Hinh Hoc 10 - C2

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Hinh Hoc 10 - C2 as PDF for free.

More details

  • Words: 12,983
  • Pages: 54
HA1 VECTC) VA '&NG DUNG

6 1dp 9 ta

0, Cho tam gidc ABC vu8ng I tai A va c6 BC = 2a, CA = a. H a y tinh c6c 11 r6 bong gidc rau ddy :

I

I

di3 bigt dinh nghia ti so" ldung giBc clia g6c nhon a = xOy nhd sau :

La"y mat diem M b6t ki tr6n tia Oy sao cho M khbng trhng v6i 0 r6i vE MP vubng g6c vdi tia Ox. Ta c6 tam giAc OMP vu6ng tai P. Ta goi : sins =

MP canh dbi -- OM canh huydn

OP canh k6 cosa = -OM canh huykn MP canh dbi t a n g a = -= OP canh k& 0 OP canh kd cotang a = -= MP canh d6i'

/

; P

Hinh 2.7

CBc tl so" nhy kh6ng phu thuac vho tri cSa diem M tr6n Oy (h.2.1). B&i v@yta c6 thz chon di6m M sao cho OM = 1 vh t a c6 : s i n a = MP , cosa = OP

Ta c6 the m& rang khdi ni$m ti sd Z~qnggicic czia gdc nhon a thhnh khBi ni$m gia trt Iuung giac czia mot g6c a vdi ' 0 Ia 1180' bang dinh nghia sau dgy :

I

/ I.Dinh nghia. Cho h@tog do Oxy vdi c6c didm A(-, ; O),

ij !i

B ( l ; 0) v i C(0 ; 1). Ta goi n8a d&ng trbn dllirng kinh AB vA di qua didm C la naa d&ng trdn don vj (c6 b6n kinh bang 1 ).

Hinh 2.2

Vdi m6i g6c a ( 0' < a1 1 8 0 ~ ta ) x6c dinh d ~ v cmat di6m M

~ sao cho MOx (h.2.2).

tren n8a d u h g trbn d m

:

=a

GiA s 3 di6m M c6 toa da (xo ; yo). Khi 66 t a dinh nghia : - Tung do yo ciia di6m M goi lh sin cda gdc a v8 duuc ki hi$u lh sin a = yo.

- Hohnh 66 xo ciia 6ie"m M goi lh c6sin cda gdc a vA dwc ki hi$u 18 cos a = xo. v

Yo vdi xo - TI sd -

#

0 goi 18 tang clia gdc a v8 dmc ki hieu

Xo Yo ( a 18 tan a = -

;t

90').

Xo

Xo vdi yo - Ti sd -

#

0 goi lh cbtang cda gdc a vh duuc ki hi&

Yo

CBc sb sin a , cos a , tan a , cot a duuc goi lh cdc gid tri l r l ~ n g giac cda gdc a.

, Cho a vA

p lb

hai g6c

tO trong d6 a c

V i du. Tim c i c gi6 trj lllqng gihc clja g6c 135".

P.

Hay so sdnh : a) sin a vA sin p ;

b) cos a va cos f3

.

Ta 1a"y di6m M trCn naa d&ng trbn d m vj sao cho MOx = 135" (h.2.3).

-

Khi 66 suy ra MOy = 45' v&digm M c6 toa do lh :

Chllmg II. T/CH

30

Vey sin 135" =

HIJ~%JG C~IA HA1 VECTI3.

J5 , cos 135" = --J5 , tan 135" = -1, cot 135" = -1. 2

2

Hinh 2.3

2. Gia tr[ Itfdng giac c6a hai goc bu nhau a) Dinh / j . Hai g6c bC nhau c6 sin b%ngnhau vA c6 c8sin dbi nhau.

i

sina = sin(180° - a ) cos a = -cos(l 80" - a ).

C H ~ N GMINH _4

-

LiXy di6m M tr6n n3a d&ng trbn d m vj sao cho MOx = a r8i

Cho tam gi6c ABC. Chdng minh rang : sinA = sin(i3 + C)

lii'y di6m M' d6i xxlihg v6i M qua truc Oy thi xOM' c6 so" do biing 180' - a (h.2.4). R6 r b g la hai 6ie"m M vh M' c6 tung do b h g nhau cbn hohnh do clia chung thi 66i nhau. Do 66 sin a = sin(180° - a ) cos a = -cos(180°

- a)

Hinh 2.4

51. GIA TRI LUONG GIAC CUA MOT GOC

31

I b) HS. qud. Hai g6c bO

la/

nhau c6 tang dbi nhau v i chtang dbi

nhau. tan a = -tan(180°

7

cota = -cot(180°

- a) -

a).

V i du. Tim cAc gid tri ldung gidc clja g6c 150".

sin 150" = sin 30" =

1 fi ; cos 150" = -COS 30" = -- .

2

2 '

tan 150" = -tan 30" = --J3 ; cot 150" = -cot 30" = - & . 3

3. Gio trj lwng giac c6a mat sd goc doc biet



30"

45"

60"

90'

180"

sin a

O

1 -

2

& 2

45

1

0

cos a

1

45 -

J5 -

-1

2

2

0

-1

tan a

O

x

1

fi

II

0

cot a

II

43

1

1 -

O

II

2 1

2

J3

Yo - 1 18 khang xac dinh vA Ta c6 tan 90' = xo O 1 cot o0 = X0 - - cGng kh8ng xdc dinh n8n trong bHng lugng Yo O gidc ciia c6c g6c dac biet ta dcng ki hi& "(I" de" chi giA tri Chri

J?.

kh8ng xdc dinh 66. Mat so" g6c dac bi$t khdc nhu cdc g6c 120°, 135"' 150" d&u c6 cAc gid t~ 1-g giAc d w c suy ra til cac giA tA 1Uqng gi6c ciia CAC g6c d$c biet dii cho.

Ch~ung11.

32

T/CH ~6 H

~ C ~G HA1 A VECTU.. .

V i du. sin 120" = sin(180° - 120") = sin 60" =

J3 2

4. Cac he t h k giila cac gia tri lwng giac cca mot goc

Ta ludn lubn c6 :

sinus1

vi cos a 5 1 .

sn

Dinh 11'. Vdi moi g6c a ta d8u c6 :

0i

I

a) N

* 0 thi tan a

~ U cosa

b) N& sina

#

=

0 thi cota =

sina

-; cos a

cosa . -, sina

c ) sin2a + cor2a = I.

CHUNGM I N H a) va b) : Til djnh nghia ta c6 : YO (vdi xo tana = Xo

cota =

#

sin a 0) hay tan a = cos a

0 (vdiyo + 0 ) h a y c o t a

Yo

=

cos a

-. sin a

Tren n3a d&ng trbn ddn vi ta l6y di6m M sao cho MOx = a . Goi MI va M2 la hinh chi& cria M lhn l ~ d trkn t Ox va Oy (h.2.5). C)

-

-

Ta c6 s i n a = OM2 va cosa = OM1.

Hinh 2.5

33

5 1. GIA TR! LLQNG GIAC CUA MOT GOC 2. Cuc he thdc khcic

5 Ii !i

Djnh 1;. Nku cosa+O thi 1

I

+ tan2a =T.

cos a

i;

1 N 6 u s i n a t O thi 1 + c 0 t 2 a = ~ . sin a

iiI

CH~NG MINH 2 2 2 sin a - cos a + s i n a -- 1 T a c 6 1 + t a n2 a = 1 + -2 2 cos a cos a cos 2 a

cos 2 a

l + c o t 2 a = l +T sin a

-

sin2 a + c o s2 a

-2

--

1

sin2 a

sin a

3. Ap dung a) Cho bigt tanx

x + cos2 x 1 sinx cos x sin x cos x

s i n x cosx sin + cotx = +-- -

tanx Ne"u tanx

+ cotx = 2, h8y tinh sinx.cosx.

cosx

+ cotx = 2 thi

slnx

2

1 = 2. sin x cos x

1 Ta suy r a sinx cosx = - . 2

2 =sin 2 a Do66A=

2 2 72cot a=-+-- 12

sin a

sin a

1 sin 2 a

2 cot2 a

5. Cac dong bai tep cd b i n Dung 1. De" tinh cAc gia tn bung giac clia mat g6c khi bi6t mat gia t n lIfdng giAc c3a g6c 66. Phuungphdp :

-

- Dga vAo dinh nghIa, chn tim tung dij yo va hohnh do xo c3a di&mM tr6n nila dlllrng trbn d m v j vdi g6c xOM = a vh t 3 66 ta c6 : s i n a = y o ; cosa = xo; t a n a =

- ; cota

=

Xo

Xo -. Yo

- Dga vAo tinh chgt : hai g6c bh nhau c6 sin bhng nhau va c6 casin, tang, c6tang d6i nhau.

- Trong mot so" t m h g hqp c6 the" dga vho ti so" do d8i cAc c g h c h mat tam gihc vudng, cu thd 1A do"i v6i g6c nhon a ta c6 :

sina =

d6i -

tana =

d6i (h.2.6) k&

huyQn

Hinh 2.6

D6i vdi hai g6c phu nhau a vh 90' - a ta c6 : sin(90° - a ) = cos a cos(90° - a ) = sin a

vh ne"u 0 ° < a I 90°thi tan (90'ne"u 0 ' I a < 90°thi cot (90'-

a ) = cota

a )= tana.

- Sir dung he that cos2a + sin2a

= 1 d6 tinh tofin.

1 Vi du 1. Cho cos a = -- . Hay tinh c6c gi6 tri llldng gi5c cbn

3 lai clia g6c a v21 so shnh c6c gi6 tri n i y vdi so" 0.

1=8 . Vi s i n a > 0 nen ta lgy Ta c6 sin2a = 1 - cos2 a = 1 - 9 9 2& sin a s i n a = - vti suy ra tan a = -= : = -2Ji 3 cosa 3

(-i)

1 tana

cots = --

1

- --=--

2fi

.J2 4 '

Vi a 18 g6c tir n6n cAc gi8 tfi luang giac cos a , tan a , cot a d&u18 c8c s6 Zim, chi risng s i n a lh s6 dumg. V i du 2. Cho bigt tana = -2. HZy tinh c3c gi3 tri l~wnggi6c cbn lai cGa g6c a .

Ta c6 t a n a = -2 < 0 nen a lh g6c tir, nghia 18 90" c a c 180'. Do d6 cosa < 0. (1) Theo he thclc 1 + tan2a =

1

2 ta c6 cos2a

I

=

1+ tan2 a

cos a

1 =1 -

hay cos2 a =

1+4

5'

1 Tir (1) v h (2)ta suy ra cos a = - -

A'

Theo he thirc tan a = hay s i n a = cota =

sin a cos a

- ta c6 sin a

(-5)

2 245 .(-2) = -= -

45

2

tan a

Ccich I. Vi t a n a = cosa > 0.

'

fi.

Tinh bigu thQc A =

tana =

5

1 1 n&nta c6 cota = --

V i dl! 3. 6i6t tana =

Tir he th&

= cos a .tan a

3sina - cosa sina + cosa

fi

1

> 0 n8n a lh g6c nhon, do 66

7 = 1 + tan2a ta suy ra cos a

sin a n&ns i n a cos a

Thay sin a =

:

= cosa.tana =

43 -.& 3

46

=-.

3

6 vh cos a = f i vho bigu thclc A ta tinh d ~ d c: 3 3

C h h 2. Chia ti3 vA mau cba A cho cos a

#

0 ta c6 :

Vi du 4. Tinh : a) sin23" + sin21So + sin2750+ sin2870

b) cos212'

+ c0s*78~+ cos21 + ~ o s ' 8 9 ~

c) Cho bigt sin 15" =

J 6 -J 2 4

. H5y tinh

cdc gid tri

Imng gi4c cbn lai clja g6c 15".

GIAI a) Chli 9 rhng vi sin 3" = cos(90° - 3") = cos87" vA sin 15" = cos(90° - 15") = cos75"

nCn sin23"+ sin215"+ sin275"+ sin287"= (cos287"+ sin287")+ (cos275"+ sin215")= 1 + 1 = 2.

b) Vi cosl2" = sin(90° - 12') = sin78" vA coslo = sin(90° - 1")= sin89"

nen cos212"+ cos278"+ cos210+ cos289"= (sin2780+ cos278")+ (sin2 89" + cos289")= 1 + 1 = 2.

Dung 2. Chdng minh cac he thdc v6 gia tri l ~ u n ggiac cua mat goc a .

- Dqa

vho dinh nghia gi6 tri ldung gi5c ciia mot g6c a vdi 0 I a 1 180'.

- Dqa vao dinh li : "T6ng ba g6c c6a mot tam giac lu8n lu8n b%ng 180'".

- Sd dung cAc he th~Iccu b6n dude suy r a til dinh nghia n h ~ sin a cos a t a n a = - vdi cos a # 0, cot a = - vdi s i n a ;t 0, sin a

cos a sin a + cos2 a = 1. 2

1

- Ap dung he thl'rc :

+N

1 b cos a + 0 thi 1 + t a n2 a = 7 ; cos a

+ Ngusina +

0 thi 1 + cot2a =

1 2 sin a

- Thqc hien c6c phbp bi6n d6i t ~ n dg ~ n g dlra , he th13c cAn chQng minh vd mat he thirc duuc thaa nhan la dling. V i du. ChQng minh r i n g :

a) sin4x + cos4x = 1 - 2sin2x cos2x ;

b) sin6x + cos6x = 1 - 3sin2xcos2x.

I

= 1 - 2sin2x cos2x

(dpcm (I' )

= sin4x + cos4x - sin2x cos2x = 1 - 2sin2x cos2x - sin2x cos2x =1

- 3sin2x cos2x

V i du 2. ChQng minh r%ng:

a)

b)

(*)

dpcm : di6u phdi chOng rninh.

1-sina - cosa C O S ~ l+sina tana - sina sin3 a

1 cosa(l+ cos a) '

(dpcm)

T~CHaH U ~UAG HA1 VECTU.. .

C h m g II.

38

1- sin a - (1- sin a ) ( l + sin a) - 1- sin 2 a a> cos a(1+ sin a) cos a(1+ sin a) cos a

-b)

0

cosy a cosa cos a(l + sin a) 1+ sin a

(dpcm).

sina . sin a -sin a tan a - sin a cos a -

.-.

n

sin5 a

sin' a

sin5 a

1 - 1- cosa -cos a ( l + COS a, cbs a sin2a

m).

V i du 3. Chilng minh r i n g :

2

sina b)'-l+cotu

2 - cosa

=sinacosa

a, ~ + c o s ~ [ , - ( l - c ; a ) ~ ] - l + c o s a ( sin a sin a sina

I,'-

- l+cosa(

.

~+tana

1

s i n a (I-=

+--2cota ssrna

1-2cosa+cos a sin 2 a

2 )

cot

-- 1+ cosa -2 cot 2 a + 2cota sin a

sin a

- 1+ cosa .2cot a(sin a

1 sina

--)cosa sina

- 1+ cosa .2 cot a. 1- cos a - (1+ cos a)(l- cos a) sin a

b) l -

sin2 a

sin a

sin2 a - cos2 a sin 3 a = 1l+cota l+tana sina+cosa = 1-

-

.2 cot a

cos3 a sina+cosa

sin 3 a + cos3 a sin a + cos a 2

2

= 1- (sin a + c o s a - s i n a c o s a ) = sinacosa

(dpcm).

J

51.

39

GIA TRI L m G GIAC CUA M?T GOC

V i du 4. Chl?ng minh chc bi@uthirc sau khbng phu thuoc vho x.

+ (sinx - C O S X;) ~ b) B = sin6x + cos6x + 3sin2x cos2x .

a) A = (sinx + cosx)'

a) A = (sinx + c o ~ x +) ~(sinx - cosx12 = (sin2x + cos2x) + 2sinx cosx

+ (sin2x + cos2x) - 2sinx cosx = 2.

b) B = sin6x + cos6x + 3sin2x cos2x =

Vi dl! 5. Cho tam gidc ABC. ChQng minh rhng : a) sinA = sin(B + C) ;

b) cosA = -cos(B

+ C) ;

A+B C c) sin= cos2 2

C)

A+B sin-= 2

.

C 2

cos

Vi du 6. Tam gi5c ABC c6 A6 = AC = a vA c6 g6c nhon = 2 a . Goi AH v3 BK lA cAc d&ng cao ve ta cdc dinh A vA B. a) Tinh do d;ii cdc dddng cao AH vA BK the0 a vA a .

b) Chlllng minh r3ng sin2 a = 2sin a cosa. A

--

GIAI

a) Ta c6 BAH=HAC = a (h.2.7)

AH -- cosa a AH = a cos a AB

a

Hin h 2.7

Chlrong II.

40

T/CH

vC)

HU~NG CGA HA1 MCTU...

b) Goi SAHCla di$n tich t a m ABC, ta c6 : 2SAUC= AH.BC = BK.AC trong 66 BC = 2 B H = 2.a s i n a .

Tti (1)va (2) t a suy r a sin2 a = 2cos a sin a

(dpc

1 . H i y ph6t bi6u dinh nghTa gi6 tri ldung gidc clja 1n6t g6c a vdi 0" 5 a 5 180". a) GiA sir cho g6c a = 120". Hay cho bigt c6c gi6 tri lclung gidc : sin 120", cos 120", tan 1 2OU, cot 120'.

b) Vdi nhCfng gid tri n i o cila g6c a ta c6 :

- sina v i cosa cirng da"u ? - sin a va cos a khdc ddu ? 2. Goi a la so" do clja g6c MOx tr@nnda dclbng trbn dun vi. Hay x6c dinh VI tri ciia digm M tr@nnrlla dddng trbn dun vi d6 sao cho : 1 a) cosa = - . H i y tinh so" do cGa g6c a d6. 2

b) sina =

1 -.

C) cosa =

--.1

2

2

-

Khi d6 g6c MOx la g6c nhon hay g6c tir !

-

Khi d6 h i y t i n h s6do cira g6c MOx.

d) sina dat gi6 trj Idn nha"t. 3. Hay so sdnh c6c cap gi6 tri lcr~lnggi6c sau ddy : a) cos 45" v i cos 60" ; b) sin 20" v i sin 60" ; C)

cos 120" va cos 150' ;

d) sin 135" v i sin 170". 4.

Dua vao dinh nghia gi6 trj bung gidc clja mat g6c a (0 5 a 5 1 80"), h i y tinh gi6 tri c6c bi6u thOc sau (vdi a, b, c la nhang so" cho trudc).

+ b.cos 0" + c.cos 90" b) B = a.cos 90" + b.sin 90" + c.sin 180" c) C = a2.sin 90" + b2.cos 90" + c2.cos 180" a) A = a.sin 0"

5 1. GIA TRI L

W G GIAC C l j A MOT GdC

5. Kh6ng dirng m6y tinh b6 tcii, h i y tinh gi6 t r ~c6c bi6u thrSlc sau : a) M = 3 - sin2 90"

b) N = sinx

+ 2cos260" - 3 tan2 45" ;

+ cosx khi x bang 0" ; 45" ;60";

C)

P = 2si1ix + cos2x khi x bang 60" ; 45" ; 30" ;

C)

() = sili'x

+ COS'X

khi x bang 1 35" ; 1 80" ; 160"

.

6. Chifng minh c i c hhng d i n g thOc : a) (sinx + cosx)' = 1

+ 2sinx cosx ;

b) (sinx - cosx12 = 1 - 2sinx cosx ; C)

sin4x + cosJx = 1 - 2sinzx cos'x ;

d ) sinx cosx (1 + tanx) (1 + cotx) = 1 + 2sinx cosx. 7. Cho tam gi6c ABC vuBng tai C v i c6 = 34') canh AC = 10,5. Hay tinh cac canh AB, BC v i gbc B clja tarn giac. 8. Cho tam g i i c ABC vu611g tai

I

(

va ccj canh BC = 12,3,

CA = 31,G. H i y tinh canh AB va c,6c goc /i,6 c ~ i atam gi6c. 9. Chirng minh rang a) Vdi g6c u (0' 5 a 5 90') ta c6 :

sin 190" - a ) = cos a cos (90" - a ) = sina ; b) Vdi g6c a (0" c u I 90") ta c6 :

tan (9U" - a ) = cot a ; C)

Vdi g6c a (0' I

cl<

90') ta c6 :

cot (90" - a 1 = tan a . 10. Chdng minh r i n g

1

2

2

sin acos a

2

=tan a + c o t a + 2 .

Chumg II. ~ C vo H HUI%JG C ~ HA1 A VECTCJ.. .

42

1 . Goc gi3a hai vectd

8

,lg/lja.

-

a

Q,

Cho t a m g i j c AUC vuGng c j n tai A

a

d6u k h l c vectd 6. Til Cho hai vectd v i mat digm 0 ba"t ki ta vP =i v i = g. G6c AOB vdi sb do t i l 0' dgn 180' duuc goi la g6c giGa ha; vecto V A g .

r a) Djn/l

ci, I la trung

1 Ta k i hi& g6c g i h hai vecta a v i i; 18 (a, 6 ).

c1ic"m cda c a n h BC.

a

bl C/,.ri 3. Cdch xdc dinh g6c giaa hai vecta vB 6 theo d/nh nghia n6u tr6n khBng phu thuoc vAo viec chon digm 0. Hun n a a t a c b n c 6 ( ; , G ) = ( g , i). N6'u

(

a, g

)

= 90"thi ta n6i rhng hai vecta

vd.i nhau vh ki hieu C)

a Ig.

a vh $

vudng gdc

V i du. Cho tam giAc ABC vu6ng tai A v i c6 gbc B = 40". Khi 66 ta c6 :

--

(BA, BC) = 40';

--

(AB, BC) = 140'

Hinh 2.8

2. Djnh nghia tich vo hddng c6a hai vectd Trong truilng hap n i o

rich v6 hudnp

;.

6 cO

gia trl cfuong, co gia tri jrn, bang O !

k I

I

a

d&u k h l c vectu 6 a ) Dinh n g h i < ~Cho . hai vecta va la met sb, k i hi& la v6 hu'dng cda hai vecto vd d d ~ xdc c d ~ n hbdi cirng thirc sau :

a

Tr~rirnghup n6u c6 mot trong hai vectu -. ta quy udc a . b = 0.

-

a vh

bhng vectu

6

b ) CIlri 2. Trudc diiy ta d5 bi6t t6ng cua hai vectu la mat vectd, tich ccia mot s6 vdi mot vectu 18 mot vectu. d d i y ta c6 tich v8 hudng cua hai vectd la nzQt sd chd khdng phai la mat vectu. Vi v$y n6n ngu&i ta goi tich 6 6 la tich v6 h ~ d n gc ~ i ahai vectd.

i

Cho tam gi6c d6u ABC c6 canh a va trong tdm G. Tinh c i c tich v6 hlldng sau ddy : c ) V i du.

0, Vdi hai sd thuc J , b bSt ki, ta c6 (a.blL= a'.bL. v b y vdi hai vecta

-.a, b-

b i t ki, t l j n g thUc :

Theo djnh nghia ta co (h.2.9):

I

c6 dung kli61ig ?

--

AB.AC = a.a. cos 60'

1

= -a

2

2

AC.CB = a.a. cos 120' = --a1 2 -7

2

--

a" a 43 GA.BA = -.a. cos 30 = 3 2 d j Di6u kien vudng g6c ciia hai vectu

Tit djnh nghia tich v6 h ~ d n gcua hai vectu thgy r i n g : Ta cluy ~ l d cxcrn vcctu vubng goc vdi rnoi vecw vi

u.a=o.

--

A

A\

Hinh 2.9

vB

ta nhan

- - lit .I61.cos 90' = o ; --. - a . b =Othido a*O,b*6 tasuyra

- N ~ (Ua , b ) = 90" thi a . b = -Ngugclainbutac6

Do 66 ta c6 dinh li : "Ridrr hien cdn u& dii d6' hai vecta a7 t 6 vci 6 + 6 ou6ng gcic u u i nlzau la tich v6 hudng ciia chiing h&ng 0".

e ) Nh&n z4t. Trong v(t.li ta bi6t rhng nth c6 met l w f? tAc dong lGn mot v$t lhm cho v@t 66 di chuy6n tii 0 6e"n 0' thi c6ng A cba lvc F duuc tinh the0 c6ng that :

- coscp . IF^ .l0o11. 4

A=

(h.2.,10)

(f?1 lh culrng 60 c6a l~ tinh bhng Niu-ton (vigt tdt la N), 100'1 1s do dM quang d u h g 00' tinh bhng m6t (vigt tdt trong 66

-

vh 00' tinh bhng 60, cbn la m), cp lh g6c gi3a hai vectu c6ng A tinh bhng Jun (vigt tt$t18 J).

IF^. 100'1. cos cp

d

Tmng tofin hgc, giA t* cba bigu thm A =

k& d m v j do dmc gpi 18 tich va h u h g cQahai vectcr

@

"21

kh6ng 00 ' .

f

0'

0 Hinh 2.70

3. Binh phlldng v6 hllang

- -

8

4

-

CH~]Y :

Vdi m ~ doan i thang AB ta lu8n lubn c6 :

A B= ~

4

-

1 - 1 1-1

1-l2 .

Ngu a = b tac6 a . b = a . a = a . a .cosoO= a

z2= [q2

sAB=@.

Khi 66 tich v6 hudng

a. a d@c ki hi& 18 a 2 .

-2

Sd a nhy dduc goi 16 binh p h m g u6 h ~ h cgcLa vectu

i.

Do 66 ta c6 djnh li :

"Binh plzuung v6 h ~ d n gcria mot tlecto b&ng binh ph~crngdo dai cria vecta dd"

4. Cac tinh ch6-t c6a tich v6 hlrCjng Ng&i ta dii c h h g minh duuc cAc tinh chgt sau dAy cba tich v6 hudng : 4

-

-

.

V6i ba vecta a , b , c bgt it vii moi so" k ta c6 : -.-

+-,

a . b = b. a . (tinh chgt giao hofin) -.

-.

-t

-.- --.

a.(b+ C) = a . b + a . c . (tinh chgt phan phG ddi vdi ph6p ceng vectu) ;

92. T~CHVO H

4 -5

~ CUAG HA1 VECTCY

Tif c8c tinh chgt cclja tich v6 hudng, ta c6 th6 suy ra cAc h$ th3c sau diiy : -2

--

'2

+ - + 2

-2

(i+Gl2=a +2a.b+b - + 2

(1)

(a-b) = a - 2 a . b + b

- - - -

-2

(2)

-2

-2

(a+b).(a-b)=a -b

-2

=la1 -1bl

(3)

5. Cac bai toan a p dung

a

B i i to6n 1. Cho hai v e c t ~ chi&" cda vecta -,*

6

vA

6 bgt

kki, g ~ ib; la hinh

tren d&ng thang chQa vectd

a . ChQng

+ -

minh r i n g : a . b = a . b l

a)

b) Hinh 2.7 7

- -. Ta vG ciic vectd OA = a vh

=

g. Goi B' 1h hinh chi&

tren dlrZIng thhng OA. Ta c$n c h h g minh :

--OA.OB OA.OB1 - Ne"u AOB < 90' ta c6

(h.2.11a) vA b)).

=

:

CI

--.

= 0A.OB.cos AOB = OA.OB .

- Ne"u AOB

C4

> 90" thi :

- --

= OA.OB'.cos AOB = OA.OB .

cclja B

C h m g II. T~CH

46

-

-

- N6u AOB

H W G &A HA1 VECTU...

6

= 90" thi OBI = vB khi d6 --, OA.OB' = OA .O = 0 = OA.OB cos 90" = OA.OB .

--

A-

BPi to6n 2. Cho doan thdng AB c6 do dAi 2a. Tim tap hdp -_.

c6c di6m M sao cho MA.MB = k2 la mot s6 cho trddc.

Goi 0 la trung digm ciia doan thhng AB (h.2.12) ta c6 :

-MA.MB = (MO + OA) (MO + OB) -

_

.

A

-

Hinh 2.12

Viiy tep hap cAc digm M lh d&ng trbn tarn 0 , bAn kinh

R=

J m .

B i i toin 3. Cho dddng trbn (0; R) vA dikm M c6 dinh. Mat dddng th3ng A thay dbi lu8n lu6n di qua M cdt dlrirng trbn d6 tai hai dikm A vA B. ChQng minh r i n g :

M A . M B = M O ~ - R ~ = ~ ~( v -d Ri d ~= M O ) . CH~NG MINH

-

VEi d ~ h kinh g BC ciia d ~ & ntrbn g ( 0 ; R). Ta c6 MA 1B hinh chi& c6a MC tren dudng th&ng MB. Theo cbng that hinh chie"u (BBi toftn 1)ta c6 :

/B

M Hinh 2.73

52. T~CHVO H

47

~ CUAG HA1 VECTIT

--- MA. MB MC.MB = (MO + OC).(MO + OB) =

--

Chri .i.. Gig tri khdng d6i clia tich v6 hlldng MA. MB =d2 - R~

n6i trong brii to6n 3 goi la phmng tich cua di6m M d6'i vdi

trbn (0;R) vdi T la ti6p

- Khi MT la tidp tuygn cua die"m,ta c6 :

Hinh 2.74

6. ~ i d thilc u toa do cGa tich v6 hdtrng

-. -.

Trong m8t phing toa do (0 ; i , j ) cho hai vectd :

Khi do ta c6 tich. .vi, h ~ d n g

c h m g 11.

48

WH~ fHUGNG l C~IA HAI VECT [I...

7. Ong dung c3a tkh vb hlrCIng a) Do dai c6a vectd

a = (al ; a2) d ~ u ctinh theo cdng thtlc :

4

b) G6c gigs hai vectu

0, a) Cho

6

Theo dinh nghia tich v8 h d n g t a c6 :

a = (1 ; -2) ;

= (-1 ; -3). Hay

tinh g6c (

b) Cho

a

= (al ; a2) vA b = ( b ;~bz).

c

a,

1.

= (2 ; -3) ;

= (3 ; 2). Hay tfnh

@ c ( ; , i).

Vi d". Cho

{GI5 f h o tam gidc ABC b i k A(1 ; I), B(2 ; 3), C(5 ; -1 ). Hay tinh d8 dAi cAc canh AB, BC, CA vA suy ra tam gi6c ABC vu8ng tai A.

= (3 ; -1). Tinh g6c MON.

= (-2 ; - I ) ,

- -- @.ON -6+1 & - -l o ~ ~ . l ~ l = & . 2f i Vey ( O M , ON) = 135'. cos MON = cos(OM, ON) =

'

.

c) Khozing c6ch giaa hai di6m

Cho hai di6m A(xA ; yA) , B(xB ; yB). = (xB - XA ; y~ - yA), do 66 t a tinh d ~ u ckhoHng Ta c6 c6ch giaa hai 6ie"mA va B 18 :

V i d l . Cho hai dism M(-2 ;

8) v5 N(l ; 0). Tinh doan MN.

-

Ta c6 MN = (3 ; - f i ) vB khozing c6ch giaa hai di6m M, N 18 :

MN=

I E I = , / ~ = ~ .

d) Bbi todn. Cho tam giAc ABC bi6t A(2 ; 3). B(8 ; 6& C(2 + 4 4 5 ;7). Cho tam giac ABC c6 BC = a, CA = b, A6 = c. Chon he tryc Oxy sao cho g6c 0 t r h g v6i C, di&m B nam tren phdn d ~ a n gc ~ i a truc Ox cbn di6m A c6 tung dd duang. Chdng minh rang :

+ 3) vA

-

1) Tin h do dcii cAc canh AB, AC v2 so"do clia g6c BAC . 2) Tinh dien tich tam giAc ABC.

--

v8 cos BAC = cos(AB,AC) =

Z.A6

246+24& 12.8

Vi3y BAC = 30'.

2) Goi BH 18 d&ng cao c3a tam giAc ABC, (h.2.15). Ta c6 CI

BH = AB sin BAC

Goi S 1A dien tich tam giAc ABC, t a c6 :

8. Cac dang bai tap cd b6n Dqng 1. n n h tich v8 hadng cfia hai vecta Phrlmg phap. - DDng dinh nghia tich v8 hudng va cAc tinh chgt c3a tich vd h ~ d n gc3a hai vecta.

- Sir dung cAc hhng dhng thGc v6 tich v8 hu6ng. -.-

--.

- Dhng cdng thflc hinh chi& : AB.CD = A 'B '.CD vdi A', B' l$n l ~ q 18 t hinh chi& c3a A, B l$n giA cBa

CD .

C h m g II. ~ C vo H H

50

~ C~>A G HA1 VECT(I...

Vi du 1. Tam gidc ABC c6 AC = 9cm, CB = 5cm, C = 90". Tinh :

--

a) AB.AC ; -4

b) BA.BC

a) Cach I .

. B

- . , I Ac~ cosA

-_.

AB.AC = IABI

AC AB

= AB.AC. =A C ~ = g2 = 81 (h.2.16)

C

A

Cdch 2. Ta c6 C la hinh chi& cba B 1Cn giA cfia ---.

KC.Uo d6

-.-

AB.AC = AC.AC = A C = ~ 81.

--

. .

b) BA.BC = BC.BC = B C vi ~ 3 18 hinh chi& cba gih cba BC. Viiy BA.BC = 52 = 25.

--

BA

--

tr6n

V i du 2. Tam giAc ABC c6 AB = 5cm, BC = 7cm, CA = 8cm.

a) Tinh AB.AC tCf d6 tinh gid tri clja g6c A. -+

b) Tinh CA.CB .

X6t tam gihc ABC ta c6 -2

--

-2

BC = (AC - A B ) ~= AC

Ta suy ra cosA =

AB.AC

IEI.I zI

--

-2

+ AB - 2AC.AB.

-

20 1 --- - - nCn A = 60". - 5.8 2

b) TUcfng tg nhu cAu a), ta c6 :

--

CA.CB =

1 2

1 2

- ( C A ~+ CB2 - AB2) = - (82 + 72 - s2)= 44.

1

Ej2. T~CHVO H

51

~ CUAG HA1 VECTU

C

V i du 3. Cho tam gi6c ABC vu8ng 6 A,

b,

= 60' vA canh huydn c6 g6c BC = 6cm. Tinh tich v6 h ~ b n g cfia c6c c$p vecta sau d i y :

--

a) CA.CB; b)

AB.BC.

h

6o0A

B

A

GIAI Tam gilc ABC 18 tam gilc vu6ng c6

Hin

= 30" nen

1 AB = - BC = 3cm 2

-4 = 436-9 f i 3& (h.2.17) -a) Ta c6 CA.CB = CA.CB.cos 30" = 3 4 3 . 43 6 . = 27. AC =

=

=

2

V i dl? 4. Cho hinh vu8ng ABCD canh a vh c6 t l m 0.'Gpi M mot digm tujl 9 tren canh BC. HZy tinh cAc tich vB hddng :

la

--

a) MA.AB ; b)

E.G.

a) Diing cang thilc hhih chi& t a c6

--M.4.A.B = BA.AB = a.a.cos 180"

lo

b) Goi H la trung didm cGa canh AB. Ta c6 OH I AB. Do 66 :

Hinh 2.18

Chlldng II. flCH

52

HU%GC ~ HA1 A VECTC7..2

Dang 2. C h h g minh cAc dang that v6 vectd c6 lien quan d6n tich v6 hudng

Phuung phdp.

- Sfi dung tinh chgt ph5n ph6i ccria tich v6 h ~ d n gd6i vdi ph6p tong cfic vectu.

- Dhng quy t$c ba di6m d6i

vdi ph6p ceng hoec tril vectu, vi du n h d6i ~ vdi ba di6m A, B, C ba"t kl,ta luBn c6 :

V i du 1. Cho tU giAc ABCD bgt kki. ChUng minh ring :

. -

.

- - t

. . -

-.A

DA.BC = DA.(DC- DB) = DA.DC - DA.DB

- -- -DB.CA DB.(DA - DC) DB.DA - DB.DC --DC.AB DC.(DB - DA) DC.DB - DC.DA -.-

(1)

--.

=

=

_.

=

_.A

(2)

-_.

=

(3)

V i dl! 2. G Q 0 ~ Ih trung digm clja doan thiing AB v3 M I3 mot di6m tujl ChUng minh r3ng :

v.

--.

MA.MB =

OM^

-O A ~ =

Vi 0 1h trung die"rn cira doan AB n6n

OM^ - O B ~ .

=

-- - - - - - - (OB + OM).(OB- OM)

-s.

Ta c6 : MA.MB = (OA - OM).(OB- OM) =

Vi du 3. Cho hinh ch2 nhat ABCD vh M Ih mot di6m tuj/ ChQng minh r3ng :

MA^ + M C ~= M B ~+ M D ;~ --b) MA.MC = MB.MD . a)

v.

GIA a) Goi 0 18 giao 6ie"m ciia hai d&ng chBo AC va BD cSa hinh ch3 nhet. Ta c6 :

+ M C =~

--

-

(MO + O A ) ~+ (MO + oc12

-= 2 ~ 0 ~ + 0 ~ ~ + 0 CO ~A +, O (C v =i G ) -_.

= 2M02 + OA2 + OC2 + 2 MO.(OA + OC) .

(1)

M B ~ + M D ~( M = ~+SI)~+(EG+OD)~

-- = 2 ~ 0 ~ + 0 ~ ~ + OO ~B +~ O, D( =v ~i )(2) = 2M02 + O B + ~ OD2 + 2 MO.(OB + OD). .

Vi 0 la t6m c6a hinh ch3 nhet n6n ta c6 OA=OB=OC=OD. So sdnh (1)vh (2) ta suy ra :

MA+Md=2Md MB+MD=~=. -- Do 66 (MA + M C ) ~ (MB + O D ) ~ .

=

I

Hinh 2.79

VS du 4. Cho tam gi6c ABC vdi ba trung tuye"n Ib AD, BE, CF. ChQngminh rang :

Vi AD, BE, CF 121 c6c d ~ a n gtrung tuygn n6n t a c6 :

=

-- - --

- [BC.(AB+ AC) + CA.(BA + BC) + AB.(CA + =)I 2

Dang 3. Chimg minh sg vu6ng g6c cOa hai vectd P h m g phap. Sd dung tinh chgt c6a tich v6 hrldng :

iI;d

i.6

= 0.

V i du 1. Chang minh trong met tam giic ba d&ng cao d6ng quy.

Gi6 s 3 tam giac ABC ba"t kki c6 hai d&ng cao BB' vh CC' c i t nhau tai H. Ta c6n ch1311g minh AH vu6ng g6c vdi BC (h.2.20).

-HA.BC HA.(HC - HB) .

. .

--

= HA.HC - HA.HB

-- - -HB.CA HB.(HA HC) HB.HA - HB.HC -HC.AB HC.(HB - HA) HC.HB - HC.HA =

--.

=

-

=

---.

=

(1)

-.-

-

.

(2)

. -

(3)

=

--

--

Vi HB I CA n6n HB.CA= 0 vh

--

HC I AB n6n HC.AB = 0. Do d6 tir (4)

Bd

ta suy ra HA.BC = 0 hay Hd I , nghia 18 ba d&ng cao ciia tam giac ABC dbng quy tai H.

Cp 1 I I

Vi dl! 2. Tam gi6c ABC czn c6 AB = AC. Goi H I2 trung di6m cira canh d i y BC vA D la hinh chi& clja H tr6n canh AC. ChQng minh r i n g du'dng trung tuye"n AM clja tam gi6c AHD vu6ng g6c vdi du'ang thang BD.

--

Ta cdn c h h g minh AM.BD = 0 (h.2.21).

Hinh 2.21

Vi M 1h trung digm c6a H D n6n ta c6 : A

_

.

-

2AM=AH+AD A

vA

_

.

_

.

BD=BH+HD

-- - - - -

Do d6 2 AM.BD = (AH + AD).(BH + HD)

--+ (AH -+ HD).HC

= AH.HD

-- -

- ---

= HD.(AH + HC) (vi HC = BH, AH.HC = 0).

Vey AM Vtiang g6c vdi BD. V i dl! 3. TO gi6c ABCD c6 hai d&ng ch4o AC va BD c$t nhau tai 0. Goi H, K I$n lddt I2 truc tzm clja c6c tam gi6c ABO, CDO v2 goi I, J the0 thO tu la trung di6m clja AD VA BC. ChOng minh rang H K vu8ng g6c vdi I).

Chlrmg 11.

56

T~CH H U ~ J GCL~AHAI VECTU...

Hinh 2.22

--- .- -- -Ta c6 2 HK.IJ = HK.(AC + DB) HK.AC + HK.DB Ta c6n c h b g minh HK.IJ = 0.

=

-- - - -

-*

Do 66 2 HK.IJ = AC.(BD + DB) = AC.0 = 0. V@yHK vu8ng g6c v6i IJ. V i du 4. Cho hinh thang vu8ng ABCD c6 ddirng cao AD = h, hai canh d5y AB = a v5 CD = b. Tim he thilc giOa a, b, h sao cho dlrErng cheo AC vu8ng g6c vdi ddirng ch6o BD.

(H.2.23) Tac6:

ACIE

--

oAC.BD=O

-- -

a AC.(AD - AB) = 0

--

--.

csAC.AD - AC.AB = 0

--

Hinh 2.23 -2

Ta c6 AC.AD = AD --.

(1)

= h2 (cBng thGc hinh chigu)

--

AC.AB = DC.AB = ab (cdng thGc hinh chi&)

Do 66

-- --

I % o AC.AD - AC.AB = 0

Dung 4. BiGu thirc toa di) clia tich va huung v9 cAc irng dung : tinh 66 dhi ciia met vecta, tinh khoang cBch giaa hai die"m, tinh g6c giaa hai vecta.

- Cho vecta G - Cho vecta

= (bl ; b2). Khi 66 :

= (al ; a2) vii

-.

u = (ul ; u2). Khi 66

- Cho hai di8m A = (xA; yA)va B = (xB ; yB). 2

- xA)

- G6c

gi3a hai vectu the0 c6ng that :

+ (yg - y A )2 . +

= (al ; a2) va b = (bl ; b2) d ~ q ctinh

Vi du 1. Trong mgt ph%ngOxy cho ba di6m A(3 ; 5), B(-5 ; 1), C(0 ; -4).

-

a) Tinh do dai cdc canh AB v3 AC cfia tam gi5c ABC. b) Tinh g6c BAC .

Vay

-

BAC = 45".

V i du 2. Cho tam g i i c ABC bigt A(-3 ; 61, B(l ; -2), C(6 ; 3). a) Tim toa do trong tdm G c i a tam gidc ABC. b) Tim toa do truc t3m H clja tam gi%cABC.

G

I

~

a) Ta bigt trong t6m G c6a tam gihc ABC c6 toa dij 18 :

b) Goi H(x ; y) 18 trgc t h tam giac ABC, ta c6 :

Vey trgc tam H cda tam gihc ABC c6 toa de 1& (2 ; 1). V i du 3. Cho hinh vu8ng ABCD c6 canh bsng a. Goi E I5 trung di6m c i a canh AB, F la di6m trEn canh AD sao 1cho AF =-AD. XAc dinh vi tri clja di6m M tren d&ng 3 t h i n g BC sao cho EFM = 90'.

Chon h$ toa do Oxy sao cho dlnh D trirng v8i g6c 0, c8c di6m C v8 A 16n l ~ q nhm t tren Ox va Oy (h.2.24). Ta c6 D = (0 ; O), C(a; O), A = (O ; a ) , B = (a ; a). Theo gid thi& t a tim d w c toa do A/& B

'I

GiH sB M = (a ; y), ta c&n tim tung do y &a di6m M.

-

Tac6 F E =

(;,;I

-.-

--

E F I FM e FE.FM = 0

-

11Ta suy ra vecta BM = -BC 6

.

Hinh 2.24

59

52. T~CHVO H m G CUA HAi VECTU

V i du 4. X6c dinh g6c gigs c6c cap vectd sau d2y :

=(O;-5);

a)

;

c=(&;l)

- - -

1-1 1-1

a m=p=2.Ta

c) Ta nh$n thgy vectu p = n - m = ( h8y tinh g6c giira

vA

i.

Hinh 2.25

1

1 ' = 2 n6n vecta - - n =m +p +

=

d

-

-

.

4

tao vdi m vA p cPc g6c -

w

e

bhng nhau nghia 18 ( m , n ) = 15' (vectu n = m + p c6 do dAi bhng d ~ l m gch6o ciia hinh thoi e6 canh 121

1

=

1

= 2 vB c6

--

Nhon xkt. Ne"u ta tinh trqc tigp g6c ( m,n ) tir cbng that

thi sE gap nhi6u rdc r6i trong khi thgc hi$n cAc phCp tinh.

~ C ~G ,A HA1 VECTCJ...

Ch~rongII. ~ C H H

60

11. Cho tam gidc ABC vudng tai A c6 g6c

6

= 60'. Hay tinh cdc

12. Tam gific d&u ABC c6 canh bang a v2I c6 dllbng cao AH. Hay tinh cbc tich v6 hubng sau day :

C)

-AC. H A .

-di6m M sao cho M A . M B

13. Cho doan thing AB c6 do d i i 2a v i mat s$

k2. Tim tap hqp cdc

= k2.

14. Cho tam gidc ABC c6 BC = a, CA = b, AB = c. Tinh tich v6

15. Cho tam gidc ABC c6 g6c 2 = a < 90'. VC ben ngoii tam gidc dZ cho c5c tam gidc vu6ng can dinh A la ABD v& ACE. Goi M la trung di6m clja canh BC. ChQng minh rang A M vudng g6c vdi DE.

--

16. Cho b6n digm phan biet A, B, C, D cirng thuoc mot d u h g

-

thing, bigt rang

AB va

IEI= a , l E l =

b. Hay tinh AB.CD khi

ccng hudng v2I ngugc hudng.

17. Cho tam gific ABC c6 BC = a, CA = b, AB = c. VC v6 phia ngoai tam gidc hai hinh vubng ACEF v21 BCDL. ChQng minh :

18. Cho tam gidc deu ABC c6 canh bang a. Hay tinh cdc tich vd hubng sau :

b)

AB.(2E- AC);

C)

(AB - AC).(AB + AC) . -

.

-

.

A

19. Cho hinh vuang ABCD canh a. Tinh c6c tich v8 h ~ d n g sau :

-

.

-

-

c) (A6 - AC).(2AB + A D ) . -.

+

20. Cho hai vecta a = (2 ; -4) 4

+

4

,b

+

= (6 ; -1). Tim vecta x = (u ; v)

4

saocho a . x =6vA b . x = 29. -.

21. Cho hai vectu a = (4 ; -5),

6 = (1 ; 2). Tinh c6c tich v 8 hddng

i.6 vA (;+$).(;-GI. 22. Tim g6c giQa cdc cap vectd sau ddy : 4

4

a) a = (4 ; 3) v i b = (1 ; -7) ; 4

4

b) c = (2 ; 5) va d = (3 ;-7) ;

23. Cho hai digm A(l ; 2) vA B(-3 ; 1). Tim digm M(x ; y) sao cho MA I AB vA MA = AB. 24. Tim toa do true tam H(x ; y) clia tam giic ABC bigt cdc digm A(2 ; 11, B(-1 ;3) , C(-2 ; -3). 25. Cho tam gi6c ABC c6 AB = Scm, BC = 7cm, CA = 8cm. Tinh -.-

AB.AC v i tinh g6c A. - C I A

26. Cho tam gi6c ABC c6 ba g6c A,B,C

d6u

la g6c nhon. Dddng

trbn tdm 0 b6n kinh R ngoai tigp tam gidc d6. ChUng minh rang :

b) cos 2A

+ cos 28 + cos 2C 2 --.3

2

TAM

I

Chirng ta bi6t rhng mat tam gific d ~ u choan toan xac dinh ne"u bi6t ba canh, hogc hai canh vh g6c xen giila, hoac mat canh va hai g6c k&.

c6 dubng cao AH = h, BC=a,CA=b,AC=c.

Vdi ba truhng hap n6u tren so" do cac canh va cAc g6c cbn lai cria tam giac hoan tohn xac dinh. Nhu v$y giaa cfic ye"u to" clia mat tam giac c6 mat m6i lien he xac dinh nao 66. Nwhi t a goi 66 la cac hg thQc Zupzg trong tam giac. Trong ph6n nay chling ta sG nghien c h nhilng he thI3c d6 va cac & - ~dung g cGa chung.

A

Goi BH = c', CH = b'.

1. DInh li sin

Hay di&n vao c6c 6 trdng sau d i y de" dwc c i c h@ thirc dljng :

a) Cho tam giac ABC vuSng tai A c6 BC = a, CA = b, AB = c A (h.2.26). Ta dS bigt : b sinB=-*a=a

b sin B

a b Do66 a=-sinB sinC = cosB =

-

a

sin L -

c sinC

n

D

'

Vi A = 90"n6n sin A = 1va t a c6 the" vie"t he thI3c (1)nhu sau

a

a -=-=-

c sinC

b sinB

sinA

C

(1) :

'

Hun n3a vi BC = a = 2R 18 duhng kinh duhng trbn ngoai tie"p tam giAc vu6ng ABC n6n :

--a sinA

Ban hag thll xern :

b sinB

- --

-

--C - 2R sinC

He thtlc nay d q c goi 18 dinh li sin trong tam giBc hay d ~ u c goi tht 18 djnh li sin. =

-2I absinC

= di@ntich AABC. Chia cAc so" nay cho

-1 abc ta c6 : 2

a ' b c -=-=sinA sin0 sinC ' Ta d3y hay suy ra dinh l i sin.

b) Dinh li. Vdi tam gi5c ABC ba"t kki, t i so" @Cia m$t canh vA j sin c i a g6c dbi dien v6i canh d6 lu6n lu6n bang d ~ a n gkinh c i a d ~ i r n gtrbn ngoai tigp tam gihc.

p

CU I

a -=-=-

b.

c

sinA

sinB

sinC

= 2R.

5 3 . CGC HE THUC LLJQNG TRONG TAM GIAC VA GIAI TAM GIAC

63

CH~NG MINH myc a) dinh dii d ~ d cc h h g minh trong truang hdp g6c BAC= 90". Ta c8n c h ~ minh g dinh trong tnlang hup g6c BAC kh6c 90". N6u g6c BAC nhon ta d&ng kinh BD ciia duang trbn

d

li

li

CI

vG ngoai ti6p tam giAc. Khi 66 vi tam giAc BCD vu6ng tai C n6n

ta c6 : BC = BD sinD hay a = 2R sinD. (h.2.27a) CC

-

A

Ta c6 BAC = BDC v i 66 1h hai g6c nai tisp c h g c h h cung BC . Do 66 : a = 2R sinA hay

--a - 2R. sin A

CI

Ne"u g6c BAC th ta cfing vE d u h g kinh BD cGa d d h g trbn ngoai tie"p tam gidc ABC. TQ gidc ABDC nai tigp d d h g trbn d u h g kinh BD n6n 6 = 180' - . Do 66 sinD = sin(180° - A). Ta cfing c6 BC = BD sinD = BD sin(180° - A) = BD sinA.

Vay a = 2R sinA hay

Cic dhng thQc

a = 2R. sln A

b -sin B

2R V B

--c - 2R duqc c h h g minh sin C

He

quci. V6i moi tam giAc ABC nai tigp duang trbn bAn kinh R, t a c6 :

a = 2R sinA , b = 2R sinB , c = 2R sinC. c) V i du. TCf hai vi tri A, B cAch nhau 25m v5 cirng thuoc mot ba sBng hay do khoang cdch til vi tri A v i vi tri B tdi vi tri C d

-

b$n kia dbng siing, bigt rsng BAC = 110" v i ABC= 20" (h.2.28).

Chdung II. T/CH

64

vo H

~ C~IA GHA1 VECTIl...

B

A Hinh 2.?*

-

Ta c6 ACB = 180" - (110" + 20") = 50" Theo djnh li sin ta c6 : sin 110' - sin 20' - sin 50' a b 25

Vey a =

25. sin 110' sin 50'

b=

25. sin 20' sin 50'

-

30,7 (m)

z 11,2

(m).

a) BAi tohn. Cho tam gihc ABC bi6t AB = c, AC = b vA bigt g6c A. H5y tinh canh BC = a (h.2.29).

-2

-

-

-2

BC = (AC - A B ) ~= AC

Hinh 2.29

-2

+ AB

--

- 2AC.AB

.,

53. CAC HE THUC L W G TRONG T A M GIAC VA

~ l d TAM l GIAC

65

Tif ke"t q& cfia bhi todn tren ta suy ra dinh li sau diiy : m

h) Dinh li. Trong mat tam giic ba"t kki, binh p h ~ ~ mat n g canh ~j biing tbng binh phdung hai canh cbn lai trllr hai Idn tich hai canh kia nh2n vdi c6sin cSa g6c giila hai canh d6. 1 7

jI

1

Trong moi tam gidc ABC, vdi BC = a, CA = b;AB = c ta lu6n c6 :

L

f [

1-

I

I

a2 = b2 + c2 - 2bc COSA b2 = a2 + c2 -2ac cosB c2 = a2 + b2 - 2ab cosC.

AC = 5. Hay tinh canh BC. a) khi g6c

i= 90" ;

b) khi g6c

= 60".

Vdi moi tam gi6c ABC, vdi BC = a, CA = b, AB = c ta luan c6 :

cosB =

a2 + c2 - b 2

theo gi6 tri clja he thOc b2 + c2 - a2 IA mot s6 duong, hoac sd im, hoac bang 0, hay suy ra tinh ch5t cca g6c A (tO, nhon, vudng). C)

Cho tam gidc ABC c6 BC = a, CA = b, AB = c. Goi ma , mb , m, la do dAi chc d u h g trung tuye"n ldn l m t vG tif cbc dinh A, B, C clia tam gibc. Khi d6 ta c6 :

to5

A

m a2 =

Cho tam gidc ABC wbng tai A, c6 BC = a, CA = b, A6 = c.

I Hdy dua "20 cbng t h O 2 ma =

Tinh do dai duirng trung tuye"n ciia tam gidc

2(b2 + cZ)- a2 4

2

I

m,, = 2

mC =

2(b2 + c2)- a2 4

2(a2+c2)-b2 4

2(a2+b2)-c2 4

d6 tinh da d i i rn,.

B

M

C

Hinh 2.30

That v@ygoi M la trung digm ciia canh BC. c6sin vao tam gi6c AMB ta c6 (h.2.30) :

Ap dung dinh

2

a4 = cac cos B m2a = ~ ~ + ( ~ ) ~ - 2 c . ~ c o2 +-sB

Vi cos B = 2

ma =

2

a2 + c2 - b 2 ni2n t a c6 : 2ac a 4

+--

ac. a 2 + c 2 - b 2 - 2(b2+c2)-a2 2ac 4

li

C h h g minh t w n g tg ta c6 :

b) vi du. Cho tam giic ABC c6 a = BC = 5cm, c = AB = 8cm vA g6c 6 = 77'. Tinh canh AC, c6c g6c A, C cda tam gi6c vA d&ng trung tuye"n mb = BM cda tam gi6c d6 (h.2.31). I A

GI~I Theo dinh li casin.'ta c6 : A C =~ b2 = a2 + c2 - 2ac cosB = 52 +

s2-2.5.8.cos77O

M

= 89 - 80 cos 77'.

-

AC= ~ b2

V$y AC

71.

fi =

Mu6n tinh g6c sinA a

-=-

-

180'

C

8,4 (cm).

2

Hinh 2.31

t a dDng djnh li sin :

sin B a. sin B =,sinA =b b

Do 66 sinA =

e

/A

B

5. sin 77'

fi

-

0,5782

- (77' + 35'19')

-

67'41 ' .

dung cbng thirc :

g

@. Tam gi6c ABC c6 di@n tlch S- N& k6o dhi cqnh AB mot doan AB' = 2AB va kc50 dhi canh AC mot doan AC' = 3AC. G Q S'~ 13 di@ntlch tam gidc AB'C'. S' Hay x6c dinh t1 s6 - .

5

3. Cdng thljlc tinh dien tich tam giac Cho tam gidc ABC c6 BC = a, CA = b, AB = c. Goi R vh r l&n l%t lh ban kinh d&ng trbn ngoai tie"p, nai tizp tam gidc va a+b+c 1B nfia chu vi tam giAc. P= 2 Ta c6 cAc cang thirc tinh di$n tich S clia tam giac ABC sau day : a) Cac cbng thilc :

53.CAC HE THUCLWNG TRONG TAM GIAC VA

~ i d TAM i GIAC

67

abc 2)S= 4R

Ta chlihg minh cdc cdng th3c trCn : A

f

~

Tim die,n tich clia mai tam

1 1)Tam giBc ABC c6 di$n tich S = -ah, v6i ha = AH. Vdi g6c 2 nhon, th hay vudng ta d&uc6 :

AH = AC sinC = b sinC

(h.2.32)

1 Do 66 S = - ab sinC. 2

=

I

l

Hinh 2.32

b)

1 1 CBc cdng thGc S = -ac sinB vP S = - bc sinA d ~ u cc h h g 2 2 minh t m g tg.

10

2) Theo djnh li sin ta c6 -- 2R hay sinC = sin C 2R '

c)

5

!

I t

C

C

1 1 c abc Ta c6 S = -ab sinC = - a b = 2 2 2R 4R '

3) Gpi I 1P tiim d~lrngtrbn niji tiirp tam giBe ABC. Ki hi$" SaBCla diijn tich tam giBc ABC. BBn kinh r c6a dlllrng trbn niji tigp tam gidc la d~lrngcao xu& phAt til 63nh I cba cac tam giBc IBC, ICA, IAB. Ta c6 (h.2.33) :

Hinh 2.33

Chlrung II. *H

68

Theo dinh li cosin ta c6 cosA = 1 + cosA =

2

(b+c) - a 2bc

1 Vay S2 = -(a 16

+ b + C)

2

@ H U I ~ GC~IA HA1 VECTII. ..

b 2 + c2 - a 2bc

2

. Do 66

:

- (b+c-a)(b+c+a) 2bc

(a + b - C) (b

+ c - a) (C+ a - b).

c+a

- b = 2(p - b). Ta suy ra S2 = p(p - a ) (p - b) (p - c) hay S = Jp(p - a)(p - b)(p - c) .

b) Vi du. Cho tam gi6c ABC c6 AC = 7cm,.AB = 5cm. Bi6t 3 cosA = -, hZy tinh canh BC, dien tich S cGa tam gist, 5. duting cao ha v i b6n kinh R cira d ~ t i n gtr6n ngoa i ti6p tam gidc.

4zii I

ta gpi tam giAc c6 do d i i ba canh li ba so" nguyPn liPn tigp v i c6 dien tich bang mot sd nguyCn li

- Theo dinh li cdsin ta c6 (h.2.34) :

I

3 B C ~= a2 = b2 + c2 - 2bc cosA = 7% 5' - 2.7.5. - = 32. 5

tam g i i c He-r6ng. Cdc tam gidc d6 c6 do da'i c6c canh nhu sau :

Hinh 2.34

4 sinA = -, vi sinA > 0. 5

3

a - Theo dinh li sin ta c6 -- 2R n6n sin A

4. ~ i 6tam i giac v a irng dung a ) GiHi tam giac Gi6i tam giac la tinh cac canh va cac goc ciia tam giac dga tr6n mat so" y6u to" cho tntac. Mu& gihi tam giac, ta c6n tim hi6u giii thie"t vh k6't luan ciia bhi toan d6 lga chon cac he th13c h u n g thich hap (49dduc n6u trong dinh li sin, djnh li c6sin va c6c c6ng thoc tinh di$n tich tam giac.

Vi

dl!

1. Cho tam gi5c ABC bigt canh AC = b = 47cm vA cdc

g6c

Ta c6

= 48',

= 180'

= 57'. Hay tinh

- (48" + 57')

= 75'.

Theo djnh li sin ta c6 : --a - b (h.2.35) sinA sinB j

a=-- bsinA - 47.sin4a0 sinB ,qin7s0

--C -- b sinC sinB

3

i, a va c.

_

36(cm)

A

b=47cm

Hinh 2.35

c=-- b sin C -4 7 . sin 57' = 41. sinB sin750

V i du 2. Cho tam gi6c ABC c6 c6c canh a = 49cm, b = 26cm vA g6c = 47'. Tinh canh c vA cdc g6c i, (h.2.36).

C

Chcrdng II. T~CHVQ H U ~ CGA G HA1 VECTU.. .

70

Hinh 2.36

Theo djnh li casin t c2 = a2 + b2 - 2ak

--- -

c2 = 4g2 + 262 - 2.49.26.cos47' c2 = 2401 V$y c =

V$y

x

+ 676 - 1.737,73 =

Jm = 36,6 (crn).

1.339,27.

x

la g6c th vh ta tinh d ~ u c = 101°,42'.

V i dl! 3. Cho tam gidc ABC c6 cdc canh a = 24cm, b = 13cm, c = 15cm. Tlnh g6c dien tich S cda tam gidc v i cdc bAn kinh R, r c i a cAc dddng trbn ngoai tie"p, nQi tigp tam gidc.

x,

Theo dinh li c6sin ta c6 (h.2.37) :

Hinh 2.37

x

Nhu v@yA 18 g6c th vB ta tinh d ~ q c = 117'49'.

Goi S 1h dien tich tam.giac ABC ta c6

53. CAC HE THUCLUONG TRONG TAM GIAC VA GIAI TAM GIAC

71

abc abc Ap dung ciing thirc S = ta c6 R = -= 4s

4R

Theo ciing thirc S = pr ta c6 r = nCn r =

S

-. Vi P

p =

13,64 (cm). 24+ 1 3 ~ 1 5 = 26 2

-- 3,3 (cm). 8575

26

Chri j . Ta c6 the" tinh dien tich S cia tam gihc bhng cang thirc HC-rang nhu sau :

Trong truang hup cu the" nQy, viec tinh di$n tich bhng cang thirc HC-r6ng cho ta ke"t qu& chinh x8c hun dung cang thirc 1 S = - bc sinA. 2

b) Ong dung vho viec do dac trong thgc ti$ B i i t o i n 1. Mu6n do chi& cao CD = h cda rnqr chi thdp m i ta kh6ng the" de"n d ~ w ctdm C cda chdn thdp. Trong mat phAng dQng chOa chi& cao CD cda thdp ta chon hai die"m A, B tr$n mat da"t sao cho ba dikm A, B, C thsng hhng. Gi5 st3 ta CI

do d w c khodng cdch AB = 24cm vA cdc g6c CAD = 63" , ( C

CBD = 48". Hay tinh chi& cao h clja th5p (h.2.38).

&/ Hinh 2.38

GIAI

Ap dung dinh li sin vao tam gihc ABD ta c6 : AD -- AB = A D = AB.sin B -sinB

Tac6:

I

sin D

sin D

X=E+E=E=X-g= 6 3 " - 4 8 " = h = CD = AD sinA = 68,91.0,891

z

15". 61,4 (m).

Do 66 AD =

24. s i n 48'

z

sin 15'

24.0,7431

= 68,91 (m).

0,2588

BPi to611 2. KhoAng c6ch tCf A de"n B kh6ng the" do trgc tigp d w c vi phai qua mat c6i h8 n u & ~ NgUtfi . ta chon mot di6m C tao nen tam gihc ABC c6 BC = loom, AC = 80m v& g6c CI

ACB = 48'. Tinh khoAng c i c h AB (h.2.39).

c Hinh 2.39

Ap dung dinh li c8sin d6'i

vdi tam gihc ABC, ta c6 :

4

4

B i i todn 3. Hai luc ddng quy P,Q a = 50'. Tinh hup lgc

vdi

tao v6i nhau mot g6c

v i dnh gbc tao bdi

6 bi6t r5ng ? = 1OON, a = 200N.

Ta vi5 Pd =

-P,OQ -

R

vdi p v ~

GIAI

=

- - Q vh OR O P + O Q . Khi 66 POQ = 50". =

X6t hinh binh hAnh OPRQ (h.2.40), ta c6

-

OPR = 180" - 50" = 130".

A~ dung dinh li c8sin d6i vdi tam gihc OPR ta c6

:

Hinh 2.40

53. CAC HE THOC LUQNG TRUNG TAM GIAC VA

-

cos POR =

~ l d TAM l GIAC

'i3

+ 275i2 - Y ^ ^ ~ - loo22.100.275

0p2 + 0 R 2 - P R ~ 2.OP.OR

7

Ta suy ra POR

2:

-

- 34'

34" vA QOR = 50'

-

16" .

5.Cac dung bai tap cd b8n Dqng 1. Tinh mat s 6 ycu to" cua tam giac the0 mot so" y6u to" cho trudc (trong 66 c6 it nhgt 11B mat canh).

Phuung phap.

- S3 dung trgc tigp djnh li sin v&dinh li cbsin. - Chon c5c he thilc h u n g thich hqp d6i vdi tam gi6c de" tinh mat s$ ye"u to" trung gian c6n thigt vvB sau 66 tinh cac y6u to" c6n tinh. - Sd dung dinh li "Tdng cAc g6c c3a mat tam giac bhng 180"" Vi du 1. Cho tam gi5c ABC c6 a = 34. = 45'. ? = 64'. Tinh g6c A v i c5c canh b, c cda tam gi5c d6 (h.2.41).

= 180" - (45" + 64") = 71".

Theo dinh li sin ta c6 : b --=sin A sinB

--a

c

a sinB - 34.sin 45' D o d 6 : b = -sin A ,in71O c=

a sin C - 34. sin 64' -sinA

5

sinC

sin71"

/k

B 2:

25,427

2:

32,32

a = 34

64.)\

C

Hinh 2.41

Chri 9. Ta c6 the" tinh canh c the0 cdng thilc : . c =

b sin C 25,427. sin 64' --

sin B

sin 45'

V i dl? 2. Cho tam gidc ABC c6 a = 50, b = 27, hai g6c A, B va canh C.

= 48'. Tinh

Chtfmg II. T~CHvo H U T ~ G C ~ HA1 A VECT(7.. .

74

Vgy c =-/,

= 37,714.

Hinh 2.42

x = 99'51'. Tir d6 ta tinh d q c % = 180' - ( E + x) Dhng m6y tinh b6 tlii t a tinh duuc

I

1

f j = 180' - (48'

+ 99'51') = 42'9'.

V i du 3. Cho tam gi5c ABC c6 a = 48, b = 26, c = 30. Tinh C ~ g6c C A, B, C.

Theo he qud cSa dinh li cSsin ta c6 :

Ta tinh duuc

x

i 1 1

A

F

r

117'49'.

Theo dinh li sin ta c6 Do d6 sinB =

i

Hinh 2.43

a -sinA

b sinB

'

b sin A 26.sin 117'49 ' = 0,4791. a

48

Tam giac ABC c6 canh AC ngdn nhgt n6n g6c B nhon. Ta tinh duuc

= 28'37'.

Dqng 2. C h k g minh c6c h e that v6 m6i quan he giGn c;ic y6u t 6 cua met tam giic.

Dhng c8c he th3c cca bdn de"bign d6i ve"nay thanh ve"kia, hoec chlihg minh hai ve" chng b5ng mat bigu thoc thQ ba, hoec

h

53.CAC HE TH& LUM\IG TRONG TAM GIAC VA GIAI TAM GIAC

7.5

c h h g minh h$ thGc c6n c h h g minh t u m g d ~ u n gvdi mat h$ thGc dd bigt la d6ng. Khi c h h g minh c6n khai thac cac gih thigt vh kgt luan de" tim duuc cAc he thGc thich hap 1Bm trung gian cho qua trinh bign d6i.

V i du 1. Goi G la trong tdm c i a tam g i i c ABC v i M I2 mat dikm tujl 9. ChlSIng minh r i n g : a)

MA^ + MB2 + M c 2= G A ~+ GB' + GC' + ~

G ;M ~

9 trong d6 m a , mb , m, Idn Iddt 2 I& do d i i c6c trung tuye"n Ong vdi cAc canh a, b, c cGa tam gi6c v i R I i b i n kinh dddng tr6n ngoai tigp tam gi6c ABC.

b) ma + mb

+ m,

2 -R,

-- - --= GA2+ G B ~+ G c 2 + 3 ~ ~ ~ ( 1 )G( Av +i G B + G C = ~ ) . = GA2 + G B ~ + GC2 + ~ G -M2 GM.(GA ~ + GB + GC)

b) Theo h$ th3c (1)ta lu6n lu6n c6

Met khAc ma =

3 3 GA, mb = - GB, m, 2

2

3

= - GC nen : 2

Thay M b8ng tam 0 cba d&ng trbn ngoai ti6'p tam giac ta duuc :

hay

9 m,+mb+mc I-R. 2

V i du 2. Cho tam gi6c ABC vudng tai A. Goi ma , mb , m, I$n l ~ la tdo dAi c6c d~ivngtrung tuye"n xu& p h i t tCt cdc dlnh A, B, C cfia tam gi6c. ChUng minh r i n g :

ChUmg II. T ~ H H

76

I

~ C ~G HA1 A VECTO.. .

t

GI~I Theo c6ng that tinh &jdhi 6dmg trung tuye"n ciia tam giac ta cb :

-

i

Vi tam gi6c vu8ng tai A n6n t a c6 a2 = b2 + c2 va ma = -1a 2

V i dl! 3. Cho S

I

IA dien tich cua tam giic ABC. ChUng minh :

1 Ta bigt r i n g S = - AB.AC sinA 2

1

-2

-2

--

= - [AB .AC - (AB.AC)~ I 4

V i dr! 4. Cho tam gi6c ABC c6 BC = a, CA = b, AB = c vA r bAn kinh du'irng trbn nei tie"p. ChUng minh r%ng:

IA 1

tanA c 2 + a 2 - b 2 , a) -- 2 2 2 ' tanB c + b -a B C asin-sin2 2 b) r = A . COS 2

a) Theo djnh li sin va chsin t a c6 :

-

sin A 2R tanA = ---a COSA b 2 + c 2 - a 2 2

2bc ~ ' ~

~

+

~

~

-

~

1

53.CAC HE T H l k LCfONG TFiONG TAM GlAC Vi GlAl TAM GIAC --

77

-

-

-

-

b sin B 2ac 2R - -b tanB = -COSB a 2 + c 2 - b 2 2 R ' a 2 + C 2 - b 2 tanA a 2 + c 2 - b 2 Do 66 ta suy ra -t a n B b 2 + c2 - a 2

'

b) Goi I 1h tAm d ~ a n gtrbn nai tigp tam giAc ABC. Cdc canh BC, CA, AB tigp xlic vdi dlrfing trbn nay l i n b u t tai M, N, D (h.2.44).

Ap dung dinh li sin d6i vdi tam gidc BIC, t a c6 -- sin - sinBIC 2

--

~~

-

sin

+ 2

- BC -B+C A sin - cos 2 2

-

(1)

Hinh 2.44

MGt k h i c trong tam giAc vuang IMB t a c6 :

IB =

. B' L

sin 2

Tir (1)vh (2) ta c6 :

1

B

--

C -

sin -.sin 2 2 B C a. sin -sin 2 2 Do d6 : r = A cos 0

i l

COS

A ' 2

:

Chllang II. T/CH

78

vo HU%GCUA HA1 VECTII.. .

V i du 5 . Cho tam giAc ABC c6 C = 6. H%ytinh :

A

= 60°, canh b = 12,

a) Canh a v2 g6c B clja tam gidc ABC ;

b) Dien tich S clja tam gidc ABC ; C)

B5n kinh R clia dllirng trbn ngoai tigp tam giac ABC ;

d) €38 dAi d ~ d n gcao BH vA dildng trung tuygn A M cGa tam giic. ,'

GIAI

a) Theo dinh li c6sin ta c6 (h.2.45):

b) Dien tich S ciia tam giac duuc tinh the0 c8ng thQc : -

1 2

fi

= -.12.6.-=

2

18&.

Nh@n xkt. Vi g6c B = 90" n6n ta c6 the" tinh dien tich tam gihc the0 c6ng thBc :

I I

60' A

1 S = -.AB.BC = -.6.- 1 2 & --1 8 f i . 2 2 2

H

b=12

6

Hinh 2.45

abc - 6&.12.6 c ) T ~ c ~ s = * , ~ o ~ -~ R = = 6. 4R 4s 4.18.A

Nh&n xkt. Vi tam gi6c ABC vu8ng h i B nen bhn kinh d ~ i r n g 1 trbn ngoai ti6p tam giac bhng - canh huy6n AC. Ta c6 2

Dulrng trung tuyG'n AM c6 do dai duqc tinh the0 c6ng thdc

Darlg 3. Gi5i tam gi5c v,i v s n d6 do dac. l'h rltrng ph cip

- Tam giac ABC t h ~ l r n gduuc cho dudi ba dang chu

y6u : bi2;t mot canh va hai g6c k6 (g, c, g), bi6t mot g6c va hai canh kg g6c do (c, g, c), va bie't ba canh (c, c, c).

- De" tim cac yku to" cbn lai cua tam giac n w d i ta thuirng dung cac djnh li sin, dinh li &sin, dinh li : "Tdng ba g6c cha mat tam giAc bhng 180"" va dac biet c6 the" dhng chc he thdc l w n g trong tam giac hoac cac cang thUc tinh dien tich tam giac. V i du 1 . Cho tam gidc ABC bigt toa do cdc di6m A(4 & ; -1 1, B(0 ; 3), C ( B & ; 3). Tinh cdc canh v i cdc g6c clja tam gi6c ABC d6.

Nhu vey tam gi6c ABC c6 BC = 8 & , CA = 8, AB = 8.

Vgy A = 120". Vi AB = AC n&ntam giac ABC c6

V i du 2. Ngllili ta mu6n do khoang c5ch tir hai vi tri A vh B c6ch nhau 500m 6 ben nay bd sang tdi vi tri C 6 bi2n kia bd

-

sang. Ho do d l l ~ cg6c CAB = 87", g6c CBA = 62". Hay neu c6ch tinh cAc khoing c6ch AC v21 BC (h.2.46).

Theo dinh li sin :

a ---b C -sinA s i n B sin C

ta c6 :

I'

c h ~ m 11. g T~CHvo H U ~ I G C ~ , A HAI VECTCJ...

80

Hinh 2.46

c. sin B - 500. sin 62" A C = b = -sin C sin 31"

c. sin A B C = a = -sin C

-

-

i

857(m)

500. sin 87' = 969(m). sin 3 1"

V i du 3. Mu6n bie"t do cao clja t h i p cao nhst the" gidi 6 Toronto thuoc Canada (c6 t2n goi I i "Canada's National Tower") ngddi ta ti& h i n h nhd sau :

Goi S I i dlnh thdp v i C I i tam c6a chan th5p. Vi khbng do dduc ti, chdn C clja thip, ngdtfi ta lgy mat digm A n i m tr@ndddng n i m ngang vdi chAn C clja t h i p v i do dddc g6c SAC = 70". Tr@ndclZlng thing CA ngddi ta IA'y mat digm B c6 khoAng cdch AB = 118m vA do dddc g6c SBC = 60". Ti, d6 ngddi ta tinh d w c chi& cao clja thdp (h.2.47). HGy cho bie"t ho d2 tinh chi& cao nay nhd the" nio.

Mu6n tinh do cao h = SC ta cAn bi6t d q c do dhi canh huy&n SA cGa tam gihc SAC vu6ng tai C va c6 g6c = 70". X6t tam giAc SAB t a c6 ASB = 70" - 60" = 10".

S

C-

Ap

dung dinh li sin d6i vdi tam gihc SAB ta c6 : --AB sin 10'

-

SA sin 60" Hinh 2.47

Do 66 SA =

AB.sin 60" sin 10"

-

118.0,86602 = 588,5(m). 0,17365

:

.

Vi sin 70'

=

SA '

t a suy ra SC = SA.sin70°

= 588,5.0,9:

the"gibi lh 553m.

V(iy chi& cao SC cia

27:Cho

tam gidc ABC bigt :

a)

=90°,

b)

= 90°,

6

=58', a=72cm.Tinh

e , b, c ; A

= 48', a = 20cm. Tinh C, a, c.

28. Tinh gbc Idn nhgt c i a tam gidc. ABC vA di@ntich clja tam gi%c d6 trong m8i trcldng hgp sau : a) a = 4 0 c m , b = 13cm, c = 3 7 c m ; b)a=13cm,b=5cm,c=12cm. 29. Cho tam gidc ABC bigt cosA =

3 5

-, b = 5,

c = 7.

Tinh a, SAABC, R VA r.

x,

30. Tinh cdc g6c v i d d n g cao ha, bdn kinh dlllrng trbn ngoai tigp R, noi tiG'p r clja tam gidc ABC biG't :

& , b = 2 , c = JS +I. 31. Goi G la trong t;im clja tam giAc ABC. ChQng minh r?ing.: a=

32. ChQng rninh r3ng trong tam gidc ABC, ta cb :

+ c.cosB ; b) sinA = sinB cosC + sinC cosB. 33. Tam gidc ABC c6 chu vi 2p = a + b + c. ChQng minh rsng a) a = b.cosC

.2 sinA = ,-Jp(p bc

- a)(p- b)(p- c) .

34. Goi m a , mb, m, I8n l w t Ii cdc trung tuye"n Qng vdi cdc canh a, b, c crja tam gidc ABC.

a)Tinhmabie"ta=26,b=18,c=16; b) Tinh c bigt a = 7 , b = 11 , m, = 6. C)

ChQng minh rang 4(m: + m i +m:)

= 3(a2 + b2+ c2).

Related Documents

Hinh Hoc 10 - C2
May 2020 4
Hinh Hoc 10 - C1
May 2020 2
Hinh Hoc 10
May 2020 1
On Thi 10 - Hinh Hoc
June 2020 2
Hinh Hoc Phang Euclid
November 2019 3
Hinh Hoc 7
November 2019 5