;

Mbase = Fbase  xbase = 36.3 kNm/m

Surcharge load;

Msur = Fsur_v  xsur_v - Fsur_h  xsur_h = 17.5 kNm/m

Moist retained soil;

Mmoist = Fmoist_v  xmoist_v - Fmoist_h  xmoist_h = 121.2 kNm/m

Base soil;

Mpass = Fpass_v  xpass_v - Fpass_h  xpass_h = 10.3 kNm/m

Total;

Mtotal = Mstem + Mbase + Mmoist + Mpass + Msur = 225.9 kNm/m

Check bearing pressure Distance to reaction;

x = Mtotal / Ftotal_v = 1354 mm

Eccentricity of reaction;

e = x - lbase / 2 = 29 mm

Loaded length of base;

lload = lbase = 2650 mm

Bearing pressure at toe;

qtoe = Ftotal_v / lbase  (1 - 6  e / lbase) = 58.8 kN/m2

Bearing pressure at heel;

qheel = Ftotal_v / lbase  (1 + 6  e / lbase) = 67.1 kN/m2

Project

Job no.

Calcs for

Start page no./Revision

5 Calcs by

Calcs date

F

Checked by

Checked date

Approved by

Approved date

23/03/2017

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure RETAINING WALL DESIGN In accordance with AS3600-2009 incorporating Amendment No.1 dated November 2010 and AS3700-2011 incorporating Amendment No.1 dated September 2012 Tedds calculation version 2.6.04

Properties of concrete - Section 3.1 Characteristic compressive strength of concrete; f'c = 32 MPa Characteristic flexural tensile strength of concrete - cl.3.1.1.3 f'ct.f = 0.6 MPa  [f'c / 1 MPa] = 3.394 MPa fcv = min(f'c1/3  (1 MPa)2/3, 4 MPa) = 3.175 MPa

Concrete shear strength - cl.8.2.7.1;

Calculate compressive stress factor - exp.8.1.3(1); 2 = max(0.67, min(1.0 - 0.003  f'c / 1 MPa, 0.85)) = 0.85  = max(0.67, min(1.05 - 0.007  f'c / 1 MPa, 0.85)) = 0.826

Calculate stress block factor - exp.8.1.3(2); Reinforcement details Characteristic yield strength of reinforcement; Class of reinforcement;

fsy = 500 MPa N

Exposure classification;

A2

Shear strength of reinforcement - cl.8.8;

fvs = 17.5 MPa

Cover to reinforcement Top face of base;

cbt = 50 mm

Bottom face of base;

cbb = 75 mm

Masonry details Hollow concrete units fully bedded with M3 class mortar, grouted at 400 mm centers Characteristic unconfined compressive strength;

f'uc = 5 MPa

Characteristic lateral modulus of rupture;

f'ut = 0.8 MPa

Thickness of unit;

tb = 450 mm

Length of unit;

lb = 400 mm

Height of unit;

hb = 190 mm

Joint thickness;

tj = 10 mm

Face shell thickness;

twf = 32 mm

End shell thickness;

twe = 32 mm

Internal web thickness;

twi = 32 mm

Depth of cavity;

tc = tb - 2  twf = 386 mm

Length of cavity;

lc = (lb - twi - 2  twe) / 2 = 152 mm

Characteristic compressive strength of grout;

f'c,grout = 20 MPa 400

10

38 6

45 0

3 50

32

1 52

32

1 52

32

32

32

Project

Job no.

Calcs for

Start page no./Revision

6 Calcs by

Calcs date

F

Checked by

Checked date

Approved by

Approved date

23/03/2017

Masonry design properties Compressive strength - cl.3.3.2;

f'm = 1.3  1.4  (f'uc  1 MPa) = 4.07 MPa

Tensile strength - cl.3.3.3;

f'mt = 0 MPa

Shear strength - cl.8.8;

f'vm = 0.35 MPa

Elastic moduli for short term loading - Table 3.4;

Em = 1000  f'c = 32000 MPa

Elastic moduli for long term loading - Table 3.4;

EL = 350  f'c = 11200 MPa

Load combinations for strength limit states - Appendix J2 Load combination no.1;

1.25  Dead + 1.5  Live

Load combination no.2;

0.8  Dead + 1.5  Live

Check stem design at base of stem Depth of section;

t = 450 mm

Masonry section properties Total area;

A = t - lc  tc / (lb + tj) = 306898 mm2/m

Bedded area - cl.4.5.4;

Ab = 2  twf = 64000 mm2/m

Combined cross-sectional area - cl.4.5.5;

Ac = Ab + tc  lc / (lb + tj) = 207102 mm2/m

Design cross-sectional area - cl.4.5.6;

Ad = Ac = 207102 mm2/m

Grout area - cl.4.5.7;

Ag = Ad - Ab = 143102 mm2/m

Design section modulus - cl.4.5.8;

Zd = t2 / 6 + tc2  (lc / (lb + tj) - 1) / 6 = 18123590 mm3/m

Compressive strength of grout - cl.3.5;

f'cg = min(f'c,grout, 1.3  f'uc) = 6.5 MPa

Structural design of reinforced masonry - Section 8 Factored bending moment combination 1;

Md = 36.1 kNm/m

Design compressive force;

Fd = 1.25  stem  hstem  A = 23.5 kN/m

Compressive stress on bed joints - cl.7.4.3.3; Reinforcement provided;

fd = min(Fd / Ad, 0.36 MPa) = 0.114 MPa 16 dia.bars @ 400 c/c

Area of reinforcement provided;

Asr.prov =   sr2 / (4  ssr) = 503 mm2/m

Depth of reinforcement;

d = 350 mm

Design area of reinforcement;

Asd = min(0.29  1.3  f'm  d / fsy, Asr.prov) = 503 mm2/m

Design area of tension reinforcement;

Ast = min(Asr.prov, 0.02  (lb + tj - lc) / (lb + tj)  d) = 503 mm2/m

Capacity reduction factor - Table 4.1;

 = 0.75

Basic compresive capacity - exp.8.5;

Fo =   [f'm  Ab + 1.2  (f'cg / 1.3 mm2/N)  Ag + fsy  Asr.prov] = 671.8 kN/m

Vertical slenderness coefficient;

av = 2.5

Clear height of wall;

H = hstem = 2600 mm

Thickness coefficient;

kt = 1

Slenderness ratio - cl.7.3.4.3(4);

Sr = av  H / (kt  t) = 14.444

Slenderness reduction factor;

ks = min(1.18 - 0.03  Sr, 1.0) = 0.747

Compressive strength capacity - cl.8.5;

ks  Fo = 501.6 kN/m Fd / (ks  Fo) = 0.047 PASS - Compressive strength capacity exceeds design compressive force

Bending moment capacity - exp.8.6;

Mc =   fsy  Asd  d  [1 - 0.6  fsy  Asd  (lb + tj) / (1.3  f'm  (lb + tj lc)  d)] = 57.4 kNm/m Md / Mc = 0.628 PASS - Bending moment capacity exceeds design bending moment

Design shear force;

Vd = 40.4 kN/m

Capacity reduction factor - Table 4.1;

 = 0.75

Project

Job no.

Calcs for

Start page no./Revision

7 Calcs by

F

Calcs date

Checked by

Checked date

Approved by

Approved date

23/03/2017 Vc =   min(f'vm  (lb + tj - lc) / (lb + tj)  d + fvs  Ast, 4  f'vm  (lb + tj - lc)

Shear capacity - exp.8.8;

/ (lb + tj)  d) = 64.4 kN/m Vd / Vc = 0.627 PASS - Shear strength capacity exceeds design shear force Check base design at toe Depth of section;

h = 350 mm

Strength of section in bending - Section 8.1 Factored bending moment combination 1;

M = 17.2 kNm/m

Depth to tension reinforcement;

d = h - cbb - bb / 2 = 267 mm

Tension reinforcement provided;

16 dia.bars @ 200 c/c

Area of tension reinforcement provided;

Abb.prov =   bb2 / (4  sbb) = 1005 mm2/m

Maximum reinforcement spacing - cl.9.1.1(b);

smax = min(2  h, 300 mm) = 300 mm

Neutral axis parameter;

ku0 = Abb.prov  fsy / (2  f'c  d  ) = 0.084

Ultimate strength in bending;

Mu0 = Abb.prov  fsy  d  (1 -   ku0 / 2) = 129.6 kNm/m

Uncracked section modulus;

Z = h2 / 6 = 20416667 mm3/m

PASS - Spacing of reinforcement is less than maximum ku0 < 0.36 - No compression reinforcement is required

Minimum strength in bending - exp.8.1.6.1(1);

Mu0_min = 1.2  Z  f'ct.f = 83.2 kNm/m

PASS - Ultimate strength in bending exceeds the minimum strength requirements Capacity reduction factor - Table 2.2.2;

 = max(0.6, min(1.19 - 13  ku0 / 12, 0.8)) = 0.8

Design strength in bending - cl.8.1.5;

Mu0 =   Mu0 = 103.7 kNm/m M / Mu0 = 0.166 PASS - Design strength in bending exceeds design bending moment

Strength of section in shear - Section 8.2 Design shear force;

V = 36.8 kN/m

Beta factors - cl.8.2.7.1;

1 = max(1.1  (1.6 - d / 1000 mm), 0.8) = 1.466 2 = 1 3 = 1

Ultimate shear strength - exp.8.2.7.1;

Vuc = 1  2  3  d  fcv  (Abb.prov / d)1/3 = 193.4 kN/m

Capacity reduction factor - Table 2.2.2;

 = 0.7

Design strength in shear;

Vuc =   Vuc = 135.4 kN/m V / Vuc = 0.272 PASS - Design shear strength exceeds design shear force

Strength of section in bending - Section 8.1 Factored bending moment combination 1;

M = 15.5 kNm/m

Depth to tension reinforcement;

d = h - cbt - bt / 2 = 292 mm

Tension reinforcement provided;

16 dia.bars @ 200 c/c

Area of tension reinforcement provided;

Abt.prov =   bt2 / (4  sbt) = 1005 mm2/m

Maximum reinforcement spacing - cl.9.1.1(b);

smax = min(2  h, 300 mm) = 300 mm PASS - Spacing of reinforcement is less than maximum

Neutral axis parameter;

ku0 = Abt.prov  fsy / (2  f'c  d  ) = 0.077 ku0 < 0.36 - No compression reinforcement is required

Ultimate strength in bending;

Mu0 = Abt.prov  fsy  d  (1 -   ku0 / 2) = 142.1 kNm/m

Uncracked section modulus;

Z = h2 / 6 = 20416667 mm3/m

Minimum strength in bending - exp.8.1.6.1(1);

Mu0_min = 1.2  Z  f'ct.f = 83.2 kNm/m

Project

Job no.

Calcs for

Start page no./Revision

8 Calcs by

F

Calcs date

Checked by

Checked date

Approved by

Approved date

23/03/2017

PASS - Ultimate strength in bending exceeds the minimum strength requirements Capacity reduction factor - Table 2.2.2;

 = max(0.6, min(1.19 - 13  ku0 / 12, 0.8)) = 0.8

Design strength in bending - cl.8.1.5;

Mu0 =   Mu0 = 113.7 kNm/m M / Mu0 = 0.137 PASS - Design strength in bending exceeds design bending moment

Strength of section in shear - Section 8.2 Design shear force;

V = 25.7 kN/m

Beta factors - cl.8.2.7.1;

1 = max(1.1  (1.6 - d / 1000 mm), 0.8) = 1.439 2 = 1 3 = 1

Ultimate shear strength - exp.8.2.7.1;

Vuc = 1  2  3  d  fcv  (Abt.prov / d)1/3 = 201.4 kN/m

Capacity reduction factor - Table 2.2.2;

 = 0.7

Design strength in shear;

Vuc =   Vuc = 141 kN/m V / Vuc = 0.182 PASS - Design shear strength exceeds design shear force

Transverse reinforcement parallel to base Slab restrained in the secondary direction with moderate degree of control over cracking Minimum area of reinforcement - cl.9.4.3.4;

Abx.req = 0.0035  min(tbase / 2, 250 mm) = 613 mm2/m

Transverse reinforcement provided;

16 dia.bars @ 300 c/c

Area of transverse reinforcement provided;

Abx.prov =   bx2 / (4  sbx) = 670 mm2/m

PASS - Area of reinforcement provided is greater than area of reinforcement required 350 16 dia.bars @ 250 c/c horizontal reinforcement parallel to face of stem

16 dia.bars @ 400 c/c 16 dia.bars @ 200 c/c

16 dia.bars @ 200 c/c 16 dia.bars @ 300 c/c transverse reinforcement in base

50

75

Project

Job no.

Calcs for

Start page no./Revision

9 Calcs by

F

Calcs date

23/03/2017

Checked by

Checked date

Approved by

Approved date

Related Documents

Hollow Retaining Wall.pdf
October 2019 11
Sleepy Hollow
May 2020 5
Retaining-talent.pdf
April 2020 9
Sleepy Hollow
November 2019 13

More Documents from "Andi Maghfirah Fitrah II"