He Mod In A Mica

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View He Mod In A Mica as PDF for free.

More details

  • Words: 353
  • Pages: 32
Ley de PoiseuilleHagen

F is the flow (ml • s ), P is the pressure difference (dynes • cm ), r is the inner radius of the tube (cm), l is the length of the tube (cm), and is the dynamic viscosity (dynes • s • cm = poise). The units of dynamic –1

–2

–2

viscosity, the poise, is named after Poiseuille

η= F/A

F/A ∆v/∆x

Tensión de deslizamiento

∆v/∆x Índice de deslizamiento

Fuerza inercial Fuerza viscosa

La viscosidad de la sangre depende de varios factores: 2) La concentración de fibrinógeno 3) Hematocrito 4) Radio del vaso 5) Velocidad lineal 6) La temperatura

Velocidad de sedimentación globular (VSG)

La viscosidad de la sangre depende de varios factores: •

La concentración de fibrinógeno



Hematocrito



Radio del vaso



Velocidad lineal



La temperatura

La viscosidad de la sangre depende de varios factores:

• Radio del vaso •

Velocidad lineal



La temperatura

Fenómeno Fahraeus-Lindqvist

La viscosidad de la sangre depende de varios factores: Velocidad lineal

Oscilación en la presión: Presión pulsatil

Sumario Blood flow is normally laminar in nearly all parts of the circulation, except in large vessels when cardiac output is high. A hallmark of turbulent flow is the presence of murmurs. Although the viscosity of water and blood plasma are Newtonian, that of whole blood is non-Newtonian (i.e., viscosity varies with the rate of shear or flow). Physiologically, blood viscosity (1) increases with the fibrinogen concentration, (2) increases with hematocrit, (3) decreases as vessel radius falls below a certain threshold, (4) increases at low flows, and (5) increases at low temperatures. Blood pressure and flow oscillate between maximal systolic values and minimal diastolic values during each cardiac cycle.

Presión Pulsatil Ley de Ohm: P = F × Z, P= presión pulsatil; F= Flujo Z= Impedancia mecánica Z= 1) Complianza del vaso 2) Impedancia o resistividad viscosa 3) Impedancia inercial Ptotal = Pg + Pc+ Pvr + Pi

Ptotal = Pg + Pc+ Pvr + Pi

E = Ep + Ec E = Pd + ρ g h + 1/2 ρ V2

Ptotal = Pg + Pc+ Pvr + Pi

Related Documents

He Mod In A Mica
October 2019 16
He Mod In A Mica
November 2019 9
He Mod In A Mica 2006
October 2019 8
He Mod In A Mia
November 2019 11
Elect Rod In A Mica
June 2020 6
Mica
November 2019 36