I.
HASIL PERHITUNGAN 1. Dengan Tangki -
Metode 1 Kp =
βππ’π‘ππ’π‘ βπΌπππ’π‘ ππ βππ
1 = %ππ2 β%ππ 2
=
1
56,2β75,5 55β40
= -1,2867 Ο
π½ππππ
= πΎππππππ‘ππ 1,6 ππ
= 12 ππ/πππ = 0,1333 menit G(s) = Ο
πΎπ
π +1
π¦ π₯
=Ο
y
=Ο
πΎπ
π +1
πΎπ
βπ₯
π +1
y(s) = Ο
πΎπ
β
π +1
y(t) = L-1 Ο
βππ’π‘
πΎπ
π +1
π
β
βππ’π‘ π π‘
y(t) = βππ’π‘ β πΎπ(1 β π βΟ ) π‘
= (ππ2 β ππ1 ) β πΎπ( 1 β π βΟ ) = (56,2 β 75,5)(β1,2867)( 1 β π = (-19,3) (β1,2867) (0,0895) = -2,2226/ menit
-
Metode 2 C(t) = 0,632 β βπΆπ = 0,632 β 19 = 12,008
Ο
π½ππππ
= πΎππππππ‘ππ
β
0,0125 0,1333
)
1,5 ππ
= 12 ππ/πππ = 0,125 menit G(s) = Ο
πΎπ
π +1
π¦ π₯
=Ο
y
=Ο
πΎπ
π +1
πΎπ
βπ₯
π +1
y(s) = Ο
πΎπ
β
π +1
y(t) = L-1 Ο
βππ’π‘
πΎπ
π +1
π
β
βππ’π‘ π π‘
y(t) = βππ’π‘ β πΎπ (1 β π βΟ ) π‘
= (ππ2 β ππ1 ) β πΎπ( 1 β π βΟ ) = (75,5 β 56,2)(β1,2867)( 1 β π = (-19,3) (β1,2867) (0,0952) = 2,3641/ menit
-
Metode 3 t2
= 0,632 β βπΆπ = 0,632 β 19 = 12,008
t1
= 0,283 β βπΆπ = 0,283 β 19 = 5,377
Ο2
π½ππππ
= πΎππππππ‘ππ =
1,5 12
= 0,125 Ο1
π½ππππ
= πΎππππππ‘ππ =
0,5 12
= 0,0416 Ο
3
= 2 (Ο2 β Ο1 )
β
0,0125 0,125
)
3
= 2 (0,125 β 0,0416) 3
= 2 (0,0834) = 0,1251 menit G(s) = Ο
πΎπ
π +1
π¦ π₯
=Ο
y
=Ο
πΎπ
π +1
πΎπ
βπ₯
π +1
y(s) = Ο
πΎπ
β
π +1
y(t) = L-1 Ο
βππ’π‘ π
πΎπ
π +1
β
βππ’π‘ π π‘
y(t) = βππ’π‘ β πΎπ (1 β π βΟ ) π‘
= (ππ2 β ππ1 ) β πΎπ( 1 β π βΟ ) = (75,5 β 56,2)(β1,2867)( 1 β π = (-19,3) (β1,2867) (0,0951) = 2,3616/ menit
2. Tanpa Tangki -
Metode 1 Kp =
βππ’π‘ππ’π‘ βπΌπππ’π‘ ππ βππ
1 = %ππ2 β%ππ 2
=
1
56,7β76 55β40
= -1,2867 Ο
π½ππππ
= πΎππππππ‘ππ 0,35 ππ
= 60 ππ/πππ = 0,00583 menit
β
0,0125 0,1251
)
G(s) = Ο
πΎπ
π +1
π¦ π₯
=Ο
y
=Ο
πΎπ
π +1
πΎπ
βπ₯
π +1
y(s) = Ο
πΎπ
β
π +1
y(t) = L-1 Ο
βππ’π‘ π
πΎπ
β
π +1
βππ’π‘ π π‘
y(t) = βππ’π‘ β πΎπ(1 β π βΟ ) π‘
= (ππ2 β ππ1 ) β πΎπ( 1 β π βΟ ) = (76 β 56,7)(β1,2867)( 1 β π = (-19,3) (-1,2867) (0,3487) = 8,6594/ menit
-
Metode 2 C(t) = 0,632 β βπΆπ = 0,632 β 19,5 = 12,324 Ο
π½ππππ
= πΎππππππ‘ππ 0,15 ππ
= 60 ππ/πππ = 0,0025 menit G(s) = Ο
πΎπ
π +1
π¦ π₯
=Ο
y
=Ο
πΎπ
π +1
πΎπ
π +1
y(s) = Ο
πΎπ
π +1
βπ₯ β
βππ’π‘ π
β
0,0025 0,00583
)
y(t) = L-1 Ο
πΎπ
π +1
β
βππ’π‘ π π‘
y(t) = βππ’π‘ β πΎπ(1 β π βΟ ) π‘
= (ππ2 β ππ1 ) β πΎπ( 1 β π βΟ ) = (76 β 56,7)(β1,2867)( 1 β π = (-19,3) (-1,2867) (0,6321) = 15,6971/ menit
-
Metode 3 t2
= 0,632 β βπΆπ = 0,632 β 19,5 = 12,324
t1
= 0,283 β βπΆπ = 0,283 β 19,5 = 5,5185
Ο2
π½ππππ
= πΎππππππ‘ππ =
0,15 60
= 0,0025 Ο1
π½ππππ
= πΎππππππ‘ππ =
0,05 60
= 0,00083 Ο
3
= (Ο2 β Ο1 ) 2 3
= 2 (0,0025 β 0,00083) 3
= 2 (0,00167) = 0,002502 menit
β
0,0025 0,0025
)
G(s) = Ο
πΎπ
π +1
π¦ π₯
=Ο
y
=Ο
πΎπ
π +1
πΎπ
βπ₯
π +1
y(s) = Ο
πΎπ
β
π +1
y(t) = L-1 Ο
βππ’π‘
πΎπ
π +1
π
β
βππ’π‘ π π‘
y(t) = βππ’π‘ β πΎπ (1 β π βΟ ) π‘
= (ππ2 β ππ1 ) β πΎπ( 1 β π βΟ ) = (76 β 56,7)(β1,2867)( 1 β π = (-19,3) (-1,2867) (0,6381) = 15,8461/ menit
β
0,0025 0,002502
)