HA1 VECTC) VA '&NG DUNG
6 1dp 9 ta
0, Cho tam gidc ABC vu8ng I tai A va c6 BC = 2a, CA = a. H a y tinh c6c 11 r6 bong gidc rau ddy :
I
I
di3 bigt dinh nghia ti so" ldung giBc clia g6c nhon a = xOy nhd sau :
La"y mat diem M b6t ki tr6n tia Oy sao cho M khbng trhng v6i 0 r6i vE MP vubng g6c vdi tia Ox. Ta c6 tam giAc OMP vu6ng tai P. Ta goi : sins =
MP canh dbi -- OM canh huydn
OP canh k6 cosa = -OM canh huykn MP canh dbi t a n g a = -= OP canh k& 0 OP canh kd cotang a = -= MP canh d6i'
/
; P
Hinh 2.7
CBc tl so" nhy kh6ng phu thuac vho tri cSa diem M tr6n Oy (h.2.1). B&i v@yta c6 thz chon di6m M sao cho OM = 1 vh t a c6 : s i n a = MP , cosa = OP
Ta c6 the m& rang khdi ni$m ti sd Z~qnggicic czia gdc nhon a thhnh khBi ni$m gia trt Iuung giac czia mot g6c a vdi ' 0 Ia 1180' bang dinh nghia sau dgy :
I
/ I.Dinh nghia. Cho h@tog do Oxy vdi c6c didm A(-, ; O),
ij !i
B ( l ; 0) v i C(0 ; 1). Ta goi n8a d&ng trbn dllirng kinh AB vA di qua didm C la naa d&ng trdn don vj (c6 b6n kinh bang 1 ).
Hinh 2.2
Vdi m6i g6c a ( 0' < a1 1 8 0 ~ ta ) x6c dinh d ~ v cmat di6m M
~ sao cho MOx (h.2.2).
tren n8a d u h g trbn d m
:
=a
GiA s 3 di6m M c6 toa da (xo ; yo). Khi 66 t a dinh nghia : - Tung do yo ciia di6m M goi lh sin cda gdc a v8 duuc ki hi$u lh sin a = yo.
- Hohnh 66 xo ciia 6ie"m M goi lh c6sin cda gdc a vA dwc ki hi$u 18 cos a = xo. v
Yo vdi xo - TI sd -
#
0 goi 18 tang clia gdc a v8 dmc ki hieu
Xo Yo ( a 18 tan a = -
;t
90').
Xo
Xo vdi yo - Ti sd -
#
0 goi lh cbtang cda gdc a vh duuc ki hi&
Yo
CBc sb sin a , cos a , tan a , cot a duuc goi lh cdc gid tri l r l ~ n g giac cda gdc a.
, Cho a vA
p lb
hai g6c
tO trong d6 a c
V i du. Tim c i c gi6 trj lllqng gihc clja g6c 135".
P.
Hay so sdnh : a) sin a vA sin p ;
b) cos a va cos f3
.
Ta 1a"y di6m M trCn naa d&ng trbn d m vj sao cho MOx = 135" (h.2.3).
-
Khi 66 suy ra MOy = 45' v&digm M c6 toa do lh :
Chllmg II. T/CH
30
Vey sin 135" =
HIJ~%JG C~IA HA1 VECTI3.
J5 , cos 135" = --J5 , tan 135" = -1, cot 135" = -1. 2
2
Hinh 2.3
2. Gia tr[ Itfdng giac c6a hai goc bu nhau a) Dinh / j . Hai g6c bC nhau c6 sin b%ngnhau vA c6 c8sin dbi nhau.
i
sina = sin(180° - a ) cos a = -cos(l 80" - a ).
C H ~ N GMINH _4
-
LiXy di6m M tr6n n3a d&ng trbn d m vj sao cho MOx = a r8i
Cho tam gi6c ABC. Chdng minh rang : sinA = sin(i3 + C)
lii'y di6m M' d6i xxlihg v6i M qua truc Oy thi xOM' c6 so" do biing 180' - a (h.2.4). R6 r b g la hai 6ie"m M vh M' c6 tung do b h g nhau cbn hohnh do clia chung thi 66i nhau. Do 66 sin a = sin(180° - a ) cos a = -cos(180°
- a)
Hinh 2.4
51. GIA TRI LUONG GIAC CUA MOT GOC
31
I b) HS. qud. Hai g6c bO
la/
nhau c6 tang dbi nhau v i chtang dbi
nhau. tan a = -tan(180°
7
cota = -cot(180°
- a) -
a).
V i du. Tim cAc gid tri ldung gidc clja g6c 150".
sin 150" = sin 30" =
1 fi ; cos 150" = -COS 30" = -- .
2
2 '
tan 150" = -tan 30" = --J3 ; cot 150" = -cot 30" = - & . 3
3. Gio trj lwng giac c6a mat sd goc doc biet
0°
30"
45"
60"
90'
180"
sin a
O
1 -
2
& 2
45
1
0
cos a
1
45 -
J5 -
-1
2
2
0
-1
tan a
O
x
1
fi
II
0
cot a
II
43
1
1 -
O
II
2 1
2
J3
Yo - 1 18 khang xac dinh vA Ta c6 tan 90' = xo O 1 cot o0 = X0 - - cGng kh8ng xdc dinh n8n trong bHng lugng Yo O gidc ciia c6c g6c dac biet ta dcng ki hi& "(I" de" chi giA tri Chri
J?.
kh8ng xdc dinh 66. Mat so" g6c dac bi$t khdc nhu cdc g6c 120°, 135"' 150" d&u c6 cAc gid t~ 1-g giAc d w c suy ra til cac giA tA 1Uqng gi6c ciia CAC g6c d$c biet dii cho.
Ch~ung11.
32
T/CH ~6 H
~ C ~G HA1 A VECTU.. .
V i du. sin 120" = sin(180° - 120") = sin 60" =
J3 2
4. Cac he t h k giila cac gia tri lwng giac cca mot goc
Ta ludn lubn c6 :
sinus1
vi cos a 5 1 .
sn
Dinh 11'. Vdi moi g6c a ta d8u c6 :
0i
I
a) N
* 0 thi tan a
~ U cosa
b) N& sina
#
=
0 thi cota =
sina
-; cos a
cosa . -, sina
c ) sin2a + cor2a = I.
CHUNGM I N H a) va b) : Til djnh nghia ta c6 : YO (vdi xo tana = Xo
cota =
#
sin a 0) hay tan a = cos a
0 (vdiyo + 0 ) h a y c o t a
Yo
=
cos a
-. sin a
Tren n3a d&ng trbn ddn vi ta l6y di6m M sao cho MOx = a . Goi MI va M2 la hinh chi& cria M lhn l ~ d trkn t Ox va Oy (h.2.5). C)
-
-
Ta c6 s i n a = OM2 va cosa = OM1.
Hinh 2.5
33
5 1. GIA TR! LLQNG GIAC CUA MOT GOC 2. Cuc he thdc khcic
5 Ii !i
Djnh 1;. Nku cosa+O thi 1
I
+ tan2a =T.
cos a
i;
1 N 6 u s i n a t O thi 1 + c 0 t 2 a = ~ . sin a
iiI
CH~NG MINH 2 2 2 sin a - cos a + s i n a -- 1 T a c 6 1 + t a n2 a = 1 + -2 2 cos a cos a cos 2 a
cos 2 a
l + c o t 2 a = l +T sin a
-
sin2 a + c o s2 a
-2
--
1
sin2 a
sin a
3. Ap dung a) Cho bigt tanx
x + cos2 x 1 sinx cos x sin x cos x
s i n x cosx sin + cotx = +-- -
tanx Ne"u tanx
+ cotx = 2, h8y tinh sinx.cosx.
cosx
+ cotx = 2 thi
slnx
2
1 = 2. sin x cos x
1 Ta suy r a sinx cosx = - . 2
2 =sin 2 a Do66A=
2 2 72cot a=-+-- 12
sin a
sin a
1 sin 2 a
2 cot2 a
5. Cac dong bai tep cd b i n Dung 1. De" tinh cAc gia tn bung giac clia mat g6c khi bi6t mat gia t n lIfdng giAc c3a g6c 66. Phuungphdp :
-
- Dga vAo dinh nghIa, chn tim tung dij yo va hohnh do xo c3a di&mM tr6n nila dlllrng trbn d m v j vdi g6c xOM = a vh t 3 66 ta c6 : s i n a = y o ; cosa = xo; t a n a =
- ; cota
=
Xo
Xo -. Yo
- Dga vAo tinh chgt : hai g6c bh nhau c6 sin bhng nhau va c6 casin, tang, c6tang d6i nhau.
- Trong mot so" t m h g hqp c6 the" dga vho ti so" do d8i cAc c g h c h mat tam gihc vudng, cu thd 1A do"i v6i g6c nhon a ta c6 :
sina =
d6i -
tana =
d6i (h.2.6) k&
huyQn
Hinh 2.6
D6i vdi hai g6c phu nhau a vh 90' - a ta c6 : sin(90° - a ) = cos a cos(90° - a ) = sin a
vh ne"u 0 ° < a I 90°thi tan (90'ne"u 0 ' I a < 90°thi cot (90'-
a ) = cota
a )= tana.
- Sir dung he that cos2a + sin2a
= 1 d6 tinh tofin.
1 Vi du 1. Cho cos a = -- . Hay tinh c6c gi6 tri llldng gi5c cbn
3 lai clia g6c a v21 so shnh c6c gi6 tri n i y vdi so" 0.
1=8 . Vi s i n a > 0 nen ta lgy Ta c6 sin2a = 1 - cos2 a = 1 - 9 9 2& sin a s i n a = - vti suy ra tan a = -= : = -2Ji 3 cosa 3
(-i)
1 tana
cots = --
1
- --=--
2fi
.J2 4 '
Vi a 18 g6c tir n6n cAc gi8 tfi luang giac cos a , tan a , cot a d&u18 c8c s6 Zim, chi risng s i n a lh s6 dumg. V i du 2. Cho bigt tana = -2. HZy tinh c3c gi3 tri l~wnggi6c cbn lai cGa g6c a .
Ta c6 t a n a = -2 < 0 nen a lh g6c tir, nghia 18 90" c a c 180'. Do d6 cosa < 0. (1) Theo he thclc 1 + tan2a =
1
2 ta c6 cos2a
I
=
1+ tan2 a
cos a
1 =1 -
hay cos2 a =
1+4
5'
1 Tir (1) v h (2)ta suy ra cos a = - -
A'
Theo he thirc tan a = hay s i n a = cota =
sin a cos a
- ta c6 sin a
(-5)
2 245 .(-2) = -= -
45
2
tan a
Ccich I. Vi t a n a = cosa > 0.
'
fi.
Tinh bigu thQc A =
tana =
5
1 1 n&nta c6 cota = --
V i dl! 3. 6i6t tana =
Tir he th&
= cos a .tan a
3sina - cosa sina + cosa
fi
1
> 0 n8n a lh g6c nhon, do 66
7 = 1 + tan2a ta suy ra cos a
sin a n&ns i n a cos a
Thay sin a =
:
= cosa.tana =
43 -.& 3
46
=-.
3
6 vh cos a = f i vho bigu thclc A ta tinh d ~ d c: 3 3
C h h 2. Chia ti3 vA mau cba A cho cos a
#
0 ta c6 :
Vi du 4. Tinh : a) sin23" + sin21So + sin2750+ sin2870
b) cos212'
+ c0s*78~+ cos21 + ~ o s ' 8 9 ~
c) Cho bigt sin 15" =
J 6 -J 2 4
. H5y tinh
cdc gid tri
Imng gi4c cbn lai clja g6c 15".
GIAI a) Chli 9 rhng vi sin 3" = cos(90° - 3") = cos87" vA sin 15" = cos(90° - 15") = cos75"
nCn sin23"+ sin215"+ sin275"+ sin287"= (cos287"+ sin287")+ (cos275"+ sin215")= 1 + 1 = 2.
b) Vi cosl2" = sin(90° - 12') = sin78" vA coslo = sin(90° - 1")= sin89"
nen cos212"+ cos278"+ cos210+ cos289"= (sin2780+ cos278")+ (sin2 89" + cos289")= 1 + 1 = 2.
Dung 2. Chdng minh cac he thdc v6 gia tri l ~ u n ggiac cua mat goc a .
- Dqa
vho dinh nghia gi6 tri ldung gi5c ciia mot g6c a vdi 0 I a 1 180'.
- Dqa vao dinh li : "T6ng ba g6c c6a mot tam giac lu8n lu8n b%ng 180'".
- Sd dung cAc he th~Iccu b6n dude suy r a til dinh nghia n h ~ sin a cos a t a n a = - vdi cos a # 0, cot a = - vdi s i n a ;t 0, sin a
cos a sin a + cos2 a = 1. 2
1
- Ap dung he thl'rc :
+N
1 b cos a + 0 thi 1 + t a n2 a = 7 ; cos a
+ Ngusina +
0 thi 1 + cot2a =
1 2 sin a
- Thqc hien c6c phbp bi6n d6i t ~ n dg ~ n g dlra , he th13c cAn chQng minh vd mat he thirc duuc thaa nhan la dling. V i du. ChQng minh r i n g :
a) sin4x + cos4x = 1 - 2sin2x cos2x ;
b) sin6x + cos6x = 1 - 3sin2xcos2x.
I
= 1 - 2sin2x cos2x
(dpcm (I' )
= sin4x + cos4x - sin2x cos2x = 1 - 2sin2x cos2x - sin2x cos2x =1
- 3sin2x cos2x
V i du 2. ChQng minh r%ng:
a)
b)
(*)
dpcm : di6u phdi chOng rninh.
1-sina - cosa C O S ~ l+sina tana - sina sin3 a
1 cosa(l+ cos a) '
(dpcm)
T~CHaH U ~UAG HA1 VECTU.. .
C h m g II.
38
1- sin a - (1- sin a ) ( l + sin a) - 1- sin 2 a a> cos a(1+ sin a) cos a(1+ sin a) cos a
-b)
0
cosy a cosa cos a(l + sin a) 1+ sin a
(dpcm).
sina . sin a -sin a tan a - sin a cos a -
.-.
n
sin5 a
sin' a
sin5 a
1 - 1- cosa -cos a ( l + COS a, cbs a sin2a
m).
V i du 3. Chilng minh r i n g :
2
sina b)'-l+cotu
2 - cosa
=sinacosa
a, ~ + c o s ~ [ , - ( l - c ; a ) ~ ] - l + c o s a ( sin a sin a sina
I,'-
- l+cosa(
.
~+tana
1
s i n a (I-=
+--2cota ssrna
1-2cosa+cos a sin 2 a
2 )
cot
-- 1+ cosa -2 cot 2 a + 2cota sin a
sin a
- 1+ cosa .2cot a(sin a
1 sina
--)cosa sina
- 1+ cosa .2 cot a. 1- cos a - (1+ cos a)(l- cos a) sin a
b) l -
sin2 a
sin a
sin2 a - cos2 a sin 3 a = 1l+cota l+tana sina+cosa = 1-
-
.2 cot a
cos3 a sina+cosa
sin 3 a + cos3 a sin a + cos a 2
2
= 1- (sin a + c o s a - s i n a c o s a ) = sinacosa
(dpcm).
J
51.
39
GIA TRI L m G GIAC CUA M?T GOC
V i du 4. Chl?ng minh chc bi@uthirc sau khbng phu thuoc vho x.
+ (sinx - C O S X;) ~ b) B = sin6x + cos6x + 3sin2x cos2x .
a) A = (sinx + cosx)'
a) A = (sinx + c o ~ x +) ~(sinx - cosx12 = (sin2x + cos2x) + 2sinx cosx
+ (sin2x + cos2x) - 2sinx cosx = 2.
b) B = sin6x + cos6x + 3sin2x cos2x =
Vi dl! 5. Cho tam gidc ABC. ChQng minh rhng : a) sinA = sin(B + C) ;
b) cosA = -cos(B
+ C) ;
A+B C c) sin= cos2 2
C)
A+B sin-= 2
.
C 2
cos
Vi du 6. Tam gi5c ABC c6 A6 = AC = a vA c6 g6c nhon = 2 a . Goi AH v3 BK lA cAc d&ng cao ve ta cdc dinh A vA B. a) Tinh do d;ii cdc dddng cao AH vA BK the0 a vA a .
b) Chlllng minh r3ng sin2 a = 2sin a cosa. A
--
GIAI
a) Ta c6 BAH=HAC = a (h.2.7)
AH -- cosa a AH = a cos a AB
a
Hin h 2.7
Chlrong II.
40
T/CH
vC)
HU~NG CGA HA1 MCTU...
b) Goi SAHCla di$n tich t a m ABC, ta c6 : 2SAUC= AH.BC = BK.AC trong 66 BC = 2 B H = 2.a s i n a .
Tti (1)va (2) t a suy r a sin2 a = 2cos a sin a
(dpc
1 . H i y ph6t bi6u dinh nghTa gi6 tri ldung gidc clja 1n6t g6c a vdi 0" 5 a 5 180". a) GiA sir cho g6c a = 120". Hay cho bigt c6c gi6 tri lclung gidc : sin 120", cos 120", tan 1 2OU, cot 120'.
b) Vdi nhCfng gid tri n i o cila g6c a ta c6 :
- sina v i cosa cirng da"u ? - sin a va cos a khdc ddu ? 2. Goi a la so" do clja g6c MOx tr@nnda dclbng trbn dun vi. Hay x6c dinh VI tri ciia digm M tr@nnrlla dddng trbn dun vi d6 sao cho : 1 a) cosa = - . H i y tinh so" do cGa g6c a d6. 2
b) sina =
1 -.
C) cosa =
--.1
2
2
-
Khi d6 g6c MOx la g6c nhon hay g6c tir !
-
Khi d6 h i y t i n h s6do cira g6c MOx.
d) sina dat gi6 trj Idn nha"t. 3. Hay so sdnh c6c cap gi6 tri lcr~lnggi6c sau ddy : a) cos 45" v i cos 60" ; b) sin 20" v i sin 60" ; C)
cos 120" va cos 150' ;
d) sin 135" v i sin 170". 4.
Dua vao dinh nghia gi6 trj bung gidc clja mat g6c a (0 5 a 5 1 80"), h i y tinh gi6 tri c6c bi6u thOc sau (vdi a, b, c la nhang so" cho trudc).
+ b.cos 0" + c.cos 90" b) B = a.cos 90" + b.sin 90" + c.sin 180" c) C = a2.sin 90" + b2.cos 90" + c2.cos 180" a) A = a.sin 0"
5 1. GIA TRI L
W G GIAC C l j A MOT GdC
5. Kh6ng dirng m6y tinh b6 tcii, h i y tinh gi6 t r ~c6c bi6u thrSlc sau : a) M = 3 - sin2 90"
b) N = sinx
+ 2cos260" - 3 tan2 45" ;
+ cosx khi x bang 0" ; 45" ;60";
C)
P = 2si1ix + cos2x khi x bang 60" ; 45" ; 30" ;
C)
() = sili'x
+ COS'X
khi x bang 1 35" ; 1 80" ; 160"
.
6. Chifng minh c i c hhng d i n g thOc : a) (sinx + cosx)' = 1
+ 2sinx cosx ;
b) (sinx - cosx12 = 1 - 2sinx cosx ; C)
sin4x + cosJx = 1 - 2sinzx cos'x ;
d ) sinx cosx (1 + tanx) (1 + cotx) = 1 + 2sinx cosx. 7. Cho tam gi6c ABC vuBng tai C v i c6 = 34') canh AC = 10,5. Hay tinh cac canh AB, BC v i gbc B clja tarn giac. 8. Cho tam g i i c ABC vu611g tai
I
(
va ccj canh BC = 12,3,
CA = 31,G. H i y tinh canh AB va c,6c goc /i,6 c ~ i atam gi6c. 9. Chirng minh rang a) Vdi g6c u (0' 5 a 5 90') ta c6 :
sin 190" - a ) = cos a cos (90" - a ) = sina ; b) Vdi g6c a (0" c u I 90") ta c6 :
tan (9U" - a ) = cot a ; C)
Vdi g6c a (0' I
cl<
90') ta c6 :
cot (90" - a 1 = tan a . 10. Chdng minh r i n g
1
2
2
sin acos a
2
=tan a + c o t a + 2 .
Chumg II. ~ C vo H HUI%JG C ~ HA1 A VECTCJ.. .
42
1 . Goc gi3a hai vectd
8
,lg/lja.
-
a
Q,
Cho t a m g i j c AUC vuGng c j n tai A
a
d6u k h l c vectd 6. Til Cho hai vectd v i mat digm 0 ba"t ki ta vP =i v i = g. G6c AOB vdi sb do t i l 0' dgn 180' duuc goi la g6c giGa ha; vecto V A g .
r a) Djn/l
ci, I la trung
1 Ta k i hi& g6c g i h hai vecta a v i i; 18 (a, 6 ).
c1ic"m cda c a n h BC.
a
bl C/,.ri 3. Cdch xdc dinh g6c giaa hai vecta vB 6 theo d/nh nghia n6u tr6n khBng phu thuoc vAo viec chon digm 0. Hun n a a t a c b n c 6 ( ; , G ) = ( g , i). N6'u
(
a, g
)
= 90"thi ta n6i rhng hai vecta
vd.i nhau vh ki hieu C)
a Ig.
a vh $
vudng gdc
V i du. Cho tam giAc ABC vu6ng tai A v i c6 gbc B = 40". Khi 66 ta c6 :
--
(BA, BC) = 40';
--
(AB, BC) = 140'
Hinh 2.8
2. Djnh nghia tich vo hddng c6a hai vectd Trong truilng hap n i o
rich v6 hudnp
;.
6 cO
gia trl cfuong, co gia tri jrn, bang O !
k I
I
a
d&u k h l c vectu 6 a ) Dinh n g h i < ~Cho . hai vecta va la met sb, k i hi& la v6 hu'dng cda hai vecto vd d d ~ xdc c d ~ n hbdi cirng thirc sau :
a
Tr~rirnghup n6u c6 mot trong hai vectu -. ta quy udc a . b = 0.
-
a vh
bhng vectu
6
b ) CIlri 2. Trudc diiy ta d5 bi6t t6ng cua hai vectu la mat vectd, tich ccia mot s6 vdi mot vectu 18 mot vectu. d d i y ta c6 tich v8 hudng cua hai vectd la nzQt sd chd khdng phai la mat vectu. Vi v$y n6n ngu&i ta goi tich 6 6 la tich v6 h ~ d n gc ~ i ahai vectd.
i
Cho tam gi6c d6u ABC c6 canh a va trong tdm G. Tinh c i c tich v6 hlldng sau ddy : c ) V i du.
0, Vdi hai sd thuc J , b bSt ki, ta c6 (a.blL= a'.bL. v b y vdi hai vecta
-.a, b-
b i t ki, t l j n g thUc :
Theo djnh nghia ta co (h.2.9):
I
c6 dung kli61ig ?
--
AB.AC = a.a. cos 60'
1
= -a
2
2
AC.CB = a.a. cos 120' = --a1 2 -7
2
--
a" a 43 GA.BA = -.a. cos 30 = 3 2 d j Di6u kien vudng g6c ciia hai vectu
Tit djnh nghia tich v6 h ~ d n gcua hai vectu thgy r i n g : Ta cluy ~ l d cxcrn vcctu vubng goc vdi rnoi vecw vi
u.a=o.
--
A
A\
Hinh 2.9
vB
ta nhan
- - lit .I61.cos 90' = o ; --. - a . b =Othido a*O,b*6 tasuyra
- N ~ (Ua , b ) = 90" thi a . b = -Ngugclainbutac6
Do 66 ta c6 dinh li : "Ridrr hien cdn u& dii d6' hai vecta a7 t 6 vci 6 + 6 ou6ng gcic u u i nlzau la tich v6 hudng ciia chiing h&ng 0".
e ) Nh&n z4t. Trong v(t.li ta bi6t rhng nth c6 met l w f? tAc dong lGn mot v$t lhm cho v@t 66 di chuy6n tii 0 6e"n 0' thi c6ng A cba lvc F duuc tinh the0 c6ng that :
- coscp . IF^ .l0o11. 4
A=
(h.2.,10)
(f?1 lh culrng 60 c6a l~ tinh bhng Niu-ton (vigt tdt la N), 100'1 1s do dM quang d u h g 00' tinh bhng m6t (vigt tdt trong 66
-
vh 00' tinh bhng 60, cbn la m), cp lh g6c gi3a hai vectu c6ng A tinh bhng Jun (vigt tt$t18 J).
IF^. 100'1. cos cp
d
Tmng tofin hgc, giA t* cba bigu thm A =
k& d m v j do dmc gpi 18 tich va h u h g cQahai vectcr
@
"21
kh6ng 00 ' .
f
0'
0 Hinh 2.70
3. Binh phlldng v6 hllang
- -
8
4
-
CH~]Y :
Vdi m ~ doan i thang AB ta lu8n lubn c6 :
A B= ~
4
-
1 - 1 1-1
1-l2 .
Ngu a = b tac6 a . b = a . a = a . a .cosoO= a
z2= [q2
sAB=@.
Khi 66 tich v6 hudng
a. a d@c ki hi& 18 a 2 .
-2
Sd a nhy dduc goi 16 binh p h m g u6 h ~ h cgcLa vectu
i.
Do 66 ta c6 djnh li :
"Binh plzuung v6 h ~ d n gcria mot tlecto b&ng binh ph~crngdo dai cria vecta dd"
4. Cac tinh ch6-t c6a tich v6 hlrCjng Ng&i ta dii c h h g minh duuc cAc tinh chgt sau dAy cba tich v6 hudng : 4
-
-
.
V6i ba vecta a , b , c bgt it vii moi so" k ta c6 : -.-
+-,
a . b = b. a . (tinh chgt giao hofin) -.
-.
-t
-.- --.
a.(b+ C) = a . b + a . c . (tinh chgt phan phG ddi vdi ph6p ceng vectu) ;
92. T~CHVO H
4 -5
~ CUAG HA1 VECTCY
Tif c8c tinh chgt cclja tich v6 hudng, ta c6 th6 suy ra cAc h$ th3c sau diiy : -2
--
'2
+ - + 2
-2
(i+Gl2=a +2a.b+b - + 2
(1)
(a-b) = a - 2 a . b + b
- - - -
-2
(2)
-2
-2
(a+b).(a-b)=a -b
-2
=la1 -1bl
(3)
5. Cac bai toan a p dung
a
B i i to6n 1. Cho hai v e c t ~ chi&" cda vecta -,*
6
vA
6 bgt
kki, g ~ ib; la hinh
tren d&ng thang chQa vectd
a . ChQng
+ -
minh r i n g : a . b = a . b l
a)
b) Hinh 2.7 7
- -. Ta vG ciic vectd OA = a vh
=
g. Goi B' 1h hinh chi&
tren dlrZIng thhng OA. Ta c$n c h h g minh :
--OA.OB OA.OB1 - Ne"u AOB < 90' ta c6
(h.2.11a) vA b)).
=
:
CI
--.
= 0A.OB.cos AOB = OA.OB .
- Ne"u AOB
C4
> 90" thi :
- --
= OA.OB'.cos AOB = OA.OB .
cclja B
C h m g II. T~CH
46
-
-
- N6u AOB
H W G &A HA1 VECTU...
6
= 90" thi OBI = vB khi d6 --, OA.OB' = OA .O = 0 = OA.OB cos 90" = OA.OB .
--
A-
BPi to6n 2. Cho doan thdng AB c6 do dAi 2a. Tim tap hdp -_.
c6c di6m M sao cho MA.MB = k2 la mot s6 cho trddc.
Goi 0 la trung digm ciia doan thhng AB (h.2.12) ta c6 :
-MA.MB = (MO + OA) (MO + OB) -
_
.
A
-
Hinh 2.12
Viiy tep hap cAc digm M lh d&ng trbn tarn 0 , bAn kinh
R=
J m .
B i i toin 3. Cho dddng trbn (0; R) vA dikm M c6 dinh. Mat dddng th3ng A thay dbi lu8n lu6n di qua M cdt dlrirng trbn d6 tai hai dikm A vA B. ChQng minh r i n g :
M A . M B = M O ~ - R ~ = ~ ~( v -d Ri d ~= M O ) . CH~NG MINH
-
VEi d ~ h kinh g BC ciia d ~ & ntrbn g ( 0 ; R). Ta c6 MA 1B hinh chi& c6a MC tren dudng th&ng MB. Theo cbng that hinh chie"u (BBi toftn 1)ta c6 :
/B
M Hinh 2.73
52. T~CHVO H
47
~ CUAG HA1 VECTIT
--- MA. MB MC.MB = (MO + OC).(MO + OB) =
--
Chri .i.. Gig tri khdng d6i clia tich v6 hlldng MA. MB =d2 - R~
n6i trong brii to6n 3 goi la phmng tich cua di6m M d6'i vdi
trbn (0;R) vdi T la ti6p
- Khi MT la tidp tuygn cua die"m,ta c6 :
Hinh 2.74
6. ~ i d thilc u toa do cGa tich v6 hdtrng
-. -.
Trong m8t phing toa do (0 ; i , j ) cho hai vectd :
Khi do ta c6 tich. .vi, h ~ d n g
c h m g 11.
48
WH~ fHUGNG l C~IA HAI VECT [I...
7. Ong dung c3a tkh vb hlrCIng a) Do dai c6a vectd
a = (al ; a2) d ~ u ctinh theo cdng thtlc :
4
b) G6c gigs hai vectu
0, a) Cho
6
Theo dinh nghia tich v8 h d n g t a c6 :
a = (1 ; -2) ;
= (-1 ; -3). Hay
tinh g6c (
b) Cho
a
= (al ; a2) vA b = ( b ;~bz).
c
a,
1.
= (2 ; -3) ;
= (3 ; 2). Hay tfnh
@ c ( ; , i).
Vi d". Cho
{GI5 f h o tam gidc ABC b i k A(1 ; I), B(2 ; 3), C(5 ; -1 ). Hay tinh d8 dAi cAc canh AB, BC, CA vA suy ra tam gi6c ABC vu8ng tai A.
= (3 ; -1). Tinh g6c MON.
= (-2 ; - I ) ,
- -- @.ON -6+1 & - -l o ~ ~ . l ~ l = & . 2f i Vey ( O M , ON) = 135'. cos MON = cos(OM, ON) =
'
.
c) Khozing c6ch giaa hai di6m
Cho hai di6m A(xA ; yA) , B(xB ; yB). = (xB - XA ; y~ - yA), do 66 t a tinh d ~ u ckhoHng Ta c6 c6ch giaa hai 6ie"mA va B 18 :
V i d l . Cho hai dism M(-2 ;
8) v5 N(l ; 0). Tinh doan MN.
-
Ta c6 MN = (3 ; - f i ) vB khozing c6ch giaa hai di6m M, N 18 :
MN=
I E I = , / ~ = ~ .
d) Bbi todn. Cho tam giAc ABC bi6t A(2 ; 3). B(8 ; 6& C(2 + 4 4 5 ;7). Cho tam giac ABC c6 BC = a, CA = b, A6 = c. Chon he tryc Oxy sao cho g6c 0 t r h g v6i C, di&m B nam tren phdn d ~ a n gc ~ i a truc Ox cbn di6m A c6 tung dd duang. Chdng minh rang :
+ 3) vA
-
1) Tin h do dcii cAc canh AB, AC v2 so"do clia g6c BAC . 2) Tinh dien tich tam giAc ABC.
--
v8 cos BAC = cos(AB,AC) =
Z.A6
246+24& 12.8
Vi3y BAC = 30'.
2) Goi BH 18 d&ng cao c3a tam giAc ABC, (h.2.15). Ta c6 CI
BH = AB sin BAC
Goi S 1A dien tich tam giAc ABC, t a c6 :
8. Cac dang bai tap cd b6n Dqng 1. n n h tich v8 hadng cfia hai vecta Phrlmg phap. - DDng dinh nghia tich v8 hudng va cAc tinh chgt c3a tich vd h ~ d n gc3a hai vecta.
- Sir dung cAc hhng dhng thGc v6 tich v8 hu6ng. -.-
--.
- Dhng cdng thflc hinh chi& : AB.CD = A 'B '.CD vdi A', B' l$n l ~ q 18 t hinh chi& c3a A, B l$n giA cBa
CD .
C h m g II. ~ C vo H H
50
~ C~>A G HA1 VECT(I...
Vi du 1. Tam gidc ABC c6 AC = 9cm, CB = 5cm, C = 90". Tinh :
--
a) AB.AC ; -4
b) BA.BC
a) Cach I .
. B
- . , I Ac~ cosA
-_.
AB.AC = IABI
AC AB
= AB.AC. =A C ~ = g2 = 81 (h.2.16)
C
A
Cdch 2. Ta c6 C la hinh chi& cba B 1Cn giA cfia ---.
KC.Uo d6
-.-
AB.AC = AC.AC = A C = ~ 81.
--
. .
b) BA.BC = BC.BC = B C vi ~ 3 18 hinh chi& cba gih cba BC. Viiy BA.BC = 52 = 25.
--
BA
--
tr6n
V i du 2. Tam giAc ABC c6 AB = 5cm, BC = 7cm, CA = 8cm.
a) Tinh AB.AC tCf d6 tinh gid tri clja g6c A. -+
b) Tinh CA.CB .
X6t tam gihc ABC ta c6 -2
--
-2
BC = (AC - A B ) ~= AC
Ta suy ra cosA =
AB.AC
IEI.I zI
--
-2
+ AB - 2AC.AB.
-
20 1 --- - - nCn A = 60". - 5.8 2
b) TUcfng tg nhu cAu a), ta c6 :
--
CA.CB =
1 2
1 2
- ( C A ~+ CB2 - AB2) = - (82 + 72 - s2)= 44.
1
Ej2. T~CHVO H
51
~ CUAG HA1 VECTU
C
V i du 3. Cho tam gi6c ABC vu8ng 6 A,
b,
= 60' vA canh huydn c6 g6c BC = 6cm. Tinh tich v6 h ~ b n g cfia c6c c$p vecta sau d i y :
--
a) CA.CB; b)
AB.BC.
h
6o0A
B
A
GIAI Tam gilc ABC 18 tam gilc vu6ng c6
Hin
= 30" nen
1 AB = - BC = 3cm 2
-4 = 436-9 f i 3& (h.2.17) -a) Ta c6 CA.CB = CA.CB.cos 30" = 3 4 3 . 43 6 . = 27. AC =
=
=
2
V i dl? 4. Cho hinh vu8ng ABCD canh a vh c6 t l m 0.'Gpi M mot digm tujl 9 tren canh BC. HZy tinh cAc tich vB hddng :
la
--
a) MA.AB ; b)
E.G.
a) Diing cang thilc hhih chi& t a c6
--M.4.A.B = BA.AB = a.a.cos 180"
lo
b) Goi H la trung didm cGa canh AB. Ta c6 OH I AB. Do 66 :
Hinh 2.18
Chlldng II. flCH
52
HU%GC ~ HA1 A VECTC7..2
Dang 2. C h h g minh cAc dang that v6 vectd c6 lien quan d6n tich v6 hudng
Phuung phdp.
- Sfi dung tinh chgt ph5n ph6i ccria tich v6 h ~ d n gd6i vdi ph6p tong cfic vectu.
- Dhng quy t$c ba di6m d6i
vdi ph6p ceng hoec tril vectu, vi du n h d6i ~ vdi ba di6m A, B, C ba"t kl,ta luBn c6 :
V i du 1. Cho tU giAc ABCD bgt kki. ChUng minh ring :
. -
.
- - t
. . -
-.A
DA.BC = DA.(DC- DB) = DA.DC - DA.DB
- -- -DB.CA DB.(DA - DC) DB.DA - DB.DC --DC.AB DC.(DB - DA) DC.DB - DC.DA -.-
(1)
--.
=
=
_.
=
_.A
(2)
-_.
=
(3)
V i dl! 2. G Q 0 ~ Ih trung digm clja doan thiing AB v3 M I3 mot di6m tujl ChUng minh r3ng :
v.
--.
MA.MB =
OM^
-O A ~ =
Vi 0 1h trung die"rn cira doan AB n6n
OM^ - O B ~ .
=
-- - - - - - - (OB + OM).(OB- OM)
-s.
Ta c6 : MA.MB = (OA - OM).(OB- OM) =
Vi du 3. Cho hinh ch2 nhat ABCD vh M Ih mot di6m tuj/ ChQng minh r3ng :
MA^ + M C ~= M B ~+ M D ;~ --b) MA.MC = MB.MD . a)
v.
GIA a) Goi 0 18 giao 6ie"m ciia hai d&ng chBo AC va BD cSa hinh ch3 nhet. Ta c6 :
+ M C =~
--
-
(MO + O A ) ~+ (MO + oc12
-= 2 ~ 0 ~ + 0 ~ ~ + 0 CO ~A +, O (C v =i G ) -_.
= 2M02 + OA2 + OC2 + 2 MO.(OA + OC) .
(1)
M B ~ + M D ~( M = ~+SI)~+(EG+OD)~
-- = 2 ~ 0 ~ + 0 ~ ~ + OO ~B +~ O, D( =v ~i )(2) = 2M02 + O B + ~ OD2 + 2 MO.(OB + OD). .
Vi 0 la t6m c6a hinh ch3 nhet n6n ta c6 OA=OB=OC=OD. So sdnh (1)vh (2) ta suy ra :
MA+Md=2Md MB+MD=~=. -- Do 66 (MA + M C ) ~ (MB + O D ) ~ .
=
I
Hinh 2.79
VS du 4. Cho tam gi6c ABC vdi ba trung tuye"n Ib AD, BE, CF. ChQngminh rang :
Vi AD, BE, CF 121 c6c d ~ a n gtrung tuygn n6n t a c6 :
=
-- - --
- [BC.(AB+ AC) + CA.(BA + BC) + AB.(CA + =)I 2
Dang 3. Chimg minh sg vu6ng g6c cOa hai vectd P h m g phap. Sd dung tinh chgt c6a tich v6 hrldng :
iI;d
i.6
= 0.
V i du 1. Chang minh trong met tam giic ba d&ng cao d6ng quy.
Gi6 s 3 tam giac ABC ba"t kki c6 hai d&ng cao BB' vh CC' c i t nhau tai H. Ta c6n ch1311g minh AH vu6ng g6c vdi BC (h.2.20).
-HA.BC HA.(HC - HB) .
. .
--
= HA.HC - HA.HB
-- - -HB.CA HB.(HA HC) HB.HA - HB.HC -HC.AB HC.(HB - HA) HC.HB - HC.HA =
--.
=
-
=
---.
=
(1)
-.-
-
.
(2)
. -
(3)
=
--
--
Vi HB I CA n6n HB.CA= 0 vh
--
HC I AB n6n HC.AB = 0. Do d6 tir (4)
Bd
ta suy ra HA.BC = 0 hay Hd I , nghia 18 ba d&ng cao ciia tam giac ABC dbng quy tai H.
Cp 1 I I
Vi dl! 2. Tam gi6c ABC czn c6 AB = AC. Goi H I2 trung di6m cira canh d i y BC vA D la hinh chi& clja H tr6n canh AC. ChQng minh r i n g du'dng trung tuye"n AM clja tam gi6c AHD vu6ng g6c vdi du'ang thang BD.
--
Ta cdn c h h g minh AM.BD = 0 (h.2.21).
Hinh 2.21
Vi M 1h trung digm c6a H D n6n ta c6 : A
_
.
-
2AM=AH+AD A
vA
_
.
_
.
BD=BH+HD
-- - - - -
Do d6 2 AM.BD = (AH + AD).(BH + HD)
--+ (AH -+ HD).HC
= AH.HD
-- -
- ---
= HD.(AH + HC) (vi HC = BH, AH.HC = 0).
Vey AM Vtiang g6c vdi BD. V i dl! 3. TO gi6c ABCD c6 hai d&ng ch4o AC va BD c$t nhau tai 0. Goi H, K I$n lddt I2 truc tzm clja c6c tam gi6c ABO, CDO v2 goi I, J the0 thO tu la trung di6m clja AD VA BC. ChOng minh rang H K vu8ng g6c vdi I).
Chlrmg 11.
56
T~CH H U ~ J GCL~AHAI VECTU...
Hinh 2.22
--- .- -- -Ta c6 2 HK.IJ = HK.(AC + DB) HK.AC + HK.DB Ta c6n c h b g minh HK.IJ = 0.
=
-- - - -
-*
Do 66 2 HK.IJ = AC.(BD + DB) = AC.0 = 0. V@yHK vu8ng g6c v6i IJ. V i du 4. Cho hinh thang vu8ng ABCD c6 ddirng cao AD = h, hai canh d5y AB = a v5 CD = b. Tim he thilc giOa a, b, h sao cho dlrErng cheo AC vu8ng g6c vdi ddirng ch6o BD.
(H.2.23) Tac6:
ACIE
--
oAC.BD=O
-- -
a AC.(AD - AB) = 0
--
--.
csAC.AD - AC.AB = 0
--
Hinh 2.23 -2
Ta c6 AC.AD = AD --.
(1)
= h2 (cBng thGc hinh chigu)
--
AC.AB = DC.AB = ab (cdng thGc hinh chi&)
Do 66
-- --
I % o AC.AD - AC.AB = 0
Dung 4. BiGu thirc toa di) clia tich va huung v9 cAc irng dung : tinh 66 dhi ciia met vecta, tinh khoang cBch giaa hai die"m, tinh g6c giaa hai vecta.
- Cho vecta G - Cho vecta
= (bl ; b2). Khi 66 :
= (al ; a2) vii
-.
u = (ul ; u2). Khi 66
- Cho hai di8m A = (xA; yA)va B = (xB ; yB). 2
- xA)
- G6c
gi3a hai vectu the0 c6ng that :
+ (yg - y A )2 . +
= (al ; a2) va b = (bl ; b2) d ~ q ctinh
Vi du 1. Trong mgt ph%ngOxy cho ba di6m A(3 ; 5), B(-5 ; 1), C(0 ; -4).
-
a) Tinh do dai cdc canh AB v3 AC cfia tam gi5c ABC. b) Tinh g6c BAC .
Vay
-
BAC = 45".
V i du 2. Cho tam g i i c ABC bigt A(-3 ; 61, B(l ; -2), C(6 ; 3). a) Tim toa do trong tdm G c i a tam gidc ABC. b) Tim toa do truc t3m H clja tam gi%cABC.
G
I
~
a) Ta bigt trong t6m G c6a tam gihc ABC c6 toa dij 18 :
b) Goi H(x ; y) 18 trgc t h tam giac ABC, ta c6 :
Vey trgc tam H cda tam gihc ABC c6 toa de 1& (2 ; 1). V i du 3. Cho hinh vu8ng ABCD c6 canh bsng a. Goi E I5 trung di6m c i a canh AB, F la di6m trEn canh AD sao 1cho AF =-AD. XAc dinh vi tri clja di6m M tren d&ng 3 t h i n g BC sao cho EFM = 90'.
Chon h$ toa do Oxy sao cho dlnh D trirng v8i g6c 0, c8c di6m C v8 A 16n l ~ q nhm t tren Ox va Oy (h.2.24). Ta c6 D = (0 ; O), C(a; O), A = (O ; a ) , B = (a ; a). Theo gid thi& t a tim d w c toa do A/& B
'I
GiH sB M = (a ; y), ta c&n tim tung do y &a di6m M.
-
Tac6 F E =
(;,;I
-.-
--
E F I FM e FE.FM = 0
-
11Ta suy ra vecta BM = -BC 6
.
Hinh 2.24
59
52. T~CHVO H m G CUA HAi VECTU
V i du 4. X6c dinh g6c gigs c6c cap vectd sau d2y :
=(O;-5);
a)
;
c=(&;l)
- - -
1-1 1-1
a m=p=2.Ta
c) Ta nh$n thgy vectu p = n - m = ( h8y tinh g6c giira
vA
i.
Hinh 2.25
1
1 ' = 2 n6n vecta - - n =m +p +
=
d
-
-
.
4
tao vdi m vA p cPc g6c -
w
e
bhng nhau nghia 18 ( m , n ) = 15' (vectu n = m + p c6 do dAi bhng d ~ l m gch6o ciia hinh thoi e6 canh 121
1
=
1
= 2 vB c6
--
Nhon xkt. Ne"u ta tinh trqc tigp g6c ( m,n ) tir cbng that
thi sE gap nhi6u rdc r6i trong khi thgc hi$n cAc phCp tinh.
~ C ~G ,A HA1 VECTCJ...
Ch~rongII. ~ C H H
60
11. Cho tam gidc ABC vudng tai A c6 g6c
6
= 60'. Hay tinh cdc
12. Tam gific d&u ABC c6 canh bang a v2I c6 dllbng cao AH. Hay tinh cbc tich v6 hubng sau day :
C)
-AC. H A .
-di6m M sao cho M A . M B
13. Cho doan thing AB c6 do d i i 2a v i mat s$
k2. Tim tap hqp cdc
= k2.
14. Cho tam gidc ABC c6 BC = a, CA = b, AB = c. Tinh tich v6
15. Cho tam gidc ABC c6 g6c 2 = a < 90'. VC ben ngoii tam gidc dZ cho c5c tam gidc vu6ng can dinh A la ABD v& ACE. Goi M la trung di6m clja canh BC. ChQng minh rang A M vudng g6c vdi DE.
--
16. Cho b6n digm phan biet A, B, C, D cirng thuoc mot d u h g
-
thing, bigt rang
AB va
IEI= a , l E l =
b. Hay tinh AB.CD khi
ccng hudng v2I ngugc hudng.
17. Cho tam gific ABC c6 BC = a, CA = b, AB = c. VC v6 phia ngoai tam gidc hai hinh vubng ACEF v21 BCDL. ChQng minh :
18. Cho tam gidc deu ABC c6 canh bang a. Hay tinh cdc tich vd hubng sau :
b)
AB.(2E- AC);
C)
(AB - AC).(AB + AC) . -
.
-
.
A
19. Cho hinh vuang ABCD canh a. Tinh c6c tich v8 h ~ d n g sau :
-
.
-
-
c) (A6 - AC).(2AB + A D ) . -.
+
20. Cho hai vecta a = (2 ; -4) 4
+
4
,b
+
= (6 ; -1). Tim vecta x = (u ; v)
4
saocho a . x =6vA b . x = 29. -.
21. Cho hai vectu a = (4 ; -5),
6 = (1 ; 2). Tinh c6c tich v 8 hddng
i.6 vA (;+$).(;-GI. 22. Tim g6c giQa cdc cap vectd sau ddy : 4
4
a) a = (4 ; 3) v i b = (1 ; -7) ; 4
4
b) c = (2 ; 5) va d = (3 ;-7) ;
23. Cho hai digm A(l ; 2) vA B(-3 ; 1). Tim digm M(x ; y) sao cho MA I AB vA MA = AB. 24. Tim toa do true tam H(x ; y) clia tam giic ABC bigt cdc digm A(2 ; 11, B(-1 ;3) , C(-2 ; -3). 25. Cho tam gi6c ABC c6 AB = Scm, BC = 7cm, CA = 8cm. Tinh -.-
AB.AC v i tinh g6c A. - C I A
26. Cho tam gi6c ABC c6 ba g6c A,B,C
d6u
la g6c nhon. Dddng
trbn tdm 0 b6n kinh R ngoai tigp tam gidc d6. ChUng minh rang :
b) cos 2A
+ cos 28 + cos 2C 2 --.3
2
TAM
I
Chirng ta bi6t rhng mat tam gific d ~ u choan toan xac dinh ne"u bi6t ba canh, hogc hai canh vh g6c xen giila, hoac mat canh va hai g6c k&.
c6 dubng cao AH = h, BC=a,CA=b,AC=c.
Vdi ba truhng hap n6u tren so" do cac canh va cAc g6c cbn lai cria tam giac hoan tohn xac dinh. Nhu v$y giaa cfic ye"u to" clia mat tam giac c6 mat m6i lien he xac dinh nao 66. Nwhi t a goi 66 la cac hg thQc Zupzg trong tam giac. Trong ph6n nay chling ta sG nghien c h nhilng he thI3c d6 va cac & - ~dung g cGa chung.
A
Goi BH = c', CH = b'.
1. DInh li sin
Hay di&n vao c6c 6 trdng sau d i y de" dwc c i c h@ thirc dljng :
a) Cho tam giac ABC vuSng tai A c6 BC = a, CA = b, AB = c A (h.2.26). Ta dS bigt : b sinB=-*a=a
b sin B
a b Do66 a=-sinB sinC = cosB =
-
a
sin L -
c sinC
n
D
'
Vi A = 90"n6n sin A = 1va t a c6 the" vie"t he thI3c (1)nhu sau
a
a -=-=-
c sinC
b sinB
sinA
C
(1) :
'
Hun n3a vi BC = a = 2R 18 duhng kinh duhng trbn ngoai tie"p tam giAc vu6ng ABC n6n :
--a sinA
Ban hag thll xern :
b sinB
- --
-
--C - 2R sinC
He thtlc nay d q c goi 18 dinh li sin trong tam giBc hay d ~ u c goi tht 18 djnh li sin. =
-2I absinC
= di@ntich AABC. Chia cAc so" nay cho
-1 abc ta c6 : 2
a ' b c -=-=sinA sin0 sinC ' Ta d3y hay suy ra dinh l i sin.
b) Dinh li. Vdi tam gi5c ABC ba"t kki, t i so" @Cia m$t canh vA j sin c i a g6c dbi dien v6i canh d6 lu6n lu6n bang d ~ a n gkinh c i a d ~ i r n gtrbn ngoai tigp tam gihc.
p
CU I
a -=-=-
b.
c
sinA
sinB
sinC
= 2R.
5 3 . CGC HE THUC LLJQNG TRONG TAM GIAC VA GIAI TAM GIAC
63
CH~NG MINH myc a) dinh dii d ~ d cc h h g minh trong truang hdp g6c BAC= 90". Ta c8n c h ~ minh g dinh trong tnlang hup g6c BAC kh6c 90". N6u g6c BAC nhon ta d&ng kinh BD ciia duang trbn
d
li
li
CI
vG ngoai ti6p tam giAc. Khi 66 vi tam giAc BCD vu6ng tai C n6n
ta c6 : BC = BD sinD hay a = 2R sinD. (h.2.27a) CC
-
A
Ta c6 BAC = BDC v i 66 1h hai g6c nai tisp c h g c h h cung BC . Do 66 : a = 2R sinA hay
--a - 2R. sin A
CI
Ne"u g6c BAC th ta cfing vE d u h g kinh BD cGa d d h g trbn ngoai tie"p tam gidc ABC. TQ gidc ABDC nai tigp d d h g trbn d u h g kinh BD n6n 6 = 180' - . Do 66 sinD = sin(180° - A). Ta cfing c6 BC = BD sinD = BD sin(180° - A) = BD sinA.
Vay a = 2R sinA hay
Cic dhng thQc
a = 2R. sln A
b -sin B
2R V B
--c - 2R duqc c h h g minh sin C
He
quci. V6i moi tam giAc ABC nai tigp duang trbn bAn kinh R, t a c6 :
a = 2R sinA , b = 2R sinB , c = 2R sinC. c) V i du. TCf hai vi tri A, B cAch nhau 25m v5 cirng thuoc mot ba sBng hay do khoang cdch til vi tri A v i vi tri B tdi vi tri C d
-
b$n kia dbng siing, bigt rsng BAC = 110" v i ABC= 20" (h.2.28).
Chdung II. T/CH
64
vo H
~ C~IA GHA1 VECTIl...
B
A Hinh 2.?*
-
Ta c6 ACB = 180" - (110" + 20") = 50" Theo djnh li sin ta c6 : sin 110' - sin 20' - sin 50' a b 25
Vey a =
25. sin 110' sin 50'
b=
25. sin 20' sin 50'
-
30,7 (m)
z 11,2
(m).
a) BAi tohn. Cho tam gihc ABC bi6t AB = c, AC = b vA bigt g6c A. H5y tinh canh BC = a (h.2.29).
-2
-
-
-2
BC = (AC - A B ) ~= AC
Hinh 2.29
-2
+ AB
--
- 2AC.AB
.,
53. CAC HE THUC L W G TRONG T A M GIAC VA
~ l d TAM l GIAC
65
Tif ke"t q& cfia bhi todn tren ta suy ra dinh li sau diiy : m
h) Dinh li. Trong mat tam giic ba"t kki, binh p h ~ ~ mat n g canh ~j biing tbng binh phdung hai canh cbn lai trllr hai Idn tich hai canh kia nh2n vdi c6sin cSa g6c giila hai canh d6. 1 7
jI
1
Trong moi tam gidc ABC, vdi BC = a, CA = b;AB = c ta lu6n c6 :
L
f [
1-
I
I
a2 = b2 + c2 - 2bc COSA b2 = a2 + c2 -2ac cosB c2 = a2 + b2 - 2ab cosC.
AC = 5. Hay tinh canh BC. a) khi g6c
i= 90" ;
b) khi g6c
= 60".
Vdi moi tam gi6c ABC, vdi BC = a, CA = b, AB = c ta luan c6 :
cosB =
a2 + c2 - b 2
theo gi6 tri clja he thOc b2 + c2 - a2 IA mot s6 duong, hoac sd im, hoac bang 0, hay suy ra tinh ch5t cca g6c A (tO, nhon, vudng). C)
Cho tam gidc ABC c6 BC = a, CA = b, AB = c. Goi ma , mb , m, la do dAi chc d u h g trung tuye"n ldn l m t vG tif cbc dinh A, B, C clia tam gibc. Khi d6 ta c6 :
to5
A
m a2 =
Cho tam gidc ABC wbng tai A, c6 BC = a, CA = b, A6 = c.
I Hdy dua "20 cbng t h O 2 ma =
Tinh do dai duirng trung tuye"n ciia tam gidc
2(b2 + cZ)- a2 4
2
I
m,, = 2
mC =
2(b2 + c2)- a2 4
2(a2+c2)-b2 4
2(a2+b2)-c2 4
d6 tinh da d i i rn,.
B
M
C
Hinh 2.30
That v@ygoi M la trung digm ciia canh BC. c6sin vao tam gi6c AMB ta c6 (h.2.30) :
Ap dung dinh
2
a4 = cac cos B m2a = ~ ~ + ( ~ ) ~ - 2 c . ~ c o2 +-sB
Vi cos B = 2
ma =
2
a2 + c2 - b 2 ni2n t a c6 : 2ac a 4
+--
ac. a 2 + c 2 - b 2 - 2(b2+c2)-a2 2ac 4
li
C h h g minh t w n g tg ta c6 :
b) vi du. Cho tam giic ABC c6 a = BC = 5cm, c = AB = 8cm vA g6c 6 = 77'. Tinh canh AC, c6c g6c A, C cda tam gi6c vA d&ng trung tuye"n mb = BM cda tam gi6c d6 (h.2.31). I A
GI~I Theo dinh li casin.'ta c6 : A C =~ b2 = a2 + c2 - 2ac cosB = 52 +
s2-2.5.8.cos77O
M
= 89 - 80 cos 77'.
-
AC= ~ b2
V$y AC
71.
fi =
Mu6n tinh g6c sinA a
-=-
-
180'
C
8,4 (cm).
2
Hinh 2.31
t a dDng djnh li sin :
sin B a. sin B =,sinA =b b
Do 66 sinA =
e
/A
B
5. sin 77'
fi
-
0,5782
- (77' + 35'19')
-
67'41 ' .
dung cbng thirc :
g
@. Tam gi6c ABC c6 di@n tlch S- N& k6o dhi cqnh AB mot doan AB' = 2AB va kc50 dhi canh AC mot doan AC' = 3AC. G Q S'~ 13 di@ntlch tam gidc AB'C'. S' Hay x6c dinh t1 s6 - .
5
3. Cdng thljlc tinh dien tich tam giac Cho tam gidc ABC c6 BC = a, CA = b, AB = c. Goi R vh r l&n l%t lh ban kinh d&ng trbn ngoai tie"p, nai tizp tam gidc va a+b+c 1B nfia chu vi tam giAc. P= 2 Ta c6 cAc cang thirc tinh di$n tich S clia tam giac ABC sau day : a) Cac cbng thilc :
53.CAC HE THUCLWNG TRONG TAM GIAC VA
~ i d TAM i GIAC
67
abc 2)S= 4R
Ta chlihg minh cdc cdng th3c trCn : A
f
~
Tim die,n tich clia mai tam
1 1)Tam giBc ABC c6 di$n tich S = -ah, v6i ha = AH. Vdi g6c 2 nhon, th hay vudng ta d&uc6 :
AH = AC sinC = b sinC
(h.2.32)
1 Do 66 S = - ab sinC. 2
=
I
l
Hinh 2.32
b)
1 1 CBc cdng thGc S = -ac sinB vP S = - bc sinA d ~ u cc h h g 2 2 minh t m g tg.
10
2) Theo djnh li sin ta c6 -- 2R hay sinC = sin C 2R '
c)
5
!
I t
C
C
1 1 c abc Ta c6 S = -ab sinC = - a b = 2 2 2R 4R '
3) Gpi I 1P tiim d~lrngtrbn niji tiirp tam giBe ABC. Ki hi$" SaBCla diijn tich tam giBc ABC. BBn kinh r c6a dlllrng trbn niji tigp tam gidc la d~lrngcao xu& phAt til 63nh I cba cac tam giBc IBC, ICA, IAB. Ta c6 (h.2.33) :
Hinh 2.33
Chlrung II. *H
68
Theo dinh li cosin ta c6 cosA = 1 + cosA =
2
(b+c) - a 2bc
1 Vay S2 = -(a 16
+ b + C)
2
@ H U I ~ GC~IA HA1 VECTII. ..
b 2 + c2 - a 2bc
2
. Do 66
:
- (b+c-a)(b+c+a) 2bc
(a + b - C) (b
+ c - a) (C+ a - b).
c+a
- b = 2(p - b). Ta suy ra S2 = p(p - a ) (p - b) (p - c) hay S = Jp(p - a)(p - b)(p - c) .
b) Vi du. Cho tam gi6c ABC c6 AC = 7cm,.AB = 5cm. Bi6t 3 cosA = -, hZy tinh canh BC, dien tich S cGa tam gist, 5. duting cao ha v i b6n kinh R cira d ~ t i n gtr6n ngoa i ti6p tam gidc.
4zii I
ta gpi tam giAc c6 do d i i ba canh li ba so" nguyPn liPn tigp v i c6 dien tich bang mot sd nguyCn li
- Theo dinh li cdsin ta c6 (h.2.34) :
I
3 B C ~= a2 = b2 + c2 - 2bc cosA = 7% 5' - 2.7.5. - = 32. 5
tam g i i c He-r6ng. Cdc tam gidc d6 c6 do da'i c6c canh nhu sau :
Hinh 2.34
4 sinA = -, vi sinA > 0. 5
3
a - Theo dinh li sin ta c6 -- 2R n6n sin A
4. ~ i 6tam i giac v a irng dung a ) GiHi tam giac Gi6i tam giac la tinh cac canh va cac goc ciia tam giac dga tr6n mat so" y6u to" cho tntac. Mu& gihi tam giac, ta c6n tim hi6u giii thie"t vh k6't luan ciia bhi toan d6 lga chon cac he th13c h u n g thich hap (49dduc n6u trong dinh li sin, djnh li c6sin va c6c c6ng thoc tinh di$n tich tam giac.
Vi
dl!
1. Cho tam gi5c ABC bigt canh AC = b = 47cm vA cdc
g6c
Ta c6
= 48',
= 180'
= 57'. Hay tinh
- (48" + 57')
= 75'.
Theo djnh li sin ta c6 : --a - b (h.2.35) sinA sinB j
a=-- bsinA - 47.sin4a0 sinB ,qin7s0
--C -- b sinC sinB
3
i, a va c.
_
36(cm)
A
b=47cm
Hinh 2.35
c=-- b sin C -4 7 . sin 57' = 41. sinB sin750
V i du 2. Cho tam gi6c ABC c6 c6c canh a = 49cm, b = 26cm vA g6c = 47'. Tinh canh c vA cdc g6c i, (h.2.36).
C
Chcrdng II. T~CHVQ H U ~ CGA G HA1 VECTU.. .
70
Hinh 2.36
Theo djnh li casin t c2 = a2 + b2 - 2ak
--- -
c2 = 4g2 + 262 - 2.49.26.cos47' c2 = 2401 V$y c =
V$y
x
+ 676 - 1.737,73 =
Jm = 36,6 (crn).
1.339,27.
x
la g6c th vh ta tinh d ~ u c = 101°,42'.
V i dl! 3. Cho tam gidc ABC c6 cdc canh a = 24cm, b = 13cm, c = 15cm. Tlnh g6c dien tich S cda tam gidc v i cdc bAn kinh R, r c i a cAc dddng trbn ngoai tie"p, nQi tigp tam gidc.
x,
Theo dinh li c6sin ta c6 (h.2.37) :
Hinh 2.37
x
Nhu v@yA 18 g6c th vB ta tinh d ~ q c = 117'49'.
Goi S 1h dien tich tam.giac ABC ta c6
53. CAC HE THUCLUONG TRONG TAM GIAC VA GIAI TAM GIAC
71
abc abc Ap dung ciing thirc S = ta c6 R = -= 4s
4R
Theo ciing thirc S = pr ta c6 r = nCn r =
S
-. Vi P
p =
13,64 (cm). 24+ 1 3 ~ 1 5 = 26 2
-- 3,3 (cm). 8575
26
Chri j . Ta c6 the" tinh dien tich S cia tam gihc bhng cang thirc HC-rang nhu sau :
Trong truang hup cu the" nQy, viec tinh di$n tich bhng cang thirc HC-r6ng cho ta ke"t qu& chinh x8c hun dung cang thirc 1 S = - bc sinA. 2
b) Ong dung vho viec do dac trong thgc ti$ B i i t o i n 1. Mu6n do chi& cao CD = h cda rnqr chi thdp m i ta kh6ng the" de"n d ~ w ctdm C cda chdn thdp. Trong mat phAng dQng chOa chi& cao CD cda thdp ta chon hai die"m A, B tr$n mat da"t sao cho ba dikm A, B, C thsng hhng. Gi5 st3 ta CI
do d w c khodng cdch AB = 24cm vA cdc g6c CAD = 63" , ( C
CBD = 48". Hay tinh chi& cao h clja th5p (h.2.38).
&/ Hinh 2.38
GIAI
Ap dung dinh li sin vao tam gihc ABD ta c6 : AD -- AB = A D = AB.sin B -sinB
Tac6:
I
sin D
sin D
X=E+E=E=X-g= 6 3 " - 4 8 " = h = CD = AD sinA = 68,91.0,891
z
15". 61,4 (m).
Do 66 AD =
24. s i n 48'
z
sin 15'
24.0,7431
= 68,91 (m).
0,2588
BPi to611 2. KhoAng c6ch tCf A de"n B kh6ng the" do trgc tigp d w c vi phai qua mat c6i h8 n u & ~ NgUtfi . ta chon mot di6m C tao nen tam gihc ABC c6 BC = loom, AC = 80m v& g6c CI
ACB = 48'. Tinh khoAng c i c h AB (h.2.39).
c Hinh 2.39
Ap dung dinh li c8sin d6'i
vdi tam gihc ABC, ta c6 :
4
4
B i i todn 3. Hai luc ddng quy P,Q a = 50'. Tinh hup lgc
vdi
tao v6i nhau mot g6c
v i dnh gbc tao bdi
6 bi6t r5ng ? = 1OON, a = 200N.
Ta vi5 Pd =
-P,OQ -
R
vdi p v ~
GIAI
=
- - Q vh OR O P + O Q . Khi 66 POQ = 50". =
X6t hinh binh hAnh OPRQ (h.2.40), ta c6
-
OPR = 180" - 50" = 130".
A~ dung dinh li c8sin d6i vdi tam gihc OPR ta c6
:
Hinh 2.40
53. CAC HE THOC LUQNG TRUNG TAM GIAC VA
-
cos POR =
~ l d TAM l GIAC
'i3
+ 275i2 - Y ^ ^ ~ - loo22.100.275
0p2 + 0 R 2 - P R ~ 2.OP.OR
7
Ta suy ra POR
2:
-
- 34'
34" vA QOR = 50'
-
16" .
5.Cac dung bai tap cd b8n Dqng 1. Tinh mat s 6 ycu to" cua tam giac the0 mot so" y6u to" cho trudc (trong 66 c6 it nhgt 11B mat canh).
Phuung phap.
- S3 dung trgc tigp djnh li sin v&dinh li cbsin. - Chon c5c he thilc h u n g thich hqp d6i vdi tam gi6c de" tinh mat s$ ye"u to" trung gian c6n thigt vvB sau 66 tinh cac y6u to" c6n tinh. - Sd dung dinh li "Tdng cAc g6c c3a mat tam giac bhng 180"" Vi du 1. Cho tam gi5c ABC c6 a = 34. = 45'. ? = 64'. Tinh g6c A v i c5c canh b, c cda tam gi5c d6 (h.2.41).
= 180" - (45" + 64") = 71".
Theo dinh li sin ta c6 : b --=sin A sinB
--a
c
a sinB - 34.sin 45' D o d 6 : b = -sin A ,in71O c=
a sin C - 34. sin 64' -sinA
5
sinC
sin71"
/k
B 2:
25,427
2:
32,32
a = 34
64.)\
C
Hinh 2.41
Chri 9. Ta c6 the" tinh canh c the0 cdng thilc : . c =
b sin C 25,427. sin 64' --
sin B
sin 45'
V i dl? 2. Cho tam gidc ABC c6 a = 50, b = 27, hai g6c A, B va canh C.
= 48'. Tinh
Chtfmg II. T~CHvo H U T ~ G C ~ HA1 A VECT(7.. .
74
Vgy c =-/,
= 37,714.
Hinh 2.42
x = 99'51'. Tir d6 ta tinh d q c % = 180' - ( E + x) Dhng m6y tinh b6 tlii t a tinh duuc
I
1
f j = 180' - (48'
+ 99'51') = 42'9'.
V i du 3. Cho tam gi5c ABC c6 a = 48, b = 26, c = 30. Tinh C ~ g6c C A, B, C.
Theo he qud cSa dinh li cSsin ta c6 :
Ta tinh duuc
x
i 1 1
A
F
r
117'49'.
Theo dinh li sin ta c6 Do d6 sinB =
i
Hinh 2.43
a -sinA
b sinB
'
b sin A 26.sin 117'49 ' = 0,4791. a
48
Tam giac ABC c6 canh AC ngdn nhgt n6n g6c B nhon. Ta tinh duuc
= 28'37'.
Dqng 2. C h k g minh c6c h e that v6 m6i quan he giGn c;ic y6u t 6 cua met tam giic.
Dhng c8c he th3c cca bdn de"bign d6i ve"nay thanh ve"kia, hoec chlihg minh hai ve" chng b5ng mat bigu thoc thQ ba, hoec
h
53.CAC HE TH& LUM\IG TRONG TAM GIAC VA GIAI TAM GIAC
7.5
c h h g minh h$ thGc c6n c h h g minh t u m g d ~ u n gvdi mat h$ thGc dd bigt la d6ng. Khi c h h g minh c6n khai thac cac gih thigt vh kgt luan de" tim duuc cAc he thGc thich hap 1Bm trung gian cho qua trinh bign d6i.
V i du 1. Goi G la trong tdm c i a tam g i i c ABC v i M I2 mat dikm tujl 9. ChlSIng minh r i n g : a)
MA^ + MB2 + M c 2= G A ~+ GB' + GC' + ~
G ;M ~
9 trong d6 m a , mb , m, Idn Iddt 2 I& do d i i c6c trung tuye"n Ong vdi cAc canh a, b, c cGa tam gi6c v i R I i b i n kinh dddng tr6n ngoai tigp tam gi6c ABC.
b) ma + mb
+ m,
2 -R,
-- - --= GA2+ G B ~+ G c 2 + 3 ~ ~ ~ ( 1 )G( Av +i G B + G C = ~ ) . = GA2 + G B ~ + GC2 + ~ G -M2 GM.(GA ~ + GB + GC)
b) Theo h$ th3c (1)ta lu6n lu6n c6
Met khAc ma =
3 3 GA, mb = - GB, m, 2
2
3
= - GC nen : 2
Thay M b8ng tam 0 cba d&ng trbn ngoai ti6'p tam giac ta duuc :
hay
9 m,+mb+mc I-R. 2
V i du 2. Cho tam gi6c ABC vudng tai A. Goi ma , mb , m, I$n l ~ la tdo dAi c6c d~ivngtrung tuye"n xu& p h i t tCt cdc dlnh A, B, C cfia tam gi6c. ChUng minh r i n g :
ChUmg II. T ~ H H
76
I
~ C ~G HA1 A VECTO.. .
t
GI~I Theo c6ng that tinh &jdhi 6dmg trung tuye"n ciia tam giac ta cb :
-
i
Vi tam gi6c vu8ng tai A n6n t a c6 a2 = b2 + c2 va ma = -1a 2
V i dl! 3. Cho S
I
IA dien tich cua tam giic ABC. ChUng minh :
1 Ta bigt r i n g S = - AB.AC sinA 2
1
-2
-2
--
= - [AB .AC - (AB.AC)~ I 4
V i dr! 4. Cho tam gi6c ABC c6 BC = a, CA = b, AB = c vA r bAn kinh du'irng trbn nei tie"p. ChUng minh r%ng:
IA 1
tanA c 2 + a 2 - b 2 , a) -- 2 2 2 ' tanB c + b -a B C asin-sin2 2 b) r = A . COS 2
a) Theo djnh li sin va chsin t a c6 :
-
sin A 2R tanA = ---a COSA b 2 + c 2 - a 2 2
2bc ~ ' ~
~
+
~
~
-
~
1
53.CAC HE T H l k LCfONG TFiONG TAM GlAC Vi GlAl TAM GIAC --
77
-
-
-
-
b sin B 2ac 2R - -b tanB = -COSB a 2 + c 2 - b 2 2 R ' a 2 + C 2 - b 2 tanA a 2 + c 2 - b 2 Do 66 ta suy ra -t a n B b 2 + c2 - a 2
'
b) Goi I 1h tAm d ~ a n gtrbn nai tigp tam giAc ABC. Cdc canh BC, CA, AB tigp xlic vdi dlrfing trbn nay l i n b u t tai M, N, D (h.2.44).
Ap dung dinh li sin d6i vdi tam gidc BIC, t a c6 -- sin - sinBIC 2
--
~~
-
sin
+ 2
- BC -B+C A sin - cos 2 2
-
(1)
Hinh 2.44
MGt k h i c trong tam giAc vuang IMB t a c6 :
IB =
. B' L
sin 2
Tir (1)vh (2) ta c6 :
1
B
--
C -
sin -.sin 2 2 B C a. sin -sin 2 2 Do d6 : r = A cos 0
i l
COS
A ' 2
:
Chllang II. T/CH
78
vo HU%GCUA HA1 VECTII.. .
V i du 5 . Cho tam giAc ABC c6 C = 6. H%ytinh :
A
= 60°, canh b = 12,
a) Canh a v2 g6c B clja tam gidc ABC ;
b) Dien tich S clja tam gidc ABC ; C)
B5n kinh R clia dllirng trbn ngoai tigp tam giac ABC ;
d) €38 dAi d ~ d n gcao BH vA dildng trung tuygn A M cGa tam giic. ,'
GIAI
a) Theo dinh li c6sin ta c6 (h.2.45):
b) Dien tich S ciia tam giac duuc tinh the0 c8ng thQc : -
1 2
fi
= -.12.6.-=
2
18&.
Nh@n xkt. Vi g6c B = 90" n6n ta c6 the" tinh dien tich tam gihc the0 c6ng thBc :
I I
60' A
1 S = -.AB.BC = -.6.- 1 2 & --1 8 f i . 2 2 2
H
b=12
6
Hinh 2.45
abc - 6&.12.6 c ) T ~ c ~ s = * , ~ o ~ -~ R = = 6. 4R 4s 4.18.A
Nh&n xkt. Vi tam gi6c ABC vu8ng h i B nen bhn kinh d ~ i r n g 1 trbn ngoai ti6p tam giac bhng - canh huy6n AC. Ta c6 2
Dulrng trung tuyG'n AM c6 do dai duqc tinh the0 c6ng thdc
Darlg 3. Gi5i tam gi5c v,i v s n d6 do dac. l'h rltrng ph cip
- Tam giac ABC t h ~ l r n gduuc cho dudi ba dang chu
y6u : bi2;t mot canh va hai g6c k6 (g, c, g), bi6t mot g6c va hai canh kg g6c do (c, g, c), va bie't ba canh (c, c, c).
- De" tim cac yku to" cbn lai cua tam giac n w d i ta thuirng dung cac djnh li sin, dinh li &sin, dinh li : "Tdng ba g6c cha mat tam giAc bhng 180"" va dac biet c6 the" dhng chc he thdc l w n g trong tam giac hoac cac cang thUc tinh dien tich tam giac. V i du 1 . Cho tam gidc ABC bigt toa do cdc di6m A(4 & ; -1 1, B(0 ; 3), C ( B & ; 3). Tinh cdc canh v i cdc g6c clja tam gi6c ABC d6.
Nhu vey tam gi6c ABC c6 BC = 8 & , CA = 8, AB = 8.
Vgy A = 120". Vi AB = AC n&ntam giac ABC c6
V i du 2. Ngllili ta mu6n do khoang c5ch tir hai vi tri A vh B c6ch nhau 500m 6 ben nay bd sang tdi vi tri C 6 bi2n kia bd
-
sang. Ho do d l l ~ cg6c CAB = 87", g6c CBA = 62". Hay neu c6ch tinh cAc khoing c6ch AC v21 BC (h.2.46).
Theo dinh li sin :
a ---b C -sinA s i n B sin C
ta c6 :
I'
c h ~ m 11. g T~CHvo H U ~ I G C ~ , A HAI VECTCJ...
80
Hinh 2.46
c. sin B - 500. sin 62" A C = b = -sin C sin 31"
c. sin A B C = a = -sin C
-
-
i
857(m)
500. sin 87' = 969(m). sin 3 1"
V i du 3. Mu6n bie"t do cao clja t h i p cao nhst the" gidi 6 Toronto thuoc Canada (c6 t2n goi I i "Canada's National Tower") ngddi ta ti& h i n h nhd sau :
Goi S I i dlnh thdp v i C I i tam c6a chan th5p. Vi khbng do dduc ti, chdn C clja thip, ngdtfi ta lgy mat digm A n i m tr@ndddng n i m ngang vdi chAn C clja t h i p v i do dddc g6c SAC = 70". Tr@ndclZlng thing CA ngddi ta IA'y mat digm B c6 khoAng cdch AB = 118m vA do dddc g6c SBC = 60". Ti, d6 ngddi ta tinh d w c chi& cao clja thdp (h.2.47). HGy cho bie"t ho d2 tinh chi& cao nay nhd the" nio.
Mu6n tinh do cao h = SC ta cAn bi6t d q c do dhi canh huy&n SA cGa tam gihc SAC vu6ng tai C va c6 g6c = 70". X6t tam giAc SAB t a c6 ASB = 70" - 60" = 10".
S
C-
Ap
dung dinh li sin d6i vdi tam gihc SAB ta c6 : --AB sin 10'
-
SA sin 60" Hinh 2.47
Do 66 SA =
AB.sin 60" sin 10"
-
118.0,86602 = 588,5(m). 0,17365
:
.
Vi sin 70'
=
SA '
t a suy ra SC = SA.sin70°
= 588,5.0,9:
the"gibi lh 553m.
V(iy chi& cao SC cia
27:Cho
tam gidc ABC bigt :
a)
=90°,
b)
= 90°,
6
=58', a=72cm.Tinh
e , b, c ; A
= 48', a = 20cm. Tinh C, a, c.
28. Tinh gbc Idn nhgt c i a tam gidc. ABC vA di@ntich clja tam gi%c d6 trong m8i trcldng hgp sau : a) a = 4 0 c m , b = 13cm, c = 3 7 c m ; b)a=13cm,b=5cm,c=12cm. 29. Cho tam gidc ABC bigt cosA =
3 5
-, b = 5,
c = 7.
Tinh a, SAABC, R VA r.
x,
30. Tinh cdc g6c v i d d n g cao ha, bdn kinh dlllrng trbn ngoai tigp R, noi tiG'p r clja tam gidc ABC biG't :
& , b = 2 , c = JS +I. 31. Goi G la trong t;im clja tam giAc ABC. ChQng minh r?ing.: a=
32. ChQng rninh r3ng trong tam gidc ABC, ta cb :
+ c.cosB ; b) sinA = sinB cosC + sinC cosB. 33. Tam gidc ABC c6 chu vi 2p = a + b + c. ChQng minh rsng a) a = b.cosC
.2 sinA = ,-Jp(p bc
- a)(p- b)(p- c) .
34. Goi m a , mb, m, I8n l w t Ii cdc trung tuye"n Qng vdi cdc canh a, b, c crja tam gidc ABC.
a)Tinhmabie"ta=26,b=18,c=16; b) Tinh c bigt a = 7 , b = 11 , m, = 6. C)
ChQng minh rang 4(m: + m i +m:)
= 3(a2 + b2+ c2).