Prefacio Las matemáticas no nacieron plenamente formadas. Fueron haciéndose gracias a los esfuerzos acumulativos de muchas personas que procedían de muchas culturas y hablaban diferentes lenguas. Ideas matemáticas que se siguen utilizando hoy datan de hace más de 4.000 años. Muchos descubrimientos humanos son efímeros; el diseño de las ruedas de carro fue muy importante para el Reino Nuevo Egipcio, pero hoy día no es exactamente tecnología de vanguardia. Las matemáticas, por el contrario, suelen ser permanentes. Una vez que se ha hecho un descubrimiento matemático está a disposición de cualquiera, y con ello adquiere una vida propia. Las buenas ideas matemáticas difícilmente pasan de moda, aunque la forma de implementarlas puede sufrir cambios espectaculares. Hoy seguimos utilizando métodos para resolver ecuaciones que fueron descubiertas por los antiguos babilonios. Ya no utilizamos su notación, pero el vínculo histórico es innegable. De hecho, la mayoría de las matemáticas que se enseñan hoy en la escuela tienen más de 200 años. La inclusión de las matemáticas modernas en los programas de estudio en los años sesenta del siglo pasado llevó la asignatura al siglo XIX. Pero, contra lo que pueda parecer, las matemáticas no se han quedado quietas. Hoy día, se crean más matemáticas nuevas cada semana que las que los babilonios pudieron manejar en dos mil años. El progreso de la civilización humana y el progreso de las matemáticas han ido de la mano. Sin los descubrimientos griegos, árabes e hindúes en trigonometría, la navegación en océanos abiertos hubiera sido una tarea aún más aventurada de lo que fue cuando los grandes marinos abrieron los seis continentes. Las rutas comerciales de China a Europa, o de Indonesia a las Américas, se mantenían unidas por un invisible hilo matemático. La sociedad de hoy no podría funcionar sin matemáticas. Prácticamente todo lo que hoy nos parece natural, desde la televisión hasta los teléfonos móviles, desde los grandes aviones de pasajeros hasta los sistemas de navegación por satélite en los automóviles, desde los programas de los trenes hasta los escáneres médicos, se basa en ideas y métodos matemáticos. A veces son matemáticas de mil años de edad; otras veces son matemáticas descubiertas la semana pasada. La mayoría de nosotros nunca nos damos cuenta de que están presentes, trabajando entre bastidores para facilitar esos milagros de la tecnología moderna. Esto no es bueno: nos hace creer que la tecnología funciona por magia, y nos lleva a esperar nuevos milagros cada día. Por otra parte, es también completamente natural: queremos utilizar estos milagros con tanta facilidad y tan poco esfuerzo mental como sea posible. El usuario no debería cargarse con información innecesaria
sobre la maquinaria subyacente que hace posible los milagros. Si todos los pasajeros de un avión tuvieran que superar un examen de trigonometría antes de embarcar en el avión, pocos de nosotros dejaríamos la tierra alguna vez. Y aunque eso podría reducir nuestra pisada de carbono, también haría nuestro mundo muy pequeño y provinciano. Escribir una historia de las matemáticas verdaderamente completa es virtualmente imposible. La disciplina es ahora tan amplia, tan compleja y tan técnica, que ni siquiera un experto podría entender por completo un libro semejante; dejando aparte el hecho de que nadie podría escribirlo. Morris Kline se acercó con su épico Pensamiento matemático desde la antigüedad hasta los tiempos modernos. Tiene más de 1.200 páginas de letra pequeña, y deja fuera casi todo lo que ha sucedido en los últimos cien años. Este libro es mucho más corto, lo que quiere decir que he tenido que ser selectivo, especialmente en lo que se refiere a los siglos XX y XXI. Soy plenamente consciente de todos los temas importantes que he tenido que omitir. No hay geometría algebraica, ni teoría de cohomología, ni análisis de elementos finitos, ni ondeletes. La lista de lo que falta es mucho más larga que la lista de lo que se ha incluido. Mis elecciones se han guiado por lo que probablemente es la formación básica de los lectores y por la concisión con que pueden explicarse las nuevas ideas. La historia sigue aproximadamente un orden cronológico dentro de cada capítulo, pero los capítulos están ordenados por temas. Esto es necesario para darle una coherencia narrativa, si lo pusiera todo en orden cronológico, la discusión saltaría de forma aleatoria de un tema a otro, sin ningún sentido de dirección. Esto podría estar más cerca de la historia real, pero haría el libro ilegible. Por eso, cada nuevo capítulo empieza con una vuelta al pasado, y luego toca algunos de los hitos históricos por los que pasó la disciplina en su desarrollo. Los primeros capítulos se detienen a mucha distancia en el pasado; los últimos capítulos recorren a veces todo el camino hasta el presente. He tratado de dar una idea de las matemáticas modernas, por lo que entiendo cualquier cosa hecha en los últimos 100 años más o menos, seleccionando temas de los que los lectores pueden haber oído hablar y relacionándolos con las tendencias históricas generales. La omisión de un tema no implica que carezca de importancia, pero creo que tiene más sentido dedicar algunas páginas a hablar de la demostración de Andrew Wiles del Último Teorema de Fermat —de lo que la mayoría de los lectores han oído hablar— que, por ejemplo, a la geometría no-conmutativa, de la que tan sólo el fundamento ocuparía varios capítulos. En definitiva, ésta es una historia, no la historia. Y es historia en el sentido en que cuenta un relato sobre el pasado. No se dirige a historiadores profesionales, no hace las finas distinciones que ellos
creen necesarias, y a veces describe ideas del pasado a través de los ojos del presente. Esto último es el pecado capital para un historiador, porque hace que parezca que los antiguos estaban luchando por llegar a nuestro modo de pensamiento actual. Pero creo que es defendible y esencial si el objetivo principal es partir de lo que ahora sabemos y preguntar de dónde proceden dichas ideas. Los griegos no estudiaron la elipse para hacer posible la teoría de las órbitas planetarias de Kepler, ni Kepler formuló sus tres leyes del movimiento planetario para que Newton las convirtiera en su ley de la gravedad. Sin embargo, la historia de la ley de Newton se basa firmemente en el trabajo griego sobre la elipse y el análisis de Kepler de los datos observacionales. Un subtema del libro son los usos prácticos de las matemáticas. Aquí he ofrecido una muestra muy ecléctica de aplicaciones, pasadas y presentes. Una vez más, la omisión de un tema no indica que carezca de importancia. Las matemáticas tienen una historia larga y gloriosa aunque algo olvidada, y la influencia de la disciplina sobre el desarrollo de la cultura humana ha sido inmensa. Si este libro transmite una minúscula parte de la historia, habrá alcanzado lo que yo me propuse. Coventry Mayo de 2007 Capítulo 1 Fichas, cuentas y tablillas El nacimiento de los números Las matemáticas empezaron con los números, y los números siguen siendo fundamentales, incluso si la disciplina ya no se limita a los cálculos numéricos. Sobre la base de los números, las matemáticas han construido conceptos más sofisticados y se han desarrollado hasta constituir un área muy amplia y variada del pensamiento humano, que va mucho más allá de lo que encontramos en un típico temario escolar. Las matemáticas de hoy tratan más de estructuras, pautas y formas que de los propios números. Sus métodos son muy generales, y a menudo muy abstractos. Tienen aplicaciones en la ciencia, la industria, el comercio..., incluso las artes. Las matemáticas son universales y ubicuas. Empezó con números Durante muchos miles de años, matemáticos de muchas y diferentes culturas han creado una enorme superestructura cimentada en los números: geometría, cálculo infinitesimal, dinámica, probabilidad, topología, caos, complejidad, etc. La revista Mathematical Reviews, que registra cada nueva publicación matemática, clasifica la disciplina en casi un centenar de áreas mayores, subdivididas en varios miles
de especialidades. Hay más de 50.000 matemáticos investigadores en el mundo, que publican más de un millón de páginas de matemáticas nuevas cada año. Los números parecen muy simples y directos, pero las apariencias engañan. Matemáticas genuinamente nuevas, no sólo pequeñas variaciones sobre resultados ya existentes. Los matemáticos también han investigado en los fundamentos lógicos de su disciplina, y han descubierto conceptos aún más fundamentales que los números: lógica matemática, teoría de conjuntos. Pero, una vez más, la motivación principal, el punto de partida del que fluye todo lo demás, es el concepto de número. Los cálculos con números pueden ser duros; obtener el número correcto puede ser difícil. Incluso así, es mucho más fácil utilizar números que especificar qué son realmente. Los números cuentan cosas, pero no son cosas: podemos coger dos tazas, pero no podemos coger el número «dos». Los números se denotan por símbolos, pero no son símbolos: diferentes culturas utilizan diferentes símbolos para el mismo número. Los números son abstractos, y sin embargo nuestra sociedad se basa en ellos y no funcionaría sin ellos. Los números son una construcción mental, y sin embargo tenemos la sensación de que seguirían teniendo significado incluso si la humanidad fuera barrida por una catástrofe mundial y no quedara ninguna mente para contemplarlos. Las primeras marcas La historia de las matemáticas empieza con la invención de símbolos escritos para denotar números. Nuestro familiar sistema de «dígitos» 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, para representar todos los números imaginables, por grandes que sean, es una invención relativamente reciente; nació hace unos 1.500 años, y su extensión a los «decimales», que nos permite representar números con alta precisión, no tiene más de 450 años. Los computadores, que han introducido los cálculos matemáticos en nuestra cultura de forma tan profunda que ya no notamos su presencia, llevan con nosotros tan sólo unos 50 años. Y sólo hace 20 años que disponemos de computadores suficientemente potentes y rápidos para servirnos en nuestros hogares. Sin números, la civilización tal como ahora la conocemos no podría existir. Todo empezó con pequeñas fichas de arcilla, hace 10.000 años en el Próximo Oriente. Los números están por todas partes, como sirvientes ocultos que corren de un lado a otro entre bastidores: llevan mensajes, corrigen nuestra ortografía cuando escribimos a máquina, programan nuestros vuelos de vacaciones al Caribe, llevan el registro de nuestros bienes,
garantizan que nuestros medicamentos sean seguros y efectivos. Y, en contrapartida, hacen posibles las armas nucleares y guían bombas y misiles hacia sus objetivos. No todas las aplicaciones de las matemáticas han mejorado la condición humana. ¿Cómo surgió esta industria numérica verdaderamente enorme? Incluso entonces, los contables ya estaban registrando quién era el propietario de qué, y de cuánto; incluso si todavía no se había inventado la escritura y no había símbolos para los números. En lugar de símbolos numerales, aquellos contables antiguos utilizaban pequeñas fichas de arcilla. Unas eran conos, otras eran esferas y otras tenían forma de huevos.Había cilindros, discos y pirámides. La arqueóloga Denise Schhmandt-Besserat dedujo que estas fichas representaban productos básicos de la época. Las esferas de arcilla representaban fanegas de grano, los cilindros representaban animales, los huevos jarras de aceite. Las fichas más antiguas datan del 8.000 a.C. y fueron de uso común durante 5.000 años.
El hueso de Ishango, con las pautas de marcas y los números que pueden representar
Con el paso del tiempo, las fichas se hicieron más elaboradas y más especializadas. Había conos decorados para representar barras de pan, y tabletas en forma de diamante para representar cerveza. Schmandt-Besserat se dio cuenta de que estas fichas eran mucho más que un artificio de contabilidad. Eran un primer paso vital en el camino hacia los símbolos numerales, la aritmética y las matemáticas. Pero ese paso inicial fue bastante extraño, y parece dado por accidente.
Izquierda. Las marcas de cuenta tienen la ventaja de que pueden ir añadiéndose de una en una, durante largos periodos, sin alterar o borrar marcas anteriores. Se siguen utilizando hoy, a menudo en grupos de cinco con el quinto trazo cruzando diagonalmente los cuatro anteriores. Derecha. La presencia de marcas de cuenta aún puede verse en los numerales modernos. Nuestros símbolos 1,2, 3 se derivan, respectivamente, de un solo trazo, dos trazos horizontales unidos por una línea inclinada, y tres trazos horizontales unidos por una línea inclinada Se dio porque las fichas se utilizaban para llevar registros, quizá con fines impositivos o financieros, o como prueba legal de propiedad. Las fichas tenían la ventaja de que los contables podían ordenarlas rápidamente para calcular cuántos animales o cuánto grano poseía o debía alguien. El inconveniente era que las fichas podían ser falsificadas. Así que para asegurar que nadie interfería en las cuentas, los contables guardaban las fichas en recipientes de arcilla, como si estuvieran precintadas. Podían descubrir rápidamente cuántas fichas, y de qué tipo, había dentro de un recipiente dado rompiéndolo. Siempre podían hacer un nuevo recipiente para un almacenamiento posterior. Sin embargo, romper repetidamente un recipiente y renovarlo era una forma muy poco eficaz de descubrir lo que había dentro, y los burócratas de la antigua Mesopotamia pensaron algo mejor. Inscribieron símbolos en el recipiente que hacían una lista de las fichas que contenía. Si había dentro siete esferas, los contables dibujaban siete esferas en la arcilla húmeda de la vasija. En algún momento los burócratas mesopotámicos se dieron cuenta de que, una vez que habían dibujado los símbolos en el exterior del recipiente, ya no necesitaban los contenidos, y ya no tenían que romper el recipiente para ver qué fichas había dentro.
Este paso obvio pero crucial dio lugar a un conjunto de símbolos numerales escritos, con diferentes formas para diferentes clases de bienes. Todos los demás símbolos numerales, incluidos los que hoy utilizamos, son los descendientes intelectuales de este antiguo artificio burocrático. De hecho, es posible que la sustitución de fichas por símbolos haya constituido también el nacimiento de la propia escritura. Marcas de cuenta Estas marcas de arcilla no eran ni mucho menos los más antiguos ejemplos de escritura numeral, pero todos los ejemplos anteriores son poco más que rayas, «marcas de cuenta», que registran números como una serie de trazos, tales como ||||||||||||| para representar el número 13. Las marcas más viejas conocidas de este tipo, 29 muescas grabadas en un hueso de pata de babuino, tienen unos 37.000 años. El hueso se encontró en una cueva en las montañas Lebombo, en la frontera entre Swazilandia y Sudáfrica, por lo que la cueva se conoce como la Cueva de la Frontera, y el hueso es el hueso de Lebombo. A falta de una máquina del tiempo, no hay modo de estar seguros de lo que representan las marcas, pero podemos hacer conjeturas informadas. Un mes lunar tiene 28 días, de modo es posible que las muescas estén relacionadas con las fases de la Luna. Hay reliquias similares de la Europa antigua. Un hueso de lobo encontrado en la antigua Checoslovaquia tiene 57 marcas dispuestas en once grupos de cinco con dos sueltas, y tiene unos 30.000 años. Dos veces 28 es 56, de modo que esto podría ser un registro lunar de dos meses. Una vez más, parece que no hay modo de comprobar esta sugerencia. Pero las marcas parecen deliberadas, y debieron hacerse por alguna razón. Otra antigua inscripción matemática, el hueso de Ishango en Zaire, tiene 25.000 años (estimaciones previas de 6.000-9.000 años fueron revisadas en 1995). A primera vista las marcas a lo largo del borde del hueso parecen hechas casi al azar, pero quizá haya pautas ocultas. Una fila contiene los números primos entre 10 y 20, a saber, 11, 13, 17 y 19, cuya suma es 60. Otra hilera contiene 9, 11, 19 y 21, que también suman 60. La tercera hilera recuerda un método utilizado a veces para multiplicar dos números por duplicación y por división por dos repetida. Sin embargo, las pautas aparentes pueden ser una simple coincidencia, y también se ha sugerido que el hueso de Ishango es un calendario lunar. Las marcas de cuenta tienen la ventaja de que pueden irse añadiendo de una en una, durante largos periodos, sin alterar o borrar marcas anteriores. Se siguen utilizando hoy, a menudo en grupos de cinco con el quinto trazo cruzando diagonalmente los cuatro anteriores.
La presencia de marcas de cuenta es profunda, y aún puede verse en los numerales modernos. Nuestros símbolos 1, 2, 3 se derivan, respectivamente, de un solo trazo, dos trazos horizontales unidos por una línea inclinada, y tres trazos horizontales unidos por una línea inclinada. Las marcas se convierten en numerales El camino histórico desde las fichas de los contables a los numerales modernos es largo e indirecto. Con el paso de los milenios, los pueblos de Mesopotamia desarrollaron la agricultura, y su forma de vida nómada dio paso a un asentamiento permanente en una serie de ciudades-estado: Babilonia, Erido, Lagash, Sumer, Ur. Los primitivos símbolos inscritos en tablillas de arcilla húmeda se transformaron en pictogramas —símbolos que representan palabras mediante imágenes simplificadas de lo que las palabras significan— y posteriormente los pictogramas se simplificaron y quedaron reducidos a un pequeño número de marcas con forma de cuña, que se imprimían en la arcilla utilizando un estilete seco con un extremo plano y afilado. Podían hacerse diferentes tipos de cuñas manejando el estilete de diferentes maneras. Hacia el 3.000 a.C. los sumerios habían desarrollado una elaborada forma de escritura, ahora llamada cuneiforme: «en forma de cuña». La historia de este periodo es complicada; diferentes ciudades se hicieron dominantes en tiempos diferentes. La ciudad de Babilonia, en particular, alcanzó gran importancia, y aproximadamente un millón de tablillas de arcilla babilónicas han sido extraídas de las arenas mesopotámicas. Unos pocos cientos de ellas tratan de matemáticas y astronomía, y muestran que los babilonios tenían un amplio conocimiento de ambas disciplinas. En particular, eran astrónomos expertos y desarrollaron un simbolismo sistemático y sofisticado para los números con el que podían representar datos astronómicos con alta precisión. Los símbolos numerales babilónicos van mucho más allá de un simple sistema de recuento, y son los más antiguos símbolos conocidos en hacerlo. Se utilizan dos tipos diferentes de cuña: una cuña delgada y vertical para representar el numero 1, y una cuña gruesa horizontal para el número 10. Estas cuñas se disponían en grupos para indicar los números 2-9 y 20-50. Sin embargo, esta pauta se detiene en 59, y la cuña delgada toma entonces un segundo significado, el número 60. Se dice por ello que el sistema de numeración babilónico es de «base 60», o sexagesimal. Es decir, el valor de un símbolo puede ser un número, o 60 veces dicho número, o 60 veces 60 veces dicho número, dependiendo de la posición del símbolo. En esto es similar a nuestro familiar sistema decimal, en el que el valor de un símbolo se multiplica por 10, o por 100, o por 1.000, dependiendo de su
posición. En el número 777, por ejemplo, el primer 7 significa «siete cientos», el segundo significa «setenta» y el tercero significa «siete». Para un babilonio, una serie de tres repeticiones del símbolo para «7» tendría un significado diferente, aunque basado en un principio similar. El primer símbolo significaría 7 x 60 x 60, o 25.200; el segundo significaría 7 x 60 = 420; el tercero significaría 7. Por lo tanto, el grupo de tres significaría 25.200 + 420 + 7, que es 25.627 en nuestra notación. Aún pueden encontrarse hoy reliquias de los números babilonios de base 60. Los 60 segundos en un minuto, 60 minutos en una hora y 360 grados en un círculo completo se remontan a la antigua Babilonia.
Símbolos babilónicos para los números 1-59 Puesto que es difícil escribir a máquina en cuneiforme, los estudiosos escriben los numerales babilónicos utilizando una mezcla de nuestra notación de base 10 y su notación de base 60. Así, las tres repeticiones del símbolo cuneiforme para 7 se escribirán como 7, 7, 7.Y algo como 23, 11, 14 indicará los símbolos babilónicos para 23, 11 y 14 escritos en orden, con el valor numérico (23 x 60 x 60) + (11 x 60) + 14, lo que da 83.474 en nuestra notación. Los babilonios Nosotros no sólo utilizamos diez símbolos para representar números arbitrariamente grandes: también utilizamos los mismos símbolos
para representar números arbitrariamente pequeños. Para hacerlo empleamos la «coma decimal». Los dígitos a la izquierda de la coma representan números enteros; los que están a la derecha de la coma representan fracciones. Fracciones especiales son los múltiplos de una décima, una centésima y así sucesivamente. Por lo tanto 25,47, pongamos por caso, significa 2 decenas + 5 unidades + 4 décimas + 7 centésimas. Los babilonios conocían este truco y lo utilizaron con un efecto extraordinario en sus observaciones astronómicas. Los estudiosos denotan al equivalente babilónico de la coma decimal por un punto y coma (;), pero ésta es una «coma sexagesimal» y los múltiplos a su derecha son múltiplos de 1/60, (1/60 x 1/60) = 1/3600 y así sucesivamente. Como ejemplo, la lista de números 12, 59; 57, 17 significa 12 x 60 + 59 + 57/60 + 17/3600 que es aproximadamente 779,955. Se conocen casi 2.000 tablillas babilónicas con información astronómica, aunque muchas de éstas son pura rutina, consistentes en descripciones de maneras de predecir eclipses, tablas de sucesos astronómicos regulares y breves extractos. Unas 300 tablillas son más ambiciosas y más excitantes; tabulan observaciones del movimiento de Mercurio, Marte, Júpiter y Saturno, por ejemplo. Por fascinante que pueda ser, la astronomía babilónica es algo tangencial a nuestra historia principal, que es la de las matemáticas «puras» babilónicas. Pero parece probable que la aplicación a la astronomía fuera un acicate para la búsqueda de las áreas más cerebrales de dicha disciplina. Por ello es justo reconocer cuán precisos eran los astrónomos babilonios cuando se trataba de observar sucesos celestes. Por ejemplo, encontraron que el periodo orbital de Marte (estrictamente, el tiempo transcurrido entre apariciones sucesivas en la misma posición en el cielo) era 12, 59; 57, 17 días en su notación, aproximadamente 779,955 días, como ya se ha señalado.