Ley de PoiseuilleHagen
F is the flow (ml • s ), P is the pressure difference (dynes • cm ), r is the inner radius of the tube (cm), l is the length of the tube (cm), and is the dynamic viscosity (dynes • s • cm = poise). The units of dynamic –1
–2
–2
viscosity, the poise, is named after Poiseuille
η= F/A
F/A ∆v/∆x
Tensión de deslizamiento
∆v/∆x Índice de deslizamiento
Fuerza inercial Fuerza viscosa
La viscosidad de la sangre depende de varios factores: 2) La concentración de fibrinógeno 3) Hematocrito 4) Radio del vaso 5) Velocidad lineal 6) La temperatura
Velocidad de sedimentación globular (VSG)
La viscosidad de la sangre depende de varios factores: •
La concentración de fibrinógeno
•
Hematocrito
•
Radio del vaso
•
Velocidad lineal
•
La temperatura
La viscosidad de la sangre depende de varios factores:
• Radio del vaso •
Velocidad lineal
•
La temperatura
Fenómeno Fahraeus-Lindqvist
La viscosidad de la sangre depende de varios factores: Velocidad lineal
Oscilación en la presión: Presión pulsatil
Sumario Blood flow is normally laminar in nearly all parts of the circulation, except in large vessels when cardiac output is high. A hallmark of turbulent flow is the presence of murmurs. Although the viscosity of water and blood plasma are Newtonian, that of whole blood is non-Newtonian (i.e., viscosity varies with the rate of shear or flow). Physiologically, blood viscosity (1) increases with the fibrinogen concentration, (2) increases with hematocrit, (3) decreases as vessel radius falls below a certain threshold, (4) increases at low flows, and (5) increases at low temperatures. Blood pressure and flow oscillate between maximal systolic values and minimal diastolic values during each cardiac cycle.
Presión Pulsatil Ley de Ohm: P = F × Z, P= presión pulsatil; F= Flujo Z= Impedancia mecánica Z= 1) Complianza del vaso 2) Impedancia o resistividad viscosa 3) Impedancia inercial Ptotal = Pg + Pc+ Pvr + Pi
Ptotal = Pg + Pc+ Pvr + Pi
E = Ep + Ec E = Pd + ρ g h + 1/2 ρ V2
Ptotal = Pg + Pc+ Pvr + Pi