This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA
For I
9.3.4 J,(v+zvH)=2%-H Y”(v+zvfs~=
Ai(--2%)+O(v-l) --2%-B
Bi( -2%)
and u,(t) see [9.4] or [9.21].
9.3.10 +
O(V-‘)
~~+~(t)=:t”(1-t’)zl;(t)+~~~
(1--5P)uJt)dt 0
(k=O,
9.3.5
1, . . .)
Also 9.3.11 JL (v sech a) -
9.3.6
9.3.12 YL(v sech CX)
where 9.3.13
vo(t)= 1 In the last two equations 9.3.39 below.
Debye’s
{ is given by 9.3.38 and
Asymptotic
(i) If LY:is fixed and positive positive 9.3.7
Expansions
and
v
is large and
q(t‘l=(-9t+7tS)/24 v,(t)=(-l35t2+594t4--455t~)/1152 v3(t) = (-42525t3+4 51737P--8 835752’ $4 75475t9)/4 14720 9.3.14 vh(t)=u,(t)+t(t2-1){ ~uM(t)+tu;-,(t)} (k=l, 2, . . .) (ii) If /3 is fixed, O
841 048 052 271 000
2 156 625 03
For ge,~ and f,, ~ see20.8.12. < q> = nearestinteger to q. Compiledfrom G. Blanch and I. Rhodes,Table of characteristicvaluesof Mathieu’s equation for large valuesof the parameter,Jour. Wash.Acad. Sci., 45, 6, 1955(with permission).
MATHIEU
CHARACTERISTlC
VALUES,
749
FTJNCTIONS
JOINING
FACTORS,
SOME
CRITICAL
Table
VALUES
20.1
ODD SOLUTIONS 1
2
i 10 15 20 25
10
5" 10 15 2
045 824 680 325 062
00 22 84 14 78 17
-2.00000 -3.64051 -4.86342 -5.76557 -6.49075 -7.10677
00 79 21 38 22 19
100.00000 000 100.12636 922 100.50676 946 101.14517 229 102.04839 286 103.22568 004
( 1)1.00000 9.73417 9.44040 9.11575 8.75554 8.35267
00 32 54 13 51 84
l)-1.00000 1 -1.02396 11 -1.04539 l)-1.06429
00 46 48 00
898
4(0, 1.00000 (-1 1.74675 -2 4.40225 I -2 i 1.39251 (-3)5.07788 (-3)2.04435
u) 00 40 66 35 49 94
000 605 636 060 133 590
5.00000 4.33957 3.40722 2.41166 1.56889 (-1)9.64071
00 00 68 65 69 62
225.00000 000 225.05581 248 225.22335 698 225.50295 624 225.89515 341 226.40072 004
1 1.50000 I 1 I 1.48287 1 1.46498 1 1.44630 1 1 I 1.42679 ( 1)1.40643
00 89 60 01 46 73
+ -
2.09946 2.38215 8.09934 14.49106 21.31486
1.00000 5.79008 13.93655 22.51300 31.31338
- 40.25671
Li 10 :05 25
15
0 5 10 :i 25
25.00000 25.51081 26.76642 27.96788 28.46822 28.06276
000
000 060 248 350 617
@qP%,r(q)
se;(ta, d
2.00000 (-1)7.33166 -1)2.48822 I -2)9.18197 (-2)3.70277 (-2)1.60562
4.00000
+ 5
40, q)
br
Q
6.38307 1)1.24474 1)1.86133 1)2.42888 1)2.95502 1)3.44997 11)1.51800 11)1.56344 11)1.62453 11)1.70421
65 88 36 57 89 83 43 50 03 18
( (
1)8.14873 1)2.24948 3.91049 (- 1)7.18762 (- 1)1.47260 (- 2)3.33750 23)2.30433 23)2.31909
31 08 85 28 95 27 72 77
i
se,(%,59 1.00000 1.33743 1.46875 1.55011 1.60989 1.65751
00 39 57 51 16 04
1.59576 2.27041 2.63262 2.88561 3.08411 3.24945
91 76 99 87 21 50
1.00000 9.06077 8.46038 8.37949 8.63543 8.99268
00 93 43 34 12 33
3)9.80440 4 1.14793 4j 1.52179 4)2.20680 4 3.27551 4 4.76476
55 21 77 20 12 62
-1.00000 (-1 -9.88960 (-1 -9.78142 -1 -9.67513 I -1 1 -9.57045 (-l)-9.46708
00 70 35 70 25 70
-1) -1) -1) -1) -1)
I 19)3.78055 I(1919)3.73437 3.83604
81 49 43 (19 3.90140 52 19 i 3.97732 29 I 19)4.06462 83
2.54647 91 I-(((-
3)2.21737 2)3*74062 4)2.15798 4)2.82474 6)4.53098
82 88 83 71 74
( ( ( I
8)5.46799 8)4.26215 8)5.27524
57 66 17
(
8)2.94147
89
( 40)2.19249
18
b,+Zq- (4r-2)@ cl-*\? 0.16 0.12 0.08 0.04 0.00
1 -0.25532 -0.25393 -0.25257 -0.25126 -0.25000
5
2 994 098 851 918 000
-1.30027 -1.28658 -1.27371 -1.26154 -1.25000
164 971 191 161 000
-11.53046 -11.12574 -10.78895 -10.50135 -10.25000
10 855 983 146 748 000
-51.32546 -56.10964 -51.15347 -47.72149 -45.25000
For go,Tand f,, r see20.8.12. < q> = nearestinteger to 4.
15 875 961 975 533 000
- 55.93485 112 -108.31442 060 -132.59692 424 -114.76358 461 -105.25000 000
39 69 156 625 m
MATHIEU Table
20.2
FUNCTIONS
COEFFICIENTS
9,
AND
II,,
4 r/=5 7rA7 0 0 +0.54061 2 -0.62711 4 +0.14792 6 -0.01784 8 +0.00128 10 -0.00006 12 +o.ooooo 14 -0.00000 16 +O.OOOOO
10
2 2446 5414 7090 8061 2863 0723 2028 0050 0001
+0.43873 +0.65364 -0.42657 +0.07588 -0.00674 +0.00036 -0.00001 +O.OOOOO -0.00000
7166 0260 8935 5673 1769 4942 3376 0355 0007
:: 22
+O.OOOOO +0.00003 +0.00064 +0.01078 +0.13767 +0.98395 -0.11280 +0.00589 -0.00018
?ll’,T 1679 3619 2987 4807 5121 5640 6780 2962 9166
1 3 5 9' 11 13 15 17
-0.00000 +O.OOOOO 0071 4226 +O.OOOOO 0001
1
co.76246 -0.63159 +0.13968 -0 01491 +0'00094 -0:00003 +O.OOOOO -0.00000 +O.OOOOO
3686 6319 4806 5596 4842 9702 1189 0027 0001
5 +0.07768 +0.30375 +0.92772 -0 20170 +0'01827 -0:OOOSS +0.00003 -LX00000 +O.OOOOO
5798 1030 8396 6148 4579 9038 3457 0839 0016
:;) 23 25
15 0.00000 0000
+o.ooooo +O.OOOOO +O.OOOOO +0.00014 +0.00428 +0.08895 +0.99297 -0.07786 +0.00286 -0.00006 +O.OOOOO -0.00000
0002 0106 4227 8749 1393 2014 4092 7946 6409 6394 1092 0014
q=25 77’ 1 0 0 +0.42974 2 -0.69199 4 +0.36554 6 -0.13057 8 +0.03274 10 -0.00598 12 +0.00082 14 -0.00008 16 +O.OOOOO 18 -0.00000 20 +O.OOOOO 22 -0.00000 24 26 28
1038 9610 4890 5523 5863 3606 3792 7961 7466 0514 0029 0001
2 +0.33086 -0;04661 -0.64770 +0.55239 -0.22557 +0.05685 -0.00984 +0.00124 -0.00012 +O;OOOOO -0.00000 +o.ooooo -0.00000
10 5777 4551 5862 9372 4897 2843 6277 8919 1205 9296 0578 0030 0001
+0.00502 co.02075 +0.07232 +0.23161 +0.55052 +0.63227 -0.46882 +0.13228 -0.02206 +0.00252 -0.00021 +0.00001 -0.00000 +O.OOOOO -0.00000
d,r 1 3 5 7 9 11 13 15 17 19 21 23 25
6361 4891 7761 1726 4391 5658 9197 7155 0893 2374 3672 4078 0746 0032 0001
1 to.39125 -0.74048 +0.50665 -0.19814 +0.05064 -0.00910 +0.00121 -0.00012 +0.00001 -0.00000 +O.OOOOO -0.00000
5 2265 2467 3803 2336 0536 8920 2864 4121 0053 0660 0036 0002
+0.65659 +0.36900 -0.19827 -0.48837 +0.37311 -0.12278 +0.02445 -0.00335 +0.00033 -0.00002 +o.ooooo -0.00000 +o;ooooo
15 0398 8820 8625 4067 2810 1866 3933 1335 9214 6552 1661 0085 0004
31
+O.OOOOO +0.00003 +0.00032 +0.00254 +0.01770 +0.10045 +0.40582 +0.83133 -0.35924 +0.06821 -0.00802 +0.00066 -0.00004 +O.OOOOO -0.00000 +o.ooooo
4658 7337 0026 0806 9603 8755 7402 2650 8831 6074 4550 6432 1930 2090 0085 0003
9=5
10
2 +0.93342 -0.35480 +0.05296 -0.00429 +0.00021 -0.00000 +b.ooooo -0.00000
94'42 3915 3730 5885 9797 7752 0200 0004
+0.00003 +0.00064 +0.01078 to.13767 +0.98395 -0.11280 to.00589 -0.00018 +O.OOOOO -0.00000 +o.ooooo
1
TV\?. 3444 2976 4807 5120 5640 6780 2962 9166 4227 0070 0001
: 5 7 9 :: 15 17
5
+0.94001 -0.33654 +0.05547 -0.00508 +0.00029 +O.OOOOO -0.00001
9024 1963 7529 9553 3879 1602 0332
-0.00000
0007
+0.05038 +0.29736 +0.93156 -0.20219 +0.01830 -0.00096 +0.00003 -0.00000 +o.ooooo
2462 5513 6997 3638 5721 0277 3493 0842 0017
5 +0.30117 +0.62719 +0.17707 -0.60550 +0.33003 -0.09333 +0.01694 -0.00217 +0.00021 -0.0Ou01 +O.OOOOO -0.00000 +o.ooooo
4196 8468 1306 5349 2984 5984 2545 7430 0135 5851 0962 0048 0002
:: ::
15 0.00000 0000
+o.ooooo +O.OOOOO +O;OOOOO +0.00014 tO.00428 +0.08895 +0.99297 -0.07786 +0.00286 -0.00006 +o.ooooo -0.00000
0002 0106 4227 8749 1392 2014 4092 7946 6409 6394 1093 0013
q=25 ?n~s 2 2 8 10 12 :: 18 20 22 24 26
2 +0.65743 -0.66571 +0.33621 -0.10507 to.02236 -0.00344 +0.00040 -0.00003 +O.OOOOO -0.00000 +O.OOOOO
10 9912 9990 0033 3258 2380 2304 0182 6315 2640 0157 0008
+0.01800 +0.07145 to.23131 +0.55054 +0.63250 -0.46893 +0;13230 -0.02206 +0.00252 -0;00021 +0.00001 -0.00000 +o.ooooo
For -1, and II,,, see 20.2.3-20.2.11
1
m/r 3596 6762 0990 4783 8750 3949 9765 3990 2676 3694 4079 0746 0033
: 5 ;
+0.81398 -0.52931 +0.22890 +0.01453 -0.06818
3846 0219 0813 2972 0886
11 13 15
-0.00229 +0.00027 -0.00002
5765 7422 6336
:< ;:
+O.OOOOO -0.00000 0126 2009 +o.ooooo 0007
::
Compiled from National Bureau of Standards, Tables relating to Mathieu Press, New York, N.Y., 1951 (with permission).
15 +o.ooooo +0.00003 +0.00032 +0.00254 +0.01770 +0.10045 +0.40582 +0.83133 -0.35924 +0.06821 -0.00802 +0.00066 -0.00004 +O.OOOOO -0.00000 +o.ooooo
3717 7227 0013 0804 9603 8755 7403 2650 8830 6074 4551 6432 1930 2090 0086 0003
functions, Columbia Univ.
21. Spheroidal
Wave Functions
ARNOLD N. LOWAN
1
Contents Page Mathematical 21.1.
21.2. 21.3.
21.4. 21.5. 21.6.
21.7. 21.8. 21.9. 21.10. 21.11. References Table
Properties.
...................
Definition of Elliptical Coordinates .......... Definition of Prolate Spheroidal Coordinates ...... Definition of Oblate Spheroidal Coordinates. ...... Laplacian in Spheroidal Coordinates .......... Wave Equation iu Prolate and Oblate Spheroidal Coordinates Differential Equations for Radial and Angular Spheroidal Wave Functions .................. Prolate Angular Functions .............. Oblate Angular Functions .............. Radial Spheroidal Wave Functions .......... . Joining Factors for Prolate Spheroidal Wave Functions Notation ......................
Eigenvalues-Prolate m=O(l)Z, n=m(l)mf4 c2=O(1)16, c-‘=.25(--.Ol)O,
and Oblate
21.2. Angular Functions-Prolate m=0(1)2, n=m(1)3, ?j=O(.l)l ~=0”(10”)90”, c=1(1)5, 24D
Table
21.3. Prolate Radial Functions-First m=0(1)2, n=m(1)3 5=1.005, 1.02, 1.044, 1.077, c=1(1)5,
Table
. . . . . . . . . . .
760
4-6D
Table
Table
753 753 756 756 757 758 759
..........................
21.1.
752 752 752 752 752 752
and Oblate
. . . . . . . .
and Second Rinds
. . .
766
768
4s
21.4. Oblate Radial Functions-First m=O, 1, n=m(l)m+2; m, n=2 E=O, .75, c=.2, 3, 23, 1(.5)2.5, 5s
and Second Rinds . . . .
769
Prolate Joining Factors-First 1, n=m(l)m+2; m, n=2 c=1(1)5, 4s
Rind . . . . . . . . . .
769
21.5.
m=O,
1 Yeshiva University. Standards.) (Deceased.)
(Prepared
under
contract
with
the
National
Bureau
of 751
21. Spheroidal
Wave Functions
Mathematical 21.1. Definition
of Elliptical
Coordinates
Properties 21.3.1
21.1.1
Z=T
r1 and rz are the distances to the foci of a family of confocal ellipses and hyperbolas ; 2f is the distance between foci. a=ft,
21.1.2
axis;
Equation
21.1.3
b=semi-minor
of Family
axis;
of Confocal
$-&=f
4; X=T sin 4; 02412*
co8
where 4,~ and 4 are oblate spheroidal Relations
Between
Cartesian Coordinates
qnd
coordinates.
Oblate
Spheroidal
21.3.2
es- f a
b=jm,
a=sen-&major centricity.
e=ec-
21.4. Laplacian
in Spheroidal
Coordinates
21.4.1
Ellipses
$+&=f Equation
21.1.4
of Family
of Ckmfocal
Hyperbolas
(---1
e-L=fa q2
Relations
l--$
Between
21.1.5
Cartesian
x=fb?;
and
Elliptical
Coordinates
Y=.fJ(ta--lw--lla)
21.2. Definition of Prolate Spheroidal Coordinates
Metric
If the system of confocal ellipses and hyberbolas referred to in 21.1.3 and 21.1.4 revolves around the major axis, then $+&=f;
21.2.1 y=r
cos
$-&=f
4; Z=T
sin
4; 0 54 12~
Relations
Between
Cartesian Coordinates
and
Prolate
Prolate
Spheroidal
Coordinates
ht=j$Z
h&s Coefficienta
+jJ(p-l)(l-92) for
Oblate
Spheroidal
* Coordinates
coordinates. Spheroidal
21.5. Wave Equation in Prolate and Oblate Spheroidal Coordinates Wave
c_os4; z=fJ(+l)(l-v2)
sin 4
21.3. Definition of Oblate Spheroidal Coordinates
If the system of confocal ellipses and hyperbolas referred to in 21.1.3 and 21.1.4 revolves around the minor axis, then 752
for
21.4.3
21.2.2 Y=fJG2--lm--lla)
doe5cients
21.42
Metric
where [, 7 and 4 are prolate spheroidal
x=flrl;
’ ’ j5+,,_,=f”;
Equation
in
Prolate
Spheroidal
Coordinates
21.5.1 v*+k+z+
[(P-l)
$I+;
[(l-r13
$1
2- 2 +(~~~1)(:-r7~+c~(E’-13~=0
(c=; *see page II.
jk)
SPHEROIDAL Wave
Equation
in
Oblate
Spheroidal
WAVE
Coordinates
753
FlJNC.?l’IONS
(21.6.3 may be obtained from 21.6.1 by the transformations [*fit, c++ic; 21.6.4 may be obtainedfrom21.6.2 by the transformation c-+~ ic.)
21.5.2
21.7.
Prolate
Angular
Functions
21.7.1 WC,
21.5.2 may be obtained from transformations p++i[, c++c. 21.6. Differential Angular Prolate
Equations Spheroidal
21.5.1
by
d =rg;
dY (4 E+r
=Prolate
the
b>
angular function
of the first kind
21.7.2
for Radial and Wave Functions
=Prolate
angular function
of the second kind
If in 21.5.1 we put
then the “radial “angular solution” equations
solution” R,,(c, 5) and the &,,(c, 7) satisfy the differential
(E?(v) and R‘(d are associated Legendre functions of the first and second hinds respectively. However, for -1Izj1, ~(z)=(l-z2)“‘2d”P,(z)/ dz” (see 8.6.6). The summation is extended over even values or odd values of T.) Recurrence
21.6.1
Relations
Between
the
Coefficients
21.7.3
(2m+k+2)(2m+k+l)c2 ak=(2m+2k+3)(2mf2kf5)
21.6.2
he,=(m+k) (m+k+l) ’ where the separation constants (or eigenvalues) A,,,,, are to be determined so that R&c, 5) and &,,(c, TJ) are finite at ,$=f 1 and q=f 1 respectively. (21.6.1 and 21.6.2 are identical. Radial and angular prolate spheroidal functions satisfy the same differential equation over different ranges of the variable,)
2(m+k)(m+k+l)-2m2-1 (2m+2k-1)(2m+2k+3)
Transcendental
Equation
Equations for Spheroidal
Radial and Functions
21.6.3
E)] $ [ Q”+U$ Gnn(c,
Angular
X,,
21.7.4 u(~,,)=u1(~,)+uz(xmn>=o R-2 nm -
Differential
for
c2
-&-A,,-
* . .
Oblate U&xmn)=-
iT+z Y?+a--X,,-
8” r+4 r7+4--X,.-
- * *
k(k-1)(2m+k)(2m+k-l)c’ ~‘(2m+2k-l)2(2m+2k+1)(2m+2k-3)
Y?= (m+k) (m+k+l) +4cfl-(zm+2k~Y~$+2k+31 (The choice of r in 21.7.4 is arbitrary.)
(k2 2)
0) 1(k>
754
SPHEROIDAL Power
WAVE Series
FUNCTIONS
Expansion
for
X,”
21.7.5
&=n(n+l) 1J2m--1Pm+l) (27+-l) (%+3)
1
I,=-(n--m+l)(n--m+2)(~+m+l)(n+m+2)+(7a--m-l)(n--m)~~+m-l)(n+m) 2(2n+l) (2n+3)3(2n+5) ze= (4d-
(n-m+l)(n-m+2)(n+m+l)(n+m+2)~ (Zn-1) (2n+l) (2n+3)‘(2n+5)
1)
ls=2(4mp-1)2A+~
B+;
C+;
(~-m+1)(7a--m+2)(n+m+l)(~+m+2) (2n-l)2(2n+1)(2n+3)7(2n+5)(2n+7)2
Expansion
for
X,”
Refinement
21.7.6 A,n.(c)=cp+m2-;
-A2
($+5)-s
21.7.7 X,=X$+6x,
-- 1 - 1 (33pb+1594$+5621q) c3 [ 1282
-z
1 [
c
of &,m
I
6X,,= Ul WJ
W6+167P)+~
+u2ou
f&-l-~2
q]
(115*4+1310~+735)+~
(pl+l)]
A2=(N7+2)2
-?%?-
-2
Values
(63$+4940q4+43327tf+22470)
&
-g2 1
of Approximate
If Q, is an approximation to &,, obtained either from 21.7.5 or 21.7.6 then
($+ll-32m2)
[5(q4+26d+21)--384m2(qB+1)l
-&
1
(VP-m-l)(n-m)(n+m-l)(n+m) (2n--5)(2n-3)(2n-l)6(2n+l)(2n+3)
D
(?--m-l)(n-m)(n+m-l>(n+m) A=(2n-5)2(2~-3)(2~-l)7(2n+l)(2n+3)2-
Asymptotic
(2n+7)
2(2n-3)(2n-l)3(2n+l)
A2
(hT+2W+4)2+ #%2@+4
0?‘+2W+4W+J2 /37+2/3%n+a
+...
(527q7+61529pb+1043961$
+2241599(J) -A4 +29s951q)+g
(573iW+l27550$
(355n”+15o5p)-~]+o(c-7 p=2(n-m)+1
(2m+r)(2m+r-l)c’ w=(2m+2r-l)(2m+2r+l)
d, 4-2
(r22)
T(T-1)(2m+T)(2m+r-1)c’ fl~=(2m+2r-l)y2m~+2r+l)(2m.t27--3) (f 22)
SPHEROIDAL Evaluation
Step 1.
WAVE
of Coeflicienta
Calculate
755
FUNCTIONS
21.7.15
NT’s from
21.7.8 Ny+,=+bn.-g
CT221
I
N?=rT-Ln;
(n-m)
Ny=ry’-L,,
= Step 2.
Calculate
ratios $ and & 2r
21.7.9
?(n+m+l)! C-1) ! (“+;+1>
2”-” (y-1)
of Angular SchZke
Functions
S-1l [Sm&, d12&=& C,
T!
(This normalization fwd as v-+1.)
&,(c,O)=~(O)=
Snn(C,
V)
21.7.17 &f&,
9) = 0 -112>‘~mn(c, 7)
um&keJ5m
(c--
>
1-n-m
Wl,&)
cylinder
func-
$$$ and the H,(z) are the Hermite polynomials (see chapter 22). (For tables of &,/hi see [21.4].)
d =(n+m)! ’
(n-m)!
has the effect that S,,,Jc, q)+
Expansion
of S..(c,
7) in Powers
of r)
21.7.18
Flammer
21.7.13
for
Scheme
(T+2m)!
r=o, 1
Expansions
where the D,(z)‘s are the parabolic tions (see chapter 19).
Scheme
Stratton-Morse-Chu-Little-Corbat6
21.7.12
Odd
(The normalization scheme 21.7.13 and 21.7.14 is also used in [21.10].)
and the formula for NT in 21.7.7. The coefficients dy” are determined to within the arbitrary factor do for r even and d, for T odd. The choice of these factors depends on the normalization scheme adopted.
21.7.11
(n-m)
P+l
Asymptotic
Meixner-
!
from
$=(>($)...&)
Normalization
even
21.7.16
Scheme
[21.4]
“--(ll C-l) 2 (n+m)! 2” (?4)!(!!+?9
(n-m)
even
n-m-1
(The derivation for A,,,,,is similar
“(n+m+l)!
21.7.3.)
21.7.14 S;n(c,O)=fy(0)=
(-l)
of the transcendental equation to the derivation of 21.7.4 from
2”(“-3!(“+;+‘)! Expansion
(n-m) The above lead to the following 4 mn
conditions
odd for
of S=“(c,
(I) in Powers
of (l-3)
21.7.19 &&,(c, r)=(1-tl’)“/2~ocb”;(l-b)L
(n-m)
even
756
SPHEROIDAL
WAVE
FUNCTIONS
~n=-2-gp[33p4+114p2+37-2m2(23q2+25)
21.7.20 (n-m)
+ 13m*]
odd ,?y= -2-10[63q6+340q4+239q2+
1
___~
m (2m+2’)!(--T)k(m+T+$@ 2 (a?)!
C’m;‘2mk!(m+k)!
-10m2(10p4+23q2+3)+m4(39q2-18)-2me]
(n-m)
even
~‘“=v(v+m)a,‘+(v+l)(v+m+l)a:’ q=n+l
c2; = m (2m+2ry)! z (2r+l).
2’k!(ml+k)!
Asymptotic
(n-m)
(The @‘s
for (n-m)
odd
* . . (a+k+l)
are the coefficients
even; q=n for (n-m)
Expansion
for
Oblate
Angular
Functions
21.8.3
Smn(-ic, +(1+)~‘2
5 A,mn{e-c~1-~)LSm+![2C(1--l)] *=--Y
in 21.7.1.)
+(-l)n-me-ccl++L$ Prolate.
Angular
Expansion 21.7.2
Functions--Second
ultimately
odd
(For the definition of agr see 21.8.3.)
(-r,,(m+r+;)$y+,
(&=&+1>(~+2)
14
[Zc(l+~j)]]
Kind
where the L$““’(2) are Laguerre polynomials (see chapter 22) and
leads to
21.7.21
f&g
a,f l( m, n>cmk
(Expressions of a&*’ are given in [21.4].) 21.9. Radial
(The coefficients G$‘“”are the same as in 21.7.1; the coefficients d;: are tabulated in [21.4].) 21.8. Power
Oblate Series
21.8.1
Angular Expansion
Spheroidal
Wave
Functions
21.9.1
Functions for
Eigenvalues
q)(z)= Jz-.J?&++(z)
x,.=~(-1)$kc’”
(p=l)
where the lk’s are the same as in 21.7.5. Asymptotic
Expansion
for
Eigenvalues
=J g Yn+&> (p=2)
[21.4]
21.8.2
A,,= -c2+2c(2v+m+
(J,++(z) and Y,++(z) are Bessel functions, order n++, of the first and second kind respectively (see chapter lo).)
1)-2v(v+m+l) -(m+l>+Amfl
v=f (n-m)
for (n-m) v=f
even; (n-m-
1) for (n-m)
odd
21.9.2
R7%(C, s> =E~(c,
21.9.3
R~~(c,I)=R~~((c,~)--iR~~T!,(c,~)
Asymptotic
@‘“=
--2-%q*+
10q2+ 1 -2m2(3q2+
1) +m’]
Behavior
8 +W~(c,
of
s>
R$,((c, E) and R~;((c, C)
21.9.4
C,@, t)c 01$ ~0sI@-Hn+W
21.9.5
R%(C,S)---& i sin [~[-+(n+l)~]
SPHEROIDAL
21.10.
Joining
Factors
for
WAVE
Prolate
757
FUNCTIONS
Spheroidal
Wave
Functions
21.10.1
Kg;(c)
=
(n-m)
even
(n-m)
odd
(n-m)
odd
21.10.2 S~~(c,I)=K~~(C)R~~(C,5‘)
(The expression for joining factors appropriate to the oblate case may be obtained from the above formulas by the transformation c*-k)
21.11.
Ang. coord.
Stratton, Morse, Chu, Little and CorbaM
7
h
E
I
I
I
Independent variable
Rsd. coord.
&z(h,
kd(h,
d
7
Chu and Stratton
I)
Meixner and Schilfke
B
Morse and Feshbath
*=cos
I
Wave I
Red. wave function
Ang. wave function
Functions I
1 Eigenvalue
0
1
AmzV4
Smz(h,
1= Flammer’s Amz= L,,,
&n”(C, 7)
e2(c, .9
hn”(C>
Smn(c, 0) = F?(O) &,,,,(c, 0) = R’ (0)
C
&!k
R%
A
fQ(c, 0) = P-+,(O) S::‘(c, 0) = E:,,(O)
c
uzmw
11)
Remarks
O=Pi”(l)
C
.-
I9
I
Normalisation of angular functions
,mzp ;] ml I
I
Flammer and this chapter
Notation
Notation for Prolate Spheroidal
#
U
ntZ
n
(n - 74 even (n - 74 bdd (I even) (I odd)
I= Flammer’s n - m &z= -A,, n-m,
E=cosh /.I
.Page
tl
vzIn(d
~(l-PP’~~zmn(U1=1
QZWI
E=l
;:-8m Notation
Stratton, Morse, Chu, Little and CorbaM
7
Flammer and this chapter
v
g
j S,dig,
for 7d
Oblate
Spheroidal
1 jemz(ic7,
TVa - ve Functions A
-3
“Z
I 1) =P?(U
$= FkFmer’s ml *n
n
-E
C
&d-k
3
R”)I* ( -
ic 2 it)
LA-ic)
S,,( -ic,O) =e(o) S:,(--ic,
7
t
C
Ass ( - ic, 7))
Rg/ ( - ic,
iE)
B IPSZ
-Meixner and Schiifke
n
I S,z(ig,
O)=P$(O)
(n - m) even (n - m)odd
-Chu and Stratton
I = Flammer’s crzm=Xmn-Ca
B
Y
PC h, - -8
S(f) ” ( - i& i+)
,S’s( -ic, 0) =e+z(0) S$‘( - ic, 0) = P=;z(O)
W-r? s
A
ntZ
Z=Flammer’s n--m - X,, n-,,,
Bz,=
A;(-ya)=X,,(-ic)+cl
-1, UPS% --?)I% 2 =2n+l
--
(I even) (I odd)
(n+m)! (n-m)!
r(1--?2)-~‘2&zGB, dl,1 =[(l -~P’2P;(?)lbl
2 F1,;mer’s ml mn
n
I= Flammer’s azm=XnnfCa
n
-LeEtner and Spence The notation
QZWI
in this chapter closely follows the notation
in 121.41.
-
SPHEROIDAL
WAVE
FUNCTIONS
759
References [21.1] M. Abramowitz, Asymptotic expansion of spheroidal wave functions, J. Math. Phys. 28, 195-199 (1949). [21.2] G. Blanch, On the computation of Mathieu functions, J. Math. Phys. 25, l-20 (1946). [21.3] C. J. Bouwkamp, Theoretische en numerieke behandeling van de buiging door en ronde opening, Diss. Groningen, Groningen-Batavia, (1941). [21.4] C. Flammer, Spheroidal wave functions (Stanford Univ. Press, Stanford, Calif., 1957). [21.5] A. Leitner and R. D. Spence, The oblate spheroidal wave functions, J. Franklin Inst. 249, 299-321 (1950). [21.6] J, Meixner and F. W. Schafke, Mathieusche Funktionen und Sphiiroidfunktionen (SpringerVerlag, Berlin, Gottingen, Heidelberg, Germany, 1954).
[21.7] P. M. Morse and H. Feshbach, Methods of theoretical physics (McGraw-Hill Book Co., Inc., New York, N.Y., 1953). [21.8] L. Page, The electrical oscillations of a prolate spheroid, Phys. Rev. 65, 98-117 (1944). [21.9] J. A. Stratton, P. M. Morse, L. J. Chu and R. A. Hutner, Elliptic cylinder and spheroidal wave functions (John Wiley & Sons, Inc., New York, N.Y., 1941). [21.10] J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbat6, Spheroidal wave functions (John Wiley & Sons, Inc., New York, N.Y., 1956).
760
SPHEROIDAL Table 21.1
WAVE FUNCTIONS
EIGENVALUES-PROLATE
AND OBLATE
PROLATE
k(c)--m(mf1)
0:879933 1.127734
1 2.000000 2.593084 3.172127 3.736869 4.287128
2 6.000000 6.533471 7.084258 7.649317 8.225713
3 12.000000 12.514462 13.035830 13.564354 14.100203
4 20.000000 20.508274 21.020137 21.535636 221054829
1.357336 1.571155 1.771183 1.959206 2.136732
4.822809 5.343903 5.850492 6.342739 6.820888
8.810735 9.401958 9.997251 10.594773 11.192938
14.643458 15.194110 15.752059 16.317122 16.889030
22.577779 23.104553 23.635223 24.169860 24.708534
2.305040 2.465217 2.618185 2.764731 2.905523
7.285254 7.736212 8.174189 8.599648 9.013085
11.790394 12.385986 12.978730 13.567791 14.152458
17.467444 18.051962 18.642128 19.237446 19.837389
25.251312 25.798254 26.349411 26.904827 27.464530
3.041137 3.172067 c-t)3
9.415010 9.805943 (-92
14.732130 15.306299 t-32
20.441413 21.048960
28.028539 28.596854
3 5.26224 5.25133 5.25040 5.26046 5.28251
4 7.14921 7.05054 6.96237 6.88638 6.82460
5.31747 5.36610 E: 5:59516
6.77941 6.75360 6.75030 6.77286 6.82451
4.324653 4.381878 4.436798 4.489168 4.539096
5.69566 5.80359 5.91452 6.02383 6.12806
6.90779 7.02356 7;16962 7.33916 7.52035 7.69932 7.86638 8.01951 8.16148 8.29538 8.42315 8.54594 8.66452 8.77945 8.89116 9.00000 $314
G/n
0 0.000000
f x'K40
32
4
10 :: ::
*
[ 1
[ 1
[
1
[(-;I91
[(-p1
c-%0&1
od:: 0:21
0 0.793016 0.802442 0.811763 0.820971 0.830059
1 2.451485 2.477117 2.503218 2.529593 2.556036
0.20 0.19 0.18 0.17 0.16
0.839025 0.847869 0.856592 0.865200 0.873698
2.582340 2.608310 2.633778 2.658616 2.682743
0.15 0.14 0.13 0.12 0.11
0.882095 0.890399 0.898617 0.906758 0.914827
2.706127 2.728784 2.750762
0.10 0.09 0.08 0.07 0.06
0.922830 0.930772 0.938657 0.946487 0.954267
2.813346 2.833316 2.852927 2.872213 2.891203
4.586895 4.632927 4.677506 i%slet; .
6.22577 6.31730 6.40385 6.48655 6.56618
0.05 0.04 0.03 0.02 0.01 0.00
0.961998 0.969683 0.977324 0.984923 0.992481 1.000000 (342
2.909920 2.928382 2.946608 2.964611 2.982404 3.000000
4.804519 4.845033 4.884779 4.923820 4.962212 5.000000 (-$I6
6.64326 6.71812 6.79104 6.86221 6.93182 7.00000 c--y
c-l\n
0.25 0.24
[: 1
%19?1 .
[ (-yJ1
2 3.826574 3.858771 3.895890 EZ .
[
1
[
1
[ 1
761
SPHEROIDAL WAVE FUNCTIONS EIGENVALUES-PROLATE
AND OBLATE
Table
21.1
OBLATE
k,,(-ic)-m(mf1) X04- ic) G\n 10 f 4
15 16
0 0.000000 -0.348602 -0.729391 -1.144328 -1.594493
1 2.000000 1.393206 0.773097 +0.140119 -0.505243
-2.079934 -2.599668 -3.151841 -3.733981 -4.343292
-1.162477 -1.831050 -2.510421 -3.200049 -3.899400
-4.976895 -5.632021 -6.306116 -6.996903 -7.702385 -8.420841 -9.150793 (y)4
II 1
*
3 12.000000 11.492120 10.990438 10.494512 10.003863
4 20.000000 19.495276 18.994079 18.496395 18.002228
2:923796 2.578730 2.251269
9.517982 9.036338 8.558395 8.083615 7.611465
17.511597 17.024540 16.541110 16.061382 15.585448
-4.607952 -5.325200 -6.050659 -6.783867 -7.524384
1.938419 1;637277 1.345136 1.059541 0.778305
7.141427 6.673001 6.205705 5.739084 5.272706
15.113424 141645441 14.181652 13;722230 13.267364
-8.271795 -9.025710 c-y
0.499495 0;221407 (-;I3
4.806165 4.339082
12.817261 121372144 6gW
c 1
‘-I
6.OO;OOO 5.486800 4.996484 4.531027 4.091509
z%~~
[ 1
[:t-y1
[ 1
c-2[Xon( GC)]
0.25 0.24 0.23 0.22 0.21
0 -0.571924 -0.585248 -0.599067 -0.613349 -0.628058
1 -0.564106 -0.579552 -0.595037 -0.610591 -0.626242
2 +0.013837 -0.009136 -0.031481 -0.053477 -0.075480
3 0.271192 0.213225 0.157464 0.103825 0.052196
4 0.77325 0.67822 0.58772 0.50191 0.42099
0.20 0.19 0.18 0.17 0.16
-0.643161 -0.658625 -0.674418 -0.690515 -0.706891
-0.642016 -0.657938 -0.674031 -0.690310 -0.706792
-0.097943 -0.121428 -0.146603 -0.174201 -0.204894
+0.002437 -0.045635 -0.092251 -0.137692 -0.182301
0.34521 0.27490 0.21043 0.15215 0.10020
0.15
-0.723530 -0.740416 -0.757541 -0.774896 -0.792476
-0.723486 -0.740399 -0.757535 -0.774894 -0.792476
-0.239109 -0.276886 -0.317881 -0.361548 -0.407352
-0.226469 -0.270627 -0.315206 -0.360594 -0.407081
0.05428 +0.01332 -0.02476 -0.06337 -0.10723
-0.810279 -0.828301 -0.846539 -0.864992 -0.883657
-0.810279 -0.828301 -0.846539 -0.664992 -0.883657
-0.454896 -0.503937 -0.554337 -0.606021 -0.658931
-0.454839 -0.503928 -0.554337 -0.606021 -0.658931
-0.16065
-0.902532 -0.921616 -0.940906 -0.960402 -0.980100 -1.000000 t-f)6
-0.902532 -0.921616 -0.940906 -0.960402 -0.980100 -1.000000
-0.713025 -0.768262 -0.824608 -0.882031 -0.940503 -1.000000 (-$14
-0.713025 -0.768262 -0.824608 -0.882031 -0.940503 -1.000000 (-S4)3
1:;;;;;
c-L\n
if:; 0:12 0.11 0.10 KG 0:07 0.06 0.05 0.04 0.03 0.02 0.01 0.00
[
1
[
1
c 1
:g;;;; -0:37117 -0.45125
-0:71218 -0.80533 -0I90131 -1.00000
c(-y 1
762
SPHEROIDAL
Table
WAVE
FUNCTIONS
EIGENVALUES-PROL.4TE
21.1
AND OBLATE
PROLATE
x,.(c)-m(?n-t-l)
cz\n 10 s 4
1110 12 13 14 15 16
Xl”(C)
*
1 0.000000 0.195548 0.382655 0.561975 0.734111
2 4.000000 4.424699 4.841718 5.251162 5.653149
3 10.000000 10.467915 10.937881 11.409266 11.881493
4 18.000000 18.481696 18.965685 19.451871 19.940143
28.000000 28.488065 28.977891 29.469456 29.962738
0.899615 1.058995 1.212711 1.361183 1.504795
6.047807 6.435272 6.815691 7.189213 7.555998
12.354034 12.826413 13.298196 13.768997 14.238466
20.430382 20.922458 21.416235 21.911569 22.408312
30.457716 30.954363 31.452653 31.952557 32.454044
1.643895 1.778798 1.909792
7.916206 8.270004 8.617558
9%t: .
%XE! .
14.706292 15.172199 15.635940 16.097297 16.556078
22.906311 23.405410 23.905451 24.406277 24.907729
32.957080 33.461629 33.967652 34.475109 34.983956
2.281832 2.399593
9.624450 9.948719
17.012115 17.465260 (-;I4
25.409649 25.911881 t-y3
35.494147 36.005634 (-y
4 6.47797 6.38296 6.29522 6.21556 6.14494
5 9.00140 8.80891 8.62445 8.44916 8.28436
4.279522 4.279366 4.285495 4.297965 4.316672
6.08438 6.03498 5.99788 5.97420 5.96496
8.13163 7.99282 7.87010 7.76598 7.68328
4.341320 4.371397 4.406191 4.444844 4.486445
5.97090 5.99230 6.02874 6.07889 6.14051
7.62508 7.59446 7.59407 7.62539 7.68773
4.530151 4.575277 4.621329 4.667984 4.715031
6.21063 6.28624 6.36482 6.44473 6.52505
7.77728 7.88714 8.00897 8.13579 8.26355
4.762333 4.809790 4.857332 4.904906 4.952472 5.000000
6.60532 6.68528 6.76480 6.84378 6.92219 7.00000 (-;I2
8.39048 8.51592 8.63963 8.76153 8.88164 9.00000 (-?)4
IIc-p1
[1(-$)l1
c-l\n 0.25 0.24 0.23 0.22 0.21
1 0.599898 0.613295 0.627023 0.641073 0.655431
2 2.487179 2.491544 2.497852 2.506130 2.516383
0.20 0.19 0.18 0.17 0.16
0.670084 0.685014 0.700204 0.715632 0.731281
2.528591 2.542705 2.558644
0.15 0.14 0.13 0.12 0.11
0.747129 0.763159 0.779353 0.795696 0.812174
2.616135 2.637968
0.10 0.09 0.08 0.07 0.06
0.828776 0.845493
2.733891 2.759305 2.785099
0.05 0.04 0.03 0.02 0.01 0.00
0.913352 0.930535 0.947796 0.965129 0.982531 1.000000 c-p4
%% 0:896251
[
*See page x1.
--2
*
1
;*z:192 .
I'%69 2:708934
%%%E . 2.864224 2.891056 2.918069 2.945243 2.972558 3.000000 c-y
[ 1
[L 1
c-'IX&)-21 3 4.366315 4.338520 4.315609 4.297923 4.285792
1(-;I8 1
*
[ 1
[
1
5
c 1
[
1
SPHEROIDAL WAVE FUNCTIONS EIGENVALUES-PROLATE
AND OBLATE
Table
21.1
OBLATE x,,(-ic)--77)2(772+1)
c2\n 10 f
4
xI,~-ic)-2 3
* *
9.534818 9.073104 8.615640 8.163245
4 18.000000 17.520683 17.043817 16.569461 16.097655
5 28.000000 27.513713 27.029223 26.546548 26.065706
1.758534 1.286300 0.806045 +0.317782 -0.178458
7.716768 7.277072 6.845015 6.421425 6.007074
15.628426 15.161786 14.697727 14.236229 13.777252
25.586715 25.109592 24.634357 24.161031 23.689634
-2.593577 -2.934882 -3.293803 -3.670646 -4.065548
-0.682630 -1.194673 -1.714511 -2.242055 -2.777205
5.602649 5.208724 4.825732 4.453947 4.093464
13.320743 12.866634 12.414640 11.965266 11.517803
23.220190 22.752726 22.287271 21.823856 21.362516
-4.478470 -4.909200 C-$)2
-3.319848 -3.869861
3.744202 3.405903
11.072331 10.628718 c-t)3
20.903290 20.446222 C-2)3
1 0.000000 -0.204695 -0.419293 -0.644596 -0.881446
2 4.000000 mi1 2:678958 2.222747
-1.130712 -1.393280 -1.670028 -1.961809 -2.269420
10.000000
[Ic-y1
[ 1
[(--p’1
c-l\n 0.25 0.24 0.23 0.22 0.21
1 -0.306825 -0.318148 -0.330984 -0.345469 -0.361702
2 -0.241866 -0.266693 -0.291340 -0.315894 -0.340450
3 0.21286 0.17062 0.13125 0.09476 0.06107
4 0.66429 0.57759 0.49460 0.41533 0.33974
5 1.2778 1.1420 1.0120 0.8879 0.7697
0.20 0.19 0.18 0.17 0.16
-0.379735 -0.399564 -0.421125 -0.444308 -0.468974
-0.365113 -0.389998 -0.415222 -0.440907 -0.467166
0.03001 +0.00127 -0.02563 -0.05142 -0.07710
0.26779 0.19942 0.13449 0.07282 +0.01411
0.6575 0.5515 0.4520 0.3591 0.2735
0.15 0.14 0.13 0.12 0.11
-0.494976 -0.522180 -0.550474 -0.579775 -0.610027
-0.494104 -0.521805 -0.550335 -0.579732 -0.610016
-0.10406 -0.13412 -0.16924 -0.21076 -0.25868
-0.04205 -0.09625 -0.14929 -0.20210 -0.25572
0.1958 0.1271 0.0680 +0.0183 -0.0250
0.10 0.09 0.08 0.07 0.06
-0.641193 -0.673251 -0.706186 -0.739985 -0.774638
-0.641191 -0.673251 -0.706186 -0.739985 -0.774638
-0.31185 -0.36901 -0.42934 -0.49242 -0.55807
-0.31111 -0.36888 -0.42932 -0.49242 -0.55807
-0.0685 -0.1219 -0.1907 -0.2714 -0.3598
0.05 0.04 0.03 0.02 0.01 0.00
-0.810135 -0.846468 -0.883628 -0.921608 -0.960401 -1.000000 c-y
-0.810135 -0.846468 -0.883628 -0.921608 -0.960401 -1.000000
-0.62616 -0.69657 -0.76923 -0.84406 -0.92100
-0.62616 -0.69657 -0.76923 -0.84406 -0.92100 -1.00000 C-l)5
-0.4542 -0.5540 -0.6588 -0.7682 -0.8820 -1.0000 (-72
c 1
*see page II.
c 1
*
cc-y1
cc-y1
-1.00000
c 1
1 1
II 1
764
SPHEROIDAL
Table
21.1
WAVE
FUNCTIONS
EIGENVALC’ES-PROLATE
.4ND OBLATE
PROLATE
hi.(c)-m(m+1) C-+8 10 3
4
2 0.000000 0.140948 0.278219 0.412006 0.542495
3 6.000000 6.331101 6.657791 6.980147 7.298250
b,(c) -6 4 14.000000 14.402353 14.804100 15.205077 15.605133
0.669857 0.794252 0.915832 1.034738 1.151100
7.612179 7.922016 8.227840 8.529734 8.827778
1.265042 1.376683 1.486122 1.593469 1.698816 1.802252 1.903860
[c-y1
* * 5 24.000000 24.436145 24.872744 25.309731 25.747043
6 36.000000 36.454889 36.910449 37.366657 37.823486
16.004126 16.401931 16.798429 17.193516 17.587093
26.184612 26.622373 27.060261 27.498208 27.936151
38.280913 38.738910 39.197451 39.656510 40.116059
9.122052 9.412636 9.699610 9.983052 10.263039
17.979073 18.369377 18.757932 19.144675 19.529549
28.374023 28.811761 29.249302 29.686584 30.123544
40.576070 41.036514 41.497364 41.958589 42.420160
10.539650 10.812958 C-t)‘5
19.912501 20.293486 C-j’2
30.560125 30.996267 C-2)6
42.882048 43.344222 C-j)8
[
1
c 1
c-‘Ix,“(c) -61
ll 1
[ 1
*
0.25 0.24 0.23 0.22 0.21
2 0.475965 0.489447 0.503526 0.518220 0.533551
3 2.703239 2.683149 2.665356 2.650003 2.637236
4 5.073371 4.994116 4.919290 4.849313 4.784640
5 7.74906 7.58138 7.41971 7.26479 7.11743
6 10.8360 10.5536 10.2781 10.0103 9.7512
0.20 0.19 0.18 0.17 0.16
0.549534 0.566185 0.583513 0.601526 0.620224
2.627196 2.620017 2.615819 2.614701 2.616735
4.725757 4.673177 4.627427 4.589031 4.558480
6.97858 6.84931 6.73081 6.62442 6.53155
9.5023 9.2649 9.0409 8.8323 8.6417
0.15 0.14 0.13 0.12 0.11
0.639604 0.659659 0.680376 0.701737 0.723722
2.621954 2.630349 2.641862 2.656384 2.673764
4.536196 4.522485 4.517479 4.521086 4.532956
6.45371 6.39236 6.34878 6.32389 6.31794
8.4718 8.3260 8.2078 8.1208 8.0678
0.10 0.09
0.746308 0.769471 0.793186 0.817429 0.842175
2.693817 2.716339 2.741120 2.767960 2.796673
4.552484 4.578871 4.611219 4.648642 4.690346
6.33030 6.35935 6.40263 6.45738 6.52096
8.0507 8.0688 8.1184 8.1932 8.2864
0.867402 0.893087 0.919209 0.945747 0.972684 1.000000 C-j'9
2.827089 2.859059 2.892449 2.927138 2.963019 3.000000 c-t)4
4.735658 4.784022 4.834980 4.888160 4.943252 5.000000
6.59127 6.66670 6.74607 6.82849 6.91330 7.00000 (33’2
8.3919 8.5057 8.6249 8.7477 8.8730 9.0000
c-l\n
F% 0:06 0.05 0.04 0.03 0.02 0.01 0.00
1 1
*See
page
II.
[
1
[c-y1
[ 1
765
SPHEROIDAL WAVE FUNCTIONS EIGENVALUES-PROLATE
AND
ORLATE
Table
21.1
OBLATE
2 0.000000 -0.144837 -0.293786 -0.447086 -0.604989
X,,(-ic)--m(m+l) &,a(--id-6 3 4 6.000000 14.000000 5.664409 13;597220 5.324253 13.194206 4.979458 12.791168 4.629951 12.388328
-0.767764 -0.935698 -1.109090 -1.288259 -1.473539
4.275662 3.916525 3.552475 3.183450 2.809393
:i
-1.665278 -1.863838 -2.069595 -2.282933 -2.504245
15 16
-2.733927 -2.972375
G\n 10
2 3 4
10 ::
[C-f)1 1
* * 5 24.000000 23.564371 23.129322 22.694912 22.261201
6 36.000000 35.545806 35.092330 34.639597 34.187627
11.985928 11.584224 11.183489 10.784014 10.386106
21.828245 21.396098 20.964812 20.534436 20.105013
33.736444 33.286069 32.836522 32.387826 31.940000
2.430250 2.045970 1.656508 1.261822 0.861875
9.990084 9.596286 9.205059 8.816762 8.431761
19.676587 19.249195 18.822869 18.397640 17.973532
31.493066 31.047043 30.601952 30.157814 29.714648
0.456635 0.046076 (-p7
8.050424 7.673121 (-:)5
17.550565 17.128753
29.272476 28.831317
[ 1
[ 1 * II(-pl1 ~-~[X~,(-ic)-6]
[Ic-y1
c-l\n 0.25 0.24 0.23 0.22 0.21
2 -C.185773 -0.190754 -0.196680 -0.203790 -0.212386
3 +0.002879 -0.030028 -0.062228 -0.093813 -0.124893
4 0.47957 0.41280 0.34933 0.28933 0.23297
5 1.07054 0.95365 0.84167 0.73461 0.63251
6 1.8019 1.6261 1.4577 1.2965 1.1428
0.20 0.19 0.18 0.17 0.16
-0.222841 -0.235596 -0.251126 -0.269873 -0.292149
-0.155607 -0.186120 -0.216631 -0.247375 -0.278624
0.18049 0.13215 0.08816 0.04864 +0.01342
0.53537 0.44322 0.35607 0.27389 0.19662
0.9964 0.8574 0.7260 0.6022 0.4863
0.15 0.14 0.13 0.12 0.11
-0.318047 -0.347414 -0.379928 -0.415213 -0.452947
-0.310677 -0.343847 -0.378432 -0.414688 -0.452800
-0.01813 -0.04727 -0.07609 -0.10778 -0.14643
0.12409 +0.05600 -0.00822 -0.06954 -0.12937
0.3785 0.2795 0.1901 0.1120 +0.0470
0.10 0.09 0.08 0.07 0.06
-0.492902 -0.534942 -0.578991 -0.625006 -0.672956
-0.492871 -0.534937 -0.578991 -0.625006 -0.672956
-0.19508 -0.25333 -0.31876 -0.38955 -0.46494
-0.18959 -0.25217 -0.31861 -0.38955 -0.46494
-0.0051 -0.0517 -0.1076 -0.1844 -0.2768
0.05 0.04 0.03 0.02 0.01 0.00
-0.722813 -0.774556 -0.828164 -0.883618 -0.940902 -1.000000 C-i)5
-0.722813 -0.774556 -0.828164 -0.883618 -0.940902 ,1.000000 C-l’2
-0.54456 -0.62821 -0I71571 -0.80691 -0.90171 -1.00000
-0.54456 -0.62821 -0.71571 -0.80691 -0.90171 -1.00000 (536
-0.3791 -0.4895 -0.6073 -0.7319 -0.8629 -1l0000 (-i)3
II 1
*see page II.
[
1
IIc-p1
[ 1
[ 1
766
SPHEROIDAL
Table 21.2
ANGULAR
WAVE
FUNCTIONS
FUNCTIONS-PROLATE PROLATE
AND OBLATE
Smn(c, cos 0)
10”
20”
30”
40”
50”
60”
70
80”
0.8525 015431 0.2815 0.1312 0.0585
0.8651 015772 0.3242 0.1689 0.0861
0.8847 016320 0.3967 0.2379 0.1419
0.9091 0.7032 0.4980 0.3442 0.2380
0.9354 0.7842 0.6226 0.4885 0.3839
0.9606 0.8654 0.7571 0.6589 0.5742
0.9815 0.9355 0.8805 0.8271 0.7776
0.9952 0.9831 0.9682 0.9530 0.9383
90” 1.000 1.000 1.000 1.000 1.000
: 4 5
0.9046 0.6681 0.4034 0.2042 0.0916
0.8936 016665 0.4099 0.2138 0.1001
0.8602 0.6598 0.4273 0.2415 0.1262
0.8035 0.6429 0.4489 0.2833 0.1703
0.7225 0.6081 0.4630 0.3294 0.2279
0.6169 0.5472 0.4543 0.3618 0.2840
0.4878 0.4540 0.4068 0.3566 0.3104
0.3381 0.3270 0.3110 0.2929 0.2752
0.1731 0.1717 0.1695
i 0
OdE .
i
: 4 5
1.022 1.064 1.041 0.8730 0.6018
0.9795 1.030 1.023 0.8768 0.6233
0.8553 0.6621 0.9271 0.7579 0.9640 0.8497 LT.8787 0.8513 0.6792 0.7407
0.4198 0.5296 0.6660 0.7549 0.7537
0.1556 -0.0988 -0.3105 0.2602 -0.0192 -0.2668 0.4104 +0.1061 -0.1938 0.5553 0.2512 -0.0998 0.6494 0.3844 +0.0008
0.9892 0.9590 0.9090 0.8197 0.6650
0.9042 0.8864 0.8546 0.7877 0.6560
0.6692 0.6816 0.6957 0.6868 0.6183
0.3400 -0.0045 -0.2816 0.3840 +0.0560 -0.2261 0.4485 0.1501 -0.1364 0.5087 0.2591 -0.0215 0.5245 0.3482 +0.0971
0.1578 0.1194 0.0776 0.0449 0.0239
0.3134 0.2437 0.1654 0.1018 0.0588
0.4643 0.3757 0.2724 0.1832 0.1179
0.6067 0.5149 0.4030 0.2994 0.2162
0.7355 0.6562 0.5546 0.4537 0.3650
0.8450 0.7892 0.7144 0.6353 0.5602
0.9290 0.9000 0.8597 0.8150 0.7698
0.9819 0.9740 0.9627 0.9497 0.9361
0.4788 0.3896 0.2780 0.1762 0.1011
0.9054 0.7509 0.5538 0.3683 0.2254
1.232 1.052 0.8148 0.5813 0.3896
1.417 1.253 1.030 0.7968 0.5906
1.435 1.316 1.149 0.9643 0.7879
1.276 1.212 1.118 1.008 0.8957
0.9562 0.9335 0.8992 0.8575 0.8127
0.5119 0.5088 0.5039 0.4979 0.4911
i 5
0.9928 0.9559 0.8745 0.7393 0.5662
1.745 1.710 1.611 1.418 1.146
2.075 2.092 2.063 1.934 1.691
1.903 1.998 2.097 2.128 2.047
1.280 1.432 1.640 1.841 1.975
0.3775 0.5298 0.7606 1.032 1.299
-0.5521 -0.4541 -0.2972 -0.0951 +0.1319
; 4 5
0.0844 0.0690 0.0500 0.0328 0.0198
0.3295 0.2744 0.2051 0.1405 0.0898
0.7111 0.6092 0.4773 0.3487 0.2414
1.189 1.054 0.8738 0.6876 0.5212
1.710 1.572 1.380 1.171 0.9701
2.211 2.101 1.944 1.764 1.580
0.4222 0.3597 0.2765 0.1934 0.1244
1.570 1.358 1.070 0.7758 0.5226
3.116 2.755 2.255 1.723 1.243
4.596 4.175 3.576 2.909 2.269
5.530 5.170 4.641 4.025 3.395
5.548 5.327 4.994 4.588 4.150
0"
m
n
c\e
0
01
0.8481 0.5315 32 0.2675 0.1194 54 0.0502
011
0
0
21
31
2 : 5
111
2 3 54
12
1 2 i 5
13
2
2
1 2
21
31 32 :
From C. Flammer, permission).
Spheroidal
wave functions. Stanford
Univ.
-0.4259 -0.3907 -0.3319 -0.2514 -0.1575
-0.4509 -0.4385 -0.4171 -0.3879 -0.3542
-0.4085 -0.2467 -0.3949 -0.2447 -0.3714 -0.2412 -0.3376 -0.2361 -0.2952 -0.2293
-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 ii 0 00
1.000 1.000 1.000 llOO0 1.000 0 : 0 0
-1.244 -1.214 -1.174 -1.097 -1.017
-1.500 -1.500 -1.500 -1.500 -1.500
2.627 2.566 2.475 2.367 2.251
%3e 2:859 2.827 2.791
3.000 3.000 3.000 3.000 3.000
4.501 4.417 4.286 4.122 3.936
2.522 2.510 2.491 2.466 2.437
Press, Stanford,
Calif., 1957 (with
e
SPHEROIDAL
ANGULAR
WAVE
FUN4 ZTIONS-PROLATE OBLATE &m(-k,
m
0
n
01
: 5
21
21.2
7)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.002 1.008 1.022 1.047 1.083
1.007 1.032 1.089 1.191 1.341
1.016
1.044 1.210 1.617 2.452 3.952
1.064
:*i;: 1:449 1.835
1.028 1.132 1.377 1.854 2.648
1.088 1.434 2.366 4.557 9.211
1.115 1.585 2.923 6.323 14.23
1.147 1.767 3.648 8.837 22.11
1.0 1.183 1.986 4.589 12.42 34.48
:
0.1001
0.2034 0.2009
i%:
0.4274 0.4065
0.5128
0.6952 0.6222
0.8530 1.035
0.9760 1.243
1.484 1.105
i
0:1016 K~
0.2079
0.3526 0:3273
0.4664
ii-:::; 0:7681
1.096 0.8398
2.195 1.425
3.105 1.842
4.396 2.378
5”
0
0.1032
K::; .
0.3884
FE: .
0.9804
1.525
3.684
5.741
8.970
-0.4863 -0.4897 -0.4943
2 4' 5
1:;;;; .
4 5
-0.1477 2f:g -0:1495 -0.1504
: 4 5
0.9961 0.9994 1.006 1.020 1.041
O 3 3: 111
l 2 2’ :
5 131 : :
-1.500 -1.500 -1.500 -1.500 -1.500
-1.421 -1.431 -1.447 -1.467 -1.486
-0.4450 -0.4585 -0.4766 -0.4966 -0.5234
-0.3757 -0.4052 -0.4448 -0.4891 -0.5495
-0.2779 -0.3277 -0.3952
-0.1507 -0.2231 -0.3223
r:;,'g .
-0.5977 -0.4356
-0.2810 -0.2839 -0.2885
-0.3855 -0.3947 -0.4097 -0.4306 -0.4589
-0.4466 -0.4668 -0.4998
-0.4491 -0.4839 -0.5421
1;;::: .
1;:;;; .
+0.0070 -0.0872 -0.2183 -0.3681 -0.5869
0.1965 +0.0849 -0.0721 -0.2485 -0.5067
0.4197 0.2999 +0.1311 -0.0458 -0.2880
0.6784 0.5660 0.3845 0.2868 0.1892
0.9749 0.8930 0.7958 0.8201 1.132
-0.7489 -0.6270
-0.3768 -0.4275 -0.5140 -0.6432 -0.8356
-0.2130 -0.2757 -0.3841 -0.5540 -0.8080
+0.0600 -0.0015 -0.1091 -0.2765 -0.5447
0.4613 0.4274 0.3711 0.2912 0.1715
1.011 1.051 1.138 1.327 1.723
i%: i135 1.498 2.242
0.8299 0.9340 1.172 1.708 2.878
0.7506 0.8802 1.188 1.920 3.642
0.6402 0.7864 1.149
0.4731 0.6118 0.9724
0 0 0
2.067 4.400
1.950 4.651
i
:'E
1.247 1.487
0
2:200
2.000
:
3.092 4.786
3.033 5.138
:
0.9838 0.9973 1;025
0.9628 0.9923 1;05sm
:%i .
:*:i: .
0.9316 0.9827 1.093 1.319 1.776
0.5897 0.5950 0.6043 0.6213 0.6400
i%:: . 0.9140 0.9640 1.040
1.113 1.153 1.228 1.349 1.537
1.322 1.398 1.541 I.780 2.165
:-2: 1:837 2.250 2.947
:%I 2:082 2.723 3.868
-0.3165 -0.4427 -0.6502 -0.9148 -1.198
0.2710 +0.1060 -0.1738 -0.5415 -0.9435
0.9015 0.7174 +0.3916 -0.0538 -0.5506
1.501 El 0:5403 0.0161
1.946 1.826 1.572 1.177 0.7471
1.951 1.988 1.834. 1.619 1.439
: 0 0 0
2.291 2.425 2.693
1.970
1.585
0.6041
0
%F 3:157 4.564
z1" 2:966 4.746
1.131 1.305 :z:
1:615 %E
:
4:460
3.188
i
5.877
5.503
t-9':: 8:132 10.07
5.982 6.904 8.515 11.28
4.477 4.990
2.683 3.077
i
6.008 7.857 11.21
5.408 3.879 8.354
: 0
-1.189
-0.8136 -0.8941
+%; rg;.
-1.184 -1.024 -1.353
2 2 2’ :5
2.972 2.979 2.992 3.013 3.052
2.889
2.748
2.965 2.915
ZE
%4 2:830
x.
3.469 3:111
x.
3.200 4.202
2
1.486 1.488 :-:2 iso9
x
4.115 4.180 4.295 4.475 4.738
5.086 5.226 5.482 5.891 6.515
5.704 5.954 6.413 7.166 8.347
3.
Table
:
011
0
AND OBLATE
1.000 1.000 1.000 1.000 1.000
C\l
2
767
FUNCTIONS
1 : :
2.996 21943 3.073
768
SPHEROIDAL PROLATE
‘Table 21.3
RADIAL
WAVE
FUNC!l’IONS
FUNCTIONS-FIRST
AND SECOND
R(l) mn (c’ t) wl
n
0
0
0
1
0
0
C\E 1.005
1.020
1.044
JP)nm (c f E)
1.077
3
-1 3.249 -1 5.308
-1 3.328 -1 5.311
-1 5.162 5.786 -1 4.125
1: 54'::; -1 3:137
-1 4.413 -2 4.444 1.833 4.954 3.421
-2 5.373 -1 3.976 4.293 3.509 1.947
-1 1.287 -1 12.323
11 3 4
s ; : 5. 13
2
1.005
1.020
1.044
1.077
I II II II
2
12
KINDS
II II II II II1;:-:;: II -2 -3 2.378 6.503 -2 4.658
-2 1.322 4.802 -2 9.296
-2 2.012 7.227 -1 1.372 1.960
-2 2.754 9.738 -1 1.798
15 $$::
1: :-:g .
-1 2.376
1; :-g .
II II II -10 -2.077 -4.885 -1.075 -7.294 -6.911
-10 -1.417 -2.874 -7.453 -4.734 -4.585
-10 -1.071 -1.248 -5.480 -3.432 -2.924
-1 3:553 -2 7.089 1.108
2
-2 6.612 1: -4 -3 1:372 :3';2" 2,566
2
3
From C. F’lammer, Spheroidal wave functions. Stanford Univ. Press, Stanford, Calif., 1957 (with permission).
SPHEROIDAL
OBLATE
RADIAL
WAVE
FUNCTIONS-FIRST
769
FUNCTIONS
AND SECOND
KINDS
Table 21.4
R@) mn(- GC, a) nk 0
0
n 0
0.75
7864 9707 :z: 2189 0356 3758
0
1
0
2
1
1
1
2
1
3
2
2
PROLATE
JOINING
FACTORS-FIRST
KIND
$&)
Table
21.5
From C. F’lammer, Spheroidal wave functions. Stanford Univ. Press, Stanford, Calif., 1957 (with permission).
22. Orthogonal
Polynomials
URS W. HOCHSTRASSER
*
Contents
Page
Mathematical Properties .................... 22.1. Definition of Orthogonal Polynomials
22.2. 22.3. 22.4. 22.5. 22.6. 22.7. 22.8. 22.9. 22.10. 22.11. 22.12. 22.13.
22.14. 22.15. 22.16.
22.17.
773 773 774 775 777 777 781 782 783 783 784 785 785 785 786 787 787 788 788 788 790 791
..........
Orthogonality Relations ................ Explicit Expressions .................. Special Values. .................... Interrelations ..................... Differential Equations ................. Recurrence Relations ................. Differential Relations ................. Generating Functions ................. Integral Representations ............... Rodrigues’ Formula. ................. Sum Formulas .................... Integrals Involving Orthogonal Polynomials ....... Inequalities ..................... Liiit Relations ................... Zeros ........................ Orthogonal Polynomials of a Discrete Variable ......
Numerical
Methods
......................
Use and Extension of the Tables ............ 22.19. Least Square Approximations ............. 22.20. Economization of Series ................
22.18.
References
792 793
..........................
Table 22.1. Coefficients
for the Jacobi Polynomials
.....
Ppfl)(z)
n=0(1)6 22.2. Coefficients for the Ultraspherical forz”inTermsof C:)(z). ................... n=0(1)6
Table
Table 22.3. Coefficients
s”inTermsof n=0(1)12
T&r)
for the Chebyshev .....................
Polynomials
C’j? (5) and 794
Polynomials
Z’,(z) and for 795
Table 22.4. Values of the Chebyshev
Polynomials T,(z) ....... ~=..(..)l. 10D Table 22.5. Coefficients for the Chebyshev Polynomials U,(z) and for z”in Terms of U,,,(z) .................... n=0(1)12 ...... Table 22.6. Values of-the Chebyshev Polynomials U,(z) n=0(1)12, x=.2(.2)1, 10D
795
n=0(1)12,
* Guest Worker, Nationd Bureau of Standards, ently, Atomic Energy Commission, Switzerland.)
from The American
University. 771
796 796 (Pres-
772
ORTHOGONAL
POLYNOhUALS
Page Table 22.7. Coefficients z”inTermsof Cm(z) n=0(1)12
for the Chebyshev Polynomials C,(z) and for . . . . . . . . . . . . . . . . . . . . .
797
Table 22.8. Coefficients for the Chebyshev Polynomials S,(z) and for Z* in Terms of S,,,(z) . . . . . . . . . . . . . . . . . . . . . n=0(1)12
797
Table 22.9. Coefficients for the Legendre Polynomials P,(z) and for 9’ in Terms of P,(z) . . . . . . . . . . . . . . . . . . . . . . n=0(1)12
798
Table 22.10. Coefficients for the Laguerre Polynomials L,(z) and for 2” in Terms of L,(z) . . . . . . . . . . . . . . . . . . . . . . T&=0(1)12
799
Table 22.11. Values of the Laguerre Polynomials n=0(1)12, x=.5, 1, 3, 5, 10, Exact or 10D
L,(s)
. . . . . . .
800
Table 22.12. Coefficients for the Hex-mite Polynomials H,,(z) and for 2” in Terms of H,(z) . . . . . . . . . . . . . . . . . . . . . . T&=0(1)12
801
Table 22.13. Values of the Hermite Polynomials H,,(z) n=0(1)12, x=.5, 1, 3, 5, 10, Exact or 11s
. . . . . . .
802
22. Orthogonal Mathematical 22.1.
Definition
of Orthogonal
Polynomials Properties where g(x) is a polynomial
Polynomials
A system of polynomialsj,(x), degree [jn(x)]=n, is called orthogonal on the interval a<x_
of SZ.
consists again of orthogonal
The system polynomials.
in x independent
-
(1.5 P”(’
22.1.1 b
s
w(~>$(~)j&)dx=0
3
a
(n#m;n,
m=o, 1,2,. . .)
The weight function w(x)[w(x) >O] determines the system j*(x) up to a constant factor in each polynomial. The specification of these factors is referred to as standardization. For suitably standardized orthogonal polynomials we set 22.1.2 b w(x)j~(x)dx=h,, s@
jn(x)=k,x”+k:x~-‘+
. . .
(T&=0,1,2,.
...)
These polynomials satisfy a number of relationThe most ships of the same general form. important ones are: /
Differential
22.1.3
L
Equation
sz(x>f~+m(x>j~+~nfn=o
where gZ(x), m(x) are independent constant depending only on n. Recurrence
/=
of 72 and a,, a
Relation
\
22.1.4 .fn+‘=
3
b,+~b,)j,-d-~
/
where 22.1.5
\
I-
Rodrigues’
22.1.6
$=Lenw(x)
Formula
d”I~(~N9(~~1”~
dx,
FIGURE
22.1. a=1.5,
Jacobi Polynomials /3=-.5,
Pfi 8)(x) ,
r&=1(1)5. 773
22.2.
Orthogonality
Relations =
f.(z)
(ame of Polynomia
a
b
Standardization
w(z)
Remarks
h. --
22.2.1
P$@
22.2.2
G.(P,
22.2.3
(2)
q, 4
C”‘(I) = )
Jacobi
-1
Jacobi Ultraspherical (Gegenbauer)
0 -1
1
(l--2)*(1
1
(1 --2)D-a~a-1
1
(1--2*)a-t
+q
P$#‘(l)=
(
n+an
2n+a+o+1
T&l
Chebyshev of the first kind
-1
1
w21-*r(n+2a) n!(n+a)[r(41*
C”‘(1) n
(l---z’)-1
n+2a-1 n (
> bf0)
U”(4
Chebyshev of the second kind
-1
1
(1 --zqt
22.2.6
cvd4
Chebyshev of the first kind
-2
2
(
22.2.7
S.(z)
Chebyshev of the second kind
-2
2
22.2.8
T:(4
Shifted Chebyshev of the first kind
0
22.2.9
Shifted Chebyshev of the second kind
0
22.2.10
Legendre (Spherical)
22.2.11
Shifted Legendre
*See page 11.
T.(l)
n#O
= 1
n=O
22.2.5
1
(
U,(l)
=n+
1-q 29 -4
C,(2)=2
l-2
S,(z)=n+
>
4>
(z--z’)-+
+
1 n#O n=O 1 n#O
Tf(1) = 1
n=O
-1 0
1 1 1
(x-x’)b
1)
1)
II>-1,8>-1 P1-q>
(2n+~)r*Ch+~)
a=0
22.2.4
r(n+a+ l)r(n+B+ n!r(n+a+8+
n!r(fl+q)r(n+p)r(n+p-q+l)
k,=l
=
*+8+1 >
q(1)
=n+
*
1
P.(l)=1 1 2n+l
a#0
a>--+
- 1, q>o
* *
22.2.
-
-
Orthogonality
Relations-Continued
Generalized Laguerre
0
m
e-Q?
k =(-1)” n n!
r(a+n+ n!
0
co
e-*
k n -C--l)” n!
1
e-zz
e,=(-1)”
&i2nn!
e,=(-1)”
&n!
22.2.13
L"(Z)
Laguerre
22.2.14
fin(Z)
Hermite
--m
co
22.2.15
He,(z)
Hermite
--a0
m
-
,-‘?t
1)
a>-1
22.3.
Explicit
Expressions
f”w=d”mgc.h(z) --
= N
f”(Z)
d.
22.3.1
P’“.I @)(2)
n
22.3.2
P-6) ” (J)
n
lYa+n+ n!lYa+@+n+
22.3.3
&(P, 4, d
n
r(q+n) r(p+W
22.3.4
(72’ (2)
22.3.5
cy (2)
[I; [Iz
22.3.6
T.(z)
22.3.7
Un(4
22.3.8
E-‘.(4
22.3.9
Lb) (2)
n
22.3.10
H.(z)
[IT
n!
22.3.11
He.64
n L-15
n!
Bn (4 ("lfr")
n
5 L-1
n 3
[Iz [I;z n n
1) 1)
n 0m
>
r(a+8+n+m+l) . 2=r(a+m+l)
(x-l)“@
1 2n+a+8 .jz ( n
>
r(p+2n-m) r(q+n-m)
zm-m
1
P-q>-1,
2" r(a+n) -arG) 2" n#O n
a>-f>
(-‘)“,
(3
(-l)n
rb+n-74 m!(n-2m)!
(22) “-*-
(-,)m
(n-m-l)! tn!(n-2m)!
(22) --*m
l)*
1
--
2n+a+B n
(z- I)“-++
&)
Remarks
k. 5
(
a>--I,@>-1 a>-1,
(22) n-h
2nd
(n-m)! t---11* m!(n-2m)!
(2x) n--l*
2"
C---l)-
(;,)
~“-*“I
(2n) ! 2n(n!)*
(--ljm
(n"-';)
2”
(-l)n n!
a>-1
(2.z)"-+m
2"
ser! 22.11
Z"-*m
1
(--1)m
,$-
' m!(n-2m)! : (-- llm m!2m(n-2m)!
q>o a#0
n#O, CA”(l)=
(- l)m (n-mI)! m!(n-2m)!
(,,,,,)
s>--1
-
1
776
ORTHOOONAL
POLYNOMIALS Explicit
Espressione
Involving
f.(cose)=~
m-0
fs(ms@I a4.0n
-X
Trigonometric
am COB
Function
(n--an@
0,
Remarka
a#0
22.3.12
C”’ I (CO8 e)
rbSm)r(a+n-m) mun-m)![Iya)]’
22.3.13
P,(cose)
$ (“m”) (2:r:)
22.3.14
CiO)(c4x3e>=i cosne
22.3.15
T,(cos8)=cos nB (n+l)e U,(cos f3)= sin sine
22.3.16
FIQURE 22.2. Jacobi Polyrwmiata P!..@)(x), a=1(.2)2, 8=-J, n=5.
-I
FIQURE
22.3.
Jacobi Polynomiala
a=1.5, fl=-.8(.2)0,
n=5.
P>@(x),
FIQURE
22.4.
mid
Gegenbaw (Ultrmpherical) C$)(x), a=.5, n=2(1)5.
PO&W.+
ORTHOGONAL
POLYNOMIALS
22.4. Z :cial Values f”(Z)
f.(-4
22.4.1
P$m (2)
(-
l)“Pp(z)
22.4.2
C’“’ I (2)
(-
l)q’(z)
22.4.3
P’” (2)
a#0
(-
l)“C~O’(Z)
fvm n+a * ( n > n+2a-
(
fled ;[a--B+(a+Bf2)2]
10, n=2m+
I n
1
1
2az
(- I)d* r(a+n’2), n=2m r(a) (n/2) !
(-1)1
2 it n#O
f.(O)
9 n=2m#O
m
I
2x
IO, n=2m+
1
22.4.4
T,(z)
(-
l)“T.(z)
1
(-l)m,n=2m I0, n=2m+ 1
22.4.5
U.(z)
t-
l)nU”(z)
n+l
(-1) m,n=%m 10, n=2m+ 1
22.4.6
P” (4
(-
l)np”(z)
1
:(-lin
2
2x
n=2m*
2m , ( m >
4”1
x
.O, n=2m+l 22.4.7
I
Lp (2)
(
22.4.8
~I&)
(-
n+a n
-x+a+ 1
>
cm! iII (-1)” ~8
l)“H.(Z)
-
n=2m
2x
(0, n=2m+l
22.5.
Interrelations
Between
Interrelations Orthogonal Same Family
Jacobi
Polynomials
Polynomiab
22.5.1 ppyz>=
r b+a+b+l)
G.
nW+a+B+l)
(
a+B+l,B+l,T)
22.5.2 Q*(p, *,+n!r(n+p)
~y*--1y22-1)
r(2n+P)
(see [22.21]). 22.5.3 F,(p, q,z)=(-l)“n!
= r(n+n>
P;~-~*Q-“(2r-l)
(see [22.13]). Ultraspherical
22.5.4
c:‘(z)=lim; Chebyshev
cp’(z) Polynomiab
22.5.5
L-l.5 FIGURE 22.5. Gegenbauer (Uhasphmhzl) mials cy(z), a=.2(.2)1, n=5.
Polynomials
PO&LO22.5.6
T”(z)=u”(z)--zu”-l(4
of the
ORTHOGONAL
778 22.5.7
T”(z)=sU.-l(x)-Un-2(~)
22.5.8
T&)=3 [u,(z)-u”-2(4l
22.5.9
u.(r)=s.(2it)=u:(~)
POLYNOMIALS
PA--‘* -*)(x)=& (F) T,(x)
12.5.23 12.5.24
P!“*O)(x)=P,(x) Ultraspherical
Polynomials
i2.5.25 22.5.10 U.-I(X)=~-~J22.5.11
C,(z)=
22.5.12
7:“,‘(x)=
[z~“(z)--*+1(41
2T” (;)=2
r(a+Qb!2** r(a)(2n)!
Pp-,)
(22*-l)
(am
22.5.26
T*, (y)
c”(x>=&(z~--s,-*~~~
WO) 12.5.27
22.5.13
s.(x)=u.(;)=u:(q
22.5.14
2’*,(s)=2’,(22-1)=3
C,,(4z-2)
(a#O)
22.5.28
(see [22.22]). 22.5.15
U~(cc)=5.(4~-2)=U,(2z--) Cbebyshev
Polynomials
(see [22.22]). Generalized
Lph)=(-l)m Hermite
22.5.18
T,.+,(z)=&
zPk-“t’(2~2--1)
22.5.30
n!fi U*n(“)=r(n++)
Polynomials
Ltp’(x)=L,(x)
22.5.16 22.5.17
Laguerre
22.5.29
gm [L+mb$l Polynomials
He,(x)=2-“‘*H,
22.5.31
2!!@T”(@=r(n+4j
22.5.32
(n+l)!fi ua(2)=2r(n+*)
p$ -1, (2&- 1) pc-t. z 4) @) Pi** 1)(x)
z 04
(see [22.201). 22.5.19
H,(~)=2~l*Ele.(xJZ)
(see [22.13], [22.20]). Interrelations
Between Difllerent Jacobi
Orthogonal Families
Polynomials
of
Polynomials
22.5.20
22.5.21
22.5.22
FUXJRE
22.6.
Chebyshev Polynomials %=1(l)&
*See page xx.
T*(X),
ORTHOGONAL POLYNOMIALS
779 Legendre
Polynomials
22.5.35
P.(x)=P$yz)
22.5.36
P, (5) = cy)
(z)
22.5.37 g
[P&)1=1.3
. . . (2m-l)C$!!_+,+)(z)
Generalized
Laguerre
Cm 234
Polynomials
22.5.38
I2 FIWRE
22.7.
-
Ciieby~hu Polynomials
22.5.39
U,(x),
W”‘(x)
=?&&j
JJ2.+1(da
T&=1(1)5. Hermite
T.(x)=; CkO) (2) U,(x>=C~‘)(x)
22.5.33 22.5.34
Orthogonal
22.540
as Hypergeometric
fn(x>=@(a,
For each of the listed polynomials geometric functions.
(-l)‘“2k+1m!zLg’2)(z2)
H2,+,(5)= Functions
(z2)
(see
chapter 15)
6; c; dx))
there are numerous d
f. (2)
Ha,(z) = (- 1)m2”m!L$1/2)
22.5.41
Polynomials
Polynomials
other representations
a
b
in terms of hyper-
VW
C
l.
22.5.42
Py(x)
-n
n+cr+Is+l
r+1
1-Z -3-
22.5.43
P$8'(2)
-n
-n--o!
-2n--a--8
2 1--2
22.5.44
P$"(x)
--A
--n-B
a+1
x-l z+i
22.5.45
P'.".@(z)
-n
-n-a
8+1
x+1 z-i
22.5.46
C"'$8(x)
-n
n+2a
a++
l-2 -T
22.5.47
T.(x)
1
-n
n
f
l-2 -3-
22.5.43
U.(x)
n+l
-n
n+2
%
l-2 2
22.5.49
P,(x)
-n
n+l
1
l-x 2
22.5.50
P"(X)
-n
--n
-2n
2 1--z
22.5.51
P,(z)
-- n
l-n
i-n
1 2
Un+2a) n!l-(2a)
2
22.5.52
Pdx)
n CW! (- 1) 22qny
22.5.53
%+I(4
(- 1)“(2n+ 111 -2qGpZ
2
*
-n
n+&
4
29
-n
n+t
9
39
780
ORTHOGONAL
Orthogonal
Pojynomials Functions
as Confluent (see chapter
Hypergeometric 13)
‘OLYNOMIALS
22.5.58 H,(x)
22.5.54
L:a’(x)=~;a)M(-n,
a+l,
=2*~2ez2/2D,,(JZx)=2n~2ez2/2U
r) 22.5.59
Orthogonal
Polynomials Functions
as Parabolic (see chapter 19)
He,(x)-ee’2/4D,(x)=e”2/4U
Cylinder Orthogonal
22.5.55 22.5.56
H, (5) =2”U
(
;-;
n, ;, x2 >
cp (2) = r(a+i>r(2cY+n) n!Iy242)
22.5.57 * Hzm+l(~)=(--l)~
Functions
22.5.60
H,,(z)=(-l)-@$M(-m,;rzz)
(2m+l)! m!
Polynomials as Legendre (see chapter 8)
2xM(-m,
1 [z (22-q-~
P$q$,
iJ x2)
P”(X)
I
FIGURE 22.9.
FIGURE
22.8.
Legendre Polynomials n=2(1)5.
P,(x) ,
FIGURE 22.10.
Lagumre Polynomials n=2(1)5.
Hermite n=2(1)5.
Polynomials
L,,(x),
H&9 7)
(5)
ORTHOGONAL
22.6.
781
POLYNOMIALS
Differential
Equations
g2(2)y”+g1(x)y’+go(x)y=o -__-.--sdz)
Y
91(z) _-
22.6.1
P$@ (2)
22.6.2
(1 --z)“(l
22.6.3
-+I (1 --z);;-(1
22.6.4
n(nta+P+
1)
l-22
8-a-((2+B+2).r
1-x*
a-P+(a+B-2)x
1
ID
(,i”g+ycos,y++Py (cos 2)
1
ID
22.6.5
C”‘( I =)
1-Z
- (2,-l- I)2
22.6.6
(1 -zpc(q
l--22
(2a - 3)x
22.6.7
(,-~*)~+~
1
0
22.6.8
(sin r)%$“‘(cos
1
0
22.6.9
Tdr)
1-9
-X
n*
22.6.10
T,(cost)
1
0
n*
22.6.11
-
l-22
-3x
n*-
22.6.12
lJ.(z)
l-22
-3x
n(n+2)
22.6.13
Pm(x)
1-Z
-2%
n(n+
1)
22.6.14
4i=3P.(z)
1
0
n(n+
1)
22.6.15
L;'(z)
x
a+1--2
n
22.6.16
e-rxa’2L~Q)(5)
1;
&+I
n+;+1-g
22.6.17
e-z12z(atI)12q4 (r)
1
0
___ 2n+a+i+1--(r2 2x
22.6.18
,-**/2,“+4L’,“’
1
0
4n+2a+3-x*+7
22.6.19
H.(z)
1
-2.z
2n
22.6.20
2 e-yH,(s)
1
0
2n+
22.6.21
He.(x)
1
-X
n
+z)~P(*~~)(.z) n
Sz)
8&l * fy’(2)
n x) Cc,)(x)
x)
T"(Z) ; v,-lb)
(x’)
*
*
-
n(n+2a)
1
l-xl
+(Lxy*
1 -x1
__--
4x2
41 1--a*
782
ORTHOGONAL
POLYNOMIALS
22.7. Recurrence Recurrence
Relations
al,fn+l(x)= fn
With
Relations Respect
Degree
n
-a4,fn-l(Z)
(aan+aanr)fn(x)
aIn
to the
ah
ah
--
ah
@n+a+Bh
22.7.1
2(n+a)b+i3) Ghfa+B+2)
22.7.2
Gnh
-[2n(n+p)+q(p-11))
q, 2)
(2n+p-2)4
(2n+p72)3
n(n+r-l)b+p-1) (n+P-dm+P+l)
@n-!-p-l)
22.7.3
Cl”‘(x)
n+1
0
W+ff)
n+2n-1
22.7.4
T,(x)
1
0
2
1
22.7.5
U,(x)
1
0
2
1
22.7.6
S”(X)
1
0
1
1
22.7.7
cm
1
0
1
1
22.7.8
T.’ (4
1
-2
4
1
22.7.9
Kc4
1
-2
4
1
22.7.10
p. (4
n+l
0
2n+l
n
22.7.11
p:(x)
n+l
-2n-1
4n+2
n
22.7.12
L!“‘(x)
n+l
2n+(u+1
-1
n+a
22.7.13
He64
1
0
2
2n
22.7.14
He,(z) -
1
0
1
n
-
Miscellaneous Jacobi
Recurrence
Relations
Ultraspherical
Polynomials
Polynomials
22.7.21
22.7.15
2~(1--;c2)C~_:“(2)=(2a+n--)C~,(2)--n2C~’(z)
(
n+g+i+1)
(l-z)P~+‘+~)(z) = (n+a+
l)P,‘a*@
(2) - (n+ l>P’&B,
(z)
22.7.22 =(n+2cY)zC~'(z)
22.7.16
-(n+lm%(~)
n+E+-+1 B (
2 2
22.7.23
(l+z)PpJ+l)(,)
(n+(~)C~~~‘(2)=(ru-l)[c~:1(5)-C~l(~)]
>
=(n+B+I)P~s)(2>+(n+l)P~~Pi)(~)
22.7.17
Chehyshev
2 T,(z) T&l
(l--)P~+‘,s)(2)+(1+2)P%‘8+1’(2)=2P~8)(s)
Polynomials
22.7.24
= T?l+m(z) + ~,-I&$
*
(n>m>
22.7.25
22.7.18
2(sc2-1)um-~(2)un-1(5)=T,+,(s)--T,_,(s)
(2n+cu+B)P~-',8'(2)=(n+(y+B)P~,8'(~)
(n2
22.7.26
-(n+Bv%P(~)
2T,(2)Un-1(2)=Un+,-1(2>+Un-m-*(2)
22.7.19
22.7.27
(2n+a+P)P~,8-"(2)=(n+a!+B)P~,8'(s) + (n+cY>PgyJ(az)
22.7.20
Plp,S-l)(,)-P~-l.S)(,)=P~~)(z)
(n>m)
2T,(z)U,-,(s)=U,+,-l(s)--u,-,-*(2) 22.7.28 *See page II.
2T,(z)U,-,(5)=Uz,-l(z)
(n>m)
m>
ORTHOGONAL
General&d
Laguerre
Polynomials
783
POLYNOMIAL&
22.7.31
22.7.29
Lp+yz)=~
Lp+yI)==; 22.7.30
[(z--n)L~“‘(z)+(ar+n)Ljp_‘,(z)]
22.7.32 Q-')(z)=
L~-')(~)=L,='(z)--L~*(z) 22.8.
[(72+Ly+l)L~)(2)-((12+l)L~,(2)]
Ihfferential
&a
[(nt-l)~~1(2)-(nSl--z)L~'(z)l
Relations
Ql(z)~f.(z)=g*(z)f"(z)+no(z)f"-~(~) f.
61
B1
go v
(zn+a+B)(l-z*)
7&-B-
c!=) (2)
1-Z’
--Rz
22.8.3
T&)
1-X’
-nx
n
22.8.4
U.(z)
l-9
-7l.l
n+l
22.8.5
PA4
1-Z’
-TIX
n
22.8.6
L!“) (2)
2
n
- (n+a)
22.8.7
HI&)
1
0
2n
22.8.8
He,@)
1
0
22.8.1
Pp’
22.8.2
(2)
(2n+a+BM *
2(n+a)b+f9) n+2a-1
n
22.9.
Generating
Functions R= Jl-2zz+z2
f&)
Remarks
g(w)
-22.9.1
P$fl(x)
R-‘(l--e+R)-“(l+e+R)-8
22.9.2
cp (2)
22.9.3
cp (2)
22.9.4
c#y (2)
1
22.9.5
C”I (2)
rb+t)rcb+4
22.9.6
T,(z)
Id<1 bl
NW 2 42
2n
R-h
bl
--In R’
bl
eam*~(;sin*)L-al.-t(asinB)
x=cos 9
(9+1)
--1<2<1
R-‘(l--ZL+
R)*fi
-l<:
T&J
Gn (
‘J”.W
1 n
1-4
22.9.9
1
l-22 R’
-l<x
22.9.10
1
R-1
- l
22.9.11
42 2n+2 pi ( n+1 >
$ (1--zz+R)-“2
22.9.7 22.9.8
>
l4<1 Id<1
In R*
ao= I -l
l4<1 14<1
*see page n.
*
-l
Id<1
784
ORTHOGONAL
22.9. Generating
POLYNOMIALS
Functions-Continued
A(4 /I
P*(z)
1
22.9.13
P”(4
1 J
22.9.14
u4
1
22.b.15
L”’I) (2)
1
22.9.16
LA=’ (4
22.9.17
H,(z)
1 IYnSa+l) 1 ii
22.9.18
Hd4
(-.I)” (2n) !
ez co9 (226)
22.9.19
Han+* (4
C-1)” (2n+ l)!
rl’*e* sin (2~4)
22.9.12
Remarks
g@, 4
4 A
-l
R-1 /J e* 0”’ ‘J&e sin 0)
z=cos 6
(l-zz+z’)-’
-2<2<2
IKl
Id<1 (l--r)-*+ *
exp (5)
M
(x~)-t~e~~.(2(xz)*~~l elZ,-”
* t
22.10. Integral Representations Contour Integral Representationa 2(t, z)ds where C is a closed contour f&J)
b
BOW
taken around gdwz)
Bl (64
22.10.1
(1-x)$1 +2p
21-l 2(2-x)
(1 - E)‘(l+ 2-X
22.10.2
1
l/z
(1--22~+z’)-9-’
22.10.3
Tdz)
112
22.10.4
U.(x)
1
22.10.5
Pm
1
22.10.6
Pm
1 5
22.10.7
Lyx) I
e97
22.10.8
L,$qz)
22.10.9
H,(z)
z=a
l/t
a
z)@
sense Remarks
f 1 outside C
1 - 2’ e(l-2Zz+E’)
Both zeros of 1 - 2zr+ a’outside C, a>0 Both zeros of I-2zz+z*outaideC
1 2(1-222+r*)
Both zeros of 1 - 22~ + z* outside C
i (l-Ls+e’)-“~
Both zeros of 1 - 2zc+ ESoutside C
21-l I-2 e E-2
-,“,
1
1+;
e-*
?Z!
l/S
- 1 Z-2 Zero outside C
e-’ (
1+:
>
Y/z
z= --z outside C
esz*-rl
Miacdaneoue
in the positive
2
Integral
Representations
(a>O)
ORTHOGONAL
22.10.12
P,(cos
* (cos O+i sin e co9 fp)U#~
e) =-;
s0
785
POLYNOMIALS
22.10~14 ~g)(x)=$
m e-It”+; .s
J,@&)dt
0
22.10.15
*
22.10. 13 P,(cos e,d
* sin (n+wJd4 n- s 0 (co9 e-cos +)*
H,(x)=e’*
22.11.
The polynomials this formula.
I
given in the following
f”(Z)
22.11.1
PFp 8) (2)
22.11.2
cp
(-
T&J
22.11.4
Us&)
x*i . . 22.11.7 22.11.8
Pd4 L?‘(x) H,(z) He,(z)
;{;,+I
(-1)“2”
1/;;
y;;;,
(fi:“:,%
(1 --z)“(l
*
n! [I:{”
22.12.
Sum
II
Formulas
Christoffel-Darboux
22.13.
d4
+iry
1-Z’
(l-@a-t
1-Z
(1 -cl?)-’
1-Z’
(l-21)’
1-Z
1 e-97 p’ &2
l-24 2 ;
Integrals
Formula
22.12.1
which satisfy
PC4
r(n+2a) f
polynomials
I
rcwr(a+n+3) 1)“2”n!
dt
0
table are the only orthogonal
1)“2%!
(-
srn e-l*t” cos (2&-i,)
Formula
a,
I
(2)
22.11.3
Rodrigues’
T
Involving nomials
Orthogonal
Poly-
22.13.1
2n ‘(l--y)“(l+y)Bp:“,8)(y)dy s Miscellaneous
Sum
Formulas Is Given
22.12.2
Q2&~=t[l+u*n(41
22.12.3
g;
22.12.4
Tl isou2"(4'
I
(Only Here.)
Selection
~~lp_~‘,B+l’(~)-(~~x~~+l(l+x~~+lp~~~l~~+l~~~~
22.13.2
~*m+1(4=3U*n-1(5)
=cyp(O)-
l-T*n+2(4
2(1-x*)
22.12.5
22.12.6
a Limited
22.13.3
Tn Mdy r’ JTl (y-x)~=Tu~-l(x)
22.13.4
_cl vT=i%&)dy -
J-I
(l-2yqy(2!)
=-nTn,xl
*
(Y--X)
~oLl’(x)~~~~(y)=L~+B’.‘(z+y) 22.13.5
’ (1-x s
* Pz.(cos @de=&
22.13.6
s0
22.12.8 - . , *See page Ii.
22.13.7
)-l/*P.(x)dx=&
*
-1
S
r P2,,+,(~0s e) cos
0
p>’
786
ORTHOGONAL
POLYNOMIALS
22.14. Inequalities
22.13.8
22.14.1
( > “;t’
Ic?~)(x)I
i 2’ maximum
(n+i)fi
lP,(t)dt S2 q=q-(n+a;Fx s
-$t
if *<--l
8-a
point nearest
to a+P+l
22.14.2
[T&l
(a>01
la%M
1 +Tn+l(41
22.13.11
22.13.12
IP$e)(z’)I
(“‘y>
22.13.10 “P,odt= s -1 &3
(a, /3) 2 -l/2
b+--l,8>-1)
5
22.13.9
CA>-2)
wag, if q=max
x’=O if n=2m; if n=‘2m+l
[~n(x)--n+1(91
{ Ia@W>l
(-f
x’=maximum
point
nearest
zero
22.14.3 ~W(cos
zm e-*Lr)(t)dt=e-“[L~‘(X)-L$)P-‘1(2)]
22.13.13
@1<2’-=
(O<(ll
22.14.4
IT&)ll1
22.14.5
dTn - (4
(-11x11)
22.14.6
IUn(x)l In+1
(-l
r(a+p+n+l)Joz (x-t)@-+LP)(t)dt =r(cu+n+i)r(~))+BLP+B)(2)
(sinne;‘;(a)
o<e<4
(-15x11)
(A%% rel="nofollow">--1, m>w 22.13.14 s0
= Lm(t)Ln(x-t)dt =
S
(-l<x
L,+,(t)dt=L,+“(x)---L,+“+l(x)
0
22.13.15
IPn(4 II 1
22.14.1
z
S S0)
22.14.8
’ e-f2~~(t)dt=~n-l(O>-e-Z2~,-~(x)
dp,(xl ----&-I
I
1 Ip(n+l)
(-l~s~l)
0
22.13.16
22.14.9
0
22.13.17
IPn(x)l 2
z H,(t)dt=
S-m e-f2H2,(tx)dt=fi
(---l
22.14.10 y
~‘.o-P~-l(,)P~+l(x)<3~n~l)(-15x11)
(9-l)”
22.14.11
me-f2tH2,+l(tx)dt=~ Pm+l)! mrx(x2~l)m S-m /rm
22.13.18
Pn2(x)-PAdPn+1(x~2
22.13.19
2 --iJ 7m4&?
1
22.14.12
e-“tnH,(Xt)dt--~!P,(X)
1 -P’,(x)
(2n-l)(n+1)
(-l<x
ILd4 I I fP
(x2 0)
J-m
22.14.13 22.14.14
22.13.20 cos (xt)dt=Ji;2n-‘n!e+L, Sme-r2[H,(t)]2 0
0
g
1Lp) (x) I 5 LfrTr:.:)
ezj2
620,
x20)
ORTHOGONAL
22.14.15
I&,(z)
15 ez2’222nr~!
(x20> H,,(x) 1<ez212k2”f2&!
22.15. Limit
22.15.1
787
22.15.2 fi
22.14.16 22.14.17
POLYNOMIALS
[;
L:) (;)]=r-a/v,(2&
22.15.3 lim W,“dEH 4”n! n+m
k= 1.086435
Relations
22.15.4 lim n-t-
r In zfi
HI
1 =-&cm
5
-(-ljnH 4%!
22.15.5
=LP’ (2)
22.16. Zeros For tables of the zeros and associated weight factors necessary for the Gaussian-type quadrature formulas see chapter 25. All the zeros of the orthogonal polynomials are real, simple and located in the interior of the interval of orthogonality. Explicit
and
Notations: xg)mth zero of fn(x) (xj”)<xP< e:)=arccos
Asymptotic
. . . <x?))
~$~+~(o<ejn)<ep<
Formulas
and
Inequalities
j, %, mth positive zero of the Bessel function Jol(x)
. . . -0X4
O<j, l<ja,2<
= f”(Z) 22.16.1
Py)(cos
e)
22.16.2
C’“‘( n x)
22.16.3
C’“’n (co9 I?)
22.16.4
T&)
22.16.5
U.(x)
22.16.6
P,(cos
Relation
-lim nf$?=j,,, Ta+-
&>-I,
s>-1)
&pcos2m--1 * 2n
e)
xg)=cos 2% * n+l 2m-1 2m -2n+l r
i
22.16.7
P.(x)
22.16.8
L’“’II (2)
k,=T+q +()(+)
For error estimates see [22.6].
. - .
788
ORTHOGONAL
22.17.
Orthogonal
Polynomials Variable
of
POLYNOMIALS
Tw*(xi)
a Discrete
is finite.
The constant
factor which is
In this section some polynomialsf,(x) are listed which are orthogonal with respect to the scalar product
still free in each polynomial when only the orthogonality condition is given is defined here by the explicit representation (which corresponds to the Rodrigues’ formula)
22.17.1
22.17.2
KJm’=~
w*(xtYn(x*)f,(xi>.
The xi are the integers in the interval a<x& b and 20*(x<) is a positive function such that =
=
-
Name
=
a
--
w*(x)
b
--
--
=
=
--
_-
N-l
1
Krawtchouk
N
p-J”-=
Charlier
OD
e-au= x!
Meixner
03
c=r(b+x) r(b)x!
C”
Hahn
0)
r(b)r(c+z)r(d+z) s!r(b+x)r(c)r(d)
n!
-
list of the properties
Use and
Remarks
_-
P, q>o;
(-l)ndann!
x! (z-n)!
a>0
X! (x-n)!
b>O, O
p+q=l
x!r(b+x) (x-n)!r(b+z-n)
-
-
of these polynomials
see [22.5] and [22.17].
Numerical 22.18.
dx, 4
qv! (x-n)!
-
For a more complete
=
l)nn!
(-
x
and
(3 (“n”>
l/n!
0
A”[w*(xMx, n)l
n
where g(x, n)=g(x)g(x-1) . . . g(x-n+l) g(x) is a polynomial in x independent of n.
Chebyshev
-
fn(x)=--&
Methods Extension
of the Tables
Evaluation of an orthogonal polynomial for which the coe&ients are given numerically. Example
Horner
Evaluate
1.
La(1.5) and its first and second derivative
using Table
22.10
and the
scheme. -
= I
-36
450
2=1.5
1. 5 1
-51.75
-34.5
1.5
- 2400 597.375
398. 25 1. 5
5400
- 1802.
-49.5
- 2703.
625
- 4320 9375
2696.0625
523. 125
- 1919.
25
720
4044.09375
- 413. 859375
- 275.90625
306. 140625
1165.
21875
L -306. 6=.
1
733.0
1.5
348. 75
1. 5
1
-47.
-31.5
- 1279.
25
776. 8125
452. 250
301. 50
-
500
-827.
-
- 1240.
250
875
- 464.0625
-
140625 720 42519 53
889. 3125 L,=889. 3125 6 720 = 1.23515 625 L,,=2 [ - 464.06251 (I 720 =-I. 28906 25
ORTHOGONAL
Evaluation of an orthogonal polynomial given numerically. If an isolated value of the orthogonal expression rewritten in the form
using
b,, c,,.f(z)
f*(x)
when the coe&ients
is to be computed,
use the proper
(m=n,
n-l,
are listed in the following
= I
bm
table:
G&
cl”,’
n+a ( > (-n. $?
C’“’ an+1
(-1)” kp
T an
C-1)”
Z(n--m+l)(n+m-1)
m(2m-
T 2?I+1
(-1)n(2n+1)2
2(n-m+l)(n-tm)
m(2m+ 1)
u In
(-1)”
2(n-m+l)(n+m)
m(2m-
1)
u 2”fl
(-1)“2(n+l)z!
2(n-m+l)(n+m+l)
m(2m+
1)
Pl,
(-1)” -( 4”
(n-m+1)(2n+2m-l)
m(2m-
1)
(n-m+1)(2n+-2m+l)
m(2mS
1)
Lb’n
n-m+1
m(a+m)
Hzn
2(n-m+
1)
m(2m-
1)
2(n-m+
1)
m@m+
1)
Example m
i: %I
-I
(n+l)x
%+I 4”
H ail+1
.,&
2n n >
0”
P a*+1
n
(
>
@n+l)‘&
(-1)”
n!
2.
(n-m+l)(a+B+n+m)
2m(a+m)
Z(n-m+l)(a+n+m-1)
m(2m-
1)
P(n-m+l)(a+n+m)
m(2m+
1) 1)
=3.33847, f(2)=-1.
Compute Z’~1’2*3i2)(2). Here de= 8
1 1;:
7
6
5
4
3
2
1
1. 132353 1::
1.366667 48 78
1.841026 60 55
3.008392 70 36
6.849651 78 21
26.44156 84 10
223. 1091 88
n
2
3
4
5
50.87648
207.0649
6
-___ *5)
Check: Compute @‘(2.5)
3. 65625
13.08594
by the method of Example 2.
0
3
~~*‘2~3’2’(2)=d~,(2)=(3.33847)(6545.533)=21852.07 Evaluation of orthogonal polynomials by means of their recurrence relations Example3. Compute@)(2.5)for n=2,3,4,5,6. From Table 22.2 C$)= 1, C?= 1.25 and from 22.7 the recurrence relation is
cq2 n
explicit
. . ., 2, 1, a,(z)=l).
of this chapter
dn(4
p’u, ” 8)
are not
=&(4dx~
-~jCW.Cx)
for the polynomials
fn(4
representation
where
a,-l(x)==l The d,(x),
the explicit
polynomial fkd
and generate a,,(r) recursively,
789
POLYNOMIALS
867.7516
6545.
533 90
0
790
ORTHOGONAL Change
POLYNOMIALS
of Interval
of Orthogonality
In some applications it is more convenient to use polynomials orthogonal on the interval [0, 11. One can obtain the new polynomials from the ones given in this chapter by the substitution x=2:1. The coefficients of the new polynomial can be computed from the old by the following recursive scheme, provided the standardization is not changed. If f:(z)=~~(2z-l)=~~u~zm
“f”(X) =gowm, then the n: are given recursively u~)-~u~-~‘-u~~,; (-‘)=a,/2, am u$)=2&,j=O,
7n=n-1,
n-2,
. . ., j; j=O,
m=O, 1, 2, . . ., n 1, 2, . . ., n and u~~,“‘=uZ; m=O,
Example
5
4
&”
0
the relations 1, 2, . . ., n
1, 2, . . ., n.
Given Ts(z)=5z-20z3+16z5,
4.
‘m j
by the a,,, through
find T:(z). 3
2
1
0
0
2.5=a;-*)
0
\ f+
-1 0 1
-16 -64 - 192 -512 - 1280=a;
it
P
1;: 256 512=a;
t
-lo=&-” -4 3;: 1120=a;
-1=a; -4: -4oo=a;
5L;
Hence, Z’,*(z)=512xs-1280x4+1120z3-400x2+50x---1. 22.19. Least
Square
Approximations
D a Continuous
Problem: Given a function j(z) (analytically or in form of a table) in a domain D (which may be a continuous interval or a set of discrete p~ints).~ Approximate J(Z) by a polynomial F,,(z) of given degree n such that a weighted sum of the squares of the errors in lJ is least. Solution: Let w(z) 20 be the weight function chosen according to the relative importance of the errors in different parts of D. Let j,,,(x) be orthogonal polynomials in D relative to w(z), i.e. Cj,,,, j,,) =0 for m #n, where
Example
5.
Find a least square polynomial J in the interval
degree 5 for j(z)=kx using the weight
Interval
21x15,
function 1 W(Z)=,&x-2)(5-x)
which stresses the importance ends of the interval. Reduction
to interval
[-1,
of the errors
at the
11, t=2q
WMf(4!JW~ if D is a continuous
interval
w(x(t)>2 1
3 Jl-t2
if D is a set of N discrete points x ,,,.
From 22.2, jm(t) = Z’,,,(t) and
Then
where
am= (j, jmMj~9 &de *f(z) *See
4’1 v um=3?r -1 Jl.+Z
1 T,(t)& t-/-3
2 l -- 1 u”=3?, s -, Jiq
t+3
S
* haa to be page
II.
square integrable, see e.g.
(22.17).
of
di!
(m #O>
OR!l’HOGONAL
Evaluating
the integrals
numerically
1 1+x
POLYNOMIAL&
we get
+ .013876Tz (F)-
--.235703-.080880Tl
791
.00238OT, rq)
D a Set of Discrete
Points
If x,,,=m(m=O, 1, 2, . . ., N) and w(x)=l, use the Chebyshev polynomials in the discrete such that range 22.17. It is convenient to introduce here a slightly different standardisation
Recurrence
relation:
jO(x) = 1 ,ji(2) = 1 -g
(n+l>(N-~)j”+l(~)=(2~+1)(~--x)j”(~)--n(~+~+l)j~-l(x) in the least square sense the function Example 6. Approximate by a third degree polynomial.
2 I f(z) I
z=-
z-
10
fo@)
2
I
10 ::
.3162 : 2673 2887
0 1
:
::
: 2357 2500
i
:1
hcf) 5 1.3579 (f t fn>
.271580
an=(fn,
fit23
j(x) given in the following
fi@)
1,; -l/1
fz(z)
I
I
-1,; -7);
-1
table
4 $
1
-1
fl (3
j*m
f2m
2. 5
3.5
10
.09985
.01525
.0031
.039940
.0043571
.000310
j(x)-.27158+.03994(3.5-.25x)+.0043571(23.5-3.5x+.125;Ga)+.00031(266-59.8333x +4.375x2-.10417x33) j(x) +.59447-
.043658x+
.00190092-
22.20. lkonomization Problem:
Given j(x)=
2
9000322921
of Series
a,x’
in the interval
m=O
-11x11
and R>O.
b,,,xmwith N m=O as small as possible, such that /y(x)-j(x) I
1 Then, since IT,(s)l11(-l<x
Findy(x)=g
f(x) =m$obmT,(x)
within the desired accuracy if
I% lbml
w-N+1
j(x) is evaluated most conveniently recurrence relation (see 22.7).
by using the
792
ORTHOGONAL
Example
7.
+jc’[4+x4/5+$/6 From
Table
Economize
with
f(z)
= 1 +x/2
+xz/3
POLYNOMIALS
so
R=.05.
22.3
&I=&,
W’o(4+32Tz(41+&
F’6~1(~)+11~d~~l
.I(~)=~~~149~e(z)+32~~(~)+3~,(~)1 since
+~[76~~(~)+llT,(z)+~~(~)l
References Texts [22.1] Bibliography on orthogonal polynomials, Bull. of the National Research Council No. 103, Washington, D.C. (1940). [22,2] P. L. Chebyshev, Sur l’interpolation. Oeuvres, vol. 2, pp. 59-68. [22.3] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1, ch. 7 (Interscience Publishers, New York, N.Y., 1953). [22.4] G. Doetsch, Die in der Statistik seltener Ereignisse auftretenden Charlierschen Polynome und eine damit zusammenhiingende Differentialdifferenzengleichung, Math. Ann. 109, 257-266 (1934). [22.5] A. ErdBlyi et al., Higher transcendental functions, vol. 2, ch. 10 (McGraw-Hill Book Co., Inc., New York, N.Y., 1953). [22.6] L. Gatteschi, Limitazione degli errori nelle formule asintotiche per le funzioni speciali, Rend. Sem. Mat. Univ. Torina 16,83-94 (1956-57). [22.7] T. L. Geronimus, Teorla ortogonalnikh mnogochlenov (Moscow, U.S.S.R., 1950). [22.8] W. Hahn, tuber Grthogonalpolynome, die qDifferenzengleichungen gentigen, Math. Nachr. 2, 4-34 (1949). [22.9] St. Kaozmarz and H. Steinhaus, Theorie der Orthogonalreihen, ch. 4 (Chelsea Publishing Co., New York, N.Y., 1951). [22.10] M. Krawtchouk, Sur une g6nt%lisation des polynomes d’Hermite, C.R. Aced. Sci. Paris 187, 620-622 (1929). [22.11] C. Lanczos, Trigonometric interpolation of empirical and analytical functions, J. Math. Phys. 17, 123-199 (1938). [22.12] C. Lanczos, Applied analysis (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1956). [22.13] W. Magnus and F. Oberhettinger, Formeln und Siitze fiir die speziellen Funktionen der mathemat&hen Physik, ch. 5, 2d ed. (SpringerVerlag, Berlin, Germany, 1948).
[22.14] J. [22.15] [22.16] [22.17] 122.181
Meixner, Orthogonale Polynomeysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. London Math. Sot. 9, 6-13 (1934). G. Sansone, Orthogonal functions, Pure and Applied Mathematics, vol. IX (Interscience Publishers, New York, N.Y., 1959). J. Shohat, ThQrie g&&ale des polynomes orthogonaux de Tchebichef, MBm. Sot. Math. 66 (Gauthier-Villars, Paris, France, 1934). G. Szego, Orthogonal polynomials, Amer. Math. Sot. Colloquium Publications 23, rev. ed. (1959). F. G. Tricomi, Vorlesungen tiber Orthogonalreihen, chs. 4, 5, 6 (Springer-Verlag, Berlin, Germany, 1955). Tables
[22.19] British Association for the Advancement of Science, Legendre Polynomials, Mathematical Tables, Part vol. A (Cambridge Univ. Press, Cambridge, England, 1946). P,(z), 2=0(.01)6, n=1(1)12, 7-8D. [22.20] N. R. Jorgensen, Undersbgelser over frekvensflader og korrelation (Busck, Copenhagen, Denmark, 1916). He,(z), 2=0(.01)4, n=1(1)6, exact. [22.21] L. N. Karmazina, Tablitsy polinomov Jacobi (Izdat. Akad. Nauk SSSR., Moscow, U.S.S.R., 1954). C.(p, q, z), z=O(.Ol)l, q=.l(.l)l, p=1.1(.1)3, n=1(1)5, 7D. [22.22] National Bureau of Standards, Tables of Chebyshev polynomials S.(Z) and C,,(r), Applied Math. Series 9 (U.S. Government Printing Office, Washington, D.C., 1952). 2=0(.001)2, n=2(1)12, 12D; Coeflicients for T.(Z), U,,(z), C.(z), S,(z) for n=0(1)12. [22.23] J. B. Russel, A table of Hermite functions, J. Math. Phys. 12, 291-297 (1933). eMsa”H.(z), x=0(.04)1(.1)4(.2)7(.5)8, n=O(l)ll, 5D. [22.24] N. Wiener, Extrapolation, interpolation and smoothing of stationary time series (John Wiley & Sons, Inc., New York, N.Y., 1949). L,(Z), n=0(1)5, z=0(.01).1(.1)18(.2)20(.5)21(1)26(2)30, 3-5D.
Coeffieients a.
(z-1)0
p$z* P,
1
1
p+ b, p;a. pl p+ P, pia*8) pia. P, p& 8)
2 8
4((r+l),
(z-
1)1
Polynom,ials
(x-l)’
P$@(z) (z-
=a;’
2 c,,,(zIn=0
1)s
1)”
(z-l)'
Table (x-
1)s
22.1
(z-l)‘1 E
384
16(a+
1)'
a+!9+2 4(a+@+W(a+% 12(a+8+4(a+% Wa+8+5)(a+%
3840
32(a+
l)s
wa+k3+6)(a+2)4
46080
64(a+
l)a
48
for the Jacobi
2ta+ 1)
8(a+l),
lQ%a+8+7)b+2)r
4 z: (a+8+3)r
6(a+8+4Ma+3) Wa+8+5h(a+% Wa+8+6Ma+3h 240(a+8+7h(a+3)4 (m).=m(m+l)(m+2)
$ (a+8+4),
lWa+8+7)s(a+4)a
(a+l9+5)4
Wa+8+6Ma+5) Wa+8+7)da+5h
[(8)s(z-l)~+10(8),(6)(z-l)4+40(8),(5)~(z-l)s+8O(8),(4),(z-l)’+80(8)(3)4(z-l1)+32(2)s]
Pf*“(z)=&
[9504O(z-1)6+4752OO(z-
1)‘+6912OO(z-
zi 2
(a+B+Ws Wa+8+7)s(a+6)
. . . (m+n-1)
F:*“(z)=&
1)‘+864OOO(z-
$
8(a+8+5Ma+4 4O(a+8+6Ma+4)r
(a+@+716
2 $ z:
1)*+2304OO(z-
1) +23040]
-
L
Table
Coefficients
22.2
for the
Ultraspherical C(z) (z) = a;’
b.
-Cc!=)
a, 1
Cl”’
1
Ci=)
1
cp
3
C$’
6
20
2’
1
2a
1
Polynomials
5 c,,,zm and ?I’=0
fl=
%a)3
4(&
3(a+
2(a), -
15
I
1 15(&
Cp
90
) -15b)a
1
(a?-)
39
15(a+
(a)“=a(a+l)(a+2)
2,
CP wa+
4(& -
55s
. * * (a+n-l)
[4(2)#-6(2)~]
-A*=4(2),
Ckyz)
=;
[969-36%)
9’9s
1
[3(3)G3’(2) [9G”(Z)
+3cp(z)]
I Cp
+ 3cpyz)l
I
Cp 90
864s
d
=;
4)
30
W&
c?(z)
I$1
3)
6
-2’%h
I
1) (a+4)
3fxa+ 46x)4
I cc?
1 45(a+2)(a+5)
3
w34
a9
I
15&+4)(a+5)
G+ ‘3 4(a)s
I z” I %’
3Y
I
I
1)
- W4a
Cp
d,&‘!?(z)
of C~)(Z)
4(d4
1
6(43
3b)3
for 2” in terms
3a(a+3)
1
--Q
$,
and
z’
a 2a
b;’
39
23
1
C:‘(Z)
I
a9
I Cp
I
I
I
ORTHOGONAL
795
POLYNOMIALS
Table Coefficients
for the
Chebyshev
Polynomials
T,(x) = 2 c&P m=O
b. 1 __-------------To 1 1
1
2
---------~~~~~~Tl 1 1
4
8
1
4
Ta -1 2 1 __-_______-___-~______~_______-3 4 1 Ta
------~~---___~~--1 T4 -8
--------~~~~~~5 -20 TS --------____--__________-
T8
-1
T7
pp------p----pp 1 TS
18
-7
-------___-~ TO
9
TIO -1
50
-72
-112
:7 12
35
432 - 1232
.
22.3
36
495 T,
45
T5 220 Ta
55
---~______
10
256 1
T7 66
11 512 1
-2816 6912
T3
165
9
2816
792 Ta
120
- 1280
TI
330
8
- 3584
462
84
128 1
2048 462 T,,
210
28
1120
To
12 1024 1
-6144
Ts
TIO Tll
2048 1
TIS
Table
22.4
1 z+=~ [10To+15T~1+6T,+ Tel
Polynomials
0.4 + 1.0000000000 + 0.4000000000 -0.68000 00000 -0.94400 00000 -0.07520 00000 +0.88384 00000 i-0.78227 20000 -0.25802 24000 -0.98868 99200 -0.53292 95360 +0.56234 62912 +0.98280 65690 +0.22389
126 126
-576
-400
512
56
-256
Chebyshev
I 9
1024
64 1
T&z) = 329 - 48++18z*- 1
4 5 6
256
35
32 1
840
128
7
16 1
0.2 + 1.0000000000 + 0.2000000000 -0.92000 00000 -0.56800 00000 +0.69280 00000 +0.84512 00000 -0.35475 20000 -0.98702 08000 -0.04005 63200 +0.97099 82720 +0.42845 56288 -0.79961 60205 -0.74830 20370
64
6
160
-------~-~____~-___-11 220 5-11 ----___--~~~-~________1 Tl3 -----------~~___-
8 1
- 120
of T,(x)
21
-48
-32
-------______~-~~______
~~~~-~~15
5
56
for x” in terms
m=O
10 10
and
~=b&d,T,(z)
32
3 3
------
------_______--~~___--
16
T,(Z)
89640
T,(X)
0.6 + 1.0000000000 + 0.6000000000 - 0.2800000000 -0.93600 00000 -0.84320 00000 -0.67584 00000 +0.75219 20000 $0.97847 04000 +0.42197 24800 -0.47210 34240 -0.98849 65888 -0.71409 24826 +0.13158 56097
0.8 + 1.0000000000 +0.80000 00000 +0.28000 00000 -0.35200 00000 -0.84320 00000 - 0;9971200000 -0.75219 20000 -0.20638 72000 +0.42197 24800 +0.88154 31680 $0.98849 65888 +0.70005 13741 $0.13158 56097
1.0
1 1 : 1
796
ORTHOGONAL
POLYNOMIALS
Table 22.5 Coefficients
-------
20
xl
for.the
9
Chebyshev
39
b,
1
2
CJO 1
1
1 __~__-____----_______1 .2
Ul ---__-----------_ ua -1 -P----P-ua
2
---~--
4
4
2’
8
Polynomials
a?
27
zs
32
64
128
256
2
5
xl0
512
1024
2”
2’9
2048
4096 132 ---
42 28
4
---
of U,(z)
42
14 9
1
-----
x9
14
5 3
8
and for X* in terms
26 -----
16
1
-4
U,,(s)
132
14
297
48
165
--
U6 1 ------~___US ---us -1 --_____---___--___U7 ----__---~___--~ ua 1 -----P-----P---
---ppppp-p -12 6
-32
-8
5
-40
32
60
-84
1792
1120
~~-~~____4608
- 5376
275 110 154 44
1
54
1
- 2304
10 1024
-5120
11 2048
4096
1
-~20
23
2”
21
u,(z)
Table 22.6
39
z’
26
27
1
9=&
=64a+8Od+24&-
Chebyshev
n/x 0 1 : 4 5
0.2
2’0
[5~o+9ua+5u4+
Polynomials
0.4
X9
28
2’1
2’1
U,]
U,, (2) 0.6
0.8
UlO
U11
1
- 11264
11520
P-----P--
u,
--us
1
----
u, U7
____~
9 512
U, U5
-----
8
- 1024
- 1792
280
1 256
672
35
ua Ua
---_
-------
7
-448
-560
-12
27
1 128
240
75
6 64
-160
-1
20
1
-192
80
10
Ull --Y----P-1 Ul2
1
---_________-80
24
us -------------
UlO ---__--~
16
Ul
90
-----
CL,
1.0
+ 1.00000 +0.40000 - 0.84600 -0.73600 +0.54560 +0.95424
00000 00000 00000 00000 00000 00000
+ 1 .ooooo +0.80000 -0.36000 - 1.08800 -0.51040 $0.67968
00000 00000 00000 00000 00000 00000
+ 1.00000 +1.20000 +0.44000 -0.67200 - 1.24640 -0.82368
00000 00000 00000 00000 00000 00000
$;.ogo$
go0
1
+1:56000 +0.89600 -0.12640 - 1.09824
00000 00000 00000 00000
4 5 6
-0.16390 - 1.01980 -0.24401 +0.92219 $0.61289 -0.67703
40000 16000 66400 49440 46176 70970
+ 1.05414 +0.16363 -0.92323 -0.90222 +0.20145 + 1.06338
40000 52000 58400 38720 67424 92659
+0.25798 + 1.13326 + 1.10192 $0.18905 -0.87506 - 1.23913
40000 08000 89600 39520 42176 10131
- 1.63078 - 1.51101 -0.78683 +0.25207 + 1.19015 + 1.65217
40000 44GOO 90400 19360 41376 46842
:: 12
-0.88370
94564
$0.64925
46703
-0.61189
29981
+ 1.45332
53571
13
3” i 9
UN
ORTHOGONAL
797
POLYNOMIALS
Table Coefficients
for the
Chebyshev
Polynomials
C,(z) = -&c&P m=o
C,(z)
and
2”= b;;l5
11 11
cz
-2
-------~C3 -----
I
1
31
I
1
10
22.7
of C,(Z)
d&,(x)
m-0
x8 _---------
Cl
for 2” in terms
20
X’O
1 -~~.~~ 35 -~~-~
i
4
2’2
1
1
1
1
126
462
Co
462
126
-~-~-~ 56
15
2”
Cl 792
210
c2
-~~~~~
-3
1
2
c4
c5* -___----C6
1
-4
1
51
I
-2 ------~-
C3 495
120
cc
-~~~~
11 -___- 11 1
14
330
84
-~~___~~ 28
6
-6
-7
21
1
-51
9
c7
--------~CS --------CO
5
-___-
1
-7
36
-~~~~-8 -~~~~~ 1
C5
165 45
1
220
9
Co
55
c7
--~~~-
2
-16
20
9
-8
-----
-30
1 1 --------
27
-9
-______-~~ - 10
10 1
66
1
cs
11 1
CO
1
12
Cl0
-____--~___
-11
-~~~~54
1
1
Cl1
-12
1
1
Cl2
---~~----28
‘See
page
ii.70
2”
Z’O
x’
f
II.
Table Coefficients
Chebyshev
1 1 --------~~~~~
Sl
-----
for the
sz
-1
2 1
ss
Polynomials
1
-2
5
for 5” in terms
132
28
4
of L!&,(Z)
42
9
1
and
14
3 ----_____---~~1
S,,(z)
Sr
90
14
22.8
297
48
Sl
165
53
------___--~~-~-
1
s4
------------------
-3
S5
1
3
S6
----
-1
---------P----P St
1
-4
6
5 1
1
-5
-4
10
20 6
~-~~~~~1 1
-6
75 27
S5
35
1
S4
110
7 1
275
154
8
Sa
44
St
----P-i--------
1
88 --P------P-----
-10
15
5
SO
so
-20
-1
-P-P---------
28
35
1
-8
-35
-6
Sll
1
21
15
~---
-7
9 1
-9
-56
36
54
1
698
SO
10 1
1
~-
-10
1
11
SIO
1
Sll
----___--~~~~-
Sl2
1
--P----P-
x0
-21 2’
29
70 23
S&r) *see
Page
n.
x4
=ti-524+6z*--
-84 25
39
1
45
---z’
28
39=5so+9s*+5s4+ss
____-
39
-11
xl0
1 al
----
2"
Xl2
-
SIZ
.
Table
22.9
Coefficients
for the
Legendre
P,(z)
20
2’
x2
a9
39
=a;’
Polynomials
P,(z) x”=b,’
2 CmX~ m=o
a9
26
and
for
2“
in terms
of P,(X)
5 d,P,(z) m=o
29
29
20
2'0
2"
2'2
-----~---
---_I-_--PO
an
bm
2
----~~ Pa P4
8
----~PS
8
---PO
1
16
P,,
3
3
~-
- 1260 315
-63
6930 - 4620
3465
231
15015 - 18018
960 6435
90090 - 90090
225225
218790
46189
2078505
-----
P&) For
values
of
P,(z),
see chapter
8.
=$
[231ti-3lW+
105z2-51
2432
a+=&
[33Po+llOPa+72P4+16P~]
10752 88179
- 1939938
Ps PO
256
- 230945
- 1021020
50048
128
- 109395
Ps p7
2176 12155
133952 10080
128
- 25740
P4
PS
7904
16
- 12012
- 30030
-693
429
PI
220248 23408
832
PO
Pa
15504 2992
16
18018
31654
2160
b.
Pl 208012
4760
88
- 693
52003
16150
182
231
315
35
256 1024
-315
-35
128
256
105
676039
20349
2600
8
88179
3315
72 63
46189 4199
143
8
-70
12155
715
28 35
6435
110
2
-30
429
33
20
15
16
231
27
2 5
-5
63
3
-3
_______~~____ PO 128 ---PlO ---PII ----
35 7
1
-1
2
---
5
1
1
---PZ
--P7
3
1
111
------PI
---~~~ PO
1
256
PI0 PI1
676039
1024
Pll
Coefficients
for the
Laguerre
Polynomials
L,(z) =a.-l
&I
-. --
ti
1
-. --
-
Lt L4 4 Lc
2
6
6
24
24
120
120
7m
tm
5040
5040
403m
403m
362360
362880
3628800
36m6oo
39916690
39916mo
479991599
479991590
-. -~ -. -~ __--_-~ -_-~
4
_---
Ll -
__~-
-
LIO Lll 41 -
__-._-.- --
0”
-
1
2
L7
-
1
1
-. -____ -
._
1
-. --
1
-1
-1
_-
-4
-_
-18
_-
-96
__
-600
__
-43m
__
-35230
.-
-32ZMl
.-
-32659m
...-
z(
-m233ooo --
=&
-4
_1
9
.-
72
.-
600
._
5400
._
52920
._ ._ ...-
564460 6531340 31343990 199771#)0
15397om3Llo
-13 18
__ -1
-6
__
-16,
__
-mo
__
-2400
__ __ __...-
2)
-
6
_. __
2
._
.-
-5743918200
2
and cc”= 2
5 Gl&m-0
for 5” in terms
of L,(Z)
Table
d,L,(z)
-
-29400 -378320 -5030320 -7257m
-199771w99 -17663382ooo
-.
__
-_
__
-_
l44I
.-
-96I
1 12001 10600 -1299
I
-14409
I
105849 -176400(
1
1123939 -2257920
1
13063880~
1 -39431920
183293Q99 I
-435453999
1 I
2m424o99 -5535212ooo
[1p-336ab+45021-24OW+54OW-43202+720]
479901509 -5743918200
__
-105360352ooo
._
__
._
-_
.-
450 I
-36
( 1
7mI
3-l
1123959
1
39431m~
76!xwm
13441561699
31614105699
__
23710579!Mm
‘-379359257mcl
__
.-
__
._
_.
._
_.
.-
_.
.-
-.
.-
_.
-
-
442597473409 -379359267200 2371057m -105330352UOLl 31614105699 -5743919200
1
zl
-
-21~
-_
__
22.10
m-0
21
_.
__
II
-
-
_-
_-
.-
L&c)
21
L,(X)
47cam3cKJ
__LO
__4
__L,
__4
__LC
__-
LS
__-
Ls
__4
__4
-_-
L*
__-
Ll0
__-
41
_.-
Ll
_.-
2’1
ti=720L,,-4320L,+10800L~-
14400~+108OOL,-432OLs+72OL1
--
800
ORTHOGONAL
Table 22.11
Laguerre
POLYNOMIALS
Polynomials
L,(z)
n/x
0.5
1.0
3.0
0 ::
+1.00000 00000 +0.50000 00000 to.12500
+1.00000.00000 -0.50000 0.00000 00000
+1.00000 00000 -2.00000 00000 -0.50000
3 4 5
-0.14583 33333 -0.33072 91667 -0.44557 29167
-0.66666 66667 -0.62500 00000 -0.46666 66667
;
-0.51833 49653 -0.50414 92237
i 10 11
-0.49836 29984 -0.45291 95204 -0.38937 44141 -0.31390 72988
-0.25694 -0.04047 to.15399 +0.30974 to.41894 $0.48013
12
-0.23164 96389
+0.49621 22235
44444 51905 30556 42681 59325 41791
5.0
10.0
+1.00000 00000 +1.37500 00000 +0.85000 00000
+1.00000 -4.00000 +3.50000 +2.66666 -1.29166 -3.16666
00000 00000 00000 66667 66667 66667
+1.00000 -9.00000 +31.00000 -45.66666 +11.00000 +34.33333
00000 00000 00000 66667 00000 33333
-0.01250 -0.74642 -1.10870 -1.06116 -0.70002 -0.18079
-2.09027 +0.32539 +2.23573 +2.69174 +1.75627 to.10754
77778 68254 90873 38272 61795 36909
-3.44444 -30.90476 -16.30158 +14.79188 f27.98412 +14.53695
44444 19048 73016 71252 69841 68703
00000 85714 53571 07143 23214 95130
+0.34035 46063
-1.44860 42948
-9.90374 64593
.
Coefficients
for the
Hermite
Polynomials
H,(z) = 5
20
2’
22
2’
39
b, HQ
1
-.
x
-.
-48 120
-_ H6 H7
-_
30240
-_
HlI Hl2
-13440
1680
-30240
302400
-_
-665280
-665280
-. 2217600
- 7983360
2’1
2048
4096
332640
22.12
277200 25200
1
55440
72 I
-9216 -23040
-1774080
3960
110 1024
-56320 1520640
5940
1
132
-135168
Ha
Ha HO
1 2048
H,
Hr
90 512
Hs
HS 110880
--
HQ
H3 831600
2520
b,
HI 1995840
1512
256
161280
665280
75600
56
13305600
--
1
H,o HlI
4096
1
HI2
-_ XQ
-
-403200
-.
2”
30240
10080
1
-3584
1024 *
840
128
48384
512
3360
___
42 64
13440
-.
2’0
15120
420
-1344 .
-. --80640
840
1
-480
-.
XQ
256
30 I 32
-. 3360
180
1
-.
1
1680
2. I 16
39
128
-1
-I
-.
--
720 -1680
12
1
-160
-120
-_
H0 -_ HO HI0
8
1% ? ----I
60
-.
’
120
-
-12
-.
64
12
-
41
2’
32
6
-2
Table
of H,(x)
-___
16
-
2
for zn in terms
m~o&Jf&~
26
--
8
21
-.
H4
4
11
-.
HI -. HZ Ha
2
x”=by’
zs
-
--
and
m=O
-
-
c,,,z’
H,(z)
2'
2'
z
a?
zb
26
27
39
29
2'0
2"
2"
H,(z)=642s-480z'+720zs-120
a?=&[120Haf
lSOHri-3OH~+&I
l wr
page
II.
802
ORTHOGONAL POLYNOMIALS
Table 22.13 4% 1" i I!
Hermite 0.5 + 1.ooooo t :-g$gj - 5:ooooo + 1.ooooo (1) +4.10000
1.0 $EE
Polynomials
H,(Z)
3.0
5.0
10.0
++S.OOOOO 1.ooooo 00
(1) 1.00000 00000
'~:~~~~ (1) -2:OOOOo (0) - 8.00000
(2) (1) ++3.40000 1.80000 00 (2) +8.76000 00 (3) +3.81600 00
(1)9.80000 00000 (2)9.40000 (3)8.81200 00000 (4)8.06000 00000
(4) + 1.41360 (4) + 3.90240 (4) +3.62400 (5) - 4.06944 (6) -3.09398 (7) - 1.04250
(6) +5.51750 40
t :
(1)+3.10000 (2) -4.61000 (2) -8.95000 (3) $6.48100
::
(5) +2.25910 (4) - 1.07029
(2) + 1.84000 (2) +4.64000 (3) - 1.64800 (4) - 1.07200 (3) +8.22400 (5) + 2.30848
12
(5) -6.04031
(5) +2.80768
00 00 00 00 40 24
(5)7.17880 (6)6.21160 (7)5.20656 (8)4.21271 (9)3.27552 (10)2.43298
00000 00000 80000 20000 97600 73600
(11)1.71237 08128
1.00000 (1)2.00000 (2)3.98000 (3)7.88000 (5) 1.55212 (6)3.04120
00000 00000 00000 00000 00000 00000
(7)5.92718 (9)1.14894 (10)2.21490 (11)4.24598 (12)8.09327 (14) 1.53373
80000 32000 57680 06240 82098 60295
(15)2.88941 99383
23.
Bernoulli and Euler PolynomialsRiemann Zeta Function EMILIE
V. HAYNSWORTH
l AND KARL
GOLDBERG
z
Contents Mathematical 23.1. 23.2.
Properties
. . .
. . . . . . . . . . . . . . . . .
Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula . . . . . . . . . . . . . . . . . . . . . . Riemann Zeta Function and Other Sums of Reciprocal Powers. , . . . . . . . . . . . . . . . . . . . . .
References
. . . . . . . . . . . . . . . . . . . . . . . . . .
Page 804 804 807 808
Table
Coe5cients of the Bernoulli and Euler Polynomials B,(z) and E,,(z), n=0(1)15
. . .
809
Table
Bernoulli and Euler Numbers . . . . . . . . . . . . . B, and E,, n=O, 1, 2(2)60, Exact and B, to 10s
810
Sums of Reciprocal Powers . . . . . . . . . . . . . .
811
Table
23.1.
23.2.
23.3.
n=1(1)42 Table
23.4.
Sums of Positive Powers . . . . . . . . . . . . . . .
k% k”, n=l(l)lO, Table
23.5.
9/n!,
m=1(1)100 s=2(1)9,
The authors acknowledge checking of the tables.
‘National ZNational
813
n=1(1)50,
10s . . . . . . . . . . . .
the assistance of Ruth E. Capuano
Bureau of Standards. Bureau of Standards.
(Presently,
Auburn
in the preparation
818 and
University.) 803
23.
Bernoulli
and
Euler Polynomials-Riemann Function Mathematical
23.1.
Bernoulli
and
Euler
Properties
Polynomials
and
Generating
Bernoulli 23.1.2
B,=&(O)
23.1.3
BO=l,
Bz=;,
the
Euler-Maclaurin
Formula
Functions
and
Euler
Numbers
E,,=2”E,
n=o, 1,. . .
B,=-;,
Zeta
E,=l,
B,=-&
0
n=o, 1,. . .
a = integer
ES=-1,
E,=5
(For occurrence of B, and E, in series expansions of circular functions, see chapter 4.) Sums
of Powers
2
k=l
k=l
m,n=l,
Derivatives
23.1.5
B;(z)=nB,-l(s)
23.1.6
B&+1)-B,(z)
m,n=1,2,.
2,. . . and
Differences
n=l,
n.=l, 2, . . . 1 E:(r)=nEn-l(z)
=m?-’
1 E&+1)
n=O,l,...
..
+E&)
2, . . .
n=O, 1,. . .
=2f’
Expansions
23.1.7 B.(x+~)=$~
@
BdG”-n
n=o, 1,. . .
E.(z+h)=&
@
n=O,l,...
Eh)h”-’
n=O, 1, . . . Symmetry 23.1.8
B,(l-z)=(-l)“B,(z)
23.1.9
(-l)“B,(-z)=B,(x)+m”-l
E,,(l-x2)=(-l)“E,(s)
n=O,l,...
n=o, 1,. . .
(-1)“+1E,(-x)=E~(z)-2P
n=o, 1,. . .
Multiplication
Theorem
n=O,l,...
23.1.10
B,(m)=
m-1 mn-’ go B,
n=O, 1,. . . m=l,
E,(ms)=m”
z
(-1)“E,
(x+i)
n=O, 1,. . . m=l,
2,. . . E,(ms)=--
nil
mn m& (-l)kB,+~
3,. . .
(x+f) n=O,l,.
..
m=2,4,.
..
BERNOULLI
AND
EULER
POLYNOMIALS,
RIEMANN
Integrals
23.1.11
= B,(t)&= sa
23.1.12
S
&
805
FUNCTION
En+1b)--ErL+*(a) SazEn(t)&= n+l S’E,(wMt)dt
R+1(d--B,+lb) n+l
1 B,(t)B,(t)dt=(-l)“-’
ZETA
Bm+,
0
0
m,n=l,
2,. . .
=(-1)“4(2m+n+z-1)
(my;;2)!
I (The polynomials
Bm+n+z m,n=O,
are orthogonal
for m+n
1,. . .
odd.)
Inequalities
23.1.13
IBz,J>lBzn(z)I
n=l,
2,. . .,
l>z>O
4-“IE*,I>(-l)“~*,(2)>0
n=1,2,.
. .,
a>z>o
. .)
+>2>0
23.1.14 4(2y)! n=l,
2, . . .)
(1+2~)>(-l)~E2:2.--1(x)>o n=1,2,.
*>x>o
23.1.15 4”+‘(2n)! rzn+ 1 >wn&&>4’::!2,T-)!
(1+31-,-2.) n=O, 1 , . . .
Fourier
Expansions
23.1.16 B*(x)=-2
m cos (2nkz-irn) k” zl
&
- sin ((2k+l)nz-$rn) (2k+l)“+’ n>l,l>z>O n=l,
23.1.17 B2n-l(z),(-1)“2(2n-1)! (2*)2”-’
23.1.18 B2n(x)-(-1)n-‘2(2n)! (2n)2”
l>z>O
n>o,
l>z>O
n=O,
l>s>O
I 5 sin %rx k=, ~ k2”-’
E2n-l(z)=(-1)“4(2n-1)! lrzn
n>l,
l>i>O
n=l,
l>z>O
- cos 2krx g k2” n=1,2,.
E2n(z)=(-1)“4(2n)! =2n+1
. .,
5 cos (2k+l)rz ,c=,, (2k+1)2” n=1,2,. . .,
5 sin (2k+l)ra: k=,, (2k+1)2n+1 n>o,
l>s>O _ _
1>210
122>0
n=O, 1>2>0 Special
23.1.19
Bzn+,=O
23.1.20
B,(0)=(-l)nB,,(l) =B,,
23.1.21
’
B,(i)=-(l-F”)B,, I.
Values
n=1,2,...
E 2n+1- -0
n=O, 1 ) . . .
n=o,
En(O) = ---E,(l) =-2(n+l)-1(2”+‘-l)B,+,
n=1,2
n=O,l,
1, . . .
. . . 1 E,(i)
=2-“E,
n=O,l,.
,... . .
806 23.1.22
BERNOULLI
AND
EULER
POLYNOMIALS,
B,(+)=(-l)“&,($)
RIEMANN
=-(2n)-1(l-31-2n)(22”-1)Bzn
n=1,2,.
23.1.24
FUNCTION
~2n-1W=--E2,-1G)
=-2-n(l-21-“jB,-n4-~~~.-l
23.1.23
ZETA
Bz,(f)=&,($) ~-2-‘(1-3’-~“)B~,,
n=1,2,.
..
. .
n=O,l,...
&,,(~)=&&j) =21’(1--21-2”)(1-31-2”)B2,
n=O,l,... Symbolic
23.1.25
Pvw)
+ 1) -P(%4)
23.1.26
B&?-t
h) = (B(x) + h) *
Herep
Between
P(Jw
=P’(4
denotes a polynomial Relations
Operations
the
n=o,
1, . . .
+ 1) +P(G))
=2p(4
n=o,
a&(x+h)=(E(x~+h)”
in z and after expanding we set {B(z)}~=B,(z) Equivalent
Polynomials
1, . . .
and {E(cc)}“=E,,(z).
to this is
23.1.27
IL,(z)=;{ B, (q-Bn =-z{ B,(z)--2”B,
6)) (g)}
23.1.31
n=1,2,.
..
1 2+a F(t)dt=; fl z
S
{ F(x+h) + F(z) }
23.1.28 En-*(z)=2
G)-’
g
(9
(2n-n-1)B,-kB&(s) n=2,3,...
-&!
23.1.29
Euler-Maclaurin
Let F(z) have on an interval m equal parts some 8, 1 >e>O, we have
Formulae
its first 2n derivatives continuous (a, b). Divide the interval into and let h=(b-u)/m. Then for depending on Fc2”)(z) on (a, b),
BznF’2”‘(x+Bh)
Let &r) =B,(z-[a$. Formula is
b-hlxza
The Euler Summation
23.1.32
z1 F(a+kh+wh)=k se
sb F(t)dt B
23.1.30
-5
l1 fip(u-tt)
{ z1 F”‘(a+kh+th)}dt p_<2n, 120>0
BERNOULLI
23.2. Riemann
23.2.1 23.2.2
AND
EULER
POLYNOMIALS,
Zeta Function and Other of Reciprocal Powers
r(s)=&
=:
Sums
ZETA
807
FUNCTION
S’(O) = - $ In 257
23.2.13
f(-2n)
23.2.14 9s>l
k-”
RIEMANN
23.2.15
{(l-2n)=-2
23.2.16
f(2n)=2s
=0
n=l,
2, . . .
n=1,2
,...
B%>l
o-p-“)-’
n=1,2,...
1Bznl 1
(product over all primes p). 23.2.17 23.2.3
1(2n+l)=-(-1)“+1(2?r)2”+1 2(2n+l)!
1 B2n+1(z) cot (m)ds s0 n=1,2,.
* 23.2.4
z-w s$&?dZ
Sums
Powers
The sums referred to are
23.2.5
23.2.18
where
23.2.19
m (In k)”
of Reciprocal
..
(In m)“+’
q(n)=2
b(n) =gl
n=2,3
k-”
).. .
n=1,2,.
(-1)L-1k-n=(1-21-“)r(n)
..
n+l
g’s>0 23.2.6
=2%Y1
x(n)=&
sin (+rs)r(l-s){(l-s)
23.2.7 23.2.8
&?s>l ODz’-1 s o e’+l
=(1-2&(s)
n=l, =exp
(In 2r-1-$7)~ w--l)r(fS+1)
2,. . ., Sits>0 n p (
1-~
e;
23.2.11 23.2.12
Values
23.2.21 n=l,
(-1)“(2k+l)-”
These sums can be calculated from the Bernoulli and Euler polynomials by means of the last two formulas for special values of the zeta function (note that q(l)=111 2), and 23.2.22
f!?(2n+l)=($Jj~~~’
n=O, 1, . . .
IE2.1
23.2.23 fl(271)=(-~)‘+” 4(2n-l)!
’ E2n-l(2) sO
sec(7rx)dx
B(2) is known as Catalan’s other special values are 23.2.24
1 s(z)=1+~+35+
1
n=l,
constant. 7r2 * * * =x
r(O)=-3 rw
==
2,. * .
P>
product over all zeros p of t(s) with 3?p>O. The contour C in the fourth formula starts at infinity on the positive real axis, circles the origin once in the positive direction excluding the points f2nir for n=l, 2, . . ., and returns to the starting point. Therefore l(s) is regular for all values of s except for a simple pole at s=l with residue 1. Special
n=2,3,...
@k+l)‘“=(l--2-“){(n)
o(n)=&
dx
23.2.9
23.2.10
23.2.20
23.2.25
7r4 *=cz
2, . . .
Some
BERNOULLI
808 23.2.26 23.2.27 23.2.28
?@I=1 -$+$d4)‘l
-1+L 24
AND
..
34-
A(2)=1+$+$+
EULER
POLYNOMIALS,
7r2 *=12
71r4 * - * =m
RIEMANN
FUNCTION
23.2.29
x(4)=1+$+$+.
23.2.30
j3(1)=1-;+;-
. . =g . . . =;
p(3)+&++-
23.2.31
..
ZETA
. . . =g
References Tables
Texta
[23.1] G. Boole, The calculus of finite differences, 3d ed. (Hafner Publishing Co., New York, N.Y., 1932). [23.2] W. E. Briggs and S. Chowla, The power series coefficients of r(s), Amer. Math. hlonthly 62, 323-325 (1955). [23.3] T. Fort, Finite differences (Clarendon Press, Oxford, England, 1948). [23.4] C. Jordan, Calculus of finite differences, 2d ed. (Chelsea Publishing Co., New York, N.Y., 1960). [23.5] K. Knopp, Theory and application of infinite series (Blackie and Son, Ltd., London, England, 1951). [23.6] L. M. Milne-Thomson, Calculus of finite differences (Macmillan and Co., Ltd., London, England, 1951). [23.7] N. E. Norlund, Vorlesungen iiber Differenzenrechnung (Edwards Bros., Ann Arbor, Mich., 1945). [23.8] C. H. Richardson, An introduction to the calculus of finite differences (D. Van Nostrand Co., Inc., New York, N.Y., 1954). [23.9] J. F. Steffensen, Interpolation (Chelsea Publishing Co., New York, N.Y., 1950). [23.10] E. C. Titchmarsh, The zeta-function of Riemann (Cambridge Univ. Press, Cambridge, England, 1930). [23.11] A. D. Wheelon, A short table of summable series, Report No. SM-14642, Douglas Aircraft Co., Inc., Santa Monica, Calif. (1953).
[23.12] G. Blanch and R. Siegel, Table of modified Bernoulli polynomials, J. Research NBS 44, 103-107 (1950) RP2060. [23.13] H. T. Davis, Tables of the higher mathematical functions, vol. II (Principia Press, Bloomington, Ind., 1935). [23.14] R. Hensman, Tables of the generalized Riemann Zeta function, Report No. T2111, Telecommunications Research Establishment, Ministry of Supply, Great Malvern, Worcestershire, England (1948). f(s, a), s= - lO(.l)O, a=0(.1)2, 5D; (s-l){(s, a), s=O(.l)l, a=0(.1)2, 5D. [23.15] D. H. Lehmer, On the maxima and minima of Bernoulli polynomials, Amer. Math. Monthly 47,
533-538
(1940).
[23.16] E. 0. Powell, A table of the generalized Riemann Zeta function in a particular case, Quart. J. Mech. Appl. Math. 5, 116-123 (1952). f(& a), a=1(.01)2(.02)5(.05)10, 10D.
BERNOULLI
COEFFICIENTS
AND
EULER
bk OF THE
POLYNOMIALS,
BERNOULLI 4
RIEMANN
ZETA
POLYNOMIALS
5
b
809
FUNCTION
& (+&b& a
7
Table
9
10
&5:
2
11
12
13
23.1
14
15
&A(Q)
3 1
4
1
5
-3 +
6
0
7
0
10 11
-.
1
0
0
11
0
0
22
n\k
0
0
1
ek OF THE
2
EULER 4
3
0
1
5-J+
-4
1
0
266 7
0
-y
11
-+2
-b
0
y
1
13-3
0-q 0
POLYNOMIALS 5
-5 0
0 0
Y
COEFFICIENTS
- 11
1001
0
3
0
0 0
I
-4
b
-7
--%
9.
15
1
-4
0
5
O
14
A+
-25
-3
13
1
0
-Y
v-'
0 -3
l "Jp$
1
En (x)=kcoe& a
7
b
9
10
11
12
13
14
15
1 -L
1
1 2
2
0
3
-1
$
4
0
10
0
12
0
0
2073
0 0
0 9
255
0
0
0
21
0
0
30
-126
2y
-38227
0
573:05
0 0
0 O-
-3410
2 26949
0
62881 0
4943215
7 0
-31031
1. -9
I 0
0
-5
&5 4
- 396
7293 0
0 -v
-4
- 231
1683
T
1
- +
14
-b3
-9
.5y
14
0 0
0 0
0
1
-3
5
-28
153 -T
-155
691 T
0
0 0
0
1
- a
5
-4
17
-5
1 0
0 0
0
a
-2
+
-3
+
11
0
0
b
9
1
-f
1
-+
7
1 0
0
5
15
0
+
9
13
-+ 3
a
12
1
-3
0 0
0
_
0
8109395
0
-"
1
55
1287 2
7293
1
0
0
9
0
30032
-1001
-6
1 o-+
0
1
91 0
o-7 y
1 "-A+
1
BERNOULLI
810 Table
AND EULER
POLYNOMIALS,
BERNOULLI
23.2
AND
EULER
RIEMANN
ZETA
FUNCTION
NUMBERS
B,,= NID
N
D
1
1
Bf&
(
0) 1.0000 00000
-1
-:
2 6 2
- 1 -5.0000 00000 d - 1 1.6666 bbb67 1 I - 2 I -3.3333 2.3809 33333 52381: 2.
-:
30
- 2 -3.3333 33333 '(
330 138 2730
I
b7 234I
-2.7298 -8.6580 -5.2912 1.4255 42424 6.1921 25311 7\ 23107 17167 23188
87: 14322 510
I II
19 1919: 6 t20
-2 15 20097 61082 64391 71849 80708 64491 22051 02691
146 48
-278 5964 51111 33269 57930 59391 21632 10242 35023 77961 -560 94033 68997 81768 62491 27547 -8011649 50572 57181 05241 35489 07964 95734 82124 79249 77525 91853
:x
;46 58
-247929 39292 14996 93132 36348 84862 26753 68541 42141 81238 57396 12691 63229 84483 61334 88800 41862 04677 59940 36021
60
-121 52331 40483 75557 20403 04994 07982 02460 41491
I 10 148I -1.5116 13 11 -1.3711 4.8833 08739 4.2961 6.0158 46431 31577 23190 :p'I 65521
13530 1806 690 282 46410
23 I -1?9296 19 17 16 21 -4.0338 -1.2086 2.1150 30476,~ 8.4169 57934 c% 62652 74864; 07185 ii
1::; 870 354
32 -2.8498 26 30 28 24 -5.0387 2.3865 66746 3.6528 7.5008 77648 42750 76930 78101
567 86730
( 34)-2.1399
94926
-,:I:
1385'2
- 50521.! 27>02765 -1 -1993 60981 5 1 93915112145 ‘ -240 48796175441 ?
iii
;20 24 26 28
.M - --..----
-44fl5438 93249 79539 28943 02310 bb647 45536 82821:; 89665’.’ 41222 -80 72329,92358 17751193915 87898 02122 34707 06216 82474 96712 53281 590453~C
320 2
38
-234 89580 06033195177 52017 82857 52704,31082 i-----------1 8511 50718 11498 00178 77156 78140 -1036 6227 33519 61211 93979 57304 74518 7 94757 4225 97592 70360 80405 10088 07061
40 42 44
44;
60 -6667 96278
_,-. 50 52 54 56 58
60
11882 37525 'h
-69
-60532
650 61624 -126
-7 9420 22019
54665 32189 25180
99390
64202
64556 53751 ---,-- ._.___l_l!
6055 5421
58691 44977
68574 43502
28768 84747
73748 43153
19752 97653
61989 47741.1 50266 84425't 59763 10201 't 95192 738056-1 41076 90444
35.185”. 046611
85248 18862 18963 14383 78511 16490 88103 49822 51468 15121~!
86684
b0884
77158
08739 41204
09806 20228
14325 62376
70634 65889
08082 73674
29834
83644
23676
53855
76565’:
90583
22720
93888
52599
64600
93949
45581 05945
42122 40024 71169 90586
62187 19903 40923 72874 89255 48234 10611 91825 59406 99649 20041
181089 11496 57923 04965 45807 74165 21586 88733 48734 92363 14106 00809 54542 31325
From H. T. Davis,Tablesof the highermathematicalfunctions,vol. II. PrincipiaPress,Bloomington, Ind., 1935(with permission).
BERNOULLI
AND
EULER
SUMS
POLYNOMIALS,
OF RECIPROCAL
n
13
;:
33 332 36 37 3398 4410 42
ZETA
811
FUNCTION
POWERS
Table
23.3
s(w)=&-l)Wc-n 1.64493 406:8 48226 43647
12
RIEMANN
0.82246 0.69314 71805 70334 24113 59945 21824 30942 5* ';;,%
1.20205 1.08232 1.03692 1.01734
69031 32337 77551 30619
59594 11138 43369 84449
28540--yL3) 0.90154 19152 0.94703 92633 0.97211 13971 0.98555
26773 28294 97704 10912
69695 97245 46909 97435
71405 91758 c 30594 10410
1.00834 1.00407 1.00200 1.00099 1.00049 1.00024
92773 73561 83928 45751 41886 60865
81922 97944 26082 27818 04119 53308
82684 33938 21442 08534 46456 04830
0.99259 0.99623 0.99809 0.99903 0.99951 0.99975
38199 30018 42975 95075 71434 76851
22830 52647 41605 98271 98060 43858
28267 89923 33077 56564 75414 19085
1.00012 1.00006 1.00003 1.00001 1.00000 1.00000
27133 12481 05882 52822 76371 38172
47578 35058 36307 59408 97637 93264
48915 70483 02049 65187 89976 99984
0.99987 85427 0.99993 91703 0.99996 95512 0.99998 47642 0.99999 23782 0.919999 61878
63265 45979 13099 14906 92041 69610
11549 71817 23808 10644 01198 11348
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
19082 09539 04769 02384 01192 00596
12716 62033 32986 50502 19925 08189
55394 87280 78781 72773 96531 05126
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
80935 90466 95232 97616 98808 99403
08171 11581 58215 13230 01318 98892
67511 52212 54282 82255 43950 39463
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00298 00149 00074 00037 00018 00009
03503 01554 50711 25334 62659 31327
51465 82837 78984 02479 72351 43242
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99701 99850 99925 99962 99981 99990
98856 99231 49550 74753 37369 68682
96283 99657 48496 40011 41811 28145
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00004 00002 00001 00000 00000 00000
65662 32831 16415 58207 29103 14551
90650 18337 50173 72088 85044 92189
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99995 99997 99998 99999 99999 99999
34340 67169 83584 41792 70896 85448
33145 89595 85805 39905 18953 09143
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00000 00000 00000 00000 00000 00000
07275 03637 01818 00909 00454 00227
95984 97955 98965 49478 74738 37368
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99999 99999 99999 99999 99999 99999
92724 96362 98181 99090 99545 99772
04461 02193 01084 50538 25268 62633
t(n+l)=~[ltr(n)] ~(n+l)=~[l+d~~] From H. T. Davis, Tables of the higher mathematical functions, vol. II. Principia Press, Bloomington, Ind., 1935 (with permission). For C-42,
'
812
BERNOULLI
Table
AND
EULER
SUMS
23.3
POLYNOMIALS,
RIEMANN
OF RECIPROCAL
ZETA
FUNCTION
POWERS
81633 55941 61462 45517 78280 52222
97448 77219 59369 41105 77088 18438
310015-O 380 336 064 135
1.01467 1.00452 1.00144
80316 04192 05455 37627 95139 61613"~+&q 70766 40942 12191
.91596 0.96894 0.98894 0.99615 0.99868
1.00047 1.00015 1.00005 1.00001 1.00000 1.00000
15486 51790 13451 70413 56660 18858
52376 25296 83843 63044 51090 48583
55476.-&b? 11930 'Lo 77259 82549 10935 11958
0.99955 0.99984 0.99994 0.99998 0.99999 0.99999
45078 99902 96841 31640 43749 81223
90539 46829 87220 26196 73823 50587
909 657 090 877 699 882
1.00000 1.00000 1.00000 1.00000 1~00000 1.00000
06280 02092 00697 00232 00077 00025
55421 40519 24703 37157 44839 81437
80232 21150 12929 37916 45587 55666
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
93735 97910 99303 99767 99922 99974
83771 87248 40842 75950 57782 19086
841 735 624 903 104 745
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00008 00002 00000 00000 00000 00000
60444 86807 95601 31866 10622 03540
11452 69746 16531 77514 20241 72294
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99991 99997 99999 99999 99999 99999
39660 13213 04403 68134 89377 96459
745 274 029 064 965 311
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00000 00000 00000 00000 00000 00000
01180 00393 00131 00043 00014 00004
23874 41247 13740 71245 57081 85694
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99999 99999 99999 99999 99999 99999
98819 99606 99868 99956 99985 99995
768 589 863 288 429 143
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00000 00000 00000 00000 00000 00000
00001 00000 00000 00000 00000 00000
61898 53966 17989 05996 01999 00666
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99999 99999 99999 99999 99999 99999
99998 99999 99999 99999 99999 99999
381 460 820 940 980 993
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00000 00000 00000 00000 00000 00000
00000 00000 00000 00000 00000 00000
00222 00074 00025 00008 00003 00001
0.99999 0.99999
99999 99999 998 99999 99999 999
F-~
BERNOULLI
Ah’D
EULER
SUMS
m\n : 3 4 5
! 8 9 10 11
1 1 2 10 15 21 28 36 5455
POLYNOMIALS,
OF
RIEMANN
POSITIVE
POWERS
2
3
I 14 30 55
; 1:: 225
91 140 204 285 385
441 784 1296 2025 3025
2275 4676 8772 15333 25333
4356 6084 8281 11025 14400
39974 60710 89271 1 27687 1 78312
ZETA
813
FUNCTION
Table
skkn
23.4
k=l
4 1
5 1 33 276 1300 4425
i87 354 979
6
.
6: 794 4890 20515
12201 29008 61776 1 20825 2 20825
1 4 9 19
67171 84820 46964 78405 78405
:32 14 15
1:: 120
506 650 819 1015 1240
:‘: 18 19 20
136 153 171 190 210
1496 1785 2109 2470 2870
18496 23409 29241 36100 44100
2 3 4 5 7
43848 27369 32345 62666 22666
33 47 66 91 123
47776 67633 57201 33300 33300
472 713 1054 1524 2164
60136 97705 09929 55810 55810
231 253 276 300 325
3311 3795 4324 4900 5525
53361 64009 76176 90000 1 05625
9 11 14 17 21
17147 51403 31244 63020 53645
164 215 280 359 457
17401 71033 07376 70000 35625
3022 4156 5636 7547 9988
21931 01835 37724 40700 81325
351 378 406 435 465
6201 6930 7714 a555 9455
1 1 1 1 2
23201 42884 64836 89225 16225
26 31 37 44 52
10621 42062 56738 63999 73999
576 719 891 1096 1339
17001 65908 76276 87425 87425
13077 16952 21771 27719 35009
97101 17590 07894 31215 31215
496 528 561 595 630
10416 11440 12529 13685 14910
2 2 3 3 3
46016 78784 14721 54025 96900
61 72 84 97 112
97520 46096 32017 68353 68978
1626 1961 2353 2807 3332
16576 71008 06401 41825 63700
43884 54621 67536 82984 1 01367
34896 76720 44689 49105 14730
666 703 741 2 780 820
16206 17575 19019 20540 22140
4 4 5 6 6
43556 94209 49081 08400 72400
129 148 169 192 217
48594 22755 07891 21332 81332
3937 4630 5423 6325 7349
29876 73833 09001 33200 33200
1 1 1 2 2
23134 48792 78901 14089 55049
97066 23475 59859 03620 03620
861 903 946 990 1035
23821 25585 27434 29370 31395
7 8 8 9 10
41321 15409 94916 80100 71225
246 277 311 348 389
07093 18789 37590 85686 86311
8507 9814 11284 12934 14779
89401 80633 89076 05300 33425
3 5 4 4 5
02550 57440 20654 93217 76254
07861 39605 02654 16510 82135
63767 43448 51864 16665 66665 functions,
16838 19132 21680 24505 27630 vol. II.
96401 41408 45376 20625 20625 Principia
3: E43 25 2276 28 3; 31 33; ;z z; 38 2 :: 43 44 45
!ii
1081 33511 11 68561 434 1128 35720 t; 12 72384 483 48 1176 38024 536 1225 40425 49 :: EE 594 50 1275 42925 16 25625 656 From H. T. Davis, Tables of the higher maihematical Ind., 1935 (with permission).
3 6 10 15 22
81876 30708 02001 39825 99200
37 67 115 190 304
49966 35950 62759 92295 82920
6 70997 79031 7 78789 94360 9 01095 84824 10 39508 72025 11 95758 72025 Press, Bloomington,
BERNOULLI
814 Table
23.4
AND EULER POLYNOMIALS, SUMS
OF
POSITIVE
RIEMANN
POWERS
ZETA FUNCTION
&kw
1 1326 1378 1431 1485 1540
2 45526 48230 51039 53955 56980
17 18 20 22 23
3 58276 98884 47761 05225 71600
724 797 876 961 1052
4 31866 43482 33963 37019 87644
31080 34882 39064 43656 48688
45876 49908 45401 10425 94800
13 15 17 20 23
6 71721 69427 91071 39020 15826
59826 69490 30619 41915 82540
1596 1653 1711 1770 1830
60116 63365 66729 70210 73810
25 27 29 31 33
47216 32409 27521 32900 48900
1151 1256 1369 1491 1620
22140 78141 94637 11998 71998
54196 60213 66776 73925 81701
26576 18633 75401 99700 99700
26 29 33 37 42
24236 67201 47888 69693 36253
61996 09245 01789 35430 35430
1891 1953 2016 2080 2145
77531 81375 85344 89440 93665
35 38 40 43 46
75881 14209 64256 26400 01025
1759 1906 2064 2232 2410
17839 94175 47136 24352 74977
90147 99309 1 09233 1 19971 1 31573
96001 28833 65376 07200 97825
47 53 59 66 73
51457 19459 44694 31889 86078
09791 45375 47584 24320 14945
5
2211 2278 2346 2415 2485
1 1 1 1
98021 02510 07134 11895 16795
48 51 55 58 61
88521 89284 03716 32225 75225
2600 2802 3015 3242 3482
49713 00834 82210 49331 59331
1 1 1 1 2
44097 57598 72137 87778 04585
30401 55508 89076 20425 20425
82 91 101 111 123
12617 17201 05876 85057 61547
64961 47130 29754 92835 92835
2556 2628 2701 2775 2850
1 1 1 1 1
21836 27020 32349 37825 43450
65 69 72 77 81
33136 06384 95401 00625 22500
3736 4005 4289 4589 4905
71012 44868 43109 29685 70310
2 2 2 2 3
22627 41976 62707 84897 08627
49776 67408 39001 45625 92500
136 150 165 181 199
42550 35691 49033 91098 70883
76756 46260 72549 62725 78350
2926 3003 3081 3160 3240
1 1 1 1 1
49226 55155 61239 67480 73880
85 90 94 99 104
61476 18009 92561 85600 97600
5239 5590 5961 6350 6760
32486 85527 00583 50664 10664
3 3 3 4 4
33983 61051 89922 20693 53461
17876 02033 76401 32800 32800
218 239 262 286 312
97883 82106 34102 64977 86417
06926 87015 87719 43240 43240
3321 3403 3486 3570 3655
1 1 1 2 2
80441 87165 94054 01110 08335
110 115 121 127 133
29041 80409 52196 44900 59025
7190 7642 8117 8615 9137
57385 69561 27882 15018 15643
4 5 5 6 6
88329 25403 64793 06614 50985
17201 15633 56276 75700 28825
341 371 404 439 477
10712 50779 20183 33163 04658
79721 51145 24514 56130 71755
3741 3828 3916 4005 4095
2 2 2 2 2
15731 23300 31044 38965 47065
139 146 153 160 167
95081 53584 35056 40025 69025
9684 10257 10856 11484 12140
16459 06220 75756 17997 27997
6 7 8 8 9
98027 47870 00643 56483 15532
99001 08208 27376 86825 86825
517 560 607 657 710
50331 86593 30633 00446 14856
06891 07900 94684 85645 85645
4186 4278 4371 4465 4560
2 2 2 2 2
55346 63810 72459 81295 90320
175 183 191 199 207
22596 01284 05641 36225 93600
12826 13542 14290 15071 15885
02958 42254 47455 22351 72976
9 10 11 11 12
77936 43844 13413 86803 64181
08276 23508 07201 47425 56800
766 827 892 961 1034
93549 57099 27001 25699 76617
37686 39030 22479 03535 94160
4656 4753 4851 4950 5050
2 3 3 3 3
99536 08945 18549 28350 38350
216 225 235 245 255
78336 91009 32201 02500 02500
16735 17620 18542 19503 20503
07632 36913 73729 33330 33330
13 14 15 16 17
45718 31592 21984 17083 17083
83776 24033 32001 32500 32500
1113 1196 1284 1379 1479
04195 33915 92339 07141 07141
83856 88785 69649 19050 19050
.
BERNOULLI
AND EULER POLYNOMIALS, SUMS
OF POSITIVE
RIEMANN POWERS
$,kn
Table
8
7
815
ZETA FUNCTION 23.4 9
1 129 2316 18700 96825
25: 6818 72354 4 62979
76761 00304 97456 80425 80425
21 42595 79 07396 246 84612 677 31333 1677 31333
123 13161 526 66768 1868 84496 5743 04985 15743 04985
375 67596 733 99404 1361 47921 2415 61425 4124 20800
3820 90214 8120 71910 16278 02631 31035 91687 56664 82312
39322 52676 90920 33028 1 96965 32401 4 03575 79185 7 88009 38560
3 12 32 80 180
5113 20196 2 82340 22 35465
6808 56256 10911 94929 17034 14961 25972 86700 38772 86700
1 2 4 7
99614 49608 69372 07049 79571 67625 49407 30666 05407 30666
14 75204 15296 26 61082 91793 46 44675 82161 78 71552 79940 129 91552 79940
56783 75241 81727 33129 1 15775 58576 1 61640 30000 2 22675 45625
10 16 24 35 50
83635 90027 32394 63563 15504 48844 16257 63020 42136 53645
209 34353 26521 330 07045 44313 510 18572 05776 774 36647 46000 1155 83620 11625
3 4 5 7 9
02993 55801 07597 09004 42526 37516 15025 13825 33725 13825
71 30407 18221 99 54702 54702 137 32722 53038 187 35186 65999 252 96186 65999
1698 78656 90601 2461 34631 75588 3519 19191 28996 4969 90651 04865 6938 20651 04865
12 15 19 25 31
08851 27936 52448 66304 78633 09281 03866 59425 47259 56300
338 25097 03440 448 20213 31216 588 84299 49457 767 42238 54353 992 60992 44978
9582 16872 65536 13100 60593 54368 17741 75437 56321 23813 45365 22785 31695 01751 94660
39 48 60 73 90
30901 20396 80219 97529 24375 80121 96685 86800 35085 86800
1274 72091 52434 1625 96886 06355 2060 74807 44851 2595 94900 05332 3251 30900 05332
41851 01318 63076 54847 18716 58153 71368 79729 21001 92241 63340 79760 1 18456 03340 79760
109 82628 60681 132 88021 93929 160 06208 05036 191 98986 14700 229 35680 67825
4049 80152 34453 5018 06672 30869 6186 88675 08470 7591 70911 33686 9273 22165 24311
1 1 2 3 3
51194 22684 73721 91861 36523 23193 42120 62642 60036 03932 81037 69540 79600 87463 47665
272 93857 25041 323 60088 45504 382 30771 87776 450 13002 60625 528 25502 60625
11277 98287 56247 13659 11154 18008 16477 03958 47064 19800 33264 16665 23706 58264 16665
4 5 7 8 10
71819 89090 16721 83732 93821 19488 18993 48427 14176 81834 84406 24625 77147 34406 24625
816
BERNOULLI
Table
POLYNOMIALS,
OF
POSITIVE
:23 2:
66 67 is 70 71 72 zi 75
81 E 88:
z: 93 94 95 1 1 1 1
RIEMANN
POWERS
ZETA
FUNCTION
&kn
617 720 838 972 1124
99609 80326 27437 16689 41042
38476 41004 80841 90825 25200
28283 33629 34855 47085 55458
8 37709 34995 31899 51512 90891
87066 18522 29883 69019 59644
13 15 19 23 27
10563 88554 18530 08961 69498
86137 44973 80891 40014 05854
15076 50788 52921 66265 50640
1297 1492 1713 1962 2242
11990 60965 40807 27322 20922
74736 67929 35481 20300 20300
65130 76273 89079 1 03762 1 20559
64007 55578 86395 90771 06771
33660 45661 63677 67998 67998
33 39 46 55 65
11115 46261 89027 55326 63096
00335 19889 07286 65472 25472
95536 79593 24521 79460 79460
2556 2908 3302 3742 4232
48350 64496 54303 34768 57047
56321 62529 01696 12800 03425
1 1 1 2 2
39729 61563 86379 14526 46391
79901 80957 38760 88527 36656
65279 50175 17696 28352 18977
77 63 106 124 145
32510 86219 49600 51040 22232
86401 51863 93432 78527 06906
13601 77151 30976 12960 03585
4778 5384 6056 6801 7624
08654 15770 45658 09190 63490
04481 09804 28236 80825 80825
2 3 3 4 4
82395 23002 68718 20098 77746
42718 19494 51890 35635 36635
88673 45314 98690 27331 27331
168 196 227 262 303
98500 19153 27863 73072 08433
07044 51006 53971 32327 02327
03521 98468 28036 04265 04265
8534 9537 10641 11857 13191
14692 20822 94807 07610 91497
39216 43504 62601 35625 07500
5 6 6 7 8
42321 14542 95188 85107 85220
71947 13310 14229 61631 53135
73092 81828 75909 79685 70310
348 400 459 526 601
93283 93152 80311 34352 42821
09511 87653 54736 62487 25280
53296 82288 50201 29625 26500
14656 16261 18017 19938 22035
43442 28675 84364 23453 38653
79276 46129 01041 87200 87200
9 11 12 14 15
96524 20097 57109 08819 76592
01010 63925 07632 95731 11731
25286 72967 56103 62664 62664
686 781 888 1007 1142
01885 17055 03947 89106 10879
63746 08237 17370 77196 57196
04676 76113 60721 79040 79040
24323 26815 29529 32480 35686
06578 92048 52558 42905 19993
42161 98929 88556 44300 72425
17 19 21 24 27
61894 66308 91537 39413 11903
13620 22206 44528 33638 86142
14505 69481 08522 91018 81643
1292 1459 1646 1854 2086
20343 82298 76323 97898 59593
10166 14263 66939 52248 15080
78161 86193 26596 56260 59385
39165 42938 47024 51447 56230
47815 02610 78207 91556 88456
94121 81904 18896 14425 14425
30 33 36 40 45
11121 39333 98967 92626 23094
78853 46007 98488 86545 07545
47499 84620 39916 41997 41997
2343 2629 2945 3296 3683
92334 46750 94588 30228 72277
88197 30627 48916 85991 75991
23001 52528 18576 03785 03785
61398 66976 72993 79478 86462
49475 96076 96947 74541 11837
50156 73804 34561 53825 63200
49 55 60 66 73
93346 06565 66147 75716 39136
60306 47620 28587 22441 65570
93518 69134 19535 30351 20976
4111 4583 5104 5677 6307
65257 81394 22502 21982 46923
77288 10154 40039 62325 59571
92196 48868 36161 52865 62240
93976 02056 10737 20058 30058
59315 42160 67693 33041 33041
74016 52129 76801 67500 67500
80 88 96 106 116
60526 44269 95032 17777 17777
23468 59412 61670 31113 31113
59312 36273 54129 33330 33330
7000 7760 8593 9507 10507
00323 23429 98205 49930 49930
17816 04362 25663 00499 00499
42496 07713 57601 98500 98500
7
51
z78 99 100
EULER
SUMS
23.4
m\n
96
AND
9
BERNOULLI
Ah-D
EULER
POLYNOMIALS,
SUMS
OF
POSITIVE
RIEMANN
POWERS
ZETA
817
FUNCTION
skkn
Table
23.4
k=l
613 757 932 1143 1396
10 38941 75112 94452 34603 83199 38258 66451 30907 95967 52098
62626 19650 32699 53275 93900
40451 15700 57524 41925 41925
:76 58
1700 2062 2493 3004 3608
26516 29849 10270 21945 88121
43060 57628 26623 59629 59629
08076 99325 05149 46550 46550
4322 5161 6146 7299 8645
22412 52349 45378 37528 64962
76258 34941 53759 99828 44456
29151 69375 60224 07200 97825
10213 12036 14150 16596 19421
98650 82430 74713 94119 69368
53564 99082 00654 07202 07202
93601 55050 65674 25475 25475
93723 84347 46930 45970 81117
17301 43545 40581 14140 23612
06676 94100 51749 29125 94750
1 1025 60074 11 08650 108 74275 713 3538 14275 49143 1 49143
m\n 51 52 53 54 55
10
59 60
4 10 24 52 110
08517 27691 06276 98822 65326
66526 30750 22599 77575 68200
61
220 422 779 1392 2416
60442 20381 25054 35716 35716
95976 96425 23049 80850 80850
66
4084 6740 10882 17223 26760
34526 33754 98866 32676 06992
59051 50475 64124 29500 70125
71 77: 7754
22676 26420 30718 35642 41273
40876 61465 91085 1 33156 1 92205
77949 89270 56937 29270 29270
23501 18150 13574 13775 13775
:76 78 79 80
47702 55029 63365 72833 83570
70010 38057 15640 43249 85073
47012 72874 85236 11504 11504
36126 36775 36199 83400 83400
1 1 1 1
95728 09473 24989 42479 62166
51619 31932 36051 48338 92382
02074 38034 10093 76074 16796
12201 70825 24274 16050 81675
1 2 2 2 3
84297 09139 36989 68171 03039
08171 42312 52073 24066 08467
04827 96263 05665 05327 05327
52651 21500 33724 17325 17325
3 3 4 4 5
41980 85419 33817 87679 47552
69648 54190 77262 28403 97795
23434 47066 26359 21259 59638
62726 76550 94799 64975 55600
6 6 7 8 9
14036 87778 69485 59924 59924
24155 65424 93493 14243 14243
51139 46067 33614 42419 42419
60176 86225 75249 24250 24250
2 3 5 7 10
74168 86758 39916 46353 22208
12139 11208 01061 78601 52136
94576 37200 01649 61425 77050
13 18 24 33 43
87824 68682 96503 10544 59120
36537 80261 98741 59593 59593
40026 57875 46099 37700 37700
57 74 95 122 156
01386 09406 70554 90290 95353
52694 33911 57044 66428 55588
90101 67925 52174 70350 85975
199 251 316 396 494
37428 97341 89847 69074 34699
30416 52774 73860 36836 36836
62551 92600 37624 49625 49625
64 65
2; 69 70
81 82 2 85
91 92
818 *
BERNOULLI
Table
AND
EULER
POLYNOMIALS,
23.5
RIEMANN
FUNCTION
x%/n!
4
2
n\x
ZETA
0)4.0000 o)a.oooo 1.0666 1.0666
: : 5
5 00000 00000 66667 66667
0 5.0000 00000 11 1.2500 00000 2.0833 33333
; a 9 10 11 12 13
- 5)5.1306
71797
0 1.2232 1 5.0968 1 1.9603 2 7.0011 2 I 2.3337
47480 64499 32500 87499 29166
-17)3.9118 -la 5.2863 -19 6.9556 -20 8.9175 -20 I 1.1146
75343 18031 81620 40538 92567
''2.0527 69883 4.8300 46785 (- 9j1.4331
79137
2.0473 98767
(-24)4.0479
-38)6.5735 -39 3.1302 -40 1.4559 -42 6.6179 I -43 I 2.9412
93393
20725
-15)6.3028 -16 7.0031 -17 7.5033 -18 7.7620 I -19 I 7.7620
01010 12233 34535 70209 70209
-11)1.1167
10881
-20 7.5116 -21 I 7.0422 -22 6.4020 -23 5.6488 (-24j4.8418
80847 00794 00722 24167 49286
-16)5.6083 -17 7.0104 -18 a.4975 -19 9.9971 I -19 I 1.1425
86851 83563 55835 24511 28516
-25 4.0348 -26 3.2715 -27 2.5827 I -28 / 1.9867 (-29 1.4900
74405 19788 78780 52907 64681
-20)1.2694
76128
(-24)1.4816
80567
64027 68584 38876 03984 90659 -31 8.9989 09998 -32 I 7.6586 46807 -33 6.3822 05673
44; 48 49 50
For
-11)7.2586
4.1679 71052 x = 1, see Table
6.3.
BERNOULLI
AND
EULER
POLYNOMIALS,
RIEMANN
ZETA
X”/n!
6 0)6.0000 1)1.8000 1 3.6000 1 5.4000 1 6.4800
!I I
Table
23.5
8
7
00000 00000 00000 00000 00000
819
FUNCTION
0)7.0000 00000 1)2.4500 00000 115.7166 66667
0)8.0000 1 3.2000 11 8.5333 2 1.7066 2 2.7306
00000 00000 33333 66667 66667
2)1.2150
00000
1 5.5542 6.4800 00000 85714 1 2.7771 4.1657 14286 42857
t
10 (
ljl.6662
85714 1)4.9536 1 I 2.8896 1 1.5559 0 7.7797 0 3.6305
20388 11893 44865 24327 38019
( ( (
26 27 %i 30 31 (-10 I 1.6131 21179 :9 I -11 -12 5.4992 3.0246 02210 76746 34 -13 9.7046 06022 35 -13 1.6636 46746
I - 567I 9.4206 3.5589 65421 1.3049 4.6397 46701 10976 34025 (- 7)2.4224 52009
36 (-14 2.7727 445-78 37 -15 4.4963 42559 ;: -16 7.0994 1.0922 88251 28962 40
I -17 I 1.6383 43442
41 t: 154
I
46
(-17 I 6.3324 19956
t; 49 50
I -17 -20 4.6927 -19 -18 2.9329 58716 1.7964 1.0778 18219 48887 31193
24. Combinatorial K. GOLDBERG,~
Analysis
M. NEWMAN,~
E. HAYNSWORTH
3
Contents Page
Mathematical
Properties.
...................
Basic Numbers .................... 24.1.1 Binomial Coefficients .............. 24.1.2 Multinomial Coefficients ............. 24.1.3 Stirling Numbers of the First Kind ........ 24.1.4 Stirling Numbers of the Second Kind ....... 24.2. Partitions ...................... 24.2.1 Unrestricted Partitions .............. 24.2.2 Partitions Into Distinct Parts ........... 24.3. Number Theoretic Functions .............. 24.3.1 The Mobius Function .............. 24.3.2 The Euler Function ............... 24.3.3 Divisor Functions ................ 24.3.4 Primitive Roots ................. 24.1.
References Table
24.1.
n550, Table
24.2. nll0
..........................
Binomial Coefficients m125 Multinomials
m
. . . . . . . . . . . . . .
(Including a List of Partitions)
. . . . . .
822 822 822 823 824 824 825 825 825 826 826 826 827 827 827 828
831
Stirling Numbers of the First Kind S$“). . . . . . . . .
833
Stirling Numbers of the Second Kind SaQ) . . . . . . .
835
Table
24.5. Number of Partitions and Partitions Into Distinct Parts . . p(n), n(n), n1500
836
Table
24.6. Arithmetic Functions o(n), us(n), n(n), n_
. . ‘. . . . . . . . . . . . . .
840
Table
24.7. Factorizations n<10000
. . . . . . . . . . . . . . . . . . . .
844
Table
24.3.
,
n125 Table
24.4.
nS25
Table n< Table
24.8. Primitive 10000 24.9.
Roots, Factorization
of p- 1 . . . . . . . . .
864
Primes . . . . . . . . . . . . . . . . . . . . . . .
870
p_<105 ‘2 * National a National
Bureau of Standards. Bureau of Standards.
(Presently,
Auburn
University.) 821
24. Combinatorial Mathematical In each sub-section a fixed format wliicli rrlctl1otls
OF
T11c format
of this chapter en~pliasizes ttlr
rrtcntling
ttlc
follows
this forIll:
we use
Properties use
nlltl
tnl)lPS.
:l~~~~lll~~i1ll~~ill~
1. Drfinitions
A. (‘onit~inatorial B. Generating functions C. Closed form II.
Analysis n special and easily recognizable symbol, and We have yet that s~riit~ol must bc c:ls.v to write. ict tlctt on a script capital 3 without any certainty that WC tiavc settled this question pernianently. FVe feel that the subscript-superscript notation cmphasizrs ttlc genernting functions (which are p6wers of mutually inverse functions) from which most of the important relations flow.
Relations
24.1.
A. Rrcurrenccs B. Checks in computing C. Basic use in numerical III.
Asymptotic
and
Special
24.1.1
for
the
Stirling
This chapter (24.21 Fort 124.71 Jordan [24.10] hfoser and Wyman [24.9] &filne-Thomson [24.15] Riordan [24.1] Carlitz [24.3] Gould 1 Miksa (Unpublished tables) (24.171 Gupta
Kind
S’I’ n s& s:: (,:,I;)
Second
(1-x)
---I=$m
(-l)~~~Sl(n-l,n-m)
(;)
*
. . .
x”-m
C. Closed form n n.1 m =G!(n-m)!=
n n-m ( >
0
II.
*
n2 m
.. .
-
Relations
A. Recurrences
B:::’
S(n, m) &(m,
n)
(;)
n=O,l,
m!(n’-m+g
n-m)
=(~)+(7~~:)+. . +(,lim)
n2m
ns”
B. Checks u(n, m)
We feel that a capital S is natural for Stirling numbers of the first kind; it is infrequenLly used for other notation in this contest. But once it is used we have difficulty finding a suitable symbol for Stirling numbers of the second kind. The numbers are sufficiently important to warrant 822
* (l+d”=~o (;) Xrn
Kind
@:: g.“I
s(n, m) S(n-m+l,
is the number of \yays of choosing m n m objects from a collection of n distinct objects witllotlt regard to order. 13. Generating functious 0
=n(n-1)
cgr
Bb”l,
Coeflicients
A.
Numbers
Firs1
Numbers
1. Definitions
Values
Reference
Binomial
analysis
In general the notations used are standard. This includes the difference operator A defined on functions of s by Aj(z)=f(cr+ 1)-f(x), A”+!{(x) =A(A’j(s)), the Rroneckrr delta hiI, the Riemann zet,a function l(s) and the greatest common divisor symbol (m, n). The range of the summands for a summation sign without limits is explained to the right of the formula. The notations which are not standard are those for the multinomials which are arbitrary shorthand for use in this chapter, and those for the Stirling numbers which have never been standardized. A short table of various notations for these numbers follows : Notations
Basic
‘SW pngr II.
so (A)
(n,” m>=(‘t”)
go c--l)“+
(?rJ=(‘,,‘>
r+s>n r> /I,+ 1
COMBINATORIAL
ANALYSIS
823
where n=e
nnpk,
m=g
k=O
m,pk k=O
C. Numerical
=&
(--l)s-k
analysis
III.
rif:lc’> Special
A”f(z-s) Values
(>
2n =2”(2n-1)(2n-3) I n 12.
Multinomial I.
s
. . . 3.1
Coefficients Definitions
. . . +&,, different objects A. (n; n,, .n2, . . ., n,) is the number of ways of putting n=nl+n,+ into m different boxes with nk in the k-th box, k=l, 2, . . ., m. is the number of permutations of n=al+2a2+ . . . +nu, symbols composed (75 al, a2, . . ., 4* of a,, cycles of length k for k=l, 2, . . ., n. a set of n=u,+2a,+. . . +na, dif(n; al, a,, . . ., a,)’ is the number of ways of partitioning fereut objects into a, subsets containing k objects for k= 1, 2, . . ., n. B. Generating functions . . . +x,)“=Z;(n;
(r1faS
nl, n2, . . ., n,)ci$%$ .
. z:m
summed over n,+n,+
. . . +n,=n
summed over u1+2u2+ . . . +na,=n (~~tk)l=m!~~~Z(n;u~,u2,...,u.)‘~:~2;~...2:~
andu1+u2+“‘+u’=m
C. Closed forms (n; nl, n2, . . ., n,) =n!/n,!n,!
. . . n,!
a2, . . ., u,)*=n!/1%,!2”~~!
haI,
. .+n,=n
nl+n2+.
. . . n%z,!
u,+2u2+
(n;al,a2, . . ., a,)’ =n!/( l!)%,! (2!)%z2! . . . (n!)“nun! II.
. . .+na,=n
ul+2a2+
. . . +nu,=n
Relations
A. Recurrence
(n+m;nl+l,
n2+1, .
.
.,n,+l)=c
(ntm-1;
nl+l,
.
.
.,nk-1+1,
nk,nk+l+l,
.
.
.
k=l
,%i+1>
B. Checks ml1 * Z(n;n,,%,
all TLi2 1
. . .,n,)=
summed over ‘n, -:-n,+ . . . +n,=n
1m! sLrn’ .
.,
J
&J*=(-l)n-mS;~)
~:(7L;a,,a?,
.
Z(n;u,,az,
. . ., a,)‘=
summed over aI+2%+
. . . +nu,=n
g;Lmm,
C. Numerical analysis (Faa di Bruno’s formula) ~l(s(z))=~~of’“‘(g(z))~(n;a,, summed over al+2a2+ *see
page
II.
6, . . .) Un)‘{g’(z)}“‘{g”(2))=z. . . . +na,=n
and al+%+.
. . {g’“‘(z)j”n
. . +an=m.
and ~,+a~+.
. . +un=m
824
COMBINATORIAL
PIlO
ANALYSIS
. ..o
Pz
P,
2
...
.
Pa
P,
PI
...
.
...
.
...
0
...
n-l
...
P,
P,-1
P,
Pn--l
=Z(-l)“-m:(n;
al, &, . . ., u”)*P:‘P;z
. . . P>
summed over a1+2a2+ . . . $non=n; e.g. if Pn=Zj,rx~ for k=l, 2, . . ., n then the determinant and sum equal n!Zx1x2 . . . x,, the latter sum denoting the n-th elementary symmetric function of x,, x2, . . ., x,. 24.1.3
Stirling
Numbers I.
of the
First
Kind
III.
Asymptotics
and
Special
Values
~S~~~~-(n-l)!(-y+lnn)~-l/(m-l)!
De&&ions
for m=o(ln
A. (-1)“~“Sag’ is the number of permutations of n symbols which have exactly m cycles. B. Generating functions x(x-1)
. . . (x-n+l)=m&
{ln (l+x)}“=m!
$,
S$@ $
Sim)xm SO’76 = 60,
bl
S~l)=(-l)“-l(n-l)!
C. Closed form (see closed form for 8;Am1”‘)
fp-l),, 78
n 0
II.
2
fp’ n = ]
Relations
A. Recurrences
24.1.4
#?C?),=S$n-l)-nS(m)
n)
Stirling
Numbers I.
n
of the
Second
Kind
De.finitioxle
A. ~~“‘5s the number of ways of partitioning set of n elements into m non-empty subsets. B. Generating functions B. Checks x-g,
n>l
%ijl”‘x(x-1)
. . . (x-m+l>
2 (-l)“-mS~m)=n! m=O
Y(l-x)-1(1-2x)-1
. . . (l’-mx)-l=,Cn
gP)x”-n J
v C. Numerical
(x)<m-l
analysis C. Closed form
if convergent.
g~)=-$&
. -
(--I)“-”
(;)
k”
a
COMBINATORIAL II.
825
ANALYSIS
B. Generating
Relations
function
A. Recurrences g$y= (y)
m s ncm)+ 5 h-1) II
$3p’=,~$-,
@
n>m>_l n2 m>r
&&c:-‘, sp-”
c.
Closed form
B. Checks
s(h, k)=;# ((x))=x-[x] =o
((g))
-+ if 2 is not an integer if x is an integer II.
Relations
A. Recurrence c= sgpn)(2)
A’“j(x)=m!
ikI=&k! k-0
III.
gig,“, c;;)
=
g kmZ=j$ a
if convergent
B$‘x’ $
Asymptotics
and
lim n+-
m-s
B. Check
{‘s} Special
sp)=
Values
(-l)k3yp(n-v)=ul(n)
C 1<3klf<$& 2
-
m!-l III.
gp)
*+m
rv-
mzn 2”f7&!
24.2.2
=
BP’=
1
Into
Distinct
Parts
A. q(n) is the number of decompositions of n into distinct integer summands without regard to so that q(5)=3. order. E.g., 5=1+4=2+3
goq(n)xn=nil
24.2. Partitions
.I.
4n@
Partitions
B. Generating
;p-lq)
Unrestricted
1rn&
I. Definitions
gf’=f&l, p,
Asymptotics
p(n)--le
for n= o(mt)
b 2&m n-t-
24.2.1
p(n)+
Partitions
Definitions
A. p(n) is the number of decompositions of n into integer summands without regard to order. E.g.,5=1+4=2+3=1+1+3=1+2+2=1+1+ l-t-2=1+1+1+1+1 so that p(5)=7.
function (l+x’)=nil
(1-x2”-‘)-’
Ixl
C. Closed form k p(n)=;&
A,,-,(n)
&Jo
(&-&-&iii$
where Jo(x) is the Bessel function of order 0 and AznM1(n) was defined in part I.C. of the previous subsection.
826
COMBINATORIAL II.
Relations
ANALYSIS
g(x) =gI
f(nz) for all x>O if and only if
A. Recurrences
j(x)=2
p(n)g(nx)
for all 2>0
n-1
o<&k
(7w3F)=(-1)’
if n=3Pfr
-
a@>=1
=0 otherwise
andif gl gl If(mnx) )=gl The cyclotomic .pFl)““‘d’
polynomial
B. Check
III.
a<3~~<,(-l)14(~-(3~~fk))=l -
24.3.
24.3.1
Theoretic
The
Mtibius
Functions
24.3.2
=o B. Generating
/4nJn-a= l/Z(S)
T&=1
Euler
Totient
Function
A. q(n) is the number of integers not exceeding and relatively prime to n. B. Generating functions
1) 2 (p(n)n-*= i+-n-1 T(s)
functions 5
Asymptotics
I. Definitions
if n=l if n is the product of k distinct primes if n is divisible by a square >l.
=(-l)*
The
Function
I. Definitions
A. &)=l
n is
- r*(n) Inn=-1 c+I n
Asymptotics
Number
of order
if n=‘+ =0 otherwise.
III.
a&) If(nx)) converges.
m p(n)x= 2 cn=l 1--z”=(l_s)2-
as>1
s’s>2
- * b 2.\ ny Jxl
C. Closed form Ixl
q(n) =npyn II.
Relations
A. Recurrence p(mn)=p(m)p(n)
over distinct
II.
if (m,n)>l
n-1
(m, n)=l
dndd)=n 5: for all n
g(z) =g f(x/n) for all x>O if and only if n==1 M
Relations
B. Checks
g(n) =lI f(d) for all n if and only if din f(n) =& g(n/d)fi@’ for all n
f(x)=C
n.
dmn> =dmMn)
cp(n) =
.
>
A. Recurrence
B. Check dn P(d)=&1 7 C. Numerical analysis g(n) = d A f(d) for all n if and only if f= f(n) =g crkOsW>
1 -i
primes p dividing
if (m, n)=l
=o
(
p(n)g(x/n) for all x>O
F n
i+
0
a~(“) = 1 (mod n) III.
Asymptotics
f kgr(k)=;+0(v)
(a, n)=l
COMBINATORIAL
24.3.3
Divisor I.
$ gl(m)=S+O (F)
Functions
Definitions
A. U&J) is the sum of the k-th powers of the divisors of n. Often uo(n) is denoted by d(n); and a(n) by u(n). B. Generating functions n$l dW’=r(4i-(s-k)
B>k+l
C. Closed form uJn)=~
cF= ii p
pl(+“-l
i=l
II.
n=prlptt
Pf--l
=
‘Jkhbkh>
Relations
uk(np)
=
uk(nbk(p>
(m,
1
p prime
-pk.ok(n/p)
III.
$ $I
n)=
Asymptotics
uo(m)=ln n+27-l+O(n+) (y=Euler’s
24.3.4
constant)
Primitive I.
-. Roots
Definitions
The integers not exceeding and relatively prime to a fixed integer n form a group; the group is cyclic if and only if n=2,4 or n is of the form pk or 2pk where p is an odd prime. Then g is a primitive root of n if it generates that group; i.e., if g, g*, . . ., g@tn)are distinct modulo n. There are q((o(n)) primitive roots of n.
. . . pza
A. Recurrences uk(mn>
827
AIVALYSIS
II.
Relations
A. Recurrences. If g is a primitive root of a prime p and gp-’ f l(mod p”) then g is a primitive root of pk for all k. Jf gP-‘=l(mod p”) then g+p is a primitive root of pk for all k. If g is a primitive root of pk then either g or g+pk, whichever is odd, is a primitive root of 2~‘. B. Checks. If g is a primitive root of n t.hen gk is a primitive root of n if and only if (k, v(n)) = 1, and each primitive root of n is of this form.
References Texts
[24.1] L. Carlits, Note on Ntirlunds polynomial BF’, Proc. Amer. Math. Sot. 11, 452-455 (1960). [24.2] T. Fort, Finite differences (Clarendon Press, Oxford, England, 1948). [24.3] H. W. Gould, Stirling number representation problems, Proc. Amer. Math. Sot. 11, 447-451 (1960). [24.4] G. H. Hardy, Ramanujan (Chelsea Publishing Co., New York, N.Y., 1959). [24.5] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed. (Clarendon Press, Oxford, England, 1960). [24.6] L. K. Hua, On the number of partitions of a number into unequal parts, Trans. Amer. Math. Sot. 51, 194-201 (1942). 124.71 C. Jordan, Calculus of finite differences, 2d ed. (Chelsea Publishing Co., New York, N.Y., 1960). [24.8] K. Knopp, Theory and application of infinite series (Blackie and Son, Ltd., London, England, 1951). [24.9] L. M. Mime-Thomson, The calculus of finite differences (Macmillan and Co., Ltd., London, England, 1951). [24.10] L. Moser and M. Wyman, Stirling numbers of the second kind, Duke Math. J. 25, 29-43 (1958). 124.111 L. Moser and M. Wyman, Asymptotic development of the Stirling numbers of the first kind, J. London Math. Sot. 33, 133-146 (1958). I24.121H. H. Ostmann, Additive Zahlentheorie, vol. I (Springer-Verlag, Berlin, Germany, 1956).
[24.13] H. Rademacher, On the partition function, Proc. London Math. Sot. 43, 241-254 (1937). [24.14] H. Rademacher and A. Whiteman, Theorems on Dedekind sums, Amer. J. Math. 63, 377-407 (1941). [24.15] J. Riordan, An introduction to combinatorial analysis (John Wiley & Sons, Inc., New York, N.Y., 1958). [24.16] J. V. Uspensky and M. A. Heaslet, Elementary number theory (McGraw-Hill Book Co., Inc., New York, N.Y., 1939). Tables
[24.17] British Association for the Advancement of Science, Mathematical Tables, vol. VIII, Number-divisor tables (Cambridge Univ. Press, Cambridge, England, 1940). n 5 10’. [24.18] H. Gupta, Tables of distributions, Res. Bull. East Panjab Univ. 13-44 (1950); 750 (1951). [24.19] H. Gupta, A table of partitions, Proc. London Math. Sot. 39, 142-149 (1935) and II. 42, 546-549 (1937). p(n), n=1(1)300; p(n), n=301 (1)600. 124.201 G. Kavdn, Factor tables (Macmillan and Co., Ltd., London, England, 1937). n 1256,000. [24.21] D. N. Lehmer, List of prime numbers from 1 to 10,006,721, Carnegie Institution of Washington, Publication No. 165, Washington, D.C. (1914). [24.22] Royal Society Mathematical Tables, vol. 3, Table of binomial coefficients (Cambridge Univ. Press, Cambridge, England, 1954). (y).for r
/
828
COMBINATORIAL
Table
BINOMIAL
24.1
n/m
0
1
:
: 8
$11 51
4 5
98 10
11 1
i 10
11 12 13 14 15
1 1 1 1 1
16 17 18 19 20
1 1 1 1 1
2 i8 9 &B 36
ANALYSIS
COEFFICIENTS
(;)
1
11 12 13 14, 15
55 6 8 Q 105
165 220 286 364 455
16 17 18 19 20
120 136 153 171 190
560 680
210 231 253 276 300
1330 1540 1771 2024 2300
330 %!-? 1001 1365 1820 2380 3060 3876 4845
4368 6188 8568 11628 15504
;$-$i.i&
20349 26334 33649 42504 53130 65780 80730 98280 1 18755 1 42506
1 1 1 1 1
26 27 28 29 30
325 351 378 406 435
2600 2925 3276 3654 4060
31 32 33 34 35
1 1 1 1 1
31 32 33 34 35
465 496 528 561 595
4495 4960 5456 5984 6545
31465 35960 40920 46376 52360
1 2 2 2 3
36 37 38 39 40
1 1 1 1 1
36 37 38 39 40
630 666 703 741 780
7140 7770 8436 9139 9880
58905 66045 73815 82251 91390
41 42 43 44 45
1 1 1 1 1
41 42 43 44 45
820 861 903 946 990
10660 11480 12341 13244 14190
101270 111930 123410 135751 148995
i 45
13260 330 ?92-
9 128; 2002 e
26 27 28 29 30
1 8
:: 21Q-
if3
5985 7315 885’5 10626 ,p6%> .A 14950 17550 20475 23751 27405
1035 15180 %67 : fi; 1081 16215 48 1 48 1128 17296 49 1 49 1176 18424 50 1 50 1225 19600 From Royal Society Mathematical Press, Cambridge, England, lY54
1 7
2: 56;-
5 1~ Q
1-t
10
;.
45
8
7
3 L
8008
165 495 1287
38760
11440 19448 31824 50388 77520
75582 ~ 1 25970
54264 74613 1 00947 1 34596 1 77100
2 45157 3 46104 4 80700
4 90314 7 35471 10 81575
2 2 3 4 5
30230 96010 76740 75020 93775
6 8 11 15 20
57800 88030 84040 60780 35800
15 22 31 42 58
62275 20075 08105 92145 52925
69911 01376 37336 78256 24632
7 9 11 13 16
36281 06192 07568 44904 23160
26 33 42 53 67
29575 65856 72048 79616 24520
78 105 138 181 235
88725 18300 84156 56204 35820
3 4 5 5 6
76992 35897 01942 75757 58008
19 23 27 32 38
47792 24784 60681 62623 38380
83 102 126 153 186
47680 95472 20256 80937 43560
302 386 489 615 769
60340 08020 03492 23748 04685
; 9 10 12
z: 62598 86008 21759
44 52 60 70 81
96388 45786 96454 59052 45060
224 269 322 383 453
8i940 78328 24114 20568 79620
955 1180 1450 1772 2155
48245 30185 08513 32627 53195
163185 13 70754 93 66819 535 24680 2609 178365 15 33939 107 37573 628 91499 3144 194580 17 12304 122 71512 736 29072 3773 211876 19 06884 139 83816 859 00584 4509 230300 21 18760 158 90700 998 84400 5368 Tables, vol. 3, Table of binomial coefficients. Cambridge (with permission).
32815 57495 48994 78066 78650 Univ.
COMBINATORIAL
BINOMIAL
n\m
9
COEFFICIENTS
(;)
10
11
1;
2 43 44 45 46 ts7 49 50
12
24.1
13
1
55 220 715 2002 5005
1198 20
Table
.
9 10
16 17
829
ANALYSIS
1144oc , 24310 48620 92378 1 62960
1
1
;i 364 1365
*.-
4368 12376 31824 75582 1 61960 -
iEE
43758* 92378 1 84756
1
;2 455
1fl;
1820 6188 18564 50388 1 25970
560 2380 8568 27132 77520
2 4 8 13 \ 20
93930 97420 17190 07504 42975
3 6 11 19 32
52716 46646 44066 61256 68760
3 7 13 24 44
52716 05432 52078 96144 57400
2 6 13 27 52
93930 4664652078 041.56 00300
31 46 69 100 143
24550 86825 06900 15005 07150
53 84 131 200 300
11735 36285 23110 30010 45015
77 130 214 345 546
26160 37895 74180 97290 27300
96 173 304 518 864
57700 83860 21755 95935 93225
201 280 385 524 706
60075 48800 67100 51256 07460
443 645 925 1311 1835
52165 12240 61040 28140 79396
846 1290 1935 2860 4172
72315 24480 36720 97760 25900
1411 2257 3548 5483 8344
20525 92840 17320 54040 51800
2062 3473 5731 9279 14763
53075 73600 66440 83760 37800
941 1244 1630 2119 2734
43280 03620 11640 15132 38880
2541 3483 4727 6357 8476
86856 30136 33756 45396 60528
6008 8549 12033 16760 23118
05296 92152 22288 56044 01440
12516 18524 27074 39107 55868
77700 82996 75148 97436 53480
23107 35624 54149 81224 1 20332
89600 67300 50296 25444 22880
3503 4458 5639 7089 8861
43565 91810 21995 30508 63135
11210 14714 19173 24812 31901
99408 42973 34783 56778 87286
31594 42805 57520 76693 1 01505
61968 61376 04349 39132 95910
1 1 2 2
78986 10581 53386 10906 87600
54920 16888 78264 82613 21745
1 2 3 5 7
76200 55187 65768 19155 30062
76360 31280 48168 26432 09045
11017 13626 16771 20544 25054
16330 49145 06640 55634 33700
40763 51780 65407 82178 1 02722
50421 66751 15896 22536 78170
1 1 2 2 3
83196 33617 00368 16264 38800
3 5 6 9 12
89106 22514 96685 22637 13996
17655 00851 34468 34836 51100
10 14 19 26 35
17662 06768 29282 25967 48605
30790 48445 49296 83764 18600
33407 74171 25952 91359 73537
2 4 11 24 52
03490 97420 44066 9614400300
104 00600 200'58300 374 42160 678 63915 1197 59850
830 Table
COMBINATORIAL BINOMIAL
24.1
14
ANALYSIS
COEFFICIENTS
(;) 17
18
1:; 969 4845
1; 171 1140
1
20349 74613 2 45157 7 35471 20 42975
5985 26334 1 00947 3 46104 10 81575
15
16
19
1: 120 680 3060 11628 38760 1 3 8 19 44
'1
1;: 816
3876 15504
16280 19770 17190 61256 57400
1 4 13 32
54264 70544 90314 07504 68760
96 200 401 775 1454
57700~ 58300 16600 58760 22675
77 173 374 775 1551
26160 83860 42160.. 58760 17520
53 130 304 678 1454
11735 37895 21755 63915 22675 -
31 84 214 518 1197
24550 36285 74180 95935 54850
2651 4714 8188 13919 23199
82525 35600 09200 75640 59400
3005 5657 10371 18559 32479
40195 22720 58320 67520 43160
3005 6010 11668 22039 40599
40195 80390 03110 61430 28950
2651 5657 11668 23336 45375
82525 22720~ 03110 06220 67650
37962 61070 96695 1 50845 2 32069
97200 86800 54100 04396 29840
55679 93641 1 54712 2 51408 4 02253
02560 99760 86560 40660 45056
1 2 3 6
1 2 5 8
85974 59053 87811 10211 87323
96600 68710 43380 17810 78800
73078.72110 28757 74670 22399 74430 77112 60990 28521 01650
119:
2:
1330 7315 33649
1540 8855 42504 1 77100
f 3stl% 15 46 131 345 864
62275 86825 23110 97290 93225
6 22 69 200 546
57800 20075 06900 30010 27300
2062 4714 10371 22039 45375
53075 35600 58320 6143067650
1411 3473 8188 18559 40599
20525 73600 09200 67520 28950
1 3 6 11
90751 76726 35780 23591 33802
35300 31900 00610 43990 61800
1 3 6 13
85974 76726 53452 89232 12824
966OW 31900 63800 64410 08400
.
3 5 7 11 16
52401 28602 83789 49558 68713
52720 29080 60360 08528 34960
6 9 15 22 34
34322 86724 15326 99116 48674
74896 27616 56696 17056 25584
10 16 26 41 64
30774 65097 51821 67148 66264
46706 21602 49218 05914 22970
15 25 42 68 110
15844 46619 11716 63537 30686
80450 27156 48758 97976 03890
20 35 60 102 171
21126 36971 83590 95306 58844
40600 21050 48206 96964 94940
24 44 80 140 243
46626 67753 04724 88314 83621
70200 10800 31850 80056 77020
23 34 48 67 93
98775 16437 23206 52488 78456
44005 74795 23240 72536 56300
51 75 109 157 225
17387 16163 32600 55807 08295
60544 04549 79344 02584 75120
99 150 225 334 492
14938 32326 48489 81089 36896
48554 09098 13647 92991 95575
174 274 424 649 984
96950 11888 44214 92703 73793
26860 75414 84512 98159 91150
281 456 730 1155 1805
89530 86481 98370 42584 35288
98830 25690 01104 85616 83775
415 697 1154 1885 3040
42466 31997 18478 16848 59433
71960 70790 96480 97584 83200
20
23
.1
24
25
/I ? /’
1
1
232: 1771 10626 53130
2f3 2024 12650
2; 276 2300
2 11 42 143
65780 96010 84040 92145 07150
14950 80730 3 76740 15 60780 58 52925
443 1290 3548 9279 23199
52165 24480 17320 83760 59400
201 645 1935 5483 14763
60075 12240 36720 54040 37800
78 280 925 2860 8344
88725 48800 61040 97760 51800
26 105 385 1311 4172
29575 18300 67100 28140 25900
7 33 138 524 1835
36281 65856 84156 51256 79396
1 2 6 13
55679 28757 87811 23591 12824
02560 74670 43380 43990 08400-
37962 93641 2 22399 5 10211 11 33802
97200 99760 74430 17810 61800
23107 61070 1 54712 3 77112 8 87323
89600 86800 86560 60990 78800
12516 35624 96695 2 51408 6 28521
77700 67300 54100 40660 01650
6008 18524 54149 1 50845 4 02253
05296 82996 50296 04396 45056
26 53 105 201 377
91289 82578 20494 26164 36557
37220 74440 81860 00080 50150
fl 38% 31 08105
100 15005 300 45015
44 45
846 2257 5731 13919 32479
72315 92840 66440 75640 43160
1 3 6 13
73078 59053 35780 89232 78465
72110 68710 00610% 64410 28820
26 51 96 176 316
91289 37916 05669 10393 98708
37220 07420 18220 50070 30126
46 1;
560 82330 07146 1673 976 24796 56794 79106 49896
694 35265 80276 1255 42392 2231 17595 87422 66528
49 '50
2827 75273 46376 4712 92122 43960
3904 99187 16424 6732 74460 62800
24 51 105 210 411
46626 37916 20494 40989 67153
70200 0742081860 63720 63800
789 03711 13950 2738 1483 38976 94226 81648 56572 4969 98965 48176 8874 98152 64600
1 3::
2;
2600 17550 98280 4 75020 20 35800
20 44 96 201 411
21126 67753 05669 26164 67153
40600 10800 18220 0008fk 63800
823 34307 27600 3095 1612 38018 76995 35776 41550 5834 33568 17424 10804 32533 66600
325 2925 20475 1 18755 5 93775
15 35 80 176 377
15844 36971 04724 10393 36557
80450 21050 31850 50070 50150
789 03711 139503224 38018 1612 76036 83100 41550
3:: 3276 23751 1 42506
10 25 60 140 316
30774 46619 83590 88314 98708
46706 27156 48206 80056 30126
694 35265 80276 1483 38976 3095 76995 94226 35776r
6320 53032 18876 6320 53032 18876 12154 86600 36300 12641 06064 37752
COMBINATORIAL
Multinomials
Table
and Partitions
7r=l”l, 2”2, . . ., nun, n=a1+2a2+ Ml=
831
ANALYSIS
. . . +nq,,
(n; nl, n2, . . ., n,) =n!/(l!)al(2!)a2
m=al+az+
24.2
. . . ta,
. . . (n!)“n
M2= (n; al, az, . . ., a,,) *=n!/lala1!2u2a2! . . . &a,! Ma=@;
H
m
al, az, . . ., a,)‘=n!/(l!)0iaI!(2!)%~!
Ml
n
M3
442
1
1
1
1
1
::
2 12
1 2
1 1
1 1
; 6
3” 1
4 193 22 12, 2 14
: 6 12 24
ii 3 6 1
1 5 10 ;i 60 120
6 :: 3
ii 2: 3; 12, 4
1, 293 23 la, 3 12, 22 14, 2 16 7 1, 6
i’45 3
4
+, 5 1,2,4 1, 32 22, 3 la, 4 12, 2, 3 3
5
;1;
6 7
13’ 22 11: 2 1’
8
m 1 2
3
3 1, 2 13
5 1,4 2, 3 12, 3 1, 22 13, 2 1”
. . . (n!)“na,!
88 30 ix 120 180 360 720
: I; 42 105 140 210 210 420 630 840 1260 2520 5040
f;: 20 20 15 10 1 120 144 1: 90 120 :: 45 15 1 720 840 504 420 504 630 280 210 210 420 105 70 105 21 1
; 1 4
1 4 : 1
i 10 10 15 10 1
i 15 10
6 l 9
1 2
3
1, 7 32,: 41 1: 6 1, 2, 5 1, 3,4 22, 4 2, 32 la, 5 12,2, 4 12,32 1, 22, 3 14, 4 la, 2, 3 12, 2a 16, 3 14, 22 16, 2 18 9 1, 8 2, 7 3, 6 4, 5 12, 7 1, 2, 6 1, 3, 5 1, 42 2
4
: 5; 21 105 70 105 35 210 105 35 105 21 1
8
24
5
ix 15 4”; 15 1
7r
5
6
3,354 3; ’ 13,6 12,2, 5 12,3, 4 1, 22, 4 1, 2,32 23, 3 14, 5 13, 2, 4 13, 32 12, 22, 3 1, 24 16,4 14, 2, 3 13, 23 16, 3 16, 22 17,2 19
Ml
M3
442
i!i
28
;i 56 168 280 420 560 336 840 1120 1680 2520 1680 3360 5040 6720 10080 20160 40320 1 3: 84 126 2;; 504 630 756 1260 1680 504 1512 2520 3780 5040 7560 3024 7560 10080 15120 22680 15120 30240 45360 60480 90720 181440 362880
5040 5760 3360 2688 1260 3360 4032 3360 1260 1120 1344 2520 1120 1680 105 420 1120 420 112 210 28 1 40320 45360 25920 20160 18144 25920 30240 24192 11340 9072 15120 2240 10080 18144 15120 11340 10080 2520 3024 7560 3360 7560 945 756 2520 1260 168 378 36 1
1 2: E 28 168 280 210 280 56 420 280 840 105 5;: 420 56 210 28 1
; is
126 36 252 504 315 378 1260 280 7:: 1260 1890 2520 1260 126 1260 840 3780 945 126 1260 1260 84 378 36 1
832
COMBINATORIAL
Table
24.2
n 10
m
lr 10 1,9
::
32'; 4; 6 52 12, 8 172, 7 1,3, 6 1,4,5 22, 6 2,3, a 5 $44 13: 7 12, 2, 6 12, 3, 5 12, 42 1, 22, 5 1, 2, 3,4 1, 33
3
4
*See
page
Multinomials
11.
MI 1 10 45 120 210 252 90 360 840 1260 1260 2520 3150 4200 720 2520 5040 6300 7560 12600 16800
A& 362880 403200 226800 172800 151200 72576 226800 259200 201600 181440 75600 *120960 56700 50400 86400 151200 120960 56700 90720 151200 22400
M3
1 10 45 120 210 126 45 360 840 1260 630 2520 1575 2100 120 1260 2520 1575 3780 12600 2800
ANALYSIS
and
Partitions
n 10
m
?r 3
5
6
7
;z’ ;2 14: 6 13, 2, 5 13, 3, 4 12, 22, 4 12, 2, 32 1, 23, 3 25 15, 5 14, 2, 4 14, 32 13, 22, 3 12. 24 1"; 4 16, 2, 3 ;+4 3
8 9 10
16: g22 18, 2 1'0
MI
Mz
18900 25200 5040 15120 25200 *37800 50400 75600 113400 30240 75600 100800 151200 226800 151200 302400 453600 604800 907230 1814400 3628800
18900 25200 25200 60480 50400 *56700 50400 25200 945 6048 18900 8400 25200 4725 1260 5040 3150 240 630 45 1
A43
3150 6300 210 2520 4200 9450 12600 12600 945 252 3150 2100 12600 4725 210 2520 3150 120 630 45 1
COMBINATORIAL STIRLING
NUMBERS 1
833
ANALYSIS OF THE ( , ,?,
FIRST
KIND
Sirn)
Table 24.3
;
-;
I /
% 24 -120 720 -5040 40320 -3 62880 36 -399 4%0 62270 8 71782
11 12
i3
14 15 16
-225 1624 - 13132 1 18124 -11 72700
28800 16800 01600 20800 91200
-106 1205 - 14864 1 98027 -28 34656
28640 43840 42880 59040 47260
127 -1509 19315 -2 65967 39 21567
53576 17976 59552 17056 97824
-130 76743 68000
433 91630 01600
-616 58176 14720
:;
- 35568 2092 27898 74280 88000 96000
1 -7073 22340 42823 55905 93600 79200
-1 10299 82160 22448 24446 37120 24640
:;
-1216 40237 64510 37057 04088 28000 32000
431 37698 -22 56514 80585 68176 21600 38400
-668 34 01224 60973 95938 03411 22720 53280
21
2432 90200 81766 40000
2": 24
11- 51090 24000 72777 94217 76076 17094 40000 80000 -258 52016 73888 49766 40000
-8752
94803 67616 00000
13803 75975 36407 04000
-411 86244 48476 77933 81078 01702 54547 40000 20000 965 38966 65249 30662 40000 -23427 87216_,39871 85664 00000
-2 67 56146 98631 90286 67377 32163 09306 84000 88000 -1595 39850 27606 68605 44000 39254 95373 27809 77192 96000
>$0,7’10726=& *-Ye
n\m
4
5
4 5
-1;.
1
6 7
85' -735,
9" 10
- 67284 6769 7 23680
:z 15
20 ::
'
-15 175
,'
505 -8707 1 58331 -30 32125 610 11607
69957 77488 39757 40077 57404
03824 75904 27488 19424 91776
-270 4836 - 90929 17 95071 -371 38478
68133 60092 99058 22809 73452
45600 33424 44112 21504 28000
-1 81664 8037 81182 97952 26450 06970 76096 51776
-65 48684 85270 30686 97600
42 80722 86535 71471 42912
:; -39365 1573 61409 75898 13866 28594 15107 31181 32800 31200
-1050 26775 05310 03356 75591 42796 74529 03823 84576 62624
From unpublishedtables of Francis L. Miksa, with permission.
-9 133 -2060 33361 -5 66633
16930 95730 .-.__ 06836 03756 05680
-2 84093 12870 31590 93124 51509 18114 88800 68800
23
-2: 322 -4536 63273
22449 -1960 -2 69325
i.
34 -459 .-. 6572 - 99577 15 97216
11 12
16
i i -j i
6
100 -1886 36901 -7 55152 161 42973 -3599 83637 -___. -20 21687 507 79532 -13237 14091
96721 15670 26492 75920 65301
02055 39535 70150 18786 66760 07080 58880 34384 63024 18960
97951 79476 07200
38169 95448 __-_. ._. .- 02976 .-...
37691 06827 41568 53430 28501 98976 57918 58577 60000
834
COMBINATORIAL Table
STIRLING
24.3
n\m
FIRST
KIND
Sim)
8
-2; 546 -9450
9 10 11
16 17
-27 537 - 11022 2 35312 -52 26090
:i 20
1206 - 28939 7 20308 -185 88776 4969 10165
64780 58339 21644 35505 05554
28032 45234 84661 50405 33625
10680 77960 84200 49984 12720
37803 73354 09246 19497 96448
73360 47760 53696 76576 36800
3 -69 1350 - 26814 5 -114 2487 - 55192 12 95363 -311 7744 -1 99321 53 04713 -1459 01905
33364 65431 97822 71552 52766
-55 1925 - 55770 14 14413 -373 12275
:: :; 15 16 :z: :90 -10 276 -7707 2 20984 -65 08376
-2 57 -1471 38192
9280 30571 79248 07534 20555
95740 59840 94833 08923 02195
14229 01910 40110 45497 17966
98655 92750 12973 94331 81468
11450 35346 61068 17396 50000
1 -37 1103 - 33081 10 14945
13
n\m
-4:
18150 57423 26634 36473 53775
1320 - 32670 7 49463 -166 69653 3684 11615
46311 29553 69012 83528 18452 91936 16815 47048 69899 43896 31613 01695 10661 54458 26492
90640 76800 37360 12976 88000
I0 1
n\m 10
9
-316 870
1 57773 -26 37558 449 90231 -7909 43153 i 44093 22928
:: 14 15
2243 25
OF THE
i
;
21 22
NUMBERS
ANALYSIS
la -430 10241 -2 50385 63 -1634 43714 -12 04749 342 18695
03081 98069 22964 26016 95940
82076 59531 81053 77407 87554
28000 77553 01929 32658 67550
20992 72465 95944 17376 71489
94896 83456 12832 32496 92880
11
12
-6; 2717 - 91091 27 49147
3731 -1 43325
' -6 166 -4628
-785 21850 02026 15733 06477
58480 31420 93980 86473 51910
30753 60053 23088 71136 52782
50105 50868 11859 85742 52146
40395 59745 49736 04996 37300
-7;
48 -1569 48532 -14 75607 446 52267 - 13558 4 15482 -129 00665 4070 38405 -1 30770 92873
51828 38514 98183 70075 67558
99622 524% 22764 03732 57381 99530 30525 31295 69521 73500
16
15
14
1
:z 15
-9; 5005 -2 83 -2996 1 02469 -34 22525
16 17 :i 20 21 ;; 2254
12 -413 13990
18400 94022 50806 37272 11900
-3 138 -5497 2 06929
1131 02769 95381 37310 09998 02531 36304 58470 86207 35671 43013 14056 94520 02391 06865
-75 2718 - 97125 34 70180 -1246 20006
61111 a6118 04609 64487 90702
6580 23680 96582 89282 33630 84500 69881 39913 04206 15000
17
18
:87 19 20
-15: 13566 -9 20550
-17: 16815
-1910
21 22
533 27946 - 27921 67686
-12 56850 797 21796
20615 89765
n\m
05903 ;; -64013 67173 25 29088 66798
36096 57942 67135
1
-10:
24- 12764 45460 -1219 12249
43496 47198 80000
- 72346 1168 69596 96626 41 49085 13800
4 -159 6238 -2 40604 92 44691
20
19
-16
-120 8500 -4 68180 223 23822 -9739 41900 01717 97183 24164 60386 13761
-13: 10812 -6 62796 349 16946
71630 88730 21941 44556 73550
-5
21
- 16722 7 52896 -325 60911 13727 25118 70058 63218
80820 68850 03430 00831 64500
22
23
24
35926 -25: 95000
-27: 42550
-300
25
1
-1
1
-210 25025
-231
1684 -22 40315 23871 12768 42500
-29 32776 30107 2388 10495
-37
1
1
COMBINATORIAL
2 : 1: z:
II\ ,,, 1 : 3 4
5
1 :
1 1 1 1 1
127
10
1
255 511
:: 13
: 1
::
1
lb
1
23
:
b
7 9”
6
1 3;; 966 3025 9330
32767 b5535
71 214 b44
1 31071 2 b2143 5 24287
77215
41686 57825 39010
1 12596
06446
72 291 llba 4677
2; 462 5880 b3987 b 27396 57 :5424 493 29280 4087 41333
70050 23825 74750 34501 38810
60276 a231 4 38264
23799 09572 19991
14948 67440 17305
29987 38518
04540 lb310
149
:“5
227 31 67746 a3248
,I
95028 b5010
91620 47084 00400
22372 31828
21583 11183
68583 20505
190 12
02430
55 1705 39325 7 52752 126 62650
84250 22303
3bb28 2682 634 1OOlb a6425
25008 b8516 56957 13089
89001 70286
44384
b2bbO
1937 27583
95755
54990
34150
3 71121
26805
63803 33785 b4655
33035 24764 a8117
65204 33920 96900
03514 7118 9 59340
37993 71322 12973
91275 77954
llb7 120 b2257 9214P 10929 43260
73005 72500
1203 108 25408 lb339
17849 21753
87500 31500
3200b
72970 75849
491 65620 10178
33391 51300
b
33560 30420 45907 27734
30178 51137 a3930 58260
2249 120 b 40128 88883
07848
74680
1 .i
83405 84530
70000
47 591
1 24196 12327
22324 57118
n,
45225
44725
12
28866
2b2b2
62804
98579 bO3bO
28490
10 b1753 114 4614b 1201 12a2b
b20 27
362
56794
53393
22275 59502
a207 95288
12563 412 1Olbb 34669
35590
01779 95364
1155
04908 29486 17791
802
30alb 60788
51 35130
90799 10153 50199
26558
49898 51039
1
b71
74195
10882b83 24 1 93020 b7216
2658
lb330 99896 b 09023 37 02641
10751
3
60978 36908
75560 51100
95250
45
5120 289
18 :;
25
b90a2
07834 49741
316 750
03480 b2b79
1 14239 13251 9
a4100
9
97510 0932b
1517
12055
baaal
8
83910 94132 08424
:",
:: ::
170
45652
ba401
12625 78219
b4053
2 04159 la 90360
b9 430
379 1913 48500 1 43668
27349
1 75057 11 06872
95545 a4710 90500
9641
12320 27840
21417
90550 51651
56527 2 89580 14 75892 74 920bO
11880 1 59027 99612
209 2lbb
1114
2 19
:: 23
la
08501 75035 bb920
10961
98901 37290 06985 bb950 15901
i
a2604 04786 a3400 34839
55950
77786 b3425 105bb 12897
1 79487 13 23652 93 21312 b34 36373 4206 93273
2 46730 75 400 2107
91745
18 15090
43625 79450 35501 00806 91025
2% 2646 22827
13 79400
32530
1717 6943 27988 4 52321
32818 57081 74624 29246 35540
1050 b951 42525
1 45750 11501
b 25 103 423
1934 48101
1
a8607
lb7
3% 1701 7770 34105
580b 17423 52280 56863 4 70632 14 11979
97151
41 94303 83
1'0
28501 ab526 2 blb25 7 88970 23 75101
10 48575
.’
1 2;
1023 2047 4095 8191 16383
20
ANALYSIS
114
48507
16
1256 1Obab 28924
54638 39160 b0380
babla 49092 b0579 25603
68481 la331 22000 41390
33437
44260
13460
2 49900 6020 a4 63025 2435
1 25
329 14 93040 51652 102lb 91758
36209 b8b2
95811
03608
04500 al331 41000 07115
*
96000
18
Ii
08778 24580 77530
10
1
15
lb
120
:i :;
3 67200 7820 4523 139 29200 16778
1 9996 136
15:
223.50954 5 27136
7
12597 41285
15675 17:
1901 i
:: :: 25
341 56159 30874 19582847
4 29939
02422 94044 46553
,, rw,
b25.90 43200 47080 29331
47200
23611 71824 51616
14041 349
42047 52799
lb1 4 99169 09499
a8803 36915 93110
44464 74004 27264 b5555 95960
4806
33313
21
22
53310
327
9 24849 23648 56785
23435 74629 85369 25445 94925
2:j
13 38807797 62189
lb
24
a9850 19285 al779 39170 b9675
2-9
1
21
2
20b776 52665
20
20
::
2 60465 8099
210
1
Ia 59550 23485 b2201 1169
72779 94750
28336231 lb85 24
19505 54606
1
25: 32
00450 33902
40250276
From unpublished tables of Francis L. Miksa, with permission.
30;
1
COMBINATORIAL
,I
I’(‘0
V(fO
04226 39943 81589 29931 86155
3658 4097 4582 5120 5718
100 101 102 103 104
1905 2144 2412 2712 3048
69292 81126 65379 48950 01365
4 4 5 5 6
44793 a3330 25016 70078 18784
150 151 152 153 154
4 4 4 5 6
08532 35313 50606 24582 96862 88421 47703 36324 03566 73280
194 207 222 238 255
06016 92120 72512 53318 40982
4 5 6 7 8
51276 26823 14154 15220 31820
6378 7108 7917 8808 9192
105 106 107 108 109
3423 3842 4311 4835 5419
25709 16336 49389 02844 46240
6 7 7 8 9
71418 28260 89640 55906 27406
155 156 157 158 159
6 7 8 8 9
64931 32322 06309 87517 76621
28555
273 292 313 335 358
42421 64960 16314 04746 39008
:; 101 135
9 11 13 15 17
66467 21505 00156 05499 41630
10880 12076 13394 14848 16444
110 111 112 113 114
6071 6799 7610 8513 9520
63746 03203 02156 76628 50665
10 10 ii 12 13
04544 a7744 77438 74118 78304
160 161 162 163 164
10 11 12 14 15
74381 81590 99139 27989 69194
59466 68427 04637 95930 75295
383 409 438 468 500
28320 82540 12110 28032 42056
176 231 297 385 4YO
20 23 26 30 35
12558 23520 79689 87735 54345
18200 20132 22250 24576 27130
115 116 117 118 119
10641 44451 11889 08248 13277 10076 14820 74143 16536 68665
14 16 17 18 20
90528 11388 41521 al578 32290
165 166 167 168 169
17 18 20 22 25
23898 93348 78904 82047 04389
00255 22579 20102 32751 25115
534 571 610 651 695
66624 14844 00704 39008 45358
87968 97205 92783 85689 89500
29927 32992 36352 40026 44046
120 121 122 123 124
18443 49560 20561 48051 22913 20912 25523 38241 28419 405001
21 23 25 27 29
94432 68800 56284 57826 74400
170 171 172 173 174
27 30 33 36 39
47686 13848 04954 23268 71250
17130 02048 99613 59895 74750
742 792 045 901 962
36384 29676 43782 98446 14550
07086
:: 22 30
15 :; 18 19
30 :: 33 34 35 36 37 ;t
/<,J)
I’(“) 2 2 2 3 3
7
10 11 12 13 14
ANALYSIS
42
,I
V(JJ)
I’(‘0
I,
82097 43159
64769 78802
V(Jl)
627 792 1002 1255 1575
1:: 122
40 46 53 61 70
1958 2436 3010 3718 4565
142 165 192 222 256
81 92 106 121 138
18264 89091 19863 32164 48650
48446 53250 58499 64234 70488
125 126 127 128 129
31631 35192 39138 43510 48352
27352 22692 64295 78600 71870
32 34 37 40 43
25410 13544 22816
175 176 177 178 179
43 47 52 57 62
51576 67158 21158 17016 58467
97830 57290 31195 05655 53120
1026 14114 1094 20549 1166 58616 1243 54422 1325 35702
5604 6842 8349 10143 12310
296 340 390 448 512
157 180 205 233 265
96476 04327 06255 38469 43660
77312 84756 92864 101698 111322
130 131 132 133 134
53713 59645 66208 13466 81490
15400 39504 30889 29512 40695
46 50 53 58 62
54670 10688 92550 02008 40974
180 181 182 183 184
68 74 81 89 98
49573 94744 98769 66848 04628
90936 11781 08323 17527 80430
1412 31780 1504 73568 1602 93888 1707 27424 1818 10744
14883 21637 26015 31185
585 668 760 864 982
301 342 388 441 499
67357 62962 87673 08109 95925
121792 133184 145578 159046 173682
135 136 137 138 139
1 1 1 1
90358 00155 10976 22923 36109
36076 81680 45016 41831 49895
67 72 77 83 89
11480 15644 55776 34326 53856
185 186 187 188 189
107 117 128 139 152
18237 14326 00110 83417 72735
74337 92373 42268 45571 99625
1935 2060 2193 2334 2484
82642 84096 58315 51098 10816
37338 44583 53174 63261 75175
1113 1260 1426 1610 1816
566 641 725 820 926
34113 12359 33807 10177 69720
189586 206848 225585 245920 267968
140 141 142 143 144
1 1 1 2 2
50658 66706 84402 03909 25406
78135 89208 93320 82757 54445
96 103 110 118 127
17150 27156 86968 99934 69602
190 191 192 193 194
166 182 198 216 236
77274 07011
04093 00652
12768
56363
05469 41845
2642 2811 2990 3179 3381
88462 38048 16608 84256 04630
89134 105558 124754 147273 173525
2048 2304 2590 2910 3264
1046 1181 1332 1501 1692
51419 14304 30930 98136 29875
291874 317788 345856 316256 409174
145 146 147 148 149
2 2 3 3 3
49088 75170 03886 35494 70273
58009 52599 71978 19497 55200
136 146 157 168 181
99699 94244 57502 93952 08418
195 196 197 198 199
258 281 306 334 364
08402 45709 88298 53659 60724
12973 87591 78530 83698 32125
3594 3820 4060 4315 4584
44904 75868 72422 13602 82688
204226
3658
1905
69292
444793
150
4 08532
35313
194 06016
200
397 29990
29388
4870 67746
17971
$2
51021
86271 60227
Values of /JOO from H. Gupta, A table of partitions, Proc. London Math. Sot. 39, 142-149, 1935 and II. 42, 546-549, 193’7 (with permission).
COMBINATORIAL
NUMBER
OF PARTITIONS
p(n)
n
AND PARTITIONS
s(n)
837
ANALYSIS
INTO
DISTINCT
Table 24.5
PARTS
P(rl)
n
200 201 202 203 204
397 432 471 513 559
29990 83636 45668 42052 00883
29388 58647 86083 87973 17495
4870 5173 5494 5834 6195
67746 61670 62336 73184 03296
250 251 252 253 254
23079 24929 26923 29072 31389
35543 14511 27012 69579 19913
64681 68559 52579 16112 06665
85192 89949 94961 1 00243 1 05807
80128 26602 58208 00890 47264
205 206 2.07 208 209
608 662 720 784 852
52538 29877 68417 06562 85813
59260 08040 06490 26137 02375
6576 6980 7408 7862 8341
67584 87424 90786 12446 94700
255 256 257 258 259
33885 36574 39472 42593 45954
42642 95668 36766 30844 57504
48680 70782 55357 09356 48675
1 1 1 1 1
11669 17844 24348 31199 38413
59338 71548 95064 20928 23582
210 211 212 213 214
927 1008 1096 1191 1295
51025 50658 37072 66812 00959
75355 85767 05259 36278 25895
8849 9387 9956 10558 11195
87529 48852 45336 52590 55488
260 261 262 263 264
49574 53471 57667 62183 67044
19347 50629 26749 74165 81230
60846 08609 47168 09615 60170
1 1 1 1 1
46009 54008 62428 71293 80624
65705 01856 82560 59744 90974
215 216 217 218 219
1407 1528 1660 1802 1957
05456 51512 15981 81825 38561
99287 48481 07914 16671 61145
11869 12582 13336 14133 14977
49056 38720 40710 83026 05768
265 266 267 268 269
72276 77905 33961 90476 97483
09536 06295 17303 01083 43699
90372 62167 66814 16360 44625
1 2 2 2 2
90446 00783 11660 23106 35150
44146 03620 75136 91192 17984
220 221 222 223 224
2124 2306 2502 2715 2945
82790 18711 58737 24089 45499
09367 73849 60111 25615 41750
15868 16811 17807 18860 19973
61606 16852 51883 61684 57056
270 271 272 273 274
1 1 1 1 1
05019 13123 21837 31205 41274
74899 85039 43498 18008 95651
31117 38606 44333 16215 73450
2 2 2 2 3
47820 61149 75170 89917 05427
61070 71540 53882 72486 58738
225 226 227 228 229
3194 3464 3756 4071 4413
63906 31263 11335 80636 29348
96157 22519 82570 27362 84255
21149 22392 23705 25091 26556
65120 29960 13986 98528 84608
275 276 277 278 279
1 1 1 1 2
52098 63729 76227 89656 04082
04928 39693 84330 410j5 58525
51175 37171 57269 41584 75075
3 3 3 3 3
21738 38889 56923 75883 95815
19904 46600 20960 26642 57440
230 231 Ef 234
4782 5182 5613 6080 6585
62397 00518 81486 61354 15859
45920 38712 70947 38329 70275
28103 29737 31462 33284 35207
94454 72212 84870 23936 06304
280 281 282 283 284
2 2 2 2 2
19578 36221 54095 73287 93892
63116 91453 25900 31835 97939
82516 37711 45698 47535 29555
4 4 4 4 5
16768 38791 61938 86265 11828
26624 78240 97032 19094 44672
235 236 237 238 239
7130 7719 8356 9043 9786
41855 58926 11039 68396 29337
14919 63512 25871 68817 03585
37236 39379 41639 44025 46543
75326 02688 89458 67324 00706
285 286 287 288 289
3 3 3 3 4
16013 39758 65243 92592 21938
78671 40119 08360 21614 85285
48997 86773 71053 89422 87095
5 5 5 6 6
38689 66911 96562 27710 60430
49522 97084 52987 98024 42088
240 241 242 243 244
10588 11454 12388 13397 14486
22467 08845 84430 82553 76924
22733 53038 77259 44888 96445
49198 52000 54955 58073 61360
87992 62976 97248 01632 27874
290 291 292 293 294
4 4 5 5 6
53425 87203 23437 62299 03976
31269 80564 10697 26919 38820
00886 72084 53672 50605 95515
6 7 7 8 8
94797 30892 68798 08604 50401
40554 09120 39744 19136 45750
245 246 247 248 249
15661 16929 18297 19772 21363
84125 67223 38898 65166 69198
27946 91554 54026 81672 20625
64826 68481 72335 76397 80679
71322 72604 19619 50522 55712
295 296 297 298 299
6 6 7 8 8
48667 96585 47956 03024 62049
41270 01441 50785 83849 62754
79088 95831 10584 43040 65025
8 9 9 10 10
94286 40360 88727 39499 92791
47940 04868 65938 71456 76298
250
23079 35543 64681
85192 80128
300
9 25308 29367 23602
11 48724 72064
COMBINATORIAL
838 Table 24.5
NUMBER
OF PARTITIONS
P(ll)
ANALYSIS
AND PARTITIONS
INTO DISTINCT
PARTS
(1(n)
n
9@> 11 4872472064 12 0742510607 12 6902530816 13 3366383848 14 0148559930
350 351 352 353 354
279 363328483702152 298 330063062758076 318 555973788329084 340 122810048577428 363 117512048110005
126 9182924648 132 9347719190 139 22769 71520 145 8093818816 152 6926715868
13 162217895057704 14 118662665280005 15 142952738857194 16 239786535829663 17 414180133147295
14 7264218618 15 4729217536 16 2560142890 17 0774343642 17 9389964242
355 356 357 358 359
387 632532919029223 413 76618 0933342362 441 622981929358437 471 314064268398780 502 957566506000020
159 8909656578 167 41824 09148 175 2890755072 183 5186738752 192 1228932216
::1” 312 313 314
18 671488299600364 20 017426762576945 21 458096037352891 23 000006655487337 24 650106150830490
18 8425979304 19 7902232212 20 7839472390 21 8259394656 22 9184682870
360 361 362 363 364
536 679070310691121 572 612058898037559 610 898403751884101 651 688879997206959 695 143713458946040
201 1182704478 210 52205 02772 220 3522150410 230 6275150210 241 3675001278
315 316 317 318 319
26 41580 7633566326 28 305020340996003 30 326181989842964 32 488293351466654 34 800954869440830
24 0639052286 25 2647294208 26 5235325352 27 8430235904 29 2260340224
365 366 367 368 369
741 433159884081684 790 738119649411319 843 250788562528427 899 175348396088349 958 728697912338045
252 5925533946 264 3239251488 276 5837686784 289 39517 78822 302 7822257408
27440 5776748077 :“21”37 39 919565526999991 42 748078035954696 :‘2: 45 772358543578028 324 49 005643635237875
30 6755232574 32 1945841664 33 7864488192 35 4544947722 37 2022512608
370 371 372 373 374
1022 141228367345362 1089 657644424399782 1161 537834849962850 1238 057794119125085 1319 510599727473500
316 7700044480 331 3846677248 346 6534741118 362 6048321048 379 26834 76992
325 326 327 328 329
52 462044228828641 56 156602112874289 60 105349839666544 64 325374609114550 68 834885946073850
39 0334057172 40 9518108690 42 9614917632 45 0666531450 47 2716874732
375 1406 207446561484054 376 14984787435905 81081 1596 675274490756791 ::i 1701 169427975813525 379 1812 356499739472950
396 6748730794 414 8565573659 433 8469000206 453 6808055808 474 3946406976
E ::: 334
73 653287861850339 78 801255302666615 84 300815636225119 90 175434980549623 96 45011 0192202760
49 5811828759 51 9999315040 54 5329385792 57 1854313990 59 9628687918
380 381 382 383 384
1930 656072350465812 2056 513475336633805 2190 401332423765131 2332 821198543892336 2484305294265418180
496 0262940968 518 6152380864 542 2025926436 566 8311927092 592 5456572864
335 103 151466321735325 110 307860425292772 ::t 117 949491546113972 126 108517833796355 ::i 134 819180623301520
62 8709513216 65 9156314788 69 1031243770 72 4399192576 75 9327910200
385 386 387 388 389
2645 418340688763701 2816 759503217942792 2998 964447736452194 3192 707518433532826 3398 704041358160275
619 3924614094 647 4200116480 676 6787237064 707 2211032064 739 1018303854
340 144 117936527873832 154 043597379576030 ::: 164 637479165761044 343 175 943559810422753 344 188 008647052292980
79 5888123110 83 4153664940 87 4201606890 91 6112394270 95 9969992704
390 391 392 393 394
3617 712763867604423 3850 538434667429186 4098 034535626594791 4361 106170762284114 4640 713124699623515
772 3778471936 807 1084479444 843 3553742947 881 1829129614 920 6579974150
345 200 882556287683159 346 214 618299743286299 347 229 272286871217150 244 904537455382406 3: 261 578907351144125
100 5862035461 105 38799 77632 110 4119260918 115 6679479970 121 1664556454
395 4937 873096788191655 396 5253 665124416975163 5589 233202595404488 :;8' 5945 790114707874597 399 6324 621482504294325
961 8503143424 1004 8324132444 1049 6798204736 1096 4711585280 1145 2882689344
1,
300 301 :i: 304
9 253082936723602 9 930972392403501 10 657331232548839 11 435542077822104 12 269218019229465
:z $8’ 309
350 279 363328483702152 126 9182924648
400 6727 090051741041926 1196 2163400706
COMBINATORIAL NUMBER
OF PARTITIONS
I’(,,)
,,
AND PARTITIONS
INTO DISTINCT
n
d’l)
839
ANALYSIS PARTS
Table
p(n)
24.5
c/01)
400 401 402 403 404
6727 7154 7608 8091 8603
09005 64022 80284 20027 55175
17410 26539 33398 64844 93486
41926 42321 79269 65581 55060
1196 1249 1304 1362 1422
21634 34404 76365 57124 86674
00706 08000 81998 07808 81438
450 451 452 453 454
1 1 1 1 1
34508 42573 51112 60152 69723
18800 13615 26207 90524 95104
15729 53474 19173 45537 64580
23840 04229 13678 15585 40965
9893 10307 10739 11188 11656
14440 93957 65687 96810 57102
61528 13070 10144 43072 54336
405 406 407 408 409
9147 9725 10339 10990 11682
67906 51251 09726 60006 31627
88591 37420 71239 37759 71923
17602 21729 47241 26994 17780
1485 1551 1619 1691 1765
75420 34186 74236 07292 45549
52794 29884 54282 29128 15430
455 456 457 458 459
1 1 2 2 2
79855 90581 01933 13948 26665
91645 04044 37928 90703 62143
39582 26519 51146 27330 58313
67598 31034 88629 69132 45565
12143 12649 13176 13724 14295
19032 57862 51755 81881 32530
12544 22432 08648 00782 93376
410 411 412 413 414
12416 13196 14023 14902 15834
67740 25896 78888 15629 42088
31511 69254 35188 03099 44881
90382 35702 47344 48968 87770
1843 1923 2008 2096 2187
01696 88934 20999 12178 77334
07104 65516 30208 16576 80960
460 461 462 463 464
2 2 2 2 3
40123 54365 69435 85381 02253
65561 39575 60521 55524 16287
39251 85741 29549 19619 25766
92081 99975 94471 86287 36605
14888 15506 16148 16817 17512
91233 48874 99826 42073 77348
20640 75476 46592 15550 45952
415 416 417 418 419
16823 17873 18987 20170 21424
82278 79296 96426 18301 52136
71392 96898 73316 88059 02556
35544 2283 31930 7Ok 76004 2382 92048,69148 64557 2486 74415 20078 33659 2594q6435 42056 36320 ,2707 76199 52640
465 466 467 468 469
3 3 3 3 4
20103 38987 58963 80095 02447
13615 12724 89376 46876 33986
29932 95254 81628 31205 17114
90544 32549 76613 98477 75160
18236 18988 19771 20585 21431
11274 53505 17881 22576 90268
38194 94524 29024 95744 83034
420 421 422 423 424
22755 24167 25664 27253 28938
29021 05302 64021 16454 03725
65800 14413 38377 62304 70847
25259 63961 14846 21739 98150
2825 2947 3075 3208 3347
32529 84998 53960 60580 26867
77152 62528 09352 00384 45954
470 471 472 473 474
4 4 4 5 5
26088 51092 77535 05499 35069
63801 33635 45970 30531 67535
56524 50960 81641 42046 16072
13417 99864 15593 29558 62125
22312 23228 24180 25171 26201
48299 28849 69117 11509 03821
10884 04960 98586 01902 12696
425 426 427 428 429
30724 32620 34629 36760 39020
98514 06861 70071 66724 14800
70950 74102 39035 18315 02372
51099 32189 75934 27309 59665
3491 3642 3799 3962 4132
75707 30895 17171 60256 86891
60097 45254 07136 14146 79000
475 476 477 478 479
5 5 6 6 7
66337 99397 34350 71304 10369
12186 20478 76365 20389 79823
58055 23018 37870 67318 66282
99675 52926 28583 07232 38005
27271 28385 29543 30747 31998
99448 57585 43443 28468 90573
23232 65430 69603 94368 73738
430 431
41415 43955 46647 49501 52527
73920 47717 86328 89040 07072
71023 05181 42292 94051 91082
58378 16534 67991 50715 40605
4310 4495 4687 4888 5096
24877 03113 51640 01685 85706
85006 72460 62334 40672 20480
480 481 482 483 484
7 7 8 8 9
51666 95317 41457 90222 41761
00419 79841 02874 78495 78911
49931 47582 28236 19280 49976
25591 32180 49455 88294 98055
33300 34652 36059 37521 39040
14373 91433 20520 07873 67468
57056 03468 80640 43946 62530
“4;: 437 438 439
55733 59131 62733 66549 70593
46514 71430 07137 43656 39364
46362 91696 60430 69662 65621
86656 18645 79215 97367 35510
5314 5540 5776 6022 6278
37439 91949 85678 56498 43769
57460 44512 02880 45546 39520
485 486 487 488 489
9 10 11 11 12
96228 53787 14608 78875 46778
80660 07886 77893 49115 71600
85734 24553 64264 57358 12729
11012 46513 84248 02646 19665
40620 42261 43968 45741 47585
21308 99712 41621 94910 16717
45496 45764 12802 51264 64998
440 441 442 443 444
74878 79418 84227 89322 94720
24841 06934 73040 95632 37025
94708 64434 77294 13536 78934
86233 02240 99781 45667 71820
6544 6822 7111 7411 7725
88391 32867 21361 99762 15750
85792 92200 67457 56080 89318
490 491 492 493 494
13 13 14 15 16
18520 94313 74382 58964 48308
40161 50322 57204 37499 54706
22702 44478 03639 49778 61724
33223 16939 53132 06173 38760
49500 51491 53560 55709 57943
73777 42772 10694 75216 45082
62304 84172 36938 10170 47040
00437 06493 12906 19698 26891
54417 05190 52519 71278 54269
17528 52391 91961 27202 09814
47604 18581 03354 05954 18000
8051 8390 8743 9111 9494
18865 60575 94352 75744 62459
81728 94564 40798 62854 05984
495 496 497 498 499
17 18 19 20 21
42678 42351 47619 58791 76192
27774 03350 31798 47204 51543
77609 31598 76580 28849 92874
81187 91466 64007 01563 61625
60264 62675 65181 67784 70489
40509 93600 48774 63214 07325
50309 10788 31176 30326 21792
9893 14440 61528
500
23 00165 03257 43239 95027
::: 434
445 446 447 448 449
1 1 1 1 1
450
1 34508 18800 15729 23840
73298 65212 45024
840
COMBINATORIAL Table
ARITHMETIC
21.6 n
o(n)
9,
51 52 53 54 55
32 24 52 18 40 24 36 28 58 16
8 4 4 2 12
n
v(n)
?I -1
n
(a(n)
100 32 102 48 48
2 8 2 a 8
102 216 104 210 192
151 152 153 154 155
156 72 96 60 120
2 8 6 8 4
152 300 234 288 192
201 202 203 204 205
132 100 168 64 160
4 4 4 12 4
272 306 240 504 252
120 80 90 60 168
106 107 108 109 110
52 106 36 108 40
4 2 12 2 8
162 108 280 110 216
156 157 158 159 160
48 156 78 104 64
12 2 4 4 12
392 158 240 216 378
%
E
208 209 210
96 180 48
4 6 10 4 16
312 312 434 240 576
104 2
152 248 114
161 162 163
132 54 162
104 192 363 2 164
211 212 213
210 104 140
62 212 378 4 288
48 240 144
165 164
80
68 294 288
215 214
168 106
4 324 264
2
4
12 8
1:
6 4
3 4
:: 18
56 57 58 59 60
:'8 14
62 61 63
60 30 36
42 6
96 62 104
112 111 113
72 48 112
Zf
65 64
48 32
74
127 84
115 114
88 36
66 20 67 66 68 32 69 44 70 24
:i
8 16
5 2 6
:t 20
1: 8
2
42
21
12
4
32 36 24
FUNCTIONS
101 102 103 104 105
-1
4 72 6 98 2 54 8 120 4 72
6
8 144 2 68 6 126 4 96 8 144
?I
ml
119 120
96 32
6 6 4 4 16
72 195 74 114 124
121 122 123 124 125
110 60 80 60 100
3 4 4 6 4
133 186 168 224 156
171 172 173 174 175
108 84 172 56 120
126 127 128 129 130
36 12 126 2 64 8 84 4 48 8
312 128 255 176 252
176 177 178 179 180
80 116 88 178 48
10 372 4 240 4 270 2 180 18 546
%
228 88
181 182 183 184 185
180 72 lii 88 144
2 182 8 336 4 248 8 360 4 228
;'3: 233 234 235
::; 232 72 184
8 2 12 4
384 450 234 546 288
8 384 4 216 6 336 8 320 8 360
236 237 238 239 240
116 156 96 238 64
6 4 8 2 20
420 320 432 240 744
27” 258 118
210 182 180 144 360
166 167 168 169 170
82 166 48 156 64
4 2 16 3 8
252 168 480 183 324
216 217 218 219 220
72 180 108 144 80
16 4 4 4 12
600 256 330 296 504
6 6 2 8 6
260 308 174 360 248
221 222 223 224 225
192 72 222 96 120
4 252 8 456 2 224 12 504 9 403
226
112
221
226
72
4 342 2 228 12 560 28 230 432
71 72 73 74 75
70 2 24 12 72 2 36 4 40 6
76 77 78 79 80
36 60 24 78 32
6 140 4 96 a 168 2 80 10 186
81 82 83 84 85
54 40 82 24 64
5 4 2 12 4
121 126 84 224 108
133 134 135
66 72
2 12 4 4 8
:3312 130 40 108
132 336 160 204 240
86 87 88 89 90
42 56 40 88 24
4 4 8 2 12
132 120 180 90 234
136 137 138 139 140
64 136 44 138 48
8 2 8 2 12
270 138 288 140 336
186 187 188 189 190
60 160 92 108 72
Ei 84 78
91 92 93 94 95
72 44 60 46 72
4 112 6 168 4 128 4 144 4 120
141 142 143 144 145
92 70 120 48 112
4 4 4 15 4
192 216 168 403 180
191 192 193 194 195
190 64 192 96 96
2 14 2 4 8
192 508 194 294 336
241 242 243 244 245
240 110 162 120 168
2 6 6 6 6
242 399 364 434 342
;; 42 do 40
1: 252 98 6 171 i 156 9 217
146 147 148 149 150
72 84 72 148 40
4 6 6 2 12
222 228 266 150 372
196 197 198 199 200
84 196 60 198 80
9 2 12 2 12
399 198 468 200 465
246
80
103 124 6 z
'9; 98 $9 100
::; 249 250
zi 164 100
8 4 8 4 8
504 280 480 336 468
i! 26 27 28 29 30
12 18 12 28 8
4 4 6 2 8
42 40
31 32 33 34 35
30 16 20 16 24
2 6 4 4 4
32 63
36 12 37 36 38 18 39 24 40 16
9 2 4 4 8
41 42 43 44 45
40 12 42 20 24
2 8 2 6 6
46 47
22 46
4 2
"4"$ ;$ 50 20
ANALYSIS
:i
72
42
228
From British Association for the Advancement of $+3ence,Mathematical Tables, vol. VIII, Number-divisor tables. Cambridge Univ. Press, Cambridge, England, 1940 (with permission).
59 1
(td
=
186
COMBINATQRIAL
ANALYSIS
ARITHMETIC
841
FUNCTIONS
24.6
Table
01
n
v(n)
-0
UI
252 728 288 384 432
301 302 303 304 305
252 150 200 144 240
4 4 4 10 4
352 456 408 620 372
351 352 353 354 355
q(n)
n
2 18 4 4 8
n
CI
250 72 220 126 128
216 160 352 116 280
8 12 2 8 4
560 756 354 720 432
401 402 403 404 405
400 132 360 200 216
2 8 4 6 10
402 816 448 714 726
451 452 453 454 455
400 224 300 226 288
256 257 258 259 260
128 256 84 216 96
9 511 2 258 8 528 4 304 12 588
306 307 308 309 310
96 306 120 204 120
12 2 12 4 8
702 308 672 416 576
356 357 358 359 360
176 192 178 358 96
6 630 8 576 4 540 2 360 24 1170
406 407 408 409 410
168 360 128 408 160
8 4 16 2 8
720 456 1080 410 756
456 457 458 459 460
144 456 228 288 176
16 1200 2 458 4 690 8 720 12 1008
261 262 263 264 265
168 130 262 80 208
6 4 2 16 4
390 396 264 720 324
311 312 313 314 315
310 96 312 156 144
2 16 2 4 12
312 840 314 474 624
361 362 363 364 365
342 180 220 144 288
3 4 6 12 4
381 546 532 784 444
411 412 413 414 415
272 204 348 132 328
4 6 4 12 4
552 728 480 936 504
461 462 463 464 465
460 120 462 224 240
2 16 2 10 8
462 1152 464 930 768
266 267 268 269 270
108 176 132 268 72
8 4 6 2 16
480 360 476 270 720
316 317 318 319 320
156 316 104 280 128
6 2 8 4 14
560 318 648 360 762
366 367 368 369 370
120 366 176 240 144
8 2 10 6 8
744 368 744 546 684
416 417 418 419 420
192 276 180 418 96
12 4 8 2 24
882 560 720 420 1344
466 467 468 469 470
232 466 144 396 184
4 2 18 4 8
702 468 1214 544 864
271 272 273 274 275
270 128 144 136 200
2 272 10 558 8 448 4 414 6 372
321 322 323 324 325
212 132 288 108 240
4 8 4 15 6
432 576 360 847 434
371 372 373 374 375
312 120 372 160 200
4 12 2 8 8
432 896 374 648 624
421 422 423 424 425
420 210 276 208 320
2 4 6 8 6
422 636 624 810 558
471 472 473 474 475
312 232 420 156 360
4 8 4 il 6
632 900 528 960 620
276 277 278 279 280
88 12 672 2 278 276 4 420 138 180 6 416 96 16 720
326 327 328 329 330
162 216 160 276 80
4 4 8 4 16
492 440 630 384 864
376 377 378 379 380
184 336 108 378 144
8 4 16 2 12
720 420 960 380 840
426 427 428 429 430
140 360 212 240 168
8 4 6 8 8
864 496 756 672 192
476 477 478 479 480
192 312 238 478 128
281 282 283 284 285
280 92 282 140 144
2 282 8 576 2 284 6 504 8 480
‘3:: :2: 333 216 z
2 6 6 4 :6646 4
332 588 494 504 408
381 382 383 384 385
252 190 382 128 240
4 512 4 576 2 384 16 1020 8 576
431 432 433 434 435
430 144 432 180 224
2 20 2 8 8
432 1240 434 768 720
481 482 483 484 485
432 240 264 220 384
286 287 288 289 290
120 240 96 272 112
8 504 4 336 18 819 3 307 a 540
336 337 338 339 340
96 336 156 224 128
20 992 2 338 6 549 4 456 12 756
386 387 388 389 390
192 252 192 388 96
4 582 6 572 6 686 2 390 16 *lo08
436 437 438 439 440
216 396 144 438 160
6 4 8 2 16
770 480 888 440 1080
486 487 488 489 490
162 486 240 324 168
12 1092 2 488 8 930 4 656 12 1026
291 292 293 294 295
192 4 392 144 6 578 292 2 294 84 12 684 232 4 360
341 342 343 344 345
300 108 294 168 176
4 12 4 a 8
384 780 400 660 576
391 392 393 394 395
352 168 260 196 312
4 12 4 4 4
432 855 528 594 480
441 442 443 444 445
252 192 442 144 352
9 8 2 12 4
741 756 444 1064 540
491 492 493 494 495
490 160 448 216 240
2 12 4 8 12
492 1176 540 840 936
296 297 298 299 300
144 180 148 264 80
8 570 8 480 4 450 4 336 18 868
346 347 348 349 350
172 346 112 348 120
4 522 2 348 12 840 2 350 12 744
396 397 398 399 400
120 396 198 216 160
18 2 4 8 15
1092 398 600 640 961
446 447 448 449 450
222 296 192 448 120
4 4 l‘i 2 18
672 600 1016 450 1209
496 497 498 499 500
240 420 164 498 200
10 4 8 2 12
992 576 1008 500 1092
n
251 252 253 254 255
a(n)
an
=n UI
n
9(n)
91
4 6 4 4 a
504 798 608 684 672
12 1008 6 702 4 720 2 480 24 1512 4 4 8 9 4
532 726 768 931 588
COMBINATORIAL,
ANALYSIS
ARITHMETIC 501
332
4
672
502 503 504 505
250 502 144 400
4 2 24 4
504 1560 612
506
220
a
864
507 508 509
312 252
6 6
732 896
510
508 128
2 16
510 1296
511
432
512
256
4 592 10 1023 a 800
513
324
514 515
408
516 517 518 519
168 460 216 344
520
521 522 523 524 525 526 527
256
4
4
756
774 624
551
504
552 553 554 555
468 276 288
556 557
276 556
176
4 600 lb 1440 4 640 4 a34 a 912
4
864 846
611 612
552 192
4 672 la 1638
563 564 565
562
2
564
613
612
2
la4
12
448
4
1344 684
614 615
306 320
4 a
4
a52
616 617 618 619
240 616 204 618
lb 1440 2 618 a' 1248 2 620
620
240
12
396 310 528 192 500
4 4 20 5 4 8
4 4
792 576
568
6 2
280
1080
568 144
2 16
570 1440
570 240
2 12
572 1176
380 240 440
6
744
21 2 6
lb51 578
626 627
312 360
628
312
629 630
576 144
4 768 a looa
160
20
l&i8
529 530
506
3
208
a
553 972
6
780
581
492
4
582 583
192 520
8 4
548
549 550
192 576 272
384 224
968
621 622 623 624 625
528
546
616
10 a
576 577 578 579 580
547
606 288
8
262 480
4 12
921 776
1260 672 1176
12
1260 960
614 924
1008
f@(n)
360
Qn
656
320
10
1302
657 658
432 276
6 8
962 1152
659 658 6bO 160
2 660 24 2016
661
660
2
662
662 663 664 665
330 384 328 432
4 8 8 I3
996 1008 1260 960
666
4 8 2 la 4
686
294
687
456
baa
336
689 690
624 176
a 1200 4 920 10 1364 4 756 16 1728
690 344 360 346 552
12 4 4
4 882 2 588 la 1596 4 640 a loao
636 637 638 639 640
208 504 280 420 256
12 1512 6 798 a 1080 6 936 16 1530
591 592 593 594 595
392 288 592 la0 384
4 792 10 1178 2 594 16 1440 a 864
641 642 643 644 645
640 212
2 642 8 1296
264 336
12 1344 8 1056
691 692 693 694 695
596 597 598 599 600
296
6
288 646 216 580 240
a 2 20 4 12
224
16
4 a
646 647 648 649 650
696
396 264
697 698 699 700
640 348 464 240
4 4 4 la
1134 660
144 546 272 360
lb
1344
200
12
2 6 6
548 966
806 1116
598 160
2 24
1050 a00 1008
600 lab0
642
2418
452 300 682 216 544
292 586 168 540 232
4
30
681 682 683 684 685
586 587 588 589 590
816 728
358 718
6 1106 4 684 24 la72
a 1020 4 720 4 al0 6 684 24 1680 542
718
1281 678 a 1368 4 784 lb 1620
504
2
644
1080 648 la15 720 1302
2 6
1040
1260 960
1240
9 2
a 12
6
6 4 4
312 676 224 576 256
288 288
468
476
676 677 678 679 680
2 632 a 1200 4 a48 4 954 4 768
708 280
816 1680 2 710 8 1296
356
744 2016 674 1014
630
1062
716
4 24 2 4
312 420
4 4 12
717
600 192 672 336 360
632 633 634 635
352 600 232
1524
8 1152
1482
671 672 673 674 675
942 960
14
368
1008
6 4 8
12
320
a
332 444 264
781
711
Cl
2 702 lb lb80 4 760
480
720 1176 896 1224
960 936 720 1736
706 707 708 709 710
un
700 216 648
715
12 4
a
702 703 704 705
o(n)
713 714
216 616
1344
n
701
a 6bO 4 192 16
667 668 669 670
631
316
‘II
8 1024 6 1148 2 654 8 1320 4 792
584 585
2 4
648 1110 1092
8 1224 2 608
n
651
4 583 a 1080 4 648
12 4
432
200
607 608 609
280
524 924 992
360 256
606
320
2 6 12
540 270
300
440
562
522 260 240
541 542 543 544 545
604
561
571 572 573 574 575
356 268 420 144
652 216 520
a a 1116
522
537 538 539 540
324
653 654 655
336 240
1170
264
652
a84 1064 798
610
2 12
536
1056
6 b 6
1488
520 168
480
8
396
4 20
192
176 424
252
603
504 192
569 570
1120
602
605
Ul
602
559 560
696 1260
12
2
12
282 324
216
UQ
600
180
566 567
348
cp(n)
558
1232 576 912
532 533 534 535
n
601
980 558 1248
12 4 a 4 lb
531
FUNCTIONS
912 1152 684 la20 a28
712
719 720
352
192
2
1350 768 1728
1080 720
721
612
4
722 723 724 725
342 480 360 560
6 4 6 6
1143
726 727
220 726
12 2
1596
16
728 lbao
729 730
486
7
1093
4
792 1736 734 1104
728
288 288
8
731
672
732 733 734 735
240 732 366 336
12 2 4 12
352
12
a32 968 1274 930
1332
1368
736 737 738 739 740
240 738 288
1512 816 12 1638 2 740 12 1596
692 1218 1248 1044 a40
741 742 743 744 745
432 312 742 240 592
a a 2 16 4
1800 756
746 747 748 749 750
372 492 320 636 200
4 1122 6 1092 12 1512 4 864 lb la72
1050 936 1736
660
4
1120 1296
744 1920 900
COMBINATORIAL 'ARITHMETIC
ANALYSIS FUNCTIONS
TaIblc: 24.6
Qll Cl 12 1272 2160 954 1:4 2106 1152
751 752 753 754 755
756 752 368 1; 1488 500 4 1008 336 8 1260 600 4 912
801 802 803 804 805
528 6 1170 400 4 1206 720 4 888 264 12 1904 528 8 1152
851 852 853 854 855
792 4 912 280 12 2016 852 2 854 360 8 1488 432 12 1560
901 902 903 904 905
832 400 504 448 720
4 8 8 8 4
972 1512 1408 1710 1092
n 951 952 953 954 955
756 757 758 759 760
216 24 2;;; 756 2 378 4 1140 440 8 1152 288 16 1800
806 807 808 809 810
360 8 536 4 400 8 808 2 216 20
1344 1080 1530 810 2178
856 857 858 859 860
424 8 1620 856 2 858 240 16 2016 858 2 860 336 12 1848
906 907 908 909 910
300 8 906 2 452 6 600 6 288 16
1824 908 1596 1326 2016
956 957 958 959 960
476 6 560 478 4" 816 256 2:
1680 1440 1440 1104 3048
761 762 763 764 765
760 2 762 252 8 1536 648 4 880 380 6 1344 384 12 1404
811 812 813 814 815
810 2 812 336 12 1680 540 4 1088 360 8 1368 648 4 984
861 862 863 864 865
480 8 1344 430 4 1296 862 2 864 288 24 2520 688 4 1044
911 912 913 914 915
910 2 912 288 20 2480 820 4 1008 456 4 1374 480 8 1488
961 962 963 964 965
930 432 636 480 768
993 1596 1404 1694 1164
766 767 768 769 770
382 4 1152 696 4 840 256 18 2;;; 768 2 240 16 1728
816 817 818 819 820
256 20 2232 756 4 880 408 4 1230 432 12 1456 320 12 1764
866 867 868 869 870
432 4 1302 544 6 1228 360 12 1792 780 4 960 224 16 2160
916 917 918 919 920
456 6 1610 780 4 1056 288 16 2160 918 2 920 352 16 2160
966 967 968 969 970
264 16 2304 966 440 1: 1;:; 576 8 1440 384 8 1764
771 772 773 774 775
512 4 1032 384 6 1358 772 2 774 252 12 1;'72" 600 6
821 822 823 824 825
820 2 822 272 8 lb56 822 2 824 408 8 1560 400 12 1488
871 872 873 874 875
792 432 576 396 600
952 1650 1274 1440 1248
921 922 923 924 925
612 4 1232 460 4 1386 840 4 1008 240 24 2688 720 6 1178
971 970 972 972 1'8 2548 973 i% 1120 974 486 i 1464 915 480 12 1736
776 777 778 779 780
384 8 432 8 388 4 720 4 192 24
826 827 828 829 830
348 8 1440 826 2 828 264 18 2184 828 2 830 328 8 1512
876 877 878 879 880
288 12 2072 876 2 878 438 4 1320 584 4 1176 320 20 2232
926 927 928 929 930
462 4 1392 612 6 1352 448 12 1890 928 2 930 240 16 2304
976 977 978 979 980
480 10 1922 976 2 978 1968 22 4" 1080 336 18 2394
781 782 783 784 785
700 4 864 352 8 1296 504 8 1200 336 15 1767 624 4 948
0; 36;; 146 1778 1026 834 276 8 1680 835 664 4 1008
881 882. 883 884 885
880 2 a82 252 18 2223 882 2 884 384 12 1764 464 8 1440
931 932 933 934 935
756 464 620 466 640
6 6 4 4 8
1140 1638 1248 1404 1296
981 982 983 984 985
648 1430 490 1476 982 2 984 320 16 2520 784 4 1188
786 787 788 789 790
260 786 392 524 312
1584 788 1386 1056 1440
836 8j7 838 839 840
360 12 1680 540 8 1280 418 4 1260 838 2 840 192 32 2880
886 887 888 889 890
442 4 1332 886 2 888 288 16 2280 756 4 1024 352 8 1620
936 288 24 937 936 2 F!i %i a 939 624 4 940 368 12
2730 938 1kZ 1256 2016
986 987 988 989 990
448 8 1620 552 8 1536 432 12 1960 924 1056 240 2808
791 792 793 794 795
672 4 912 240 24 2340 720 4 868 396 4 1194 416 8 1296
841 842 843 844 845
812 420 560 420 624
871 1266 1128 1484 1098
891 892 893 894 895
540 10 1452 444 6 1568 828 4 960 296 8 1800 712 4 1080
941 942 943 944 945
940 2 942 312 8 1896 880 4 1008 464 10 1860 432 16 1920
991 992 993 994 995
990
796 797 798 799 800
396 6 1400 796 2 798 216 16 1920 736 4 864 320 18 1953
846 847 848 849 850
276 12 1872 660 6 1064 416 10 1674 564 4 1136 320 12 1674
896 897 898 899 900
384 16 2040 528 8 1344 448 4 1350 840 4 960 240 27 2921
946 947 948 949 950
420 8 1584 946 2 948 312 12 2240 864 4 1036 360 12 1860
8 2 6 4 8
1470 1216 1170 840 2352
831 552
4 1112
3 4 4 6 6
4 8 6 8 8
a(n) 632 384 952 312 760
4”
z6": 420 792
992 2016 1328 1728 1200
996 328 996 '9% 498 999 648 1000 400
2352 998 1500 1520 2340
d3
N
0
1
2
3
1
2
3
3’.:
g.;; 2” 2.3.7
ii 22.5 2-3.5 2a.5 2.51 22.3.5 2.5.7 2’.5 2.32.5
::
5
&
3f5 52
2”.“;“7 21.11 2.3’
$.‘5
7z3
22.13 2.31 2x.31 2.41 3.23
zx 3.31
2:7 21.3.7 2.47
;ay; 2.5.13 21.5.7
101 3.37 11’ 131 3.47
2.3.17 2’.7 2.61 21.3.11 2.71
103 113 3.41 7.19 11.13
28.13 2.3.19 22.31 2.67 24.3%
3.5.7 5.23 51
2if;” 2.5117 2q.3q.5 2-5.19
151 7.23 32.19 181 191
32.17 163 173 3.61 193
2.7.11 22.41 2.3.29 28.23 2.97
5.31 3.5.11
3.67 211 13.17 3.7.11 241
2*.19 2.3’ P-43 2.7.13 26.3 2.101 22.53 2.3.37 28.29 2.11”
7.29 3.71 223 233 35
251 32.29 271 281 3.97
21.31.7 2.131 24.17 2.3.47 22.73
11.23 263 3-7.13 283 293
7.43 311 3.107 331 11.31
2.151 2’.3.13
3.101 313
2q.51
23.51 2.3.5.7 ;:g; 2’.i5 2.5” 21.5.13 22 2.5.29 2x3.51 2.5.31 26.5 2.3.5-11 22.5.17 2.52.7 28.32-5 2.5.37 22.5-19 2-3-5.13
3.17
ii 3.11 43
4
t:
33.13
3Y7
2.3a.19
;t;; 78
?i&z
*
5.11 5.13 3.52 5.17 5.19
7
8
9
2.3
23
2?3 22.32 2.23
;;y 2.19 2’.3 2.29 22.17 2.3.13 23.11 2.71
El
$1
3.19
22.19 2.43 25.3
7% 3.29 97
2.53 22.29 2.32.7 23.17 2.73
107 32.13 127 137 3.72
fyi; 3.5.13
22.3.13 2.83 24.11 2.3.31 22.71
3.3.17 2.107 25.7 2.32.13 22.61 2.127 2a.34 2.137 21.71 2.3.71
5.41 5.43 32.52 5.47 5.72 3.5.17 5.53 52.11 3.5.19 5.59
24.19 2.157 22.3’ 2.167 25.43 A.59 221.7.13 2.11.17
3Y3 It 32.11 109 7.17 3.43 139 149
157 167 3.59 11.17 197
2.103 21.3” 2.113 22.59 2-3.41 28 2.7.19 21.3.23 2.11-13 2a.37
32.23 7.31 227 3.79 13.19
2’.13 2.109 22.3.19 2.7.17 28.31
11.19 3.73 229 239 3.83
257 3.89 277 7.41 38.11
2.3.43 22.67 2.139 25.32 2.149
7.37 269 32.31 172 13.23
5.61 32.5.7 52.13 5.67 3.5.23
2.32.17 22.79 2.163 2’.3.7 2.173
307 317 3.109 337 347
22.7.11 2.3.53 2a.41 2.132 21.3.29
3.103 11.29 7.47 3.113 349
22.89 2.3.61 23.47 2.193 21.31.11
3.7.17 367 13.29 32.43 397
2.179 2’.23 2.38.7 22.97 2.199
2.7.29 25.13 2.3.71 22.109 2.223 23.3.19 2.233 21.7.17 2.3= 2’.31
11.37 3.139 7.61 19.23 3.149 457 467 32.53 487 7.71
28.3.17 2.11.19 22.107 2.3.73 26.7
359 32.41 379 389 3.7.19 409 419 3.11-13 439 449
2.229 22.32.13 2.239 23.61 2.3.83
35.17 7-67 479 3.163 499
;;;
25.11
353
3.127 17.23
“;K 383 3.131
2%7
5.71 5.73 3.5’ 5.7.11 5.79
24.52 2.5.41 21.3.5.7 2.5.43 28-5.11
401 3.137 421 431 31.72
2.3.67 2z-103 2.211 2’.3a 2.13.17
13.31 7.59 32.47 433 443
22.101 2.32.23 2a.53 2.7.31 22.3.37
;.;; 52.17 3.5.29 5.89
2.31.59 21.5.23 2.5.47 25-3.5 2.5.72
11.41 461 3.157 13.37 491
21.113 2.3.7.11 23.59 2.241 22.3.41
3.151 463 11.43 3.7.23 17.29
2.227 24.29 2.3.79 22.111 2.13.19
5.7.13 3.5.31 52.19 5.97 32-5.11
N
3?3 72
22.3’ 2.59 27 2.3.23 22.37 2.79 23.3.7 2.89 22.47 2.31.11
2.181 22.3.31 2.191 23.71
Ei
6
3.53 132 179 33.7 199
35 36
_t”7
48 ,I+ 49 g
FiY E3”
2.3.5.17 22.53 2’.5.13 2-5.53
3.167 7.73 32.59 521
2.251 2-J 22.7-19 2.32.29
3*.19 503 13.41 523
2a.32,7 2.257 22.131 2.3.89
5.103 5-101 5.52:7 5.107
54
22.33.5
541
2.271
3.181
25.17
5.109
2
2.52.11 2’.5.7
3-11.17 19.29
28.3.23 2.281
7.79 563
22.3.47 2.277
~~ 59
2.3.5.19 22.5.29 2.5-59
571 7.83 3.197
3.11.13 2.3.97 2’.37
3.191 11.53 593
iif
2.5.61 23.3.52
13.47 601
22.32.17 2-7.43
2 64
2.32.5.7 22.5.31 27.5
3’.23 631 641
65 6”;
2.52.13 22.3.5.11 2.5.67
tt E 72 3:
si 94 t78 99
11.47 3.132 3-179 17.31
22.127 2.7.37 24.3.11 2.269
3.173 509 72.11 232
51 g 50 0 52
2.3.7.13
547
22.137
32.61
2
“;..“,;“3’
22.139 2.283
34.7 557
2.32,31 23.5 1
13.43 569
2
2.7.41 28.73 2.33.11
32.5.13 52.23 5.7.17
2.293 26.32 22.149
587 577 3.199
2=.3.72 2.174 2.13.23
3.193 19.31 599
:;: 59
32.67 613
22.151 2.307
3.5.41 5.112
2.3-101 28.7.11
617 607
2.3.103 25.19
3.7.29 619
ii:
2.311 23.79 2.3.107
3.211 7.89 643
2’.3-13 2.317 22.7.23
5%7 3.5.43
22.3.53 2.313 2.17.19
3.11.19 72.13 647
2.11.29 22.157 23.3d
17.37 32.71 11.59
ix 64
3.7.31 661 11.61
2?.163 2.331 25.3.7
653 3.13.17 673
5.131 5.7.19 3a.52
2’.41 2.32.37 22.132
32.73
2.7.47 22.167 2.3.113
659 3.223 7.97
65
2iz!g 2.337
2.3.5.23 2a-5.17
3.227 691
2.11.31 22.173
32.7.11 683
22.32.19 2.347
5.139 5.137
2*?&
3.229 17.41
2.349 2’.43
3.233 13.53
6”:
8
2.5.71 22.52.7
32.79 701
2.3a.13 2*-89
23.31 19.37
2.3.7.17 26.11
5.11.13 3.5.47
22.179 2.353
7.101
22.3.59 2.359
709 719
2’.32.5 2a.5.37 2.5.73
7.103 3.13.19 17.43
2.192 22.3.61 2.7.53
3.241 733 743
22.181 23.3.31 2.367
52.29 3.5.72 5.149
2.3.112 2.373 25.23
“Z9 11.67 32,83
23.7.13 22.11.17 2.32.41
73369 7.107
2.3.58 23.5.19 2.5.7.11 22.3.5.13 2.5.79
751 761_3.257 11.71 7.113
2’.47 2.3.127 22.193 2.17.23 28.32.11
3.251 7.109 773 33.29 13.61
2.13.29 22.191 2.32.43 2’.72 2.397
5.151 32.5.17 52.31 5.157 3.5.53
22.33.7 2.383 23.97 2.3.131 22.199
757 13.59 3.7.37 787 797
2.379 28.3 2.389 22.197 2.3.7.19
3.11.23 769 _~ 19.41 3.263 17.47
25.52 2.34.5 22.5.41 2.5.83 23.3.5.7
32.89 811 821 3.277 292
2.401 22.7.29 2.3.137 2”.13 2.421
11-73 3.271 823 72.17 3.281
22.3.67 2.11.37 23.103 2.3.139 22.211
5.7.23 5.163 3.52.11 5.167 5.132
2.13.31 2’.3.17 2.7.59
3.269 19.43 827
;:
. ;“i”1’
809 32.7.13 829 839 3.283
80
2.32.47 22.11.19
23.101 2.409 22.32.23 2.419 24.53
2.52.17 22.5.43 2.3.5.29 2’.5.11 2.5.89
23.37 3. II .41 13.67 881 34.11
22.3.71 2.431 23.109 2.32.72 22.223
853 863 32.97 883 19.47
2.7.61 25.33 2.19.23 22.13.17 2.3.149
32.5.19 5.173 53.7 3:5.59 5.179
23.107 2.433 22.3.73 2.443 27.7
857 3.172 877 887 3.13.23
2.3.11.13 22.7.31 2.439 23.3.37 2.449
859 11.79
22.32.52 2.5.7.13
17.53 911
2-11.41 24.3.19
3.7.43 11.83
23.113 2.457
5.181 3.5.61
2.3.151 22.229
907 7.131
22.227 2.3=.17
32.101 919
90 91
2.3.5.31 23.5.23 22.5.47
3.307 72.19 941
22.233 2.461 2.3.157
3.311 13.71 23.41
22.3.7.11 2.467 24.59
5.11.17 52.37 33.5.7
25.32.13 2.463 2-11.43
32.103 937 947
2.7.67 25.29 22.3.79
3.313 929 13.73
;z 94
3.317 3zl9 312
23.7.17 2.13.37 2.491 22.35
953 32.107 7.139 983
2.32.53 23.3.41 22.241 2.487
5.191 3.52.13 5.197 5.193
22.239 2.3.7.23 2.17.29 2’.61
3.11.29 3.7.47 977 967
2.479 22.13.19 2.3.163 23.112
7.137 3.17.19 23.43 11.59
991
25.31
3.331
2.7.71
5.199
22.3.83
997
2.52.19 22.5.72 2.5.97 26.3.5 2.32.5.11
22.3.43 2.11.23 2.263 23.67
2&;g
2
2.499
6”;
;:4;; 29.31
3Y~i
95 98r$t 97 9G
99zL.l
!-I &r $
01
N
0
1
2
3
4
5
6
7
8
9
N
19.53 32.113 13.79 17.61 3.349 7.151 11.97 3-359 1087 1097
24.32-7 2.509 22.257 2.3.173 28.131
1009 1019 3.73 1039 1049
100 101 102 103 104
2.232 22.3.89 2.72.11 26.17 2.32.61
3.353 1069 13.83 32.112 7.157
105 106 107 108 109
33.41 1117 72.23
1109 3.373 1129 17.67 3.383
110 111 112 113 114 115 116 117 118
EC3 “E
00 isi
ccl
100 101 102 103 104
23.58 2.5.101 2a.3.5.17 2-5.103 2’.5.13
7.11.13 3-337 1021 1031 3.347
2.3.167 22.11.23 2.7.73 23.3.43 2.521
17.59 1013 3.11.31 1033 7.149
105 106 107 108 109
2.3.52.7 22.5-53 2-5.107 28.33.5 2.5.109
1051 1061 32-7.17 23.47 1091
22.263 2.32.59 2’.67 2.541 22.3.7.13
110 111 112 113 114
22.5a.11 2.3.5.37 25.5.7 2.5.113 21.3.5.19
115 116 117 118 119
2.52.23 28.5.29 2.3%.5.13 22.5.59 2.5.7.17
2.19.29 23.139 2.3.11.17 22.283 2.571 27.32 2.7.83 22.293 2.3.197 23.149
120 121 122 123 124
2’.3.9 2.5-112 2a.5.61 2.3-5.41 2a.5.31
3.367 11.101 19.59 3.13.29 7.163 1151 33.43 1171 1181 3.397 1201 7.173 3.11.37 1231 17.73
125 126 127 128 129
22.251 2%32 2.11.47 22.32.29
3.5.67 5.7.29 52.41 3a.5.23 5.11.19
2.503 23.127 2.3x-19 22.7.37 2.523
34.13 1063 29-37 3.19a 1093
2.17.31 23.7.19 2.3.179 22.271 2.547
5.211 3.5.71 52.43 5.7.31 3.5.73
25.3.11 2.13.41 22.269 2.3.181 2a.137
1103 3.7.53 1123 11.103 32.127
2’.3.23 2.557 2?.281 2.3’.7 23.11.13
5.13.17 5.223 32.53 5.227 5.229
E
22.277 2.13.43 23.3.47 2.569 22.7.41
1153 1163 3.17.23 7.132 1193
2.577 22.3.97 2.587 26.37 2.3.199
3.5.7.11 5.233 52.47 3.5.79 5.239
2.7.79 2a.32.31 2.563 2’.71 2.3.191 22.172 2.11.53 23.3.72 2.593 22.13.23
13.89 3.389 11.107 1187 32.7-19
2.3.193 2’.73 2.19.31 22.33.11 2.599
2.601 22.3.101 2.13.47 24.7.11 2.35.23
3.401 1213 1223 32.137 11.113
22.7.43 2.607 2a.3a.17 2.617 22.311
5.241 35.5 52.7a 5.13.19 3.5.83
2.32.67 26.19 2.613 22.3.103 2.7.89
17.71 1217 3.409 1237 29.43
23.151 2i%?g 2.619 25.3.13
19.61 7.167 32.131 29.41 11.109 3.13.31 23.53 1229 3.7.59 1249
21 2
a-
121 122 123 124
8. E b.
3 5 t’
:;;
i!
$
32.139 13.97 31.41 3.7.61 1291
22.313 2.631 23.3.53 2.641 22.17.19
7.179 3.421 19.67 1283 3.431
2.3.11.19 24.79 2.72.13 22.3.107 2.647
5.251 5.11.23 3.52.17 5.257 5.7.37
2a.157 2.3.211 22.11.29 2.643 24.34
3.419 7.181 1277 32.11.13 1297
2.17.37 22.317 2.32.71 23.7.23 2.11.59
1259 33.47 1279 1289 3.433
128 127 129
1301 3.19.23 1321 11’ 32.149
2.3.7.31 25.41 2.661 22.32.37 2.11.61
1303
2a.163 2.32.73 22.331 2-23.29 26.3.7
32.5.29 5.263 52.53 3.5.89 5.269
2.653 22.7.47 2.3.13.17 2a.167 2.673
1307 %i 7.191 3.449
22.3.109 2.659 2’.83 2.3.223 22.337
7.11.17 1319 3.443 13.103 19.71
130 131 132 133 134
135 136 137 138 139
7.193 1361 3.457 1381 13.107
2a.132 2.3.227 22.73 2.691 24.3.29
2.677 22.11.31 2.3.229 23.173 2.17.41
5.271 3.5.7.13 53.11 5.277 32.5.31
22.3.113 2.683 25.43 2.32.7.11 22.349
23.59 1367 34.17 19.73 11.127
2.7.97 28.32.19 2.13.53 22-347 2.3.233
3a.151 372 7.197 3.463 1399
135 136 li7 138 139
140 141 142 143 144
2VP.7 2.3.5.47 2*.5-71 2.5-11-13 25.32.5
3.467 17.83 72.29 33.53 11.131
2.701 22.353 2.32-79 23.179 2.7.103
22.35.13 2.7.101 2’.89 2.3.239 2*.19a
5.281 5.283 3.52,19
2.19.37 28.3.59 2.23.31 22.359 2.3.241
3.7.67 13.109 1427 3.479 1447
27.11
2.709 22.3.7-17 2.719 23.181
140 141 142 143 144
145
232.29 2a.5-73 2.3-5.7” 2a.5.37 2-5.149
1451 3-487 1471 1481 3.7-71
22.3.112 2.17.43 26.23 2.3;133;319
2.727 23-3.61 2.11.67 22.7.53 2-32.83
3.5.97 5.293 52.59 33.5.11 5-13.23
2’.7.13 2.733 22.32.41 2,743 2a.ii.17
31.47 32.163 7.211 1487 3.499
2.36 22.367 2.739 24.3.31 2.7.107
1409 3.11.43 1429 1439 32.7-23 1459 13.113 3.i7.29 1489 1499
::t :tz
-.
133+~1 3;:43 17.79 3iK+1 1373 3.461 7.199 23.61 32.157 1423 1433 3.13.37 1453 7.11.19 3.491 1483 1493
. 2 !I??
8 Et
119 120
p.$$.7 2.5.127 28.5 2-3.5.43 22.52.13 2.5.131 2a.3.5.11 2-5.7.19 2a.5.67 2.35.9 2’.5.17 2.5.137 22.3.5.23 2.5.139
130 131 132 133 134
.$
145 146 147 148 z 149 g
z is
150 151 152 153 154
P.S..V - -2.5.151 2'.5.19 2.32.5.17 21.5.7.11
155 156 157 158 159
2.52.31 23.3.5.13 2.5.157 P-5.79 2.3.5.53
160 161 162 163 164
19.79 is11
25.47 2.757 21.3-127 2.13.59 23.193
5.7.43 3.5-101 52.61 5.307 3.5.103
2.3.251 22.379 2.7.109 20.3 2.773
21.13-29 2.3.11.23 23.191 2.769 22-32.43
3.503 72.31 11.139 34-19 1549
1553 3.521 111.13 1583 38.59
2.787 24.32.11 2.797
5.311 5.313 32.52.7 5.317 5.11.29
22.389 2.33.29 23.197 2.13.61 3.3.7.19
39.173 1567 19.83
2.19.41 25.72 2.3.263 22.397 2.17.47
1559 3.523 1579 7-227 3.13-41
155 156 157 158 159
2.32.89 22.13.31 2.811 26.3-17 2.821
7,229 1613 3.541 23.71 31.53
22.401 2.3.269 23.7.29 2.19.43 22.3.137
53.13 3.5.109 5.7.47
2.11.73 24.101 2.3.271 22.409 2.823
1607 3.72.11 1627 1637 33.61
23.3-67 2.809 22.11-37 2-$.;7-;3
1609 1619 31.181 11.149 17.97
160 161 162 163 164
13.127 11.151 3.557 412 19.89
22.7.59 2.3.277 28.11.19 2.292 3.32.47
3.19.29 1663 7.239 32.11.17 1693
2.827 27.13 2.38.31 22.421 2-7.11'
5.331 32.5.37 52.67 5.337 3.5.113
23.32.23 2.72.17 22.419 2.3.281 25.53
1657 1667 3.13.43 7.241 1697
2.829 22.3.139 2.839 23.211 2.3.283
3.7.79 1669 23.73 3.563 1699
165 166 167
35.7 29.59 1721 3.577 1741
2.23.37 24.107 2iziY 2.13.67
13.131 3.571 1723 1733 3.7-83
2.853 22.3.11.13 2.863 23.7.31 2.32.97
3.569 17.101 11.157 32.193 1747
P.7.61 2.859 26.33 2.11.79 22.19.23
1709 32.191 7.13.19 37.47 3.11.53
7.11.23 13.137 32.199
28.3.73 2.881 P.443 2.34.11 28.7
1753 41.43 32.197 1783 11.163
2.887 23.223 2.3.13.23
22.439 2.883 2'.3.37 2.19.47 22.449
7.251 3.19.31 1777 1787 3.599
2.3.293 2.13.17 2.7.127 22.3.149 2.29,31
1759 29.61 3.593 1789 7.257
%%i. .
1801 1811 3.607 1831 7.263
2.17.53 22.3.151 2.911 23.229 2.3.307
3.601 71.37 -. 1823 3.13.47 19.97
22.11.41 2.907 25.3.19 2.7.131 22.461
2.3.7.43 2a.227 2.11.83 22.33.17 2.13.71
13.139 23.79 32.7.29 11.167 1847
24.113 2.32.101 a.457 2.919 23.3.7.11
33.67 17.107 31.59
185 186 187 188 189
2.52.37 22.3.5.31 2.5.11.17 23.5.47 2.33.5.7
3.617 1861 1871 32.11.19 31.61
22.463 2.71.19 24-32.13 2.941 22.11.43
17.109 34.2% 1873 7.269 3.631
2.32.103 2a.233 2.937 22.3.157 2.947
25.21)
55%~g
z23:41 23.3-79
3.619 1867 1877 3.17.37 7.271
190 191 192 193 194
2vP.19 2.5-191 21.3.5 2.5.193 22.5.97
1901 3.72.13 17.113 1931 3.647
2.3.317 23.239 2.311 22.3.7.23 2.971
11.173 1913 3.641 1933 29.67
24.7-17 2.3.11.29 22.13.37 2.967 23.36
3.5.127 5.383 52.7.11 32.543 5.389
2.953 22.479 2.32.107 24. i I* 2.7.139
1907
1951 37,53 33.73 7.283 11.181
26.61 2.32.109 3.17-29 2.991 3.3.83
31.7.31 13.151 1973 3.661 1993
2.977 22.491
5.17-23 3.5.131 52.79 5.397 3.5.7.19
22.3.163 2.983 _-23.13.19 2.3.331 22.499
2.751 28.33.7 2.761 3.383 2-3.257
32.167 17.89 1523 3-7-73 1543
IS71 3.17-31 37.43
24.97 2.11.71 P-3-131 2-7.113 P-199
26.52 2.5.7.23 2=.3'.5 2.5.163 29.5.41
1601 32.179 1621 7,233 3.547
165 166 167 168 169
2.3.5a.11 2a.5.83 2.5.167 24.3.5.7 2.5.131
170 171 172 173 174
2vY.17 2.3a.5.19 28.5.43 2.5.173 22.3.5.29
175 176 177 178 179
2.Fia.7
180 18i 182 183 184
2a.3a.5 2.5.181 21-5.7-13
195 196 197 198 199
2ZFG3
2&97 22.32.5.11 2.5-199
%i? 23.67
“i1E7
y&y
.-
-
-
----.--
5.11-31 5.73 3.52.23 5.347 5.349 2.877
22.3X72
3i%
5.367 32.5.41 5.7.53 5.373 3.54
“E1”’ 2.997
._.._ .- - .._ .-. .-..
.
~
z3i3fz
131;143:
3.509 29.53 7.13.17
E
x3-71
il.i7 13.149 3.11.59 19,103 7.281 %: 1997
150 +I 151 0" 152 o 153 154
175 176 177 178
2 e
b
Q
2 I2
323:3
179 180 181 182 183 184
2.929 22.467 2.3.313 25.59 2.13.73
11.132 3.7.89 1879 1889 32.211
185 186 187 188 189
22.32.53 2.7.137 23.241 2-3.17.19 22.487
23.83 19.101 3.643 7.277 1949
190 191 192 193 194
2.11.89 24.3.41 2.23.43 22-7.71 2.33.37
3.653 11.179 1979 32.13.17 1999
c3
N
0
1
2
3
4
5
6
7
8
9
N
g4 SE
00 % t3
2.7.11.13 22.503 2.3.337 2’.127 2.1021 22.33.19 2.1031 28.7.37 2.3.347 22.523 2.1051 2e.3.11 2.1061 P.13.41 2.32.7.17
2003 3.11.61 7.172 19.107 32.227
22.3.167 2.19.53 23.11.23 2.33.113 22.7.73
5.401 5.13.31 34.52 5.11.37 5.409
2053 2063 3.691 2083 7.13.23 3-701 2113 11.193 33.79 2143
2.13.79 2’.3.43 2.17.61 22.521 2.3.349 23.263 2.7.151 22.32.59 2.11.97 25.67
23.269 2.23.47 22.3.181 2.1091 2’. 137
2153 3.7.103 41-53 37.59 3.17.43
2.3.359 2a.541 2.1087 23.3.7.13 2.1097
3.5.137 5.7.59 5a.83 3.5.139 5.419 5.421 32.5.47 53.17 5.7.61 3.5.11.13 5.431 5.433 33.29 5.19.23 5.439
2.17.59 25.32.7 2.1013 22.509 2.3.11.31 23.257 2.1033 2a.3.173 2.7.149 2’.131 2.3’.13 2a-232 2.1063 23.3.89 2.29.37 22.72.11 2.3.19 27.17 2.1093 22.32.61
%z 52.89 3.5.149 5.449
2.1103 23.277 2.3.7.53 22.13.43 2.1123
2a.52.23 2.3.5.7.11 24.5.29 2.5.233 2VP.5.13
3.13.59 2311 11.211 32.7-37 2341
2.1151 23.172 2.33.43 22.11.53 2.1171
2203 2213 32.13.19 7.11.29 2243 3.751 31.73 2273 3.761 2293 72.47 32.257 23.101 2333 3.11.71
22.19.29 2.33.41 2’. 139 2.1117 22.3.11.17
2251 7.17-19 3-757 2281 29.79
2.3.367 22.7.79 2.11.101 23.32.31 2.19.59 22.563 2.3.13.29 25.71 2.7-163 22.3.191
2.72.23 23.283 2.3.379 22.571 2.31.37 28.32 2.13.89 22.7.83 2.3.389 23.293
5.11.41 3.5.151 52.7.13 5.457 33.5.17 5.461 5.463 3.52.31 5.467 5.7.67
235 236 237 238 239
2.9.47 23.5.59 2.3.5.79 2*.5.7.17 2.5-239
2351 3.787 2371 2381 3.797
24.3.7a 2.1181 22.593 2.3.397 23.13,23
13-181 17.139 3.7-113 2383 2393
2.11.107 22.3.197 2.1187 24.149 2.32.7.19
3.5.157 5.11.43 53.19 32.5.53 5.479
240 241 242 243 244
25.3.52 2.5.241 22.5.112 2.35.5 23.5.61
247;1 32.269 11.13.17 2441
2.1201 22.3*.67 2.7.173 27-19 2.3.11.37
22.601 2.17.71 23.3. 101 2.1217 22.13.47
5.13.37
245 246 247 248 249
2.52.72 2a.3.5.41 2.5.13.19 24.5.31 2.3.5-83
3.19.43 23.107 7-353 3.827 47.53
22.613 2.1231 23.3-103 2.17-73 2a.7.89
33.89 19.127 2423 3.811 7.349 11.223 3-821 2473 13.191 32.277
200 201 202 203 204
2’.53 2.3.5.67 22.5.101 2-5-7.29 23.3-5.17
3.23.29 2011 43.47 3.677 13.157
205 206 207 208 209
2.52.41 22.5.103 2.32.5.23 25.5.13 2.5.11-19
7.293 32-229 19.109 2081 3.17-41
210 211 212 213 214
22.3.5a.7 2.5.211 23.5.53 2.3.5.71 2*-5.107
11.191 2111 3.7.101 2131 2141
215 216 217 218 219
2.52.43 2’.33-5 2.5.7.31 22-5.109 2.3.5.73 23.52.11 2.5.13-17 2=.3.5.37 2.5.223 20.5.7
32.239 2161 13.167 3.727 7.313 31.71 3-11.67 2221 23.97 33-83
225 226 227 228
2cP-a 22.5.113 2.5.227 23.3.5.19 2.5.229
230 231 232 233 234
220 221 222 223 224
2.3.409 25.7.11 2.1237 22.33.23 2-29.43
32iY3 5.487 3.5.163 5.491 5.17.29 32.52.11 5.7.71 5.499
2’.3.47 2.11.103 22.569 2.32.127 23.7.41 2.1153 22.3.193 2.1163 25.73 2.3.17.23 22.19.31 2.7.132 23.33.11 2.1193 22.599
32.223 2017 2027 3.7.97 23.89 112.17 3.13.53 31.67 2087 32.233 72.43 29.73 3.709 2137 19.113 3.719 11.197 7.311 I?3
2207 3.739 17.131 2237 3.7.107 37.61 2267 32.11.23 2287 2297 3.769 7.331 13.179 3.19.41 2347 2357 32.263 2377 7.11.31 3.17.47
23.251 2.1009 22.3.132 2.1019 2” 2.3-73 22.11.47 2.1039 23.32.29 2.1049 22.17.31 2.3.353 24.7.19 2.1069 22.3.179 2.13.83 23.271 2.32.112 22.547 2.7.157 25.3.23 2.1109 22.557 2.3.373 23.281
72.41 3.673 2029 2039 3.683 29.71 2069 33.7.11 2089 2099 3.19.37 13.163 2129 3.23.31 7.307 17.127 32.241 2179 11.199 3.733 472 7.317 3.743 2239 13.173
2.1129 22.34.7 2.17.67 2’.11.13 2.3.383 22.577 2.19.61 23.3.97 2.7.167 22. 587 2.32.131 28.37 2.29.41 22.3. 199 2.11.109
32.251 2269 43.53 3.7.109 112.19
3.11.73 41.59 7.347 32.271 31.79 2459
2.3.401 2’.151 2.1213 22.3.7.29 2.1223
29.83 2417 3.809 2437 2447
23.7.43 2.3.13.31 22.607 2.23.53 2’.32.17
23.307 2.32.137 22.619 2.11.113 28.3.13
33.7.13 2467 2477 3.829 11.227
2.1229 22.617 2.3.7.59 23.311 2.1249
2309 3.773 17.137 2339 34.29 7.337 23.103 3.13.61 2389 2399
g;; 19.131 3.72.17
200 201 202 203 204
IF@ h
205 206 207 208 210 211 212 213 214 215
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
E g
250 251 252 253 254
22.54 2.5.251 25.32.5.7 2.5-11.23 22.5-127
41.61 34.31 2521 2531 3.7-114
2-32.139 24.157 2.13.97 2a.3.211 2.31.41
2503 7.359 3.292 17.149 2543
23.313 2.3.419 22.631 2.7-181 2’.3.53
2.7.179 22-17.37 2.3.421 23.317 2.19.67
23.109 3.839 7.192 43.59 32.283
22.3.11-19 2.1259 25.79 2.35.47 22.72.13
13.193 11.229 32.281 2539 2549
250 g ;g; 8
255 256 257 258 259
2.3.52.17 20.5 2.5.257 2a.3.5.43 2.5.7.37
2551 13.197 3.857 29.89 2591
23.11.29 2.3.7.61 2a.643 2.1291 25,3’
3.23.37 11.233 31.83 32.7.41 2593
2.1277 Z2.641 2.32.11.13 23.17.19 2.1297
5.7,73 38.5.19 52.103 5.11.47 3.5.173
22.32.71 2.1283 2’.7.23 2.3.431 22,11.59
2557 17.151 3.859 13.199 72.53
2.1279 23.3.107 2.1289 22.647 2.3.433
3.853 7.367 2579 3.863 23.113
255 256 257 258 259
260 261 262 263 264
25.52.13 2.32.5.29 22.5.131 2.5-263 2’.3.5.11
32.17* 7-373 2621 3.877 19.139
2.1301 2a.653 2.3.19.23 2a.7.47 2.1321
19.137 3iEit7 2633 3.881
Z2.3.7.31 2.1307 28.41 2.3.439 2%.661
5.521 5.523 3.55.7 5.17.31 5.23z
2.1303 23,3.109 2.13.101 22.659 2,3’.7‘=
3.11.79 2617 37.71 32.293 2647
2’.163 2.7.11.17 22.32.73 2.1319 23.331
2609 33.97 11.239 7.13.29 3.883
260 261 262 263 264
265 266 267 268 269
2.52-53 2*-5.7-19 2.3.5.89 2a.5.67 2.5.269
11.241 3.887 2671 7.383 32.13.23
2a.3.13.17 2.11’ 2’.167 2.32.149 22.673
7.379 2663 35.11 2683 2693
2.1327 23.32.37 2.7.191 22.11.61 2.3.449
32.5.59 5;l.%Y 3.a5.179 5.72.11
25.83 2-31.43 22.3.223 2.17.79 Z3.337
2657 3-7-127 2677 2687 3.29.31
2.3.443 22-23-29 2.13.103 27.3.7 2.19.71
2659 17.157 3.19-47 2689 2699
265 266 267 268 269
270 271 272 273 274
22.3J.51 2.5.271 25.5.17 2-3.5.7.13 2*.5.137
37.73 2711 3.907 2731 2741
2.7.193 23.3.113 2.1361 22.683 2.3.457
3.17.53 2713 7.389 3.911 13.211
2’.132 2.23-59 22.3.227 2.1367 2*.73
5.541 3.5.181 52.109 5.547 32.5.61
2.3.11.41 22.7.97 2.29.47 24.32.19 2.1373
2707 11.13.19 35.101 7.17.23 41.67
22.677 2.32.151 23.1 1.31 2.372 22-3.229
32.7.43 2719 2729 3.11.83 2749
275 276 277 278 279
2.5s.11 23.3.5.23 2.5.277 22.5.139 2.3a.5.31
3.7.131 11.251 17.163 33.103 2791
26.43 2.1381 22.32.7.11 2.13.107 23.349
2753 32.307 47.59 1 12.23 3.72.19
2.3’.17 22.691 2.19.73 25.3.29 2.11.127
5.19.29 5.7.79 3.52.37 5.557 5.13.43
22.13.53 2.3.461 23.347 2.7.199 22.3.233
3.919 2767 2777 3.929 2797
2.7.197 2’.173 2.3.463 22.17.41 2.1399
31.89 3.13.71 7.397 2789 32.311
280 281 282 283 284
24.52.7 2.5.281 2r.3.5.47 2.5.283 2*.5.71
2801 3.937 7.13.31 19.149 3.947
2.3.467 22.19.37 2.17.83 24.3.59 2.72.29
2803 29.97 3.941 2833 2843
22.701 2.3.7.67 2a.353 z-13.109 22.32.79
3.5.11.17 5.563 52.113 34.5.7 5.569
2.23.61 28.11 2.32.157 22.709 2.1423
7.401 32.313 11.257 2837 3.13.73
23.33.13 2.1409 22.7.101 2.3.11.43 Z5.89
532 2819 3.23.41 17.167 7.11.37
280 281 282 283 284
285 286 287 288 289
2-3-52.19 22.5.11.13 2.5.7.41 26.32.5 2.5.17*
2851 2861 32.11.29 43.67 72.59
22.23.31 2.33.53 23.359 2.11.131 22.3.241
32.317 7.409 132.17 3.312 11.263
2.1427 24.179 2.3.479 2=.7.103 2.1447
5.571 3.5.191 53.23 5.577 3.5.193
23.3-7-17 2.1433 22.719 2.3.13.37 2’.181
2857 47.61 3.7.137 2887 2897
2.1429 22.3.239 2.1439 23.192 2.32-7.23
3.953 19.151 2879 33.107 13.223
285 286 287 288 289
290 291 292 293 294
22.52.29 2-3.5.97 23.5.73 2.5.293 22.3.5.72
3.967 41.71 23.127 3.977 17.173
2.1451 Z5.7.13 2.3.487 22.733 2.1471
2903 3.971 37.79 7.419 33.109
23.3.11a 2-31.47 22.17.43 2.32.163 27.23
5.7.83 5.11.53
2.1453 22.3e 2;.ln;9
3xi:3 5.19.31
2.33.491
32.17.19 2917 2927 3.11.89 7.421
22.727 2.1459 2’.3.61 2.13.113 22.11.67
2909 3.7.139 29.101 2939 3.983
290 291 292 293 294
295 296 297 298 299
2.52.59 24.5.37 2.33.5.11 22.5.149 2.5.13.23
13.227 32.7.47 2971 11.271 3.997
23.32.41 2.1481 22.743 2.3.7.71 2’.11.17
2953 2963 3.991 19.157 41.73
2.7.211 22.3.13.19 2.1487 Z3.373 2.3.499
3.5.197 5.593 52.7.17 3.5.199 5.599
22.739 2.1483 25.3.31 2.1493 22.7.107
2957 3.23.43 13.229 29.103 34.37
2.3.17.29 Z5.7.53 2.1489 22.32.83 2.1499
11.269 2969 32.331 72.61 2999
c3 295 & 296 y 297 298 gfit 299220,;
-.. .- .._.... -. ..-.
-. ..----.-.--.-- ---- .-
253 254
8
t3
$ CD
o”4 N
0
1
2
3
4
5
6
7
8
9
‘20 8
N8& 5
300 301 302 303 304
25.3.5a 2.5.7.43 22.5.151 2.3.5.101 25.5.19
3001 3011 3.19.53 7.433 3041
2.19.79 22.3-251 2.1511 25.379 2.32.132
305
2-52.61 2a.32.5-17 2-5.307 28.5.7.11 2.3.5.103
33.113 3061 37.83 3-13-79 11.281
2VP.31 2.5-311 2’.3.5.13 2.5.313 22.5-157
E 308 309
3;gl;;3
E j
3023 32.337 17.179
22.751 2.11.137 2’.3’.7 2.37-41 21.761
5.601 32.5.6; 52.112 5.607 3-5.7.29
2.32.167 25.13.29 2.17.89 22.3.11.23 2.1523
31.97 7.431 3.1009 3037 11.277
26.47 2-3.503 22.757 2.72.31 28.3.127
3.17.59 3019 13.233 3.1013 3049
300 301 302 303 304
43.71 3.1021 7.439 3083 3.1031
2.3.509 23.383 2-29.53 22.3.257 2.7.13.17
5.13.47 5.613 3.52.41 5.617 5.619
24.191
7.19.23 32.11.31 3079 3089 3.1033
305 306
29.107 11.283 32.347 13.241 7.449
25.97 2-32.173 22.11.71 2.1567 23.3.131
38.5-23 5.7-89 3;5;&9 . .
2.1553 22.19.41 2.3.521 26.72 2.112.13
3.1019 3067 17.181 3a.7a 19.163 13.239 3.1039 53.59 3137 3.1049 7.11.41 3167 32.353 3187 23.139
2.11.139 22.13.59 2.34.19 24.193 2.1549
7.443 3.17.61 3121 31.101 32.349
22.7-109 2.1531 2’0.3 2.23-67 22.773 2.3.11.47 28.389 2.7.223 22.38.29 2.1571
22.3.7.37 2.1559 2a.17.23 2.3-523 a.787
3109 3119 3-7.149 43.73 47-67
310 311 312 313 314
2.1579 25.32.11 2.7.227 22.797 2.3.13.41
35.13 3169 11.171 3-1063 7.457
315 316 317 318 319
2
8 K $
;;;
p
8
323 324
p e.
E
;;x
E
% k d z
2iz&3 2i543 23.32-43
E 309
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
2.3a.F.7 23.5.79 2.5.317 22.3.5.53 2.5.11.29
23.137 29.109 3.7.151 3181 3191
24.197 2.3.17.31 22.13.61 2-37.43 23.3.7.19
3.1051 3163 19.167 3.1061 31.103
2.19.83 22.7.113 2.3.232 24.199 2.1597
5.631 3.5.211 52.127 5.72.13 32-5.71
22.3.263 2.1583 23.397 2.38.59 22.17.47
27.52 2.3.5.107 22.5.7.23 2.5.17.19 2a,34,5
2.1601 22-11-73 2.32.179
3203 38.?.17 11.293 53.61 3.23.47
22.32.89 2.1607 23.13.31 2.3-7a.11 22.811
5.641 5.643 3.5a.43 5.647 5.11.59
2’.401 2.1609 22.3.269 2.1619 24.7-29
3209 3-29-37 3229 41.79 32.191
2.58.13 22.5.163 2.3.5-109 2’.5.41 2.5.7-47
3253 13.251 3.1091 72.67 37.89
2.1627 26.3.17 2.1637 3.821 2.33.61
“;“.kE 52.131 32.5-73 5.659
2.7.229 24.3.67 2.1613 22.809 2.3.541 23.11.37 2.23.71 22.32,7.13 2.31-53 25.103
3.1069 3217 7.461 3.13.83 17.191
325 326 327 328 329
3.11.97 132.19 3221 32.359 7.463 3251 3.1087 3271 17.193 3.1097
3257 33.117 29.113 19.173 3.7.157
2.32.181 22.19.43 2.11.149 2’.3.137 2.17.97
3259 7.467 3.1093 11.13.23 3299
330 331 332 333 334 335 336 337 338 339
2a.3.5a.ll 2.5.331 28-5.83 ;z3;y; . .
3301 7-11.43 34.41 3331 13.257
2.13.127 2’.32.23 2.11.151 22-72.17 2.3.557
32.367 3313 3323 3.11.101 3343
23.7.59 2.1657 22.3.277 2.1667 24.11.19
5.661 3.5.13.17 5a.7.19 5.23.29 3.5.223
2.3.19.29 22.829 2.1663 28.3.139 2.7.239
3307 31.107 3.1109 47.71 3347
22.827 2-3.7-79 28.13 2,1669 22.33.31
3.1103 3319 3329 32.7.53 17.197
330 331 332 333 334
2.52.67 25.3.5.7 2.5-337 22.5.131 2.3.5-113
3.1117 3361 3371 3.72-23 3391
7.479 3-19.59 3373 17.199 32.13.29
2.3.13.43 22.29 2.7.241 23.32.47 2.1697
32.373 7.13.37 11.307 3.1129 43.79
2.23.73 28.421 2.3.563 22.7.11” 2.1699
3359 3.1123 31.109 3389 3.11.103
EX 337 338 339
2W.17 2.5.11.31 22.32.5.19 2.5.75 2’.5.43
19.179 32.379 11.311 47.73 3-31.37
41.83 3413 3.7.163 3433 11.313
22.23.37 “;;“i-%? 2.lsi.101 22.3.7.41
5.11.61 5.673 3a.55 5.677 5.7-97 3.5.227 5.683 51.137 3.5.229 5.13.53
p-839 2.3a.11-17 24.211 2.1693 22.3.283
340 341 342 343 344
2a.419 2.412 2a.3.281 2.19.89 26.53 2.36.7 22.853 2-29.59 20.3.11.13 2.1721
2.13.131 25.7.61 2.3.571 22.859 2.1723
3407 3.17.67 23.149 7.491 32.383
2’.3.71 2.1709 22.857 2.32.191 2a.431
7.487 13.263 38.127 19.181 3449
340 341 342 343 344
345 346 347 348 349
22.863
ti3E2 2:5:347 25-3.5-29 2.5-349
3.1151 3463 23.151 34.43 7.499
2.11.157 2a.433 2.32.193 22.13-67 2.1747
5.691 32-5.7.11 52.139 5-17.41 3-5.233
27.31 2.1733 22.11.79 2.3.7.83 2a.19.23
3457 3467 3.19.61 11.317 13.269
2.7.13.19 22.3.172 2-37.47 25.109 2.3.11.53
3.1153 3469 P-71 3.1163 3499
345 346 347 348 349
7.17:29 3461 3.13-89 3%
25.101
2.1621 22.3.271 2.7.233 28.409 2.3.547 22.823
22;3;53:7 2+41 22.32.97
327 328 329
2 g
22.58.7 2.38.5-13 26.5.11 2.5.353 22.3.5.59
2.17.103 28.439
31.113 3.1171
5.701 5.19.37 3.52.47
1K 3.1181
2’.3.73 2.7.251 22.881 2.3.19.31 2a.443
:%l 2.7.h.23
5z.lY
2.1753 3.3.293 2.41.43 2’.13.17 2.32.197
3.7.167 3517 3527 33.131 3547
22.877 2.1759
2.29.61 22.887
112.29 3a-17.23 3529 3539 3-7.132
28.32.72
350 g 351 8 352 353 354
EX 359
2.b-359
53.67 3.1187 3571 3581 38.7.19
360 361 362 363 364
24.32.51 2.5.19 21.5.181 2.3.5.11* 28.5.7.13
13.277 23-157 3.17-71 3631 11.331
2.1801 22.3-7.43 2.1811 24.227 2.3.607
3.1201 3613 3623 3.7.173 3643
22.17.53 2.13.139
5.7.103
E&Y 2%.9;1
“;“:% 5:727 38.5
365 366 367 368 369
2.5a.73 21.3.5.61 2.5.367 26.5.23 2.32.5.41
3.1217 7.523 3671 32.409 3691
22.11.83 2.1831 2”.3”.17 2.7-263 22-13.71
13.281 32.11.37 3673 29.127 3.1231
2.32.7-29 24.229 2.11.167 22.3.307 2.1847
5.17.43 5.733 3.52.72 5.11.67 5.739
23.457 2.3.13.47 22.919 2.19.97 2’.3.7.11
3.23.53 19.193 3677 3.1229 3697
2.31.59 22.7,131 2.3.613 23.461 2.432
3659 3.1223 13.283 7.17.31 33.137
370 371 372 373 374
2QY.37 2-5.7.53 28.3.5.31 2.5.373 2a.5.11.17
3701 3.1237 612 7.13.41 3.29.43
2.3.617 27.29 2.1861 22.3.311 2.1871
7.232 47.79 3.17-73 3733 19.197
2’.463 2.3.619 22.72.19 2.1867 25.3a.13
3.5.13.19 5.743 52.149 32.5.83 5.7.107
2.17.109 22.929 2.3’.23 23.467 2.1873
11.337 32.7.59 3727 37.101 3.1249
22.32-103 2.11.132 2’.233 2.3.7.89 22,937
3709 3719 3.11.113 3739 23.163
375 376 377 378 379
2.3.5’ 2’.5.47 2.5.13.29 22.33.5.7 2.5.379
111.31 3761 32.419 19.199 17.223
28.7.67 2.32.11.19 22.23.41 2.31.61 24.3.79
38.139 53.71 73.11 3-13.97 3793
2.1877 22.941 2.3.17.37 2*.11.43 2.7.271
5.751 3.5.251
22.3.313 2.7.269 26.59 2.3.631 22.13-73
13.17” 3767 3.1259 7.541 3797
2.1879 28.3.157 2.1889 22.947 2.32.211
3.7.179 3769 3779 32.421 29.131
28.52.19 2.3.5.127 21.5.191 2g.$.;3
3.7-181 37.103 3821 3.1277 23.167
2.1901 21.953 2.3.72-13 2a.479 2.17.113
3803 3.31.41 3823 3833 32.7.61
22.3.317 2.1907 24.239 2.38.71 22.312
2.11.173 2=.32,53 2.1913 22.7.137 2.3.641
34.47 11.347 43.89 3.1279 3847
25.7.17 2.23.83 22.3.11.29 2.19.101 28.13.37
13.293 3.19.67 7.547 11.349 3.1283
380 381 382 383 384
385 386 387 388 389
2.52.7.11 22-5-193 2.32.5,43 23.5.97 2.5.389
3851 3a.11.13 72.79 3881 3.1297
22.32.107 2.1931 2s.113 2.3.647 22.7.139
3853 3863 3.1291 11.353 17.229
2.41-47 28.3.7.23 2.13.149 22.971 2.3.11.59
3i5i?:7 58.31 3.5.7.37 5.19.41
24.241 2.1933 22.3.17.19 2.29.67 2a.487
7.19-29 3.1289 3877 132.23 32.433
2.3.643, 22.967 2.7.277 2’.3= 2.1949
17.227 53.73 32.431 3889 7.557
385 386 387 388 389
390 391 392 393 394
2a.3.5a.13 2.5.17.23 24.5.72 2.3.5.131 21.5.197
47-83 3911 3.1307 3931 7.563
2.1951 2a.3.163 2.37.53 2a.983 2.33-73
3.1301 7.13.43 3923 32.19.23 3943
26.61 2.19.103 iF.3a.109 2.7.281 28.17-29
5.11.71 38.5.29 52.157 5.787 3.5.263
2.32.7.31 22.11.89 2.13.151 25.3.41 2.1973
3907 3917 3.7.11.17 31.127 3947
22.977 2.3.653 28.491 2.11.179 22.3.7.47
3.1303 3919 3929 3-13.101 11.359
390 391 392 393 394
395 396 397 398 399
2-52.79 2a.32.5.11 2.5.397 22.5.199 2.3.5.7.19
32.439 17.233 11.19 3.1327 13.307
24.13.19 2.7-283 21.3.331 2.11.181 26.499
59.67 3.1321 29.137 7.569 3.11”
2.3.659 22.991 2.1987 2’.3.83 2.1997
22.23.43 2.3.661 2’.7.71 2.1993 22.3a.37
3.1319 3967 41.97 32.443 7.571
2.1979 27.31 2.32.13.17 22.997 2.1999
37.107 34.72 23.173 3989 3.31.43
E
381 382 383 384
2.52.71 23.5.89 2i$.;.;;197
32.389 3511 7.503 3.11.107 3541
25.3.37 2.13.137 22.19.47 2.3a.199 2.449
11.17.19 7.509 32.397 3583 3593
2.1777 22.34.11 2.1787 20.7 2.3.599
32.5.79 5.23.31 52.11.13 3.5.239 5.719
22.7.127 2.1783 28.3.149 2.11.163 22.29.31
3557 3.29.41 72.73 17.211 3.11.109
2.3.593 2’.223 2.1789 22.3.13.23 2.7.257
3559 43.83 3.1193 37.97 59.61
355 356 357 358 359
2.3.601 25.113 2.72.37 22.32.101 2.1823
3607 3617 32.13.31 3637 7.521
28.11.41 2.33.67 22.907 2.17.107 28.3.19
32.401 7.11.47 19.191 3.1213 41.89
360 361 362 363 364 365 366 367 368 369
r;;; 3.5.11.23 5.761 5.7.109 32.52.17 “i%i9
8
G
e
fse N 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
0 25.53 2.5.401 22.3.5.67 2.5.13.31 23.5.101 2.34.52 22.5.7.29 2.5.11.37 2’.3.5.17 2.5.409 22.52.41 2.3.i.137 23.5.103 2.5.7.59 22.32.5.23
1
2
3
4
4001 3.7.191 4021 29.139 32.449
2.3.23.29 22.17.59 2.2011 26.32.7 2.43.47
4003 4013 33.149 37.109 13.311
22.7.11.13 2.32.223 23.503 2.2017 22.3.337
4051 31.131 3.23.59 7.11.53 4091
22.1013 2.3.677 23.509 2.13.157 22.3.11.31
3.7.193 17.239 4073 3.1361 4093
3.1367 4111 13.317 35.17 41.101
2.7.293 2’.257 2.32.229 22.1033 2.19.109
11.373 32.457 7.19.31 4133 3.1381
2.2027 25.127 2.3.7.97 22.1021 2.23.89 23.3a.19 2.112.17 22.1031 2.3.13.53 2’.7.37
7.593
23.3.173 2.2081 22.7.149 2.3.17.41 25.131
4153 23.181 3.13.107 47.89 7.599
2.31.67 22.3.347 2.2087 23.523 2.32.233
2.11.191 22.3’.13 2.2111 23.232 2.3.7.101
32.467 11.383 41.103 3.17.83 4243
5
6
7
8
9
32.5.89 5.11.73 52.7.23 3.5.269 5.809 5.811 3.5.271 52.163 5.19.43 32.5.7.13
2.2003 24.251 2.3.11.61 22.1009 2.7.172
4007 3.13.103 4027 11.367 3.19.71
23.3.167 2.72.41 22.19.53 2.3.673 2’.11.23
19.211 4019 3.17.79 7.577 4049
400 401 402 403 404
23.3.132 2.19.107 22.1019 2.32.227 2’2
4057 72.83 33.151 61.67 17.241
2.2029 22.32.113 2-2039 23.7.73 2.3.683
32.11.41 13.313 4079 3.29.47 4099
405 406 407 408 409
5.821 5.823 3.53.11 5.827 5.829 3.5.277
2.2053 22.3.73 2.2063 23.11.47 2.3.691
3.372 23.179 4127 3.7.197 11.13.29
22.13.79 2.29.71 25.3.43 2.2069 22.17.61
7.587 3.1373 4129 4139 32.461
410 411 412 413 414
YZ 33.5.31 5.839
22.1039 2.2083 24.32.29 2.7.13.23 22.1049
4157 32.463 4177 53.79 3.1399
2.33.7.11 23.521 q.2089 22.3.349 2.2099
4159 11.379 3.7.199 59.71 13.17.19
22.1051 2.72.43 2’.3.11 2.29.73 22.1061
5.2Q2 3.5.281 52.132 5.7.112 3.5.283
2.3~701 23.17.31 2.2113 22.3.353 2.11.193
7.601 4217 3.1409 19.223 31.137 32.11.43 17.251 7.13.47 3.1429 4297
2’.263 2.3.19.37 22.7.151 2.13.163 23.32.59
3.23.61 4219 4229 33.157 7.607
415 416 417 418 419 420 421
2.2129 22.11.97 2.3.23.31 28.67 2.7.307
4259 3.1423 11.389 4289 3.1433
;;; 427 428 429
2.52.83 2O.5.13 2.3.5.139 22.5.11.19 2.5.419 23.3.52.7 2.5.421 22.5.211 2.32.5.47 2*.5.53
“it&z 37.113 3.11.127 4201 4211 32.7.67 4231 4241
2.5.7.61 23.5.107 2.3.5.11.13
3.13.109 4261 4271 3.1427 7.613
22. 1063 2.2131 2’.3.89 2.2141 22.29.37
4253 3.72.29 4273 4283 34.53
2.3.709 23.13.41 2.2137 22.32.7.17 2.19.113
5.23.37 5.853 32.52.19 5.857 5.859
25.7.19 2.33.79 22.1069 2.2143 23.3.179
2.32.239 28.72.11 2.2161 22.3.192 2.13.167 28.17 2.3.727 22.1093 2.7.313 2a.32.61
13.331 19.227 3.11.131 7.619 43.101
2’.269 2.3.719 2=.23.47 2.11.197 23,3.181
3.5.7.41 5.863 52.173 3.5.172 5.11.79
59.73 3.1439 4327 4337 3$.7.23
22.3.359 2.17.127 23.541 2.32.241 22.1087
31.139 7.617 32.13.37 4339 4349
430 431 432 433 434
3.1451 4363 4373 32.487 23.191
2.7.311 22.1091 2.3’ 25.137 2.133
5.13.67 32.5.97 5G7 3.5.293
2.2153 22.13.83 2.3.7.103 2’.271 2.41.53 22.32.112 2.37.59 23.547 2.3.17.43 22.7.157
4357 11.397 3.1459 41.107 4397
2.2179 2’.3.7.13 2.11.199 22.1097 2.3.733
3.1453 17.257 29.151 3.7.11.19 53.83 4409 32.491 43.103
435 436 437 438 439
22,52.43 2.5.431 25.33.5 2.5.433 22.5-7-31
435 436 437 438 439
2.3.52.29 23.5.109 2.5.19.23 22.3.5.73 2.5.439
11.17.23 32.479 29.149 61.71 3‘1447 19.229 72.89 3.31.47 13.337 4391
440 441 442 443 444
2’.52.11 2.32.5.72 22.5.13.17 2.5.443 23.3.5.37
33.163 11.401 4421 3.7.211 4441
2.31.71 22.1103 2.3.11.67 2’.277 2.2221
7.17.37 3.1471 4423 11.13.31 3.1481
22.3.367 2.2207 23.7.79 2.3.739 22.11.101
5.881 5.883 3.52.59 5.887 5.7.127
2.2203 26.3.23 2.2213 22.1109 2.32.13.19
3.13.113 7.631 19.233 32.17.29 4447
23.19.29 2.472 22.33.41 2.7.317 25.139
445 446 447 448 449
242.89 22.5.223 2.3.5.149 27.5.7 2.5.449
4451 3.1487 17.263 4481 32.499
22.3.7.53 2.23.97 23.13.43 2.3a.83 22.1123
61.73 4463 32.7.71 4483 4493
2.17.131 2’.32.31 2.2237 22.19.59 2.3.7.107
34.5.11 5.19.47 52.179 3.5.13.23 5.29,31
23.557 2.7.11.29 22.3.373 2.2243 2’.281
4457 3.1489 112.37 7.641 3.1499
2.3‘743 22.1117 2.2239 23.3.11.17 2.13.173
g U
N8k
422 423 424
;“;g;
440 441 442 443 444
73.13 41.109 3.1493 672 11.409
445 446 447 448 $ 449 g
z j
8 eq g 0” 3. g 2. g
E + ;! ‘ia r r s K ‘2 ;3
22.32.5
7.643 13.347 3.11.137 23.197 19.239
2.2251 25.3.47 2-7.17.19 21.11.103 2.3.757
3.19.79 4513 4523 3.1511 7-11-59
23.563 2.37.61 2a.3.13.29 2.2267 26.71
5.17.53 3.5-7.43 5a.181 5.907 3a.5.101
2.3.751 22.1129 2.31.73 23.34.7 2.2273
4507 4517 32.503 13.349 4547
22.72.23 2-37.251 24.283 2.2269 22.3.379
33.167 4519 7.647 3.17.89 4549
2;; iii 452 o
2.52.7.13 24.3.5.19 2.5-457 22.5.229 2.3a.5.17
3-37.41 4561 7-653
28.569 2.2281 22.32.127 2.29.79 2’.7.41
29.157 38.13% 17.269 4583 3.1531
2.32.11.23 23.3.191 2.2297
5.911 5-11.83 3.52.61 5.7.131 5.919
2’.17.67 2.3.761 25.11.13 2.2293 22.3.383
3.72.31 4567 23.199 3.11.139 4597
2.43.53 23.571 2.3.7.109 22.31-37 2.112.19
47.97 3.1523 19.241 13.353 32.7.73
455 456 457 458 459
460 461 462 463 464
2VG.23 2.5.461 22.3.5.7.11
43.107
. . “2;“;“2”9”
3i2Yif3 11.421 3.7.13.17
2.3.13.59 22.1153 2.2311 28-3.193 2.11.211
4603 7.659 3.23,67 41.113 4643
22.1151 2.3.769 24.171 2.7.331 22.33-43
3.5.307 5-13.71 58.37 32.5.103 5.929
2.72.47 23.577 2.32.257 22.19.61 2.23.101
17.271 35.19 7.661 4637 3.1549
2’J.32 2.2309 22-13.89 2.3.773 23.7.83
11.419 31.149 3.1543 4639 4649
460 461 462 463 464
465 466 467 468 469
2.3.52.31 2a.5.233 2.5.467 ;.53a+5i;3 . . .
4651 59.79 38.173 31.151 4691
22~1163 2.32.7.37 2”.73 2.2341 22.3.17.23
32.11.47
5.72.19 3.5.311 5a.11.17 5.937 3.5.313
24.3.97 2.2333 22.7.167 2.3.11.71 2a.587
4657 13.359 3.1559 43.109 7.11.61
2.17.137 22.3.389 2.2339 24.293 2.34.29
3.1553
tf !X 3.7.223 13.194
2.13-179 23.11.53 2.3.19.41 P.1171 2.2347
7h263;g 32.521 37.127
465 466 467 468 469
470 471 472 473 474
22.5a.47 2-3-5-157 24.5.59 2.5.11.43 22.3.5.79
3.1567 7-673 4721 3-19.83 11.431
2.2351 23.19-31 2.3-787 22.7.132 2.2371
4703 3.1571 4723 4733 3a.17.31
25.3.71 2.2357 22.1181 2,32-263 28.593
5.941 5.23,41 33.52.7 5.947 5.13.73
2.13.181 22.32.131 2.17.139 2’.37 2.3.7.113
32.523 53.89 29.163 3.1579 47.101
22.11.107 2.7.337 23.3.197 2.23.103 22.1187
17.277 3-l 12.13 4729 7.677 3.1583
475 476 477
2.5a.19 28.5.7.17 $z3;;;;
4::
2.5.k79
4751 32.231 13.367 7.683 3.1597
24.35.11 2.2381 22-1193 2.3.797 23.599
72.97 11.433 3.37.43 4783 4793
2.2377 22.3.397 2.7.11-31 2’.13.23 2.3.17.47
3.5.317 5.953 52.191 3.5.11.29 5.7.137
22.29.41 2.2383 23-3.199 2.2393 22.11.109
67.71 3.7.227 17.281 4787 32.13.41
2.3.13.61 25.149 2.2389 22.32.7.19 2.2399
4759 19.251 34.59 4789 4799
476 477 478 479
480 481 482 483 484
26.3.5a 2-5.13.37 22.5.241 2-3-5.7.23 25.5.112
4801 17.283 3.1607 4831 47.103
2.7’ 22.3.401 2.2411 2s.151 2.32.269
3.1601 4813 7.13.53 33,179 29-167
22.1201 2.29.83 28.32.67 2.2417 2a.7,173
5.312 32.5.107 52.193 5.967 3.5.17.19
2.33.89 2’.7.43 2.19.127 22.3.13.31 2.2423
11.19.23 4817 3.1609 7-691 37.131
25.601 2.3.11.73 22.17.71 2.41.59 2’.3.101
3-7.229 61.79 11.439 3.1613 13.373
480 481 482 483 484
485 486 487 488 489
2.52.97 22.35.5 2.5.487 2’.5.61 2-3-5.163
32-72.11
2a.1213 2.11.13.17 28.3.7.29 2.2441 2a.1223
23.211 3.1621 11.443 19.257 3.7-233
2.3.809 28.19 2.2437 2a.3.11.37 2.2447
5.971 5.7.139 3.55.13 5.977 5-11-89
2$.607 2.3.811 22.23.53 2.7.349 25.3a.17
3.1619 31.157 4877
2.7.347 22.1217 2.32.271 23.13.47 2.31.79
43.113 32.541
t:7”: 3-1627 67.73
7zi;1 3.23.71
485 486 487 488 489
490 491 492 493 494
2.5.491 2”.3.5.41 2.5.17.29 22.5.13.19
132.29 3.1637 7.19.37 4931 3’.61
2-3.19-43 2’.307 2.23.107 21.32.137 2.7.353
4903 178 32.547 4933 4943
2s.613 2.33.7.13 2a.1231 2.2467 2’.3.103
32.5.109 5.983 57.197 3.5-7.47 5.23.43
2.11.223 22.1229 2.3.821 2a.617 2.2473
7.701 3.11.149 13.379 4937 3.17.97
22.3.409 2.2459 26.7.1 1 2.3.823 22.1237
4909 4919 3.31.53 11.449 72-101
490 491 492 493 494
495 496 497 498 499
2.32.52.11 25.5.31 2.5.7.71 22-3.5.83 2.5.499
4951 112.41 3.1657 17.293 7.23-31
28.619 2-3-827 2a.11.113 2.47-53 2’.3-13
3.13.127 7.709 4973 3.11-151 4993
2.2477 22.17.73 2.3.829 2’.7.89 2.11.227
5.991 3.5.331 52-199 5.997 35.5.37
22.3.7.59 2.13.191 2’.311 2.32.277 2a.1249
4957 4967 32.7.79 4987 19.263
2.37.67 23.33.23 2.19.131 22.29.43 2.3.72.17
32.19.29 4969 13.383 3.1663 4999
495 496 497 498%( 499Zh
450 451 452 453 454
2.5.11.41 2s.5.113 23;“~,“:
455 456 457 458 459
22.5a.72
32t~g
2;:;;8y
;gj
453 454
8
-g m
% k cf ;:
e $ r O” g
N
0
500 501 502 503 504
23.54 2%&l&7
505 506
1
2
3
4
5
6
7
13.389 32.563 5077 5087 3.1699
2.32.281 22.7-181 2.2539 25.3.53 2.2549
5059 37.137 3.1693 7.727 5099
505 506 507 508 509
5107
22.1277 2.3.853 F.641 2.7.367 22.32.11.13
3.13.131 5119 23.223 32.571 19.271
510 511 512 513 514
2.2579 24.17.19 2-3.863 22,1297 2.23.113
7-11.67 3.1723 5179 5189 3.1733
515
41.127 3.37.47 5227 5237 32.11.53
23.3.7.31 2.2609 22.1307 2.33.97 2’.41
5209 17.307 32.7.83 132.31 29.181
23.32.73 2.2633 22.1319 2.3-881 24.331
7.751 23.229 3.1759 17.311 5297
2.11.239 22.3.439 2.7.13.29 23.661 2.3.883
3.1753 11.479 5279 3&t3
5.1061 5.1063 3.52.71 5.11.97 5.1069
2-7.379 22.3.443 2.2663 23.23.29 2.35.11
3.29.61 13.409 7.761 32.593 5347
22.1327 2.2659 2’.32.37 2.17.157 22.7.191
5309 33.197 732 19.281 3.1783
530 531 532 533 534
2.2677 22.32.149 2.2687 P.673 2.3.29.31
32.5.7.17 5-29.37 53.43 3.5.359 5.13.83
11.487 3.1789 19.283 5387 3.7.257
2.3.19.47 23-11.61 2.2689 22.3.449 2.2699
23.233 7-13.59 “;;a;;3 5399
535 536 537 538 539
3.1801 5413 11.17.29 3.1811 5443
22.7.193 2.2707 24.3.113 2.11.13.19 22.1361
5-23.47
22.13.103 2.2683 28.3.7 2.2693 22.19.71 2.3.17.53 23.677 2.2713 22.32.151 2.7.389
5407 5417 34.67 5437 13.419
21.132 2.32.7.43 22-23.59 2.2719 23.3.227
32.601 5419 61.89 3.72.37 5449
540 541 542 543 544
7.19.41 32.607 13.421 5483 3.1831
2.33.101 23-683 2.7.17.23
5.1091 5.1093 3.52.73 5.1097 5.7.157
24.11.31
3.17.107 7.11.71 5477 3.31.59 23.239
2.2729 22.1367 2.3.11.83 2’.73 2.2749
53. i03 3.1823 5479 11.499 32.13.47
545 546 547 548 2 549 g
“;7;.7f;;3
2.5.503 2’.32.5.7 2.52.101 22-5.11-23 2.3.5.132 P.5.127 2.5-509
5051 3-7-241 11.461 5081 3.1697
?2;“3”1’ 2;.317 2.307.11~ 22.19.67
31.163 61.83 3.19.89 13.17.23 11.463
2.7.192 23-3.211 2-43.59 2a.31.41 2.32.283
3.5.337 5.1013 52.7.29 32.5.113 5.1019
510 511
;.%7”“;‘37
2.2551, 23.32.71 2.; &m37
36.7 5113 47.109
2: 514
2.33-5.19 22.5.257
5101 19.269 32.569 7.733 53.97
2.3.857
%%f
24.11.29 2.2557 22.3.7.61 2.17.151 23-643
5.1021 3.5.11.31 53.41 5.13.79 3.5.73
515 516 517 518 519
2.5a.103 23.3.5.43 g5;1; 4;
3-17.101 13.397 5171 3.11.157 29.179
26.7.23 2-29.89 22.3.431 2.2591 P-11.59
5153 3.1721 7.739 71.73 32.577
2.3-859 22.1291 2.13.199 20.3’ 2-72.53
5.1031 5.1033 32.52.23 5-17.61 5.1039
22.1289 2.32.7.41 23.647 2.2593 21.3.433
y&g 11.467 5147 33.191 5167 31.167 3.7.13.19 5197
7.743 33.193 23.227 5231 3.1747
2.32.171 22.1303 2.7.373 24.3.109 2.2621
112.43 13.401 3.1741 5233 72.107
22.1301 2.3.11.79 23.653 2.2617 22.3.19.23
Kz 52.1.1 .19 3.5.349 5.1049
2.19.137 25.163 2.3.13.67 22.7.11-17 2.43.61
59.89 5261 3.7.251 5281 11.13.37
22.13.101 2.3.877 23.659 2.19.139 2a.33.72
3.17.103 19.277 5273 32.587 67.79
2.37.71 2’.7.47 2.32.293 22.1321 2.2647
5.1051 34.5.13 52.211 5*7-151 3.5.353
32.19.31 47.113 17.313 3.1777 72.109
2.11.241 26.83 2.3.887 22.31.43 2.2671
5303 3-7.11.23 5323 5333 3.13.137
23.3.13.17 2.2657 22.113 2.3.7.127 25.167
5351 3.1787 41.131 5381 32.599
23.3.223 2-7-383 22.17.79 2.32.13.23 2’.337
53.101 31.173 33.199 7.769 5393
11.491 7.773 3.13.139 5431 5441
‘2.37.73 22.3.11.41 2.2711 23.7.97 2.3.907 22-29.47 2.2731 25.32.19 2.2741 22.1373
525 526 xz 529 530 531 93332 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
2.52.109 22.3.5.7.13 2.5.547 23.5.137 2.32.5.61
3-23.79 43.127 5471 33.7.29 172.19
g I+
500 501 502 503 504
22.32.139 2.23.109 25.157 2.3.839 22.13.97
2%.;73 24.52.13 2-5.521 22.32.5.29 2.5.523 23.5.131 2.3.5a.7 21.5.263 2.5.17.31 25-3.5.11 2.5.232 22.52.53 2.32.5.59 2.5-7.19 2.5-13.41 2?.3-5.89 2.52.107 2’.5.67 2.3.5.179 22-5.269 2.5.72.11 23.33.52 2.5.541 22.5-271 2;:.3:;;1
24 Sk
5009 3.7.239 47.107 5039 33.11.17
5003 32.557 5023 7-719 3.412
520 521 522 523 524
N
2’.313 2.13.193 3.3.419 2.11.229 23.631
2.41.61 22.7.179 2.34.31 23.17.37 2.2521
‘21o.j
9
3.1669 29.173 11.457 3.23.73 72.103
3.1667 5011 5021 32.13.43 711
%I4 509
8
:g;
3.52.67 5.19.53 5.1009
$‘39 5.1687 32.5.112
2.2503 23.3.11-19 2.7.359 P.1259 2.3.292 26.79 gy$Y 2.2543 23.72.13 2.3.23.37 22.1279 ;4f3’
.;(f;
2.3i.83
2i2P 2.13-211 P-3.229
$2 j
22.5a.11 2-5.19.29 24.3.5.23 2.5.7.79 22.5.277
5501 3.11.167 5521 5531 3.1847
2.3.7-131 2’.13-53 2-11.251 22.3.461 2.17.163
Ef2 231241
27.43 2.3.919 22.1381 2.2767 23.32.7.11
3.5.367. 5.1103 52.13.17 33.5,41 5.1109
2.2753 22.7.197 2.32.307 25.173 2.47,59
5507 32.613 5527 72.113 3.432
22.3’.17 2.31.89 2a.691 2.3.13.71 22.19.73
7.787 5519 3.19.97 29.191 31.179
Es’ 559
2.3,5a.37 28.5-139 2.5~557 22.32.5.31 2.5.13.43
7i&t1 32.619 5581 5591
2h.347 2-38.103 22.7.199 2.2791 23.3-233
32.617 5563 5573 3.1861 7.17.47
2.2777 22.13.107 2.3.929 24.349 2.2797
5.11.101 3.5.7.53 52.223 5.1117 3.5.373
22.3.463 2.112.23 23.17.41 2.3.72.19 22.1399
5557 19.293 3.11.132 37.151 29.193
2.7.397 28.3.29 2.2789 22.11.127 2.32.311
3.17.109 5569 7.797 35.23 11.509
555 556 557 558 559
560 561 562 563 564
25.52.7 2.3.5.11.17 22.5.281 2.5.563 23.3.5.47
3.1867 31.181 7.11.73 3.1877 5641
2.2801 2z.23-61 2.3-937 29-11 2.7.13.31
13.431 3.1871 5623 43.131 33.11.19
22.3.467 2.7.401 23.19.37 2.32.313 22.17.83
5.19.59 5.1123 32.5’ 5.72.23 5.1129
2.2803 24-33.13 2.29.97 22.1409 2.3.941
32.7.89 41.137 17.331 3.1879 5647
23.701 2.532 22,3-7.67 2.2819 24.353
71.79 3.1873 13.433 5639 3.7.269
560 561
565 566 567 568 569
2.52.113 22.5.283 2.3*.5.7 2’.5.71 2.5.569
5651 32-17.37 53.107 13.19.23 3.7.2i 1
2a.32.157 2.19.149 23.709 2.3.947 22-1423
5653 7.809 3.31-61 5683 5693
2.11.257 25.3.59 2.2837 22.72-29 2.3.13.73
3.5.13.29 5.11.103 52.227 3.5.379 5.17-67
23.7.101 2.2833 22.3.11.43 2.2843 28.89
5657 3.1889 7.811 112.47 3a.21 1
2.3.23.41 22.13.109 2.17.167 23.32.79 2.7.11.37
5659 5669 32.631 5689 41.139
565 566 567 568 569
570 571 572 573 574
22.3.52.19 2.5.571 23.5.11.13 2.3.5.191 22.5.7.41
5701 5711 3.1907 11.521 5741
2.2851 2’.3.7.17 2.2861 22.1433 2.32.11.29
3.1901 29.197 59.97 32.7a.13 5743
2--.23.31 2.2857 22.38.53 2.47.61 24.359
5.7.163 32.5.127 52.229 5.31.37 3.5.383
2.32.317 22.1429 2.7.409 23,3.239 2.132.17
13.439 5717 3.23.83 5737 7.821
2?.1427 2.3.953 25.179 2.19.151 22.3.479
3.11.173 7.19.43 17.337 3.1913 5749
575 576 577 578 579
2.53.23 27.32.5 2.5.577 22.5.172 2.3.5.193
34.71 7.823 29.199 3.41.47 5791
23.719 2.43.67 22.3.13.37 2.72.59 25.181
11.523 3.17.113 23,251 5783 3.1931
2.3.7.137 22.11.131 2.2887 23.3.241 2.2897
5.1151 5.1153 3.52.7.11 5.13.89 5.19.61
22.1439 2.3.312 24.192 2.11.263 2=.3=.7.23
3.19.101 73.79 53.109 32.643 11.17.31
2.2879 23.7.103 2.33.107 22.1447 2.13.223
13.443 32.641 5779 7.827 3.1933
580 581 582 583 584
23.52.29 2.5.7.83 22,3.5.97 2i...;~Il;3
5801 3.13.149 5821 73.17 32.11.59
2.3.967 22.1453 2.41.71 23.36 2.23.127
7.829 5813 32.647 19.307 5843
2?.1451 2.32.17.19 2O.7.13 2.2917 2C3-487
33.5.43 5.1163 fj2.233 3.5.389 5.7.167
2.2903 23.727 2.3.971 22.1459 2.37.79
5807 3.7.277 5827 13.449 3.1949
2’.3.112 2.2909 22.31.47 2.3.7.139 2=.17.43
37.157 11.232 3.29.67 5839 5849
580 581 582 583 584
585 586 587 588 589
2.32.52.13 22.5.293 2.5.587 23.3.5.72 2-5.19.31
5851 5861 3.19.103 5881 43.137
22.7.11.19 2.3.977 2’.367 2.17.173 22-3.491
3.1951 11.13.41 7.839 3.37.53 71.83
2.2927 23.733 2.3.11.89 22.1471 2.7.421
5.1171 3.5.17.23 53.47 5.11.107 32-5-131
25.3.61 2.7.419 2a.13.113 2.33.109 23.11-67
5857 5867 32.653 7.292 5897
2.29.101 22.32.163 2.2939 28.23 2.3.983
35.7.31 5869 5879 3.13-151 17.347
585 586 587 588 589
590 591 592 593 594
22.52.59 2.3.5.197 25.5.37 2.5.593 2”.33.5.11
3.7.281 23.257 31.191 3*.659 13.457
2.13.227 28.739 2.32.7.47 22. 1483 2.2971
5903 3’,73 5923 17,349 3.7-283
24.32.41 2.2957 22.1481 2.3.23.43 23. 743
5.1181 5.7.132 3.52.79 5.1187 5.29.41
2.2953 22.3.17.29 2.2963 2’.7.53 2.3.991
3.11.179 61.97 5927 3.1979 19.313
22.7.211 2.11.269 23.3.13.19 2.2969 22.1487
19.311 3.1973 72.112 5939 32.661
590 591 592 593 594
595 596 597 598 599
2.52.7.17 23.5.149 2.3.5.199 22.5.13.23 2.5.599
11.541 3.1987 7.853 5981 3.1997
26.3.31 2.11.271 22.1493 2.3.997 23.7.107
5953 67.89 3.11.181 31.193 13.461
2.13.229 2a.3.7.71 2.29.103 26.11.17 2.3’.37
3.5.397 5.1193 52.239 32.5.7.19 5.11.109
22.1489 2.19-157 2a.32.83 2.41.73 22.1499
7.23.37
2.32.331 2*.373 2.72.61 22.3.499 2.2999
59.101 47.127 3.1993 53.113 7.857
3r 595 596 y 597 598%$t 599Zh
x2
552 553 554 555 556
5503 37.149
%%‘9’ 5687 3.1999
550 g ;“5; 8 553 554
“5:: 564
8
z
g CJt
gc3 m N
0
1
2
3
4
5
6
7
8
9
N
SE
a
%
E j
600 601 602 603 604
24.3.53 2.5.601 22.5.7.43 2.32.5.67 23.5.151
17.353 6011 33.223 37.163 7.863
2.3001 22.32.167 2.3011 24.13.29 2-3.19.53
32.23.29 7.859 19.317 3.2011 6043
22.19.79 2.31.97 23.3.251 2.7.431 22.1511
5.1201 3.5.401 52.241 5.17.71 3.5.13.31
2.3.7.11.13 27.47 2.23.131 22.3.503 2.3023
6007 11.547 3.72.41 6037 6047
2a.751 2.3.17.59 22.11.137 2.3019 25.33.7
3.2003 13.463 6029 32.11.61 23.263
600 601 602 603 604
605 606 607 608
2.FP.112 22.3.q5.101 2.5.607 26.5.19 2.3.5.7.29
3.2017 11.19.29 13.467 3.2027 6091
22.17.89 2.7.433 23.3.11.23 2.3041 F.1523
6053 3.43.47 6073 7.11.79 32.677
2.3.1009 24.379 2.3037 22.32.132 2.11.277
5.7.173 5.1213 35.52 5.1217 5.23.53
23.757 2.32.337 22-72.31 2.17.179 2’.3.127
32.673 6067 59.103 3.2029 7.13.67
2.13.233 22.37.41 2.3.1013 23.761 2.3049
73.83 3.7.172 6079 6089 3.19.107
605 606 607 608 609
610 611 612 613 614
22.52.61 2.5-13.47 23.32.5. 17 2.5.613 22.5.307 2.3.52.41 24.5.7.11 2.5.617 22.3.5.103 2.5.619 23.52.31 2.33.5.23 22.5.311 2.5.7.89 25.3.5.13 2.55 22.5.313 2.3.5.11.19 23.5.15’i 2.5.17.37
6101 32.7.97 6121 6131 3.23.89
2.33.113 25.191 2.3061 22.3.7.73 2.37.83
17.359 6113 3.13.157 6133 6143
23.7.109 2.3.1019 22.1531 2.3067 2’1.3
3.5.11.37 5.1223
31.197 3.2039 11.557 17.192 32.683
22.3.509 2.7.19.23 24.383 2.32.1 1.31 22.29.53
41.149 29.211 33.227 7.877 11.13.43
610 611 612 613 614
6151 61.101 3.112.17 7.883 41.151
23.769 2.3.13.79 22.1543 2.11.281 2’.32.43
3.7.293 6163 6173 33.229 11.563
2.17.181 22.23.67 2.32.73 2$.773 2.19.163
5.1231 32.5.137 52.13.19 5.1237 3.5.7.59
2.43.71 22.11.139 2.3.1021 23.13.59 2.7.439 22.34.19 2.3083 25.193 2.3.1031 22.1549
47.131 i ,881 3.29.71 23.269 6197
2.3079 23.3.257 2.3089 22.7.13.17 2.3.1033
3.2053 31.199 37.167 3.2063 6199
615 616 617 618 619
32.13.53 6211 6221 3.31.67 792
2.7.443 22.1553 2.3.17.61 23.19.41 2.3121
6203 3.19.109 72.127 23.271 3.2081
22.3.11.47 2.13-239 24.389 2.3.1039 22.7.223
5.17.73 5.11.113 3.52.83 5.29.43 5.1249
2.29.107 23.3.7.37 2.11.283 22.1559 2.32.347
3.2069 6217 13.479 34.7.11 6247
26.97 2.3109 22.32.173 2.3119 23.11.71
620 621 622 623 624
7.19.47 3.2087 6271 11.571 33.233
22.3.521 2-31.101 21.72 2.32.349 22.112.13
132.37 6263 32.17.41 61.103 7.29.31
2.53.59 23.33.29 2.3137 22.1571 2.3.1049
32.5.139 5.7.179 52.251 3.5.419 5.1259
24.17.23 2.13.241 22.3.523 2.7.449 23. 787
6257 3.2089 6277 6287 3.2099
2.3.7.149 22.1567 2.43.73 2’.3.131 2.47.67
7.887 32.691 6229 17.367 3.2083 11.569 6269 3.7.13.23 19.331 6299
8 Is ‘=Y E 6 2 0” g 3. 3 ; E c.
;;i
g
7.17.53 6317 32.19.37 6337 11.577
22.19.83 2.35.13 23.7.113 2.3169 22-3.232
32.701 71.89 6329 3.2113 7.907
630 631 632 633 634
3.13.163 6367 7.911 3.2129 6397
2.11.172 25.199 2.3.1063 22.1597 2.7.457
6359 3.11.193 6379 6389 34.79
635 636 637 638 639
43.149 32.23.31 6427 41.157 3.7.307 11.587 29.223 3.17.127 13.499 73.89
23.32.89 2.3209 22.1607 2.3-29.37 24.13.31
13.17.29 72.131 3.2143 47.137 6449
2.3229 22.3.72.11 2.41.79 23.81 1 2.32.192
3.2153 6469 11.19.31 32.7.103 67-97
640 641 642 643 644 645 646 647 648 $ 649 8
615 617 618 619 620 621 622 623 624 625 626 627 629
22.32.52.7
53.73
3.5.409 5.1229
630 631 632 633 634. 635 636 637 638 639
2.5.631 24.5.79 2.3.5.211 22.5.317
6301 6311 3.72.43 13.487 17.373
2.23.137 23.3.263 2.29.109 2*.1583 2.3.7.151
3.11.191 59.107 6323 3.2111 6343
25.197 2.7.11.41 22.3.17.31 2.3167 23.13.61
5.13.97 3.5.421 52.11.23 5.7.181 33.5.47
2.52.127 23.3.5.53 2.5.72.13 22.5.11.29 2.32.5.71
3.29.73 6361 23.277 32.709 7.11.83
24.397 2.3181 22.33.59 2.3191 23.17.47
6353 32.7.101 6373 13.491 3.2131
2.32.353 22.37.43 2.3187 24.3.7.19 2.23.139
5.31.41 ;:;g.f; 5.13277 5.1279
2.3.1051 22.1579 2.3163 26.32.11 2.19.167 22.7.227 2.3.1061 23.797 2.31.103 22.3.13.41
640 641 642 643 644
28.52 2.5.641 22.3.5.107 2.5.643 23.5.7.23
37.173 3.2137 6421 59.109 3.19.113
2.3.11.97 22.7.229 2.132.19 25.3.67 2.3221
19.337 112.53 3.2141 7.919 17.379
22.1601 2.3.1069 23.11.73 2.3217 22.32.179
3.5.7.61 5.1283 52.257 32.5.11.13 5.1289
2.3203 2’.401 2.33.7.17 22.1609 2.11.293
645 646 647 648 649
2.3.52.43 22.5.17.19 2.5.647 24.34.5 2.5.11.59
6451 7.13.71 32.719 6481 6491
22.1613 2.32.359 23.809 2.7.463 2%.3.541
33.239 23.281 6473 3.2161 43.151
2.7.461 26.101 2.3.13.83 22.1621 2.17.191
5.1291 3.5.431 52.7.37 5.1297 3.5.433
2a.3.269 2.53.61 22.1619 2.3.23.47 25.7.29
627 826 629
& E d t:
2.3251 2’.11.37 2.3.1087 22.23.71 2.3271
7.929 3.13-167 11.593 47.139 32.727
23.3.271 2.3257 2=.7.233 2.33.11a 2’. 409
5.1301 5.1303 32.52.29 5.1307 5.7.11.17
2.3253 2a.3z-181 2-13.251 23.19.43 2.3.1091
33.241 73.19 61.107 3.2179 6547
22.1627 2.3259 27-3.17 2.7.467 22.1637
23.283 3.41.53 6529 13.503 3.37.59
Ez
6551 38 6571 6581 3.138
23.32.7.13 2.17.193 22.31.53 2.3.1097 26.103
6553 6563 3.7.313 29.227 19.347
2.29-113 22.3.547 2.19.173 23.823 2.3.7.157
3.5.19.23 5.13.101 52.263 3.5.439 5.1319
22.11.149 2.72.67 2’.3.137 2.37.89 22.17.97
79.83 3-11.199 6577 7.941 32.733
2.3.1093 23.821 2.11.13.23 2z.33-61 2.3299
7.937 6569 32.17.43 11.599 6599
655 656 657 658 659
23.3.52.11 2.5.661 2*.5.331 2.3.5.13.17 2’.5.83
7.23.41 11.601 3.2207 19.349 29.229
2.3301 22.3.19.29 2.7.11.43 23.829 2.3’.41
3.31.71 17.389 37.179 32.11.67 7.13.73
21.13.127 2.3307 25.32.23 2.31.107 22.11.151
5.1321 33.5.72 53.53 5.1327 3.5.443
2.32.367 23.827 2.3313 22.3.7-79 2.3323
6607 13.509 3.472 6637 172.23
24.7.59 2-3.1103 22.1657 2.3319 23.3.277
3.2203 6619 7.947 3.2213 61.109
660 661 662 663 664
2.52.7.19 22.32.5.37 2.5.23.29 23.5.167 2.3.5.223
32.739 6661 7.953 3.17.131 6691
22.1663 2.3331 2’03.139 2.13.257 22.7.239
6653 3.2221 6673 41.163 3.23.97
2.3.1109 23.72.17 2.47.71 22.3.557 2.3347
5.113 5.31.43 3.52.89 5.7.191 5.13.103
2g.13 2.3.11-101 22.1669 2.3343 23.33.31
3.7.317 59.113 11.607 32.743 37.181
2.3329 22. 1667 2.32.7.53 25.11.19 2.17.197
6659 33-13.19 6679 6689 3.7.11.29
665 666 667 668 669
651 652 653 654
22.5a.13 2.3.5.7.31 28.5.163 2.5.653 22.3.5.109
3.11.197 17.383 6521 3,7.311 31.211
655 656 657 658 659
2.52.131 25.5.41 2.32.5.73 22.5.7.47 2.5.659
660. 661 662 663 664 665 666 667 668 669
652 o 653 654
6703 72.137 3’.83 6733 11.613
24.419 2.32.373 22.412 2.7.13.37 23.3.281
32.5.149 5.17.79 52.269 3.5.449 5.19.71
2.7.479 22.23.73 2.3.19.59 2’,421 2.3373
19.353 3.2239 7.312 6737 3.13.173
22.3.13.43 2.3359 23.292 2.3.1123 22.7.241
6709 6719 3.2243 23.293 17.397
670 671 672 673 674
25.211 2.3.72.23 22.1693 2.3391 23.3.283
3.2251 6763 13.521 3.7.17.19 6793
2.11.307 22.19.89 2.3.1129 27.53 2.43.79
5.7.193 3.&lfl 5.23.59 32.5.151
2=.3-563 2.17.199 23.7.112 2X.13.29 22.1699
29.233 67.101 33.251 11.617 7.971
2.31.109 2’.3=.47 2.3389 22.1697 2.3.11.103
32.751 7.967 6779 3.31.73 13.523
675 656 677 678
3.2267 72.139 19.359 3$.11.23 684 1
2.19.179 22.13.131 2.32.379 2’.7.61 2.11.311
6803 32.757 6823 6833 3.2281
22.35.7 2.3407 23.853 2.3.17.67 22.29.59
5.1361 5.29.47 3.52.7.13 5.1367 5.372
2.41.83 25.3.71 2.3413 22.1709 2.3.7.163
3.2269 17.401 6827 3.43.53 41.167
23.23.37 2.7.487 22.3.569 2.13.263 26.107
11.619 3.2273 6829 7,977 32.761
679 680 681 682 683 684
2.52.137 22.5.53 2.3.5.229 25.5.43 2.5.13.53
13.17.31 3.2287 6871 7.983 3.2297
22.3.571 2.47.73 23.859 2.3.31.37 22.1723
2.23.149 2’.3.11.13 2.7.491 22.1721 2.32.383
3.5.457 5.1373 54.11 34.5.17 5.7.197
23.857 2.3433 22.32.191 2.11.313 24.431
6857
7ik38g 3.29.79 6883 61.113
2.33.127 22.17.101 2.19.181 23.3.7.41 2.5449
6189659 3.2293 832 6899
685 686 687 688 689
691 692 693 694
22.3.52.23 2.5.691 23.5.173 2.32.5.7.11 22.5.347
67.103 6911 32.769 29.239 11.631
2.7.17.29 28.33 2.3461 22.1733 2.3.13.89
32.13.59 31.223 7.23.43 3.2311 53.131
23.863 2.3457 22.3.577 2.3467 25.7.31
5.1381 3.5.461 52.277 5.19.73 3.5.463
2.3.1151 22.7.13.19 2.3463 25.3.17a 2.23.151
6907 6917 3.2309 7.991 6947
22.11.157 2.3.1153 2’.433 2.3469 22.32.193
3.72.47 11.17.37 132.41 33.257 6949
695 696 697 698 699
2.52.139 24.3.5.29 2.5.17.41 22.5.349 2.3.5.233
3.7.331 6961 6971 3.13.179 6991
23.11.79 2.592 22.3.7.83 2.3491 24.19.23
17.409 3.11.211
2.3.19.61 22.1741 2.11.317 23.32.97 2.13.269
5.13.107 5.7.199 32.52.31
22,37.47 2.3’.43 26.109 2.7.499 22.3.11.53
32.773
2.72-71 23.13.67 2.3.1163 2*.1747 2.3499
6959
670 671 672 673 674
22.52.67 2.5.11.61 26.3.5.7 2.5.673 2%.5.337
6701 3.2237 11.13.47 53.127 32.7.107
2.3.1117 23.839 2.3361 22.32.11.17 2.3371
675 676 677 678 679
2.33.53 23.5.133 2.5.677 22.3.5.113 2.5.7.97
43.157 6761 3.37.61 6781 6791
680 681 682 683 684
2’.52.17 2.3.5.227 22-5.11.31 2.5.683 23.32.5.19
685 686 687 688 689
%“3’ 33.7.37
“2 :%I7
3;.37.213og 7119; 3.112.19
EK 3.17.137 6997
3%ioL701 29.241 3.2333
8 q fi s E ;. g m
E 2 $ 0 g b & & 2 E
690 691 692 693 694 695 d 696 r;a 697 698 % g 699gj
g -J
N
0
1
2
3
24 g 4
5
6
7
8
9
N8k
00 6
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
23.53.7 2r5.701 22.33.5.13 2.5.19.37 27.5.11 2.3.52.47 22.5.353 2.5.7.101 23.3.5.59 2.5.709 22.52.71 2.32.5.79 2'.5.89 2.5.23.31 22-3.5.7.17 2.52.11.13 23.5.179 2.3.5.239 22.5.359 2.5.719
25.32.52
7001 32.19.41 7.17.59 79.89 3.2347 11.641 23.307 3.2357 73.97 7.1013 33.263 13.547 7121 3.2377 37.193 7151 3.7.11.31 71.101 43.167 32.17.47
2.5.7.103 22.5.192 2.3.5.241 23.5.181
19.379 7211 3.29.83 7.1033 13.557
725 726 727 728 729
2.53.29 22.3.5.112 2.5.727 2'.5.7.13 2.36.5
3.2417 53.137 11.661 32.809 23.317
730 731 732 733 784 735 736 737
22.52.73 2.5.17.43 23.3.5.61 2.5.733 22.5.367 2.3.52.72 26.5.23 2.5.11.67 22.32.5.41 2.5.739 23.52.37 2.3.5.13.19 22-5.7.53 2.5.743 2'.3-5.31 2.52.149 2=.5.373 2.32.5.83 23.5.11.17 2.5.7.107
72.149 3.2437 7321 7331 3.2447 7351 17.433 34.7.13 1 12.61 19.389
E' 740 741 742 743 744 745 746 747 748 749
3.2467 7411 41.181 3.2477 7.1063 7451 32.829 31.241 7481 3-11.227
2.32.389 22.1753 2.3511 23.3.293 2.7.503
47.149 7013 3.2341 13.541 7043
2a.17.103 2.3.7.167 2'.439 2.3517 22.3.587
3.5.467 5.23.61 52.281 3.5.7.67 5.1409
22.41.43 2$;$7
3.2351 7.1009 11.643 32.787 41.173
5.17.83 32.5.157 52.283 5.13.109 3.5.11.43
7103 3.2371 17.419 7.1019 3.2381 23.311 13.19.29 32.7Q7 11.653 7193
2.3527 23.883 2.33.131 22.7.11.23 2.3547 26.3.37 2.3557 22.13.137 2.3.29.41 23.19.47 2.72.73 22.32.199 2.17.211 24.449 2.3.11.109
3.7' 7213 31.233 3.2411 7243 7253 33.269 7.1039 7283 3.11.13.17
22.1801 2.3607 23.3.7.43 2.3617 22.1811 2.32+13.31 25.227 2.3637 22.3.607 2.7.521
33.5.53 5.1433 52.7.41 3.5.479 5.1439 5.11.131 3.5.13.37 52.172 5.1447 32.5.7.23 5.1451 5.1453 3.52.97
2.3541 22.32.197 2.53.67 23.7.127 2.3.1187 22.1783 2.3571 24.3.149 2.3581 22.11.163 2.33.7.19 23.29.31 2.13.277 22.3.601 2.23.157 26.113 2.3-17.71 22.72.37 2.3631 23.32.101 2.11.331 22.1823 2.3.1217 2'.457 2.7.523 22.3.13.47 2.3611
"5:yt;; "5:;;;; 5.1429
Ez
2.31.113 23.877 2.3.1171 22.1759 2.13.271
7057 37.191 3-7.337 19.373 47.151
2.11.17.19 22.3.593 2.7-509 25.223 2.32.397 22.1789 2.3583 23.3.13.23 2.3593 22.7.257 2.3.1201 2’.11.41 2.3613 22.33.67 2.3623 23.907 2.3.7.173 22.17.107 2.3643 27.3.19
3.23-103 11.647 7127 32.13.61 7.1021
22.1777 2.3559 23.34.11 2.43.83 22.1787
3%iF 7079 3-17-139 31.229 7109 32.7.113 7129 112.59 3.2383
17.421 3.2389 7177 7187 3.2399 7207 7.1031 32.11.73 7237 7247
2.3.1193 2'0.7 2-37.97 22.3.599 2.59.61
7159 67.107 3.2393 7.13.79 23.313
28.17.53 2.32.401 22.13.139 2.7.11.47 2’.3.151
3'.89 7219 7229 3.19.127 11.659 7.17.61 3.2423 29.251 37.197 32.811
7307 33.271 17.431 11.23.29 3.31.79
2.19.191 22.23.79 2.3.1213 23.91 1 2.41.89 22.32.7.29 2.3659 25.229 2.3.1223 22.11.167
2.3533 22.29.61 2.3.1181 23.887
3.41.59 132.43 19.383 3.7.347 7297
700 701 702 703 704
710 711 712 7i3 714 715 716 717 718
730 731 732 733 734
2.13.283 2a.3.307 2.7.17.31 22.1847 2.33.137
3.11.223 7369 47.157 32.821 72.151
735
32.823 7417 7.1061 3.37.67 11.677
2'.463 2.3709 22.3.619 2.3719 23.72.19
31.239 3.2473 17.19.23 43.173 3.13.191
740 741 742 743 744
7457 3.19.131 7477 7487 32.72.17
2.3.11.113 22.1867 2.3739 26.32.13 2.23.163
7459
25.11.83 2.3.23.53 22.1831 2,19.193 2’.33.17
3.5.487 5$;;19;9 32.5.163 5.13.113
2.13.281 22.31.59 2.32.11.37 23.7.131 2.3673
23.919 2.32.409 22.19.97 2.3691 25.3.7.11
32.19.43 37.199 73.101 3.23.107 7393
2.3677 22.7.263 2.3.1229 23.13.71 2.3697
5.1471 3.5.491 5$.59 5.7.211 3.5.17.29
22.3.613 2.29.127 2'.461 2.3.1231 22.432
7-1051 53.139 3.2459 83.89 13.569
2.3701 22.17.109 2.3.1237 23.929 2.612
11.673 3.7.353 13.571 7433 37.827
22,3.617 2.11.337 28.29 2.32.7-59 22.1861
5.1481 5.1483 35.52.11 5.1487 5.1489
2.7.232 23-32.103 2.47.79 2*.11.13* 2.3.17.73
22.3'.23 2.7-13.41 2'.467 2.3.29.43 22.1873
29.257 17.439 3.47.53 7.1069 59.127
2.3727 23.3.311 2$%&l
W&l
2.34249
EE
25.233 2.3733 2a.3.7-89 2.19.197 23.937
Y&Y ;489 7499
% j
705 706 707 708 709
7309 13.563 3.7.349 41.179 7349
67.109 71.103 3.2441 7333 7.1049
52.13.23
43.163 7019 32.11.71 7039 7-19.53
2&.3.73 2.112.29 22.7.251 2.32.17.23 23.881 2.3529 22.3.19.31 2.3539 2'.443 2-3.7.132
24.32.72
72.11.13 3.2339 7027 31.227 35.29
;2; 738 739
745 746 747 748 2 749 g
8 E
750 751 752 753 754
2*.3.5’ 2.5.751 25.5.47 2.3,5.251 2e.5.13.29
75.5
2z
3i~321~g 7541
2.11*.31 23.3.313 2.3761 2*-7.269 2.32.419
3.41.61 1 l-683 7523 35.31 19.397
24.7.67 2.13.17” 22.3a.11.19 2.3767 23.23.41
5.19.79 3*.5-167 52.7.43 5.11.137 3.5.503
2.33.139 2’. 1879 2.53.71 24.3-157 2.73.11
7507 7517 3.13.193 7537 7547
2=.1877 2.3,7.179 23.941 2.3769 2*.3.17.37
3.2503 73.103 7529 3.7.359 7549
758 759
2.5~.151 23.33.5.7 2.5.757 22.5.379 2.3.5.11.23
32.839 7561 67.113 3.7.19* 7591
27.59 2.19.199 2*.3.631 2.17.223 23.13.73
7.13.83 3.2521 7573 7583 3.2531
2.3.1259 22.31.61 2.7.541 25.3.79 2.3797
5.1511 5.17.89 3-52.101 5.37.41 5.7a.31
22.1889 2.3.13.97 23.947 2.3793 2*.3*.211
3.11.229 7.23.47 7577 33.281 71.107
2.3779 2”.11.43 2.3*-421 29.7.271 2.29.131
7559 32.292 11.13-53 7589 3.17.149
755 756 757 758 759
760 761 762 763 764
2’.52.19 2Z1.761 2*.3.5.127 2.5.7.109 ‘P.5.191
11.691 3.43-59 7621 13.587 33.283
2.3-7.181 2*.11.173 2.37.103 2”.3=.53 2.3821
7603 23.331 3*.7.11* 17.449 7643
22.1901 2.3’.47 23.953 2.11.347 2=.3.7*.13
31.5.132 5.1523 53.61 3.5.509 5.11.139
2.3803 26-7.17 2.3.31-41 2*.23.83 2.3823
7607 3.2539 29.263 7.1091 3.2549
23.3.317 2,13.293 22.1907 2.3.19.67 25.239
7.1087 19.401 3.2543 7639 7649
760 761 762 763 764
765 766 767 768 769
2.3*.5*.17 2*.5.383 2.5.13.59 29.3.5 2.5.769
7.1093 47.163 3.2557 7681 7691
2*-1913 2.3.1277 23.7.137 2.23.167 2*.3.641
3.2551 79.97 7673 3.13.197 79.157
2.43.89 24.479 2.3.1279 2*.17.113 2.3847
5.1531 3.5.7-73 52.307 5.29.53 34.5.19
23.3.11.29 2.3833 22.19-101 2.3*.7.61 2’.13.37
13.19.31 11.17.41 32.853 7687 43.179
2.7.547 2*.3*.71 2.11.349 2*.31* 2.3.1283
3*.23.37 7669 7.1097 3.11.233 7699
765 766 767 768 769
2*.5’.7.11 2.3.5.257 23-5.193 2.5.773 2*.3=.5.43
3.17.151 11.701 7.1103 32.859 7741
2.3851 25.241 2.33.11.13 22.1933 2.72.79
7703 3*.857 7723 11.19.37 3.29.89
23.32.107 2.7.19.29 22.1931 2.3.1289 26.11”
5.23.67 5.1543 3.5e.103 5.7.13.17 5.1549
2.3853 22.3.643 2.3863 23.967 2.3.1291
3.7.367 7717 7727 3.2579 61.127
2*.41.47 2.17.227 24.3.7.23 2.53.73 22.13.149
13.593
TTY 772 773 774
“;,“:;“1” 71:109 33.7.41
775 776 777 778 779
2.5*-31 2”.5.97 2.3.5.7.37 2*.5.389 2.5.19.41
23.337 3,13.199 19.409 31.251 3.71.53
23.3.17.19 2.3881 22.29.67 2.3.1257 2’.487
7753 7.1109 3.2591 43.181 7793
2.3877 2*.3.647 2.13*.23 23.7.139 2.3*.433
3.5.11.47 5.1553 52.311 32.5.173 5.1559
22.7.277 2.11.353 25.35 2.17.229 22.1949
7757 3*.863 7.11.101 13.599 3.23.113
2.38.431 23.971 2.3889 2a.3.11.59 2.7.557
7759 17.457 3.2593 7789 11.709
780 781 782 783 784
23.3.5”.13 2.5.11.71 2*.5.17.23 2.33.5,29 2*.5.7*
29.269 73.107 3e.11.79 41.191 7841
2.47-83 2*.3*.7.31 2.3911 23.11.89 2.3.1307
33.17’ 13.601 7823 3.7.373 11.23.31
22.1951 2.3907 2’.3.163 2.3917 2*.37.53
1-g;; b.313 5.1567 3.5.523
2.3.1301 23.977 2.7.13.43 2*.3.653 2.3923
37.211 7817 3.2609 17.461 7.19.59
27.61 2.3.1303 2*.19.103 2.3919 2*.3*.109
3.19.137 7.1117 7829 32.13.67 47.167
780 781 782 783 784
785 786 787 788 789
2.5”.157 2*.3.5.131 2.5.787 23.5.197 2.3.5.263
3.2617
22.13.151 2.3931 26.3.41 2.7.563 29.1973
7853 3.2621 7873 7883 35.877
2.3.7.11.17 23.983 2.31.127 22.33.73 2.3947
5.19.83 5.1579
24.491 2.32.19.23 22.11.179 2.3943 23.3.7.47
34.97 7867 7877 3.11.239 53.149
2.3929 2*.7.281 2.3.13.101 24.17.29 2.11.359
29.271 3.43.61 7879 73.23 3.2633
785 786 787 788 789
790 791 792 793 794
-2*.5*.79 . ._ 2.5-7.113 2’.3*.5.11 2.5.13-61 22.5.397
3i29g3 7.11.103 3.2647
2-32.439 23.23.43 2.17.233 21.3.661 2.11.19”
7.1129 41.193 3.19.139 7933 13p.47
25.13.19 2.3.1319 2*-7.283 2.3967 23.3.331
3.5.17.31 5.1583 52.317 3.5.23* 5.7.227
2.59.67 22.1979 2.3.1321 28.31 2.29.137
7907 3-7.13.29 7927 7937 3=.883
2a.3.659 2.37.107 23.991 2.3”.7* 22.1987
11.719 7919 32.881 17.467 7949
790 791 792 793 794
7951 19.419 3.2657 23.347 61.131
24.7.71 2.3-1327 2”. 1993 2.13.307 2*.3’.37
3.11.241 7963 7.17.67 3*.887 7993
2.41.97 2*.11.1s1 2.3*.443 24.499 2.7.571
5.37.43 33.5.59 52.11.29 5.1597 3.5.13.41
28.32.13.17
73.109 31.257 3.2659 71.163 11.727
2.23.173 25.3.83 2.3989 22.1997 2.3.31.43
%tE 79:101 3.2663 19.421
795 796 797 798;fE 799 g
2P
795 796 797 798 799
2.3.5*.53 23.5.199 2.5.797 22.3.5.7.19 2.5-17.47
13.577 7.29.37
:;‘:;i: 3.37.71 13.607 7901
5.1571 5;t.y; :”
gj.c$; 2.3.113 22.1999
752 o 753 754
8
G
2w e k
g a
N
0
1
2
3
4
5
6
7
8
9
N
2.4001 2*.2003 2.3.7.191 25.251 2.4021 22.3.11.61 2.29.139 23.1009 2.32.449 2*.7.17*
53.151 3.2671 71.113 29.277 3.7.383
22.3.23-29 2.4007 23.17.59 2.3.13.103 22.2011
5.1601 5.7.229 3.52.107 5.1607 5.1609
2.4003 2’.3.167 2.4013 2*.7*.41 2.33.149
3.17.157 8017 23.349 32.19.47 13.619
23.7.11.13 2.19.211 2*.3*.223 2.4019 24.503
8009 36.11 7.31.37 8039 3.2683
800 801 802 803 804
8053 11.733 33.13.23 59.137 8093
2.4027 2’.3*.7 2.11.367 2*.43.47 2.3.19.71
32.5.179 5.1613 52.17.19 3.5.72.11 5.1619
23.19.53 2.37.109 2*.3.673 2.13.311 25.11.23
7.1151 3.2689 41.197 8087 3.2699
2.3.17.79 2*.2017 2.7.577 23.3.337 2.4049
8059 8069 3.2693 7.13.89
805 806 807 808 809
2.4051 2’.3.13* 2.31.131 2*.19.107 2.3.23.59
3.37.73 7.19.61 8123 3.2711 17.479
23.1013 2.4057 2*.3.677 2.7*.83 24.509
5.1621 3.5.541 54.13 5.1627 32.5.181
2.3.7.193 22.2029 2.17.239 2*.3*.113 2.4073
11*.67 8117 33.7.43 79.103 8147
2*.2027 2.32.11.41 26.127 2.13.313 22.3.7.97
32.17.53 23.353 11.739 3.2713 29.281
810 811 812 813 814
3.11.13.19 8161 8171 34.101 8191
23.1019 2.7.11.53 2*.3*.227 2.4091
31.263 32.907 11.743 7*.167 3.2731
2.33.151 22.13.157 2.61.67 23.3.11.31 2.17.241
5.7.233 5.23.71 3.52.109 5.1637 5.11.149
22.2039 2.3.1361 2’.7.73 2.4093 2*.3.683
3.2719 8167 13.17.37 3.2729 7.1171
2.4079 23.1021 2.3.29.47 22.23.89 2.4099
41.199 3.7.389 8179 19.431 32.911
815 816 817
59.139 3.7.17.23 8221 8231 3.41.67
2.3.1367 2*.2053 2.4111 23.3.73 2.13.317
29.283 32.11.83 19.433 8237 3.2749
24.33.19 2.7.587 2*.11*.17 2.3.1373 23.1031
8209 8219 3.13.211 7.11.107 73.113
2*.2063 2.35.17 2’.11.47 2.41.101 2*.3.691
2.4127 23.1033 2.3.7.197 22.19.109 2.11.13.29
3.5.547 5.31.53 52.7.47 33.5.61 5.17.97 5.13.127 3.5.19.29 52.331 5.1657 3.5.7.79
2.11.373 23.13.79 2.3*.457 22.29.71 2.7.19.31
37.223 11.751 3e.919 72.135 8291
13.631 43.191 3.2741 8233 8243 32.7.131 8263 8273 3.11.251 8293
22.7.293 2.3.37* 25.257 2.23.179 22.32.229
825 826 827 828 829
23.52.41 2.5.821 2*.3.5.137 2.5.823 2’.5.103 2.3.53.11 22.5.7-59 2.5.827 23.3=.5.23 2.5.829
26.3.43 2.4133 2*.2069 2.3.1381 2*.17.61
23.359 7.1181 3.31.89 8287 8297
2.4129 2*.3.13.53 2.4139 25.7.37 2.3*.461
830 831 832 833 834
22.52.83 2.3.5.277 27.5.13 2.5.7*.17 22.3.5.139
3.2767 8311 53.157 3.2777 19.439
2.7.593 23.1039 2,3.19.73 2*.2083 2.43.97
192.23 3.17.163 7.29.41 13.641 34.103
2’.3.173 2.4157 2*.2081 2.3*.463 23.7.149
5.11.151 5.1663 32.52.37 5.1667 5.1669
2.4153 22.33.7.11 2.23.181 24.521 2.3.13.107
32.13.71 8317 11.757 3.7.397 17.491
2*.31.67 2.4159 23.3.347 2.11.379 2*.2087
3.2753 8269 17.487 33.307 43.193 7.1187 3.47.59 8329 31.269 3.11*.23
835 836 837 838 839 840 841 842 843 844
2.5*.167 23.5.11.19 2.33.5.31 22.5.419 2.5.839 2’.3-5*.7 2.5.29’ 2*.5.421 2.3.5.281 23-5.211
7.1193 32.929 11.761 172.29 3.2797
25.32.29 2.37.113 2*.7.13.23 2.3.11.127 23.1049
8353 8363 3.2791 83.101 7.11.109
2.4177 2;“;;‘;9”1
2*.2089 2.47.89 23.3.349 2.7.599 22.2099
61.137 3.2789 8377 8387 33.311
2.3.7.199 24.523 2.59.71 2*.3*.233 2.13.17.19
13.643 8369 32.72.19 8389 37.227
31.271 13.647 3.7.401 8431 23.367
2.4201 2*-3.701 2.4211 24.17.31 2.3*.7.67
3.2801 47.179 8423 32.937 8443
22.11.191 2.7.601 23.34.13 2.4217 22.2111
3-5.557 5.7.239 53.67 3.5.13.43 5.23.73 5.41* 32.5.11.17 52.337 5.7.241 3.5.563
2.3*.467 25.263 2.11.383 22.3.19.37 2.41.103
7.1201 19.443 3.53” 11.13.59 8447
23.1051 2.3.23.61 2*.7*.43 2.4219 28.3.11
3.2803 8419 8429 3.29.97 7.17.71
2 847 848 849
2.52.13’ 2*.3*.5.47 2.5.7.11’ 2*.5.53 2.3-5-283
33.313 8461 43.197 3.11.257 7.1213
2*.2113 2.4231 23.3.353 2.4241 2*.11.193
79.107 3.7.13.31 37.229 17.499 3.19.149
2.3.1409 2’.23* 2.19.223 22.3.7.101 2.31.137
5.19.89 5.1693 3.52.113 5.1697 5.1699
23.7.151 2.3.17-83 22.13-163 2.4243 24.31.59
3.2819 8467 72.173
2.4229 22.29.73 2.33.157 23.1061 2.7.607
11.769 3*.941 61.139 13.653 3.2833
800 801 802 803 804
2e.53 2.3*.5.89 2*.5.401 2.5.11.73 23.3.5.67
3*.7.127 8011 13.617 3.2677 11.17.43
805 806 807 808 809
2.5=.7.23 2P.5.13.31 2.3.5.269 24.5.101 2.5.809 2.5.811 23.5.7.29 2.3.5.271 2*.5.11.37
83.97 3.2687 7.1153 8081 32.29.31 8101 8111 3.2707 47.173 7.1163
2.5*.163 25.3.5.17 2.5.19.43 22.5.409 2.32.5.7.13
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
2X34.52
213
&31 2.3.1399
3ziit
WC3 @ ta .* 4
8 I3
830 831 832 833 834 835 Et 838 839 840 841 842 843 844 845 846 847 ;“4;
00 8
$ zs
g g; 8
2’.53.17 2.5.23.37 23.3.5.71 2-5.853 29.5.7.61
8501 3.2837 8521 19.449 32.13.73
2.3.13-109 26.7.19 2.4261 2x.33.79 2.4271
11.773 8513 3”.947 7.23.53 8543
2a. 1063 2.3’011.43 2’.2131 2.17.251 25-3.89
35.5.7 5.13.131 52.11.31 3.5-569 5.1709
2.4253 22.2129 2.3.72.29 23.11.97 2.4273
47.181 3.17.167 8527 8537 3.7.11.37
22.3.709 2.4259 2’.13.41 2.3.1423 22.2137
67.127 7.1217 3.2843 8539 83.103
850
851 852 853 854 855 856 857 858 859
2.34.51.19 24-5.107 2.5.857 2’.3.5.11.13 2.5.859
17.503 7.1223 3.2857 8581 i la.71
2a.1069 2.3.1427 P.2143 2.7.613 24.3.179
3.2851 8563 8573 3.2861 13.661
2.7.13.47 2z.2141 2.3.1429 28.29.37 2.4297
5.29.59 3.5.571 52.73 5.17.101 32.5.191
22.3.23.31 2.4283 27.67 2.3’.53 2a.7.307
43.199 13.659 32.953 31.277 8597
2.11.389 23.32.7.17 2.4289 22.19.113 2.3.1433
3a.317 11.19.41 23.373 3.7.409 8599
855 856 857 858 859
E 862 863 864
23.52.43 2.3.5.7.41 21.5.431 2.5.863 26.365
3.47.61 79.109 37.233 32.7.137 8641
2.11.17.23 2¶.2153 2.3z.479 23.13.83 2.29.149
7.1229 33.11.29 8623 89-97 3.43.67
2%.32.239 2059.73 24.7z.1 1 2.3.1439 22.2161
5.1721 5.1723 3.53.23 5.11.157 5.7.13.19
2.13.331 23.3.359 2.19.227 22.17.127 2.3.11.131
3.19.151 7.1231 8627 3.2879 8647
25.269 2.31.139 22.3.719 2.7.617 23.23.47
3.131.17 8629 53.163 32.312
860 861 862 863 864
865 -.866 867 868 869
2.52-173 25.5.433 2.3.5.172 23.5.7.31 2.5.11.79
41.211 3.2887 13.23.29 8681 3.2897
22.3.7.103 2.61.71 25.271 2.3.1447 2’.41,53
17.509 8663 3.72.59 19.457 8693
2.4327 2a.3.19* 2.4337 22.13.167 2.3a.7.23
3.5.577 5.1733 52.347 32.5.193 5.37.47
2’.541 2.7.619 22.32.241 2.43.101 2a.1087
11.787 34.107 8677 7.17.73 3.13.223
2.32.13.37 22.11.197 2.4339 2’.3.181 2.4349
7.1237 8669 3.11.263 8689 8699
865 866 867 868 869
870 871 872 873 874
22.3.5*.29 2.5.13.67 24.5.109 2.32.5.97 22.5.19.23
7.11.113 31.281 33.17.19 8731 8741
2.19.229 23.32.1 i* 2.+.8Ci 22.37.59 2.3.31.47
32.967 8713 11.13.61 3.41.71 7.1249
2O.17 2.4357 2=.3.727 2.11.397 23.1093
5.1741 3.5.7.83 52.349 5.1747 3.5.11.53
2.3.1451 22.2179 2.4363 25.3.7.13 2.4373
23.379 3.2909 8737 8747
875 876 877
2.54.7 23.3.5.73 2.5.877 22.5.439 2.3,5.293
3.2917 8761 72.179 3.2927 59.149
2’.547 2.13.337 2*.3.17.43 2.4391 23.7.157
8753 3.23.127 31.283 8783 32.977
2.3.1459 2l.7.313 2.41.107 24.3a.61 2.4397
5.17.103 5.1753 33.52.13 5.7.251 5.1759
22.11.199 2.3l.487 23.1097 2.23.191 22.3.733
32.7.139 11.797 67.131 3.29.101 19.463
2.29.151 26.137 2.3.7.11.19 22.133 2.53.83
19.461 3.37.79 8779 11.17.47 3.7.419
26.52.11 2.5.881
13.677 32.11.89 8821 8831 3.7.421
2.33.163 22.2203 2.11.401 2l.3.23 2.4421
8803 7.1259 3.17.173 112.73 37.239
22.31.71 2.3.13.113 23.1103 2.7.631 2*.3.11.67
3.5.587 5.41.43 52.353 3.5.19.31 5.29.61
2.7.17.37 24.19.29 2.3.1471 22.47e 2.4423
8807 3.2939 7.13.97 8837 32.983
23.3.367 2.4409 2l.2207 2.32.4i+i 24.7.79
23.383 8819 34.109 8839 8849
880 881
53.167 8861 3.2957
2¶.2213 2.3.7.211 23.1109 2.4441 22.32.13.19
3.13.227 8863 19.467 33.7.47 8893
2.19.233 26.277 2.32.17.29 22.2221 2.4447
5.7.11.23 32.5-197 53.71 5.1777 3.5.593
23.33.41 2.11-13.31 22.7.317 2.3.1481 26,139
17.521 8867 3.11.269 8887 7.31.41
2.43.103 22.3.739 2.23.193 23.11.101 2.3.1483
3.2953 72.181 13.683 3.2963 11.809
885 886 887 888 889
:;‘K 3.13.229 8941
2.4451 2’.557 2.3.1487 22.7.11.29 2.17.263
2aO7 3.2971 8923 8933 3.11.271
2a.3.7.53 2.4457 22.23.97 2.3.1489 2’.13.43
5.13.137 5.1783 3.52.7.17 5.1787 5.1789
2.61.73 22.3-743 2.4463 23.1117 2.32.7.71
3.2969 37.241 79.113 33.331 23.389
2*.17.131 2.73.13 25.32.31 2.41.109 2l.2237
59,151 32.991 8929 7.1277 3.19.157
890 891 892 893 894
8951 3.29.103 8971 7.1283 35.37
23.3.373 2.4481 2e.2243 2.32.499 25.281
7.1279 8963 31.997 13,691 17.232
2.112-37 22.33.83 2.7.641 23.1123 2.3.1499 .
30.5.199 5.11.163 52.359 3.5.599 5.7.257
22.2239 2.4483 2’.3.11.17 2.4493 2*.13.173
132.53 3.72.61 47.191 11.19.43 3.2999
2.3.1493 23.19.59 2.672 2*.3.7.107 2.11.409
:T: 880 881
% 884
22.3R5.72 2.5.883 23.5.13.17
885 886 887 888 $89
;;yi5;&9 2.51887 2’.3.5.37 2.5.7.127
890 891 892 893 894
22.51.89 2.3’.5.11 23.5.223 2.5.19.47 22.3.5-149
895 896 897 i%
2.55.179 28.5.7 2.3.5.13.23 2.5.29.31 22.5.449
EXI 30.23.43
22.7.31 1 2.3.1453 23.1091 2.17.257 22.3’
853 854
8
3iE3 7.29.43 32.971 13.673 875 876
E: e.
877 878 879
rj: $
;
:ii 884
A
is d ;;
862 Table 9000
COMBINATORIAL
24.7
Factorizations
ANALYSIS 9499
950 951 952 953 954
.
22.53.19 2.3.5.317 24.5.7.17 2.5.953 22-32.5-53
3.3167 9511 9521 33.353 7.29.47
2.4751 23.29.41 2.32.232 22.2383 2.13.367
13.17.43 32.7.151 89.107 9533 3.3181
25.38.11 2.67.71 22.2381 2.3.7.227 23.1193
5.1901 5.11.173 3.52.127 5.1907 5-23.83
2.72.97 28.3.13.61 2.11.433 26.149 2.3.37.43
xg;
7.1361 3.11.172 9547
21.2377 2.4759 23.3.397 2-19.251 22.7.11-31
37.257 3.19.167 13.733 9539 32.1061
ES 952 O
2.34.59 25.13.23 2.4789 22.3.17.47 2.4799
112.79 7.1367 3.31.103 43.223 29.331
955 956 957 958 959
23.1201
2.61.79 24.32.67
3.3203 9619 9629 34-7.17 9649
960 961 962 963 964 965 966 967 968 969
953 954
955 956 957 958 959
2.5a.191 23.5.239 2.3.5.11.29 22.5.479 2.5.7.137
9551 3.3187 17.563 11.13.67 3.23.139
24.3.199 2.7.683 22.2393 2-3.1597 23.11.109
41.233 73.131 3.3191 7.372 53.181
2.17.281 22.3.797 2.4787 24.599 2.32.13.41
3.5.72.13 5.1913 P.383 33.5.71 5.19-101
22.2389 2.4783 23.32.7.19 2.4793 22.2399
19.503 32.1063 61.157 9587 3.7.457
960 961 962 962 964
27-3.52 2.5.312 22.5.13.37 2.3a.5.107 23.5.241
9601 7.1373 32.1069 9631 31.311
2.4801 22.33.89 2.17.283 25.7.43 2.3.1607
32-11.97 9613 9623 3.13a.19 9643
22.7’ 2.11.19.23 23.3.401 2.4817 22.2411
5.17.113
2.3.1601 24.601 2.4813 22.3.11.73 2.7.13-53
13.739 59.163 3.3209 23.419 11.877
965 966 967 968 969
2-52.193 22.3.5.7.23 2.5.967 24.5.112 2.3.5.17.19
3.3217 9661 19.509 3.7.461 11.881
22.19.127 2.4831 23.3.13.31 2.47.103 22.2423
72.197 3.3221 17.569 23.421 33.359
2.3.1609 26.151 2.7.691 22.32.269 2.37-131
5.1931 5.1933 32.5a.43 5.13.149 5.7.277
23.17.71 2.33-179 22.41.59 2.29.167 25.3. 101
32.29.37 7.1381 9677 3.3229 9697
2.11.439 22.2417 2.3.1613 23.7.173 2.13.373
13.743 3.11.293 9679 9689 3.53.61
970 971 972 973 974
22.5a.97 yg7; 2.5.7.;39 2a.5.487
89.109 32.13.83 9721 37.263 3.17.191
2.3a.7a.ll 24.607 2.4861 22.3.811 2.4871
31.313 11.883 3.7.463 9733 9743
23.1213 2.3.1619 2a.11.13.17 2.31.157 24.3.7.29
3.5.647 5.29.67 3.389 3.5.11-59 5.1949
2.23.211 22.7.347 2.3.1621 23.1217 2.11.443
17.571 3.41.79 71.137 7.13.107 33.192
22.3.809 2.43.113 29.19 2.32.541 22.2437
7.19.73 9719 32.23.47 9739 9749
975 976 977 978 979
2.3.53.13 25.5.61 2.5.977 22.3.5.163 2-5.11.89
72.199 43.227 3.3257 9781 9791
23.23.53 2.3.1627 22.7.349 2.67.73 20.32.17
3.3251 13.751 29.337 32.1087 7.1399
2.4877 22.2441 2.35:181 P-1223 2.59.83
5.1951 32.5.7.31 52.17.23 5.19.103 3.5.653
22.32.271 2.19.257 2’.13.47 2.3.7.233 22.31.79
11.887 9767 3.3259 9787 97.101
2.7.17.41 23-3.11.37 2.4889 22.2447 2-3.23.71
3.3253 9769 7.11.127 3.13.251 41.239
980 981 982 983 984
23.52.72 2.32.5.109 22.5.491 2.5.983 24.3.5-41
2.132.29 22.11.223 2.3.1637 23.1229 2.7.19.37
9803 3.3271 11.19.47 9833 3.17.193
22.3.19.43
!Jz 7.23.61 3.29.113 13.757
~~;‘,o: 2.3.il.149 22-23-107
5.37.53 5.13.151 3.9.131 5.7.281 5-11-179
2.4903 23.3.409 2.173 22.2459 2.32-547
3.7.467 9817 31.317 32.1093 43.229
2’.613 2.4909 22.33.7.13 2.4919 23.1231
17.577 32.1091 9829 9839 3.72.67
980 981 982 983 984
985 986 987 988 989
2.52.197 22.5.17.29 2.3.5.7.47 23.5.13.19 2.5.23.43
9851 3.19.173 9871 41.241 32.7.157
22-3.821 2.4931 2’.617 2.34.61 22.2473
59.167 7.1409 3a.1097 9883 13.761
2.131379 23.32.137 2.4937 22.7.353 2.3.17.97
33.5.73 “.iJEi13 3.5.659 5,1979
27.7.11 2.4933 22.3.823 2.4943 23.1237
9857 3.11.13.23 7.17.83 9887 3.3299
2.3.31.53 22,2467 2.11.449 25.3.103 2.72.101
9859 71.139 3.37.89 11.29.31 19.521
985 986 987 988 989
990 991 992 993 994
22.32.52.11 2.5.991 26.5.31 2.3.5.331 22.5.7.71
9901 11.17.53 3.3307 9931 9941
2.4951 23.3.7.59 2.11a.41 22.13.191 2.3.1657
3.3301 23.431 9923 3.7.11.43 61.163
24.619 2.4957 22.3.827 2.4967 23.11.113
;:;:;:; 52.397 5.1987 32.5.13.17
2.3.13.127 22.37.67 2.7.709 24.33.23 2.4973
9907 47.211 32.1103 19.523 73.29
22.2477 24;3;;9+;9
33.367 7.13.109 9929 3.3313 9949
990 991
995 996 997
23.199 23.3.5.83 2.5.997 22-5.499 2.33.5.37
3+Tm;;7
25.311 2.17.293 2=.3=.277 2.7.23.31 23.1249
37.269 35.41 9973 67.149 3.3331
2.32.7.79 22.47.53 2.4987 28.3.13 2.19.263
5&~“3’ 3.5a.7.19 5.1997 5.1999
22,19.131 2.3.11.151 23.29.43 2.4993 22.3.72.17
3.3319 9967 11.907 3.3329 13.769
2.13.383 2’.7.89 2.3.1663 22.11.227 2.4999
132.59 3a.1109 97.103
.
$5eY 5.41’.47 3.5.643
2a&r22??
2.4969 22.3.829
23.433 y5”8; 7.1427 3a.11.101
t:: 994
8
2 G
864
COMBINATORIAL
Table
Primitive
24.8
Roots,
ANALYSIS
Factorization
of p-l
g, G denote the least positive
and least negative (respectively) primitive roots of p. E denotes whether 10, -10 both or neither are primitive roots. -
P--l
P
P
P--l
--
3
2
::
2%
:; ii _ 2: 31 :: :; x1 6i 67 iA 79 ii1 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 :2 191 2; 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353
2.5 22.3 2’ 2.32 2.11 22.7 2.3.5 g.“5” 2.317 2.23 22.13 2.29 22.3.5 2.3.11 2.5.7 23.32 2.3.13 2.41 23.11
25.3 22.52 2.3.17 2.53 22.33 24.7 2.32.7 2.5.13 23.17 2.3.23 22.37 2.3.52 22.3.13 2.3’ 2.83 22.43 2.89 22.32.5 2.5.19 2O.3 22.72 2.3$.11 2.3.5.7 2.3.37 2.113 22.3.19 23.29 2.7.17 2”.3.5 2.53 2.G 22.67 2.33.5 22.3.23 23.5.7 %ir 2.3&7 2.5.31 23.3.13 22.79 2.3.5.11 2”.3.7 2.173 22.3.29 25.11
359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 i% 613 617 619 631 641 643 647 653 659 661 673 677 683 E 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811
2.179 2.3.61 22.3.31 2.33.7 2.191 22.97 22.32.11 24.52 23.3.17 2.11.19 22.3.5.7 2.5.43 24.3a 2.3.73 2.13.17 26.7 g;; c 2.3.7.11 2.233 2.239 2.3& 2.5.72 % 2;. 127 23.5.13 2.32.29 22.33.5 2.3.7.13 22.139 2.281 23.71 2.3.5.19 26.32 2.293 2’.37 2.13.23 23.3.52 2.3.101 22.32.17 23.7.11 2.3.103 2.32.5.7 27.5 2.3.107 2.17.19 22.163 2.7.47 22.3.5.11 26.3.7 22.132 2.11.31 2.3.5.23
22.52.7
22.3.59 2.359 2.3.112 22.3.61 2.32.41 2.7.53 2.3.53 22.33.7 23.5.19 28.3 22.193 2.3.131 22.199 23.101 2.34.5
--
-
P
P-1
821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997 1009
22.5.41 2.3.137 2.7.59 22.3a.23 2.419 22.3.71 23.107 2.3.11.13 2.431 2=.3.73 2’.5.11 2.32.72 2.443 2.3.151 2.5.7.13 2.33.17 25.29 23.32.13 22.5.47 2.11.43 23.7.17
ix:: 1021 1031 1033 $21 ::x: 1063 1069 1087 1091 ::i; 1.103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1’193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297
2i;7i273 24.61
2.491 2ip.‘31
&2.7 22.11.23 2.509 22.3.5.17 2.5.103 23.3.43 2.3.173 23.131 2.3.52.7 22.5.53 2.32.59 22.3.89 2.3.181 2.5.109 2a.3.7.13 23.137 2.19.29 22.277 22.32.31 2.3.11.17 23.3.47 2.52.23 27.32 2.7.83 2.32.5.13 22.5.59 2.593 23.149 24.3.5a 22.3.101 28.19 2.13.47 22.307 2.3.5.41 22.3.103 25.3.13 2.17.37 22.11.29 232.71 2.641 23.7.23 2.3.5.43 24.34
-. _
COMBINATORIAL
Primitive
Roots,
865
ANALYSIS
Factorization
of p-l
Table 24.8
g, G denote the least positive and least negative (respectively) primitive roots of p. E denotes whether 10, - 10 both or neither are primitive roots. -
/P
P-1
1301 1303 1307
22.52.13 2.3.7.31 2.653 2.659 2a,3.5.**
E 1327 1361 1367 :z 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 ::ti 1559 ::t: :iz 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657 % 1669 1693 1697 E 1721 :E 1741 :;:3 E ::i; :~~~ 1811 1823
“i!%:’ ;:683 22.78 22.3.5.23 2.3.233 27.11 2.32.79 2.23.31 22.3.7.17 22”.::99 2.3.241 2.52.29 2a.3.112 2.:::“7s 2x.5.37
2.32.5.17 2.3.257 2a.3a.43 2’,97 2.19.41 2.3a.29 2~5.157 X’K3” 22:3:7.*9 28.52 2.11.73 2a.3.67 22.13.31 2.809 22.34.5 2~3.271 2a.40Q 23.32.23 2.3.277 2.7a.17 2a.3.139 22.32.47 25.53 2.3.283 22.7.61 23.5.43 2.3.7.41 2a.433 22.3.5.29 2.32.97 23.3.73 2.3,293 2’.3.37 2.3’.11 2.19.47 22.3.149 23.32.52 2i%181'
-
-
__ --
.-
c
P
P
P-1
2377 2381 2383 2389 2393 2399 2411 2417 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551
2a.33.11 22.5.7.17 2.3.397 22.3.199 23.13.23 2.11.109 2.5.241 24.151 2.7.173 22.3.7.29 23.5.61 2.1223 2.1229 2.32.137 23.3.103 2%.619 2.32.139 23.32.5.7 2.5.11.23 2.33.47 2.31.41 22.72.13 2%&y
25.&~ 7 2.1013 22.3.132 2.1019 22.33.19 2.1031 22.11.47 25.5.13 2.3.347 2.7.149 23.32.29 2.1049 2.5.211 26.3.11 24.7.19 m7&
z% 2591 2593 2609
2:1289 2.5.7.37 26.3’ 2’.163 23.3.109
24.107 2.32.7,17 23.269 24.33.5 2.32.112
%i 2707 2711 2713 2719 2729 2731 2741 2749
P-1
1831 1847 1861
_. _. _. _. _.
::;: 1873 1877 1879 1889 1901 1907 1913 1931 1933 E 1973 :z 1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371
“~%” 2g.k 19 2.953 23.239 2.5.193 22.3.7.23 22.487 2.3.52.13 22.17.29 ;2”;:: 2S.i.83 22.499 2.33.37 2;&15l ;l
22.3.5.37 22.13.43 z%. . 2.32.53 2.11.103 ‘;‘“;I 2G5.19 2.32.127 22.3.191 23.7.41 22.577 2i3,Gi5il 2:7-167 22.32.5.13 2.3.17.23 2.52.47 22.19.31 2.3.5.79
2 2633 2647 2657 2659 2663 2671 Ez; 2687 2689
% 2777 2789 2791 2797 2801 2803 2819 2833 z 2851 2857 2861 2879 2887 2897 2903 2909
El7 . . 2i% 2.31443 2.113 2.3.5.89 22.3.223 2.32.149 2g.‘;;9 22.673 2.19.71 2.3.11.41 2.5.271 23.3.113 2.32.151 2a.ii.31 2.3.5.7.13 22.5.137 22.3.229 26.43 YifE 22.i7.41 2.32.5.31 22.3.233 24.52.7 2.3.467 2.1409 2’.3.59 22.709 2.7a.29 2.3.5a.19 23.3.7.17 22.5.11.13 2.1439 2.3.13.37 24.181 2.1451 2a.727
-
-
.-
_-
COMBINATORIAL
866 Table
Primitive
24.8
Roots,
ANALYSIS
Factorization
of p-1
g, G denote the least positive and least negative (respectively) primitive roots of p. c denotes whether 10, -10 both or neither are primitive roots. -
P 2917 2927 2939 2953 2957 2963 %Y 2999
3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 3089 3109
P-1 22.38 2.7.11.19 2.13.113 23.32.41 22.739 2.1481 23.7.53 2.33.5.11 2.1499 23.3.53 2.5.7.43 ;.gy 22.3.11.23 25.5.19 23.3.127 22.32.5.17 2.3.7.73 2.34.19 2.23.67 24.193 2; :;;$7
fE
2h&l3
E3’ 3167 3169 3181 3187 3191
2;jig
fEi 3217 3221
3301 330;
E’ 332: E 3342 334i
E 3371 337: 338! ;g! 341; 343: 344: 345; 3461 346: 346; E:I E1 351:
25.32.11 22.3.5.53 2.33.59 2.5.11.29 2.1601 23.401 24.3.67 22.5.7.23 22.3.269 2.53.13 22.3.271 23.11.37 2.32.181 2.3.5.109 2.17.97 22.3.52.11 2$l&T;9 2.3.7.79 2.11.151 28.13 s$.&37 2.71239 2.23.73 25.3.5.7 2.5.337 22.3.281 22.7.112 2.3.5.113 2.13.131 22.853 23.3.11.13 23.431 27.33 22.5.173 2.3.577 2.1733 22.3. 172 2.5.349 2.3.11.53 2.33.5.13 22.3.293
._. _.
P
3527 3529 3533 3539 3541 3547 3557 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3643 3659 3671 3673 3677 3691 %: 3709 3719 E 3739 3761 3767 3769 3779 3793 3797 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907 3911 3917 3919 3923 3929 3931 3943 3947 3989 4001 4003 4007 4013 4019 4021 4027 4049 4051 4057 4073
P-1 2.41.43 23.33.73
22.883 2.29.61 22.3.5.59 2.32.197 22.7.127 2.3.593 2.3.5.7.17 22.5.179 2.32.199 23.449 2.3.601 22.3.7.43 25.113 2.1811 2.3.5.112 22.32.101 ;:;;“g 2.5.367 23.33.17 22.919 2.32.5.41 2.432 22.52.37 22.32.103 Ei1 22:3:311 2.3.7.89 2’.5.47 2.7.269 23.3.157 2.1889 24.3.79 22.13.73 2.1901 22.5.191 “;$.I’;;” 2.3.641 2.52.7.11 22.32.107 2.1931 21.3.17.19 23.5.97 24.36 2.32.7.31 2.5.17.23 2;“;‘% 2:3i53 23,491 2.3.5.131 2.33.73 2.1973 2.3.661 22.997 25.53 2&-$L;9 22:17.59 2.72.41 22.3.5.67 2$p6; 4 2.3’.5* 23.3.132 23.509
-
-
._
--
-
P-1
0
10 ---_ .---10 .--__ -10 .--__ -10
4079
4091 4093 4099 4111 4127 4129 4133 4139
l :: 9% .--__ 4159 f10
10 .--__ f10
4x ----_ -10 10 ---__ f10 ---__ ---__ ----f10 *lo -10 10 ---__ -------__ 10 ----_ 10 -------__ -10 f10 ----_ f10 10 --------_ 10 -------__ ----_ -10 -10 --_---_--10 -____ --_--:i *:i --___ --_-10 --_-_ 10 ----_ -10 --___ *:: f 10
4177 4201 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 tX8 4297 4327 t3;; tid; 4363 z 4397 4409 4421 2::
2.2039 2.5.409 22.3.11.31 2.3.683 2.3.5.137 2.2063 26.3.43 22.1033 2.2069 23.3.173 22.1039 2.33.7.11 24.32.29 ;;“.5;; 2k.7.31 2.3.19.37 22.7.151
22.3.5.71
2f;;;3 2i.241 22.1087 22.3*.112 2.3.727 22.1093 2.5.439 22.7.157 23.19.29 22.5.13.17 ;3;1;.;; 2.;2.;3.19
2 t352?
22 4481 a::: % ii:; 4523 4547 4549 4561 4567 4583 4591 4597 4603 4621 4637 4639 4648 4649 4651 4657 4663
2.23.97 27.5.7 2.3a.83 21.1123 2.3.751 2’.3,47 21.1129 2.32.251 2.7.17.19 2.2273 22.3.379 24.3.5.19 2.3.761 2.29.79 2.38.5.17 22.3.383 2.3.13.59 25&5;7.;1 2.3:77’3
c
.-10 10 _..___ 28
10
_..___ -._--*::
-._---._-__ &lo
-.____
l :“o 10
ZtlO -10 _.----10 _.-_--
*:: -10 -,----10 -_-____ *:: *:: ----10 -_--10 -_--_-_ *ix -___ :x f 10 10 -___ -___ -___ -------_-----10 -10 -_--_-:oo -10 ----10 ----_-1:; -_-10 -_e----
COMBINATORIAL
Primitive
Roots,
867
ANALYSIS
Factorization
of p-1
Table
g, G denote the least positive and least negative (respectively) primitive roots of p. e denotes whether 10, -10 both or neither are primitive roots. -
P
P-1
4673 4679 4691 4703 4721 4723 4729 4733 4751 4759 4783 4787 4789 4793 4799 4801 4813 4817 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973 4987 4993
26.73 2.2339 2.5.7.67 2.2351 24.5.59 2.3.787 23.3.197 22.7.132 2.8.19 2.3.13.61
:i:z 5009 5011 5021 5023 5039 5051 5059 5077 5081 E; 5101 5107 5113 5119 “5% 5167 5171 5179 5189 5197 5209 5227 5231 523: 5237 5261 ;;g 528i
ZE 2G.7.19 23.599 2.2399 26.3.5a 22.3.401 2’.7.43 2.3.5.7.23 22.35.5 2.5.487 2a.23.53 23.13.47 2i3f34; i.2459 2.5.17.29 22.32.137 23.617 2.7.353 2.32.52.11 22.3.7.59 2.13.191 23.33.23 22.11.113 2.3=.277 2’.3.13 2.3.72.17 2.41.61 24.313 2.3.5.167 22.5.251 2.3’.31 2.11.229 2.5a.101 2.32.281 2a.33.47 23.5.127 2.2543 2.2549 22.3.52.17 2.3.23.37 23.32.71 2.3.853 2.31.83 25.7.23 2.3a.7.41 2.5.11.47 2.3.863 22.1297 22.3.433 23.3.7.31 2.3.13.67 2.5.523 24.3.109 2a.7.11.17 28.5.263 23.659 yi1;.;; . .
.-
_-
_.
P
P-1
P
P-1
5297 5303 5309 5323 5333 5347 5351 5381 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569 5573 5581 5591 5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693 5701 5711 5717 5737 5741 5743 5749 5779 5783 5791 5801 5807 5813 5821 5827 5839 5843 5849 5851 5857 5861
2’.331 2.11.241 22. 1327 2.3.887 2a.31.43 2.35.11 2.52.107 22.5.269 2.2693 2’.337 2.2699 2.3.17.53 22.3.11.41 23.677 2.3=.‘,.43 2.3.5.181 2”.32.151 26.5.17 2.3.907 23.3.227 2.5.547 22.372 2.3.11.83 2.2741 22.53.11 2.3.7.131 2.2753 2.31.89 2’.3.5.23 2.32.307 2.5.7.79 22.3.463 2.38.103 26.3.29 22.7.199 22.32.5.31 2.5.13.43 2.3.937 2.2819 23.3.5.47 2.3.941 2.5a.113 2a.32.157 23.7.101 2.3.23.41 22.13.109 2.3.947 28.31.79 22.1423 2a.3.52.19 2.5.571 21.1429 23.3.239 22.5.7.41 2.32.11.29 22.3.479 2.33.107 2.72.59 2.3.5.193 23.52.29 2.2903 22.1453 22.3.5.97 2.3.971 2.3.7.139 2.23.127 23.17.43 2.3W.13 26.3.61 P.5.293
5867
2.7.419 22.32.163 2.2939 23.3.5.72 23.11.67 2.3.227 2.3a.7.47 2.2963 2.2969 20.3.31 22.5.13.23 2.41.73 2.3.7.11.13 2.5.601 22.11.137 22.3.503 2.3.19.53 2.3023 21.17.89 2.32.337 y&3
5879 5881 5897 5903 5923 5927 5939 5953 5981 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 6101 6113 6121 6131 6133 6143 6151 6163 6173 6197 6199 6203 6211 6217 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299 6301 6311 6317 6323 6329 6337 6343 6353 E! 6367 6373 6379 6389 6397 6421 6427 6449 6451 EZ 6481
&761 2.3.5.7.29 22.52.61 25.191 23.32.5.17 2.5.613 2;.;%7; 2.3.5a.41 2;p;9 2a:1549 Y14Y~
2.;:&
2;3;;‘60: 2.315.11.19 22.3.523 z%
22:&.7 2.5.631 22.1579 2.29.109 23.7.113 26.32.11 2.3.7.151 24.397 2.11.17a 23.3.5.53
22.3.5.107 2.38.7.17 2’.13.31 2.3,52.43 22.3.7a.11 2a.809 24.34.5
24.8
COMBINATORIAL
868 Table
Primitive
24.8
Roots,
ANALYSIS
Factorization
of p-l
g, G denote the least r>ositive and least negative (respectively) primitive roots of p. e denotes ihether 10, - 10 botkor neither are primitive roots. - - - P
P--l
6491 6521 6529 6547 6551 6553 6563
2.5.11.59 23.5.163 27.3.17
ZE 6577 6581 6599 6607 6619 6637 6653 6659 6661 6673 6679 6689 6691 6701 6703 6709 6719 6733 6737 6761 FY 67;i 6791 6793 6803 6823 6827 % 68;; 6855
6911 691: 694: 66E! SQS’ 6%: 697 697: 698: E; 700 701: 7011 g; 7041 705 706 707 710 710
e
-__ __ _.
“;“;ltg 2*:3*.7:13 2.17.193 2a.821 2i;1;73 **.5.7.47 2.3299 2.3*.367 2.3.1103 22.3.?.79 22.1663 2.3329 2*.3*.5.37 2’.3.139 2.3*.7.53 25.11.19 2.3.5.223 22.52.67 2.3.1117 2*.3.13.43 2.3359 2*.3*.11.17 2’.421 23.5.13” 2i3iJ$;3
7
22.3.5.113 2.5.7.97 23.3.283 2.19.179 2.3l.379 2.3413 21.3.569 2’.7.61 23.32.5. 19 2*.857 2.47.73 21.17.101 2.3.5.229 2.3.31.37 2.3449 2.3.1151 2.5.691 2*.7.13.19 2.23.151 2*.3*.193 2.7*.71 24.3.5.21) 2.3’.43 2.5.17.41 20.109 2.3491 2.3.5.233 2”.3.11.53 23.58.7 22.1753 2.112.29 2.3.1171 2.32.17.23 2.7.503
2’.3*.7*
2*.3.19.31 2.3539 2.53.67 21.1777
_. _. _.
P
P--l
-7121 7127 7129 7151 7159 7177 7187 7193 7207 7211 7213 7219 7229 7237 7243 7247 7253 7283 7297 7307 7309 7321
z 7369 E 7417 7433 7451 7457 E8’ r 7481 7485 748% 749% 750i 751i 752: E( 75ki 754; 754! ;;g’ 757: 757: 758: E 760: 760: 762 763! 764: 764! 766! 767: 768 768 769 769’ E GE
,
e
2’.5.89 2.7.509 23.3’. 11 2;5;.;;;;
3
2a:3:13.i3 2.3593 2*.29.31 2.3.1201 y$l~:”
z 2
2.3*:401 22.13.139 2*.3*.67 2.3.17.71 2.3623 2*.7*.37 2.11.331 27.3.19 2.13.281 2*.3*.7.29 2a.3.5.61 2.5733 2P.3.13.47 2*.11.167 2.3.5*.7* 2a.3.307 25.3.7.11 2;3.$lg”
%
r
-- -
23.929’ 2.52.149 25.233 2.3.11.113 2*.3.7.89 28.5.11.17 2.19.197 2R.3*. 13 2.23.163 2.3*.139 2*.1879 2.3761 28.941 2’.3.157 22.5.13.29 2.73.11 22.3.17.37 2.3779 28.38.5.7 2*.3.631 23.947 2.17.223 2*.7.271 2.3.5.11.23 2.3.7.181 2.3803 22.3.5.127 2.3.19.67 2.3821 2*.239 2*.3*.71 2’.7.137 29.3.5 2.31.7.61 2.5.769 2.3.1283 2.3851 2P.3.643 2.33.11.13 2.3863
: 7
3” ; 2 2 2 2 5 2 2 ; f 2 6 : 7 5 2 5 i: 3 2 it :: ; 2 ; i 2 1; 13
-- __--__---_____ -10 3cl0 -10 i t 10 10 __--_____ t:“o
__--_ -10 10
-_ -10 __---
-10 k 10 -----
-__ __ &lo __.--_ --,.-_
&lo 10 .___
-_
*:o” *lo 10 ____ ____ 10 .--_ 10 -10 _---10 _--_--f 10 -1a _--_ -1a ---_-__
-. 1 _. _.
i il 6 2 5 : 2 3 2 3 15 f 2 2 E
*:: ----1c ---1c -----I( -l( __-_ -_-fl( -_-1E :I l( -_-_ ---_ l(
P
P--l
7741 7753 7757 7759 7789 7793 7817 7823 7829 7841 7853 7867 7873 7877 7879
2*.3*.5.43 23.3.17.19 2*.7,277 2.32.431 22.3.11.59 24.487 28.977 2.3911 22.19.103
2.5.5.72
22.13.151 2.34.19.23 28.3.41 21.11.179 2.3.13.101 2.7.563 2*.5*.79 2v59.67 2.37.107 asp;;
5::: 7;507 7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111 8117 8123 81.47 8161 8167 8171
‘$.& 2’. 1987 2.3.5*..53
2..;],3$7
2*.;.1’i.13 2.3*.5.89 24.3.167 2.4019 22.3.11.61 2.3.17.79 21.2017 2’.5.101 gyl; .I .. * 22.7.172
2K34.54
2.5.811 22.2029 “;31i;;l 25-3.5.17 2.3.1361 2.5.19.43 2.3.29.47 2.3”.5.7.13 2’.3a. IQ 2.7.587 2l.3.5.137 2~5.823 23.3.73 21.29.71 2.13.317 2.36.17 2*.3.13.53 2’.11.47
E “,3;; 8223 8231 823: 8235 824: 826: 826E 82;: 8285 8291 829:
8295 8311 831; Ed 836i E 838: 838!
,
2;Y&Y 2Go49 22.2099 2.3.5,277 21.33.7. I 1 28.3.347 25.32.29 2.37.113 2’..523 2*.3.349 2.7.599 2*.3*.233
G - --
6
---f 10 __-_
; 2 2 2 3 3
-10 f10 f 10
: f E 2 2 3 2 3 2 7 2 3 ; LOc 3” 7 5 2 2 4 I 17 2 6 x 3 3 7 1
*:o” ---__--10 f10 -. --10 -10 f 10 -10 -10 10 ---f10 f 10 -10 -10 -_----____ f 10 -10 ---10 *to .---10 .---.-_-.-_-.-__,__--10 -10 .-__: .-__-
: :i 1’:
-.-__-
.-_--
; I
;
IaI I i1 2 2,
1
: 31 2! 3, 21 fi 7 ci 5 2t I 3[ fi
10 .----10 f 10 .-__-10 *:o” f10 10 10 ----rt: 10 -10 ----_-___ f 10 -10 _---f 10 ----f10
COMBINATORIAL
Primitive
Roots,
869
ANALYSIS
Factorization
of p-1
Table
g, G denote the least positive
and least negative (respectively) primitive roots of p. E denotes whether 10, -10 both or neither are primitive roots.
T--
P 8419 8423 8429 8431 8443 8447 8461 8467 8501 8513 8521 8527 8537 8539 8543 8563 8573 8581 8597 8599 8609 8623 8627 8629 8641 8647 8663 8669 8677 8681 8689 2:: 8707 8713 8719 8731 8737 8741 8747 8753 8761 8779 8783 8803 8807 8819 8821 8831 8837 8839 8849 8861 ii:: 8887 8893 8923 8929 8933
P-1 2.3.23.61 2.4211 2”.7=.43 2.3.5.281 2.32.7.67 2.41.103 2=.3’.5.47 2.3.17.83 2*.5’.17 26.7.19 2*.3.5.71 2.3.7*.29 28.11.97 2.3.1423 2.4271 2.3.1427 22.2143 2*.3.5.11.13 2’.7.307 2.3.1433 25.269 2.32.479 m ; lEi 88.j3.5 2.3.11.131 2.61.71 2*.ii.i97 2*.3*.241 2’.5.7.31 2’.3.181 22.41.53 2.4349 2.3.1451 2’.3*.11* 2.3.1453 2.3s.5.97 25.3.7.13 22.5.19.23 2.4373 24.547 2a.3.5.73 2.3.7.11.19 2.4391 2.3’. 163 2.7.17.37 2.4409 -2.5.883 2*.47* . . %“;“,’ 2*.5.443 2.3.7.211 2.11.13.31 2.3.1481 2*.3*.13.19 2.3.1487 25.3S.31 21.7.11.29
-
-
.-
P
__-.i”o -10 -10
10 _-_-10 f 10 f10 __-_--*10 __-_ -:“o ____ _______--____ 2: __-_ -_-10 10 f10 __----------10 -10 ItlO -10 10 __-_ f10 - 10 f10 _-----10 __-. :8 f10 -10 __-_ -10 __-f10 -:: 10 ____ ------____
--
P-1
8941 8951 8963 8969 8971 8999 9001 9007 9011 9013 9029 9041 9043 9049 9059 9067 9091 9103 9109 9127 9133 9137 9151 9157 9161 9173 9181 9187 9199 9203 9209 9221 9227 9239 9241 9257 9277 9281 9283 9293 9311 9319 9323 9337 9341 9343 9349
22.3.5.149 2.5s.179 2.4481 25.19.59 2.3.5.13.23 2.11.409 28.32.5” ;.p:;3
37’: 9391 9397 9403 9413 9419 9421 9431 9433 9437 9439 9461
25.293 2;&&3;3
25.i.751 22.37.61 24.5.113 2.3.11.137 28.3.13.29 2.7.647 2.3.1511 2.31.5.101 2.3.37.41 2*.3*.11.23 2.33.132 2*.3.761 2’.571 2.3.5%.61 2*.3.7.109 23.5.229 22.2293 22.33.5.17 2.3.1531 2.3S.7.73 2.43.107 2a.1151 2%.5.461 2.7.659 2.31.149 2a.3.5.7.11 2a.13.89 2a.3.775 26.5.29 2.3.7.13.17 2*.23.101 2.5.72.19 2.3.1553 2.59.79 25.3.389 22.5.467 2.3”.173 2;3&3$1
2i1.567 22.13.181 2.17.277 2*.3.5.157 2.5.23.41 2’.3*.131 2a.7.337 2.3.11’.13 22.5.11.43
-
Q
-
e
.-,
P
P-1 _-
9463 9467 9473 9479 9491 9497 9511 9521 9533 9539 9547 9551 9587 9601 9613 9619 9623 9629 9631 9643 9649 9661 9677 9679 9689 9697 9719 9721 9733 9739 9743 Ki:: 9769 9781 9787, 9791 9803 9811 9817
2.3.19.83 2.4733 28.37 2.7.677 2.5.13.73 2*. 1187 2.3.5.317 2’.5.7.17 22.2383 2.19.251 2.3.37.43 2.52.191 2.4793 21.3.52 22.33.89 2.3.7.229 2.17.283 2*.29.83 2.3*.5.107 2.3.1607 24.32.67 22.3.5.7.23 22.41.59 2.3.1613 28.7.173 2”.3.101 2.43.113 23.3”.5 2*.3.811 2.3l.541 2.4871 28.2437 2.19.257 23.3.11.37 ;;3;5g L
2:5:1;.89 2.13*.29 2.32.5.169 28.3.409 2*.3a.7,13 2’. 1229 2.4919 2.52.197 27.7.11 2r3.31.53 2.3.5.7.47 2.3’.61 2.4943 21.31.5s. 11 2.3.13.127 2.11*.41 2a.17.73 2.3.5.331 2*.5.7.71 22.3.829 2.3.11.151 2%,3=.277
t% 9839 9851 9837 9859 9871 9883 9887 9901 9907 9923 9929 9931 9941 9949 9967 9973
-
24.8
870
COMBINATORIAL
Talk
24.9 0 1
1
2
547
2
3
4
5
1229
1991
2749
,581
0
i
8
9
1”
11
4421
528,
6143
,001
7927
883,
ANALYSIS PRI#ES 12 13 9739
10663
14
15
10 16411 16417 16421 1642, 16433
2" 1,393 1,401 1741, 1,419 1,431
21 18329 18341 18353 1836, 18371
22 19427 19429 19433 19441 19447
23 20359 20369 20389 20393 20399
24 21391 2139, 21401 2140, 21419
15461 16447 15473 16453 1546, 16451
1,443 1,449 1,467
18379 18397 18401
19457 19463 19469
20407 20411 20431
21433 21481 2146,
1177, 12637 11743 12641 13613 13619 14591 14593 15493 15497 ,647, 16481
1,477 1,471
1842, 18413
1947, 19471
20443 2044,
2148, 21491
11677 12569
:
:
563 557
1231 123,
1999 1997
2753 2767
359, ,583
4441 4423
530, 529,
616, 6151
,019 ,013
,9,, 79,)
8849 8839
9749 9,~)
10687 11681 10667 11689 12577 12583
2
1:
569 571
1249 1259
2011 2003
2789 277,
3613 360,
4451 444,
5323 5309
619, 61,)
,039 ,027
,951 ,949
006, 886,
9769 976,
10709 11699 10691 11701
6 ;
::
57, 593 587
1277 1283 1279
201, 2027 2029
2791 2801 2797
361, 3631 3623
445, 4481 4463
5333 5351 534,
6199 6211 620,
,043 ,069 ,057
,963 8009 ,993
8867 8887 8893
9781 9791 978,
10711 1171, 12611 10729 11731 10723 11719 12613 12619
1;:
:;29
601 599
1291 1284
2039 2053
2819 2803
,637 ,643
4493 4483
538, 5381
621, 6221
710, ,079
8011 801,
8929 8923
9811 9803
1"7,9 10733
12601 12589
16 13513 13523 13537 13553 13567
17 14533 14537 14543 14549 14551
13577 1455, 1359, 14561 13591 14563
1.3 15413 15427 15439 15443 15451
:: 13
:: ::
607 613 617
1297 1,Ol 1303
206, 2069 2"81
2037 2833 2843
3671 3659 3673
4513 4507 451,
5399 5393 5407
624, 6229 625,
,109 ,121 712,
8053 8039 8059
8941 8939 8951
981, 9829 9833
10771 1178, 10753 11779 12647 12653 10781 11789 12659
13633 14621 1,627 1462, 15511 1552, 1648, 16493 13649 14629 15541 16519
1,483 17489 17491
18439 ,843, 18443
19489 19483 19501
20479 20477 20483
21499 21493 21503
:z
4,
631 619
130, 1319
2087 2083
2851 2857
,691 ,677
4519 4523
5413 541,
6263 bZ69
,129 7151
808, 8069
8969 8963
9851 9839
10799 10789
11807 12689 11801 12671 13669 13679 14639 14633 15551 15559 1654, 16529
17509 1,497
18457 18451
19531 19507
20509 2050,
21521 2151,
11813 12697
16
53
641
1321
2089
2861
369,
454,
5419
6271
,159
8087
8971
9857
10831
:;
59
647 643
,361 1327
2111 2099
2807 2879
,709 3701
m4549
543, 5431
628, 627,
,187 ,177
8093 8089
9001 8999
9859 9871
10837 1084,
:;:
t:71
659 653
1373 13b7
2129 2113
2903 289,
3727 3719
4583 456,
5443 5441
6301 6299
,207 ,193
8101 8111
900, 9011
988, 9883
11821 12703 1182, 12713 11833 12721 12739 10853 11831 10859
15569 16553
1,519
18461
19541
20521
21523
13691 1465, 1,687 14669 15583 15581 16561 1656, 13693 14683 13697 14699 15601 1560, lb603 16573
13681 14653
1,539 17551 1,573 17569
18493 18481 18517 18503
,954, 19553 19559 1957,
20533 20543 20551 20549
21529 2155, 21563 21559
:: ::
:; ,"z
673 661 683 67,
1399 1381 1409 1423
213, 2131 2141 2143
2909 291, 292, 2939
,739 373, 3761 3767
459, 4591 4603 4621
5471 5449 5479 547,
631, 6311 6323 6329
,213 ,211 7219 ,229
8123 8117 814, 8161
9013 9029 9041 9043
9901 9907 992, 9929
10867 11839 10861 11863 12743 1275, 10889 11887 10883 11867 12763 12781
13709 14713 13711 14717 13721 14731 13723 14723
15619 16619 15629 16607 15641 16631 15643 16633
1,581 1,579 1,599 1,597
1852> 18521 18541 18539
1958, 1957, 1959, 19603
20593 20563 20599 20611
2157, 21569 21589 2158,
25
9,
691
142,
2153
295,
,769
463,
548,
633,
,237
816,
9049
99.31
10891
13729
1564,
16649
17609
18553
19609
2062,
21599
:; 28
103 101 10,
709 701 719'
1433 1429 1439
2179 2,bl 2203
295, 2963 2969
3793 ,779 ,797
4643 4639 4649
550, 5501 550,
635, 634, 6359
,243 ,247 ,253
8179 8171 8191
9059 906, 9091
9949 9941 996,
10909 11903 10903 11909 10937 11923
:,'
113 109
733 72,
1451 144,
2213 220,
2999 2971
3821 ,803
4651 465,
5521 5519
636, 6361
729, ,283
8219 8209
9109 10007 9103 9973
10949 10939
::,
131 12'
743 739
1459 1453
2221 223,
3011 3001
3823 3833
4673 4663
55,l 552,
6379 637,
,309 ,307
8221 8231
9133 10009 912, 1003,
::
35
139 13, 149
751 757 761
1471 ,481 1483
2243 2239 225,
,019 3023 303,
3851 384, 3853
4691 4679 4703
555, 556, 5569
639, 6389 6421
,331 ,321 ,333
8213 8237 8243
913, lo",9 9151 1006, 915, ,006,
:;
151 15,
773 769
1489 148,
2269 226,
,049 ,041
387, 3863
4723 4721
5581 5573
6449 642,
,,5, ,349
8269 8263
9173 10079 9161 10069
11027 11003
15
173 lb, 163
809 79, 78,
1511 1499 1493
228, 2273
,079 ,067 3061
3889 3881 3907
4751 473, 4729
5639 5623 559,
6473 6451 6469
7411 ,393 7369
828, 827, 8291
9199 10091 918, 9181 10099 10093
11059 1105, 11047
11897 12791
1473,
12809 12799 12821
1375, 14741 13751 1474, 13759 14753
15661 16651 15649 16657 15667 16661
1,627 1,623 1,657
18587 18583 18591
19681 10661 19687
20641 20639 20663
21611 21601 2161,
11933 12823 1192, 12829
13781 14759 1,763 1476,
15671 16691 15679 16673
1,669 1,659
18637 18617
19699 1969,
20693 2068,
2164, 21617
10973 11939 10957 11941 12841 12853
13799 14771 13789 14779 15683 ,572, 16693 lb699
10979 11959 10987 1,953 1099, 11969
1,807 1478, 13829 1479, 13831 14813
1,681 1,683
18671 18661
,971, 19709
2071, 20707
21661 21649
15731 15733 1573,
16703 16729 16741
1,713 1,707 1,729
18679 18691 18701
19727 19,,9 19751
20731 20719 2074,
21613 21683 21701
11981 ,290, 11971 12911
13859 1482, 13841 14821 15749 15739
16747 16759
1,747 1,737
18719 18713
19759 19753
20749 20747
2172, 21713
12011 1291, 1200, 1198, 12923 12919
1,879 1,877 1,873
,484, 14831 14851 15761 15773 16787 1576, 16811 16763
1,783 1,761 1,749
18749 18731 18743
1979, 19763 19777
20771 20759 20753
21751 21739 2173,
12893 12889 12849
::
181 179
821 811'
1523 1531
229, 2293
3083 3089
391, 3911
4783 4759
5641 564,
6491 6481
741, ,433
829, 8293
9209 10111 9203 10103
11071 12041 11069 1203,
15787 15791
16829 16823
1,791 1,789
18773 18757
19813 19801
20789 20773
21767 21757
:: 45
191 193 19,
823 82, 829
1543 1549 1553
2309 2311 2333
3109 3119 3121
3919 ,923 ,929
4787 4789 4793
5651 5653 565,
6521 6529 654,
7451 ,457 ,459
8311 831, 8329
9221 10133 922, 10139 9239 10141
11083 12043 11187 12049 12959 1296, 11093 12071 12973
12941 12953
13903 14879 13907 14887 15797 15803 13913 14891 15809
13883 14869 13901 1486,
16831 16843 16871
1,807 1782, 1,837
1878, 18793 18797
19819 19841 19843
20807 20809 20849
21773 21787 21799
46 2
199 21, 223
839 853 85,
1559 156, 1571
2,39 2341 2347
,l',, 3163 3167
3931 3943 394,
4199 4801 4813
5659 5669 5683
6551 6563 6553
747, ,481 ,487
8353 8363 8369
924, 10151 9277 10159 925, 10163
11113 1111, 11119
12073 12979 12097 12983 12101 13001
13921 13931 13933
1489, 1581, 14923 15823 14929 15859
16879 16883 16889
1,839 1,863 17851
18803 18859 18839
19853 1986, 19861
2085, 20873 20879
21803 21821 21817
:z
229 22,
863 859
1583 1579
2357 2351
3181 3169
396, 3989
4831 481,
5693 5689
6571 6569
7489 ,499
8387 O,,,
9283 1017, 9281 10169
11149 1210, 11131 12109 13003 13007
1396, 13963
1494, 1587, 14939 15881
16901 16903
1,891 1,881
18899 18869
19891 19889
2089, 2088,
21839 21841
51
233
87,
1597
2371
3187
4001
4861
5701
6577
7507
8389
9293 lo181
11159
12113 13009
13997
14951 1588,
16921
17903
18911
19913
20899
21851
2:
239 241
883 881
1607 16Oi
2381 2377
3203 3191
400, 4003
4871 4877
571, 5711
6599 6581
,523 ,517
8423 8419
9319 10193 9311 10211
11171 11161
12119 13037 12143 13033
14009 13999
14969 15901 14957 15889
1692, 16931
1,909 17911
1891, 18913
1992, 19919
20921 20903
21863 21859
2,"
257 251
887 90,
1613 1609
2389 2383
321, 3209
4019 4013
4903 4884
5741 573,
6619 6607
,537 ,529
8431 8429
933, 10223 9323 10243
11177 12149 11173 1215,
2
269 263
911 919
,621 1619
2399 2393
3221 3229
402, 4021
4919 4909
5749 5743
665, 663,
,547 ,541
844, 8443
934, 10247 9341 10253
11213 lU9,
13049 13043
14011 14029
15013 15907 14983 15913
16943 16937
17923 17921
18947 18919
1993, 19949
20939 20929
21881 21871
12163 13063 12161 13093
14051 14033
150,l 1501,
16963 16979
1,939 1,929
18973 18959
19961 19963
20947 20959
21893 21911
15923 15919
ii
27, 271 281
94, 929 93,
1657 162, lb,,
242, 2411 241,
325, 3253 3251
4057 4051 4049
493, 4931 4933
5791 5779 5783
667, 6661 6659
,561 ,559 ,549
846, 8461 8501
937, 10259 9349 10271 1026,
11251 11243 11239
12211 13099 12203 1219, 1,109 13103
14081 1505, 14071 14057 15061 15073 1593, 15971 15959
16993 16987 16981
1,971 1,957 1,959
19001 18979 19009
19991 19979 19973
20983 20981 20963
21943 21929 21937
2:
293 283
953 947
1667 ,663
2441 243,
927, 9259
4079 4073
4951 4943
580, 5801
6689 6679
,577 ,573
8521 8513
939, 10289 9391 10273
,126l 1125,
12239 1222,
14083 14087 ,410, 14143 14149
1507, 15083 15091 15101 15107
15973 15991 lb"01 16007 lb033
1,011 1,021 1,027 17029 1,033
17977 17981 1798, 17989 18013
19013 19031 19037 19051 19069
19993 1999, 20011 20021 20023
21001 21011 21013 21017 21019
21961 2197, 21991 21997 22003
13121 13127
,":
311 30,
971 967
1693 1669
244, 2459
3299 3301
4093 4091
496, 495,
5821 5813
6701 6691
,589 7583
8537 8527
9413 9403 10301 10303
11279 11273
12251 13151 12241 13147
65
313
977
1697
2467
3307
4099
4969
582,
6703
,591
8539
9419 10313
11287
12253 13159
2: tt
331 31, 337 34,
991 983 1009 997
1709 1699 1721 1723
2473 247, 2521 2503
1319 3313 3323 3329
412, 4111 4129 4133
498, 4973 4999 4993
5839 5843 5851 5849
6719 6709 6737 6733
7607 7603 ,639 ,621
8563 8543 8581 857)
9431 10321 9421 10331 9433 943, 10333 10337
7"
349
1013
1733
2531
3331
4139
5003
5857
6761
,643
859,
9439 10343
14153 11311 11299 12269 12263 13163 13171 14159 1131, 12281 11321 12277 1318> 1,177 14173 1417, 11329 12289 13187 1419,
15121 15131 1513, 15139 15149
lb"57 lb"61 16063 1606, 16069
17041 1,047 1,053 ,707, 1,093
18041 18043 18047 18049 18059
19073 19079 19081 1908, 19121
20029 20047 20051 20063 20071
21023 2103, 21059 Zl"61 21067
22013 2202, 22031 2203, 22039
:: 73
359 353 96,
1021 1019 1031
174, 1747 ,753
2543 2539 2549
1343 ,347 3359
4157 4153 4159
5009 5011 5021
586, 5861 5869
6779 6763 6781
,669 ,649 ,673
8609 8599 8623
9463 10357 9461 10369 9467 10391
1,351 ,135, 12,23 12101 1321, 13219 11369 12329 13229
:z
379 973
1039 1033
1777 1759
255,
,371 1361
4177 4201
5039 5023
5879 5881
6791 6793
,687 ,681
8629 8627
9479 9473 10399 10427
11393 1,383
1234, 12343
14207 14221 14243 14249 1,249 14251 13241
15161 15173 1518, 15193 15199
16073 16087 lb091 1609, 16103
1,099 1,107 1,117 1,123 1,137
18061 18077 18089 18097 18119
19139 19141 19157 19163 19181
20089 20101 20107 20113 20117
21089 21101 21107 21121 21139
22051 22063 22067 22073 22079
76
383
1049
1783
2579
,373
4211
5051
589,
6803
,691
8641
9491 10429
11399
12373 13259
1521,
16111
1,159
:i 8':
189 39, 409 4"l
1051 1061 1063 1069
178, 1789 1811 1801
2591 259, 261, 2609
,389 ,391 3407 3413
421, 4219 4229 4231
5059 5077 5087 5081
5903 592, 5939 592,
6823 682, 6833 6829
,699 ,703 7723 ,717
864, 8663 867, 8669
949, 9511 10433 10453 9533 10457 9521 10459
11411 11423 12377 12379 1326, 13291 14293 14303 1143, 11443 12401 12391 13297 13309 14321 14323
14281
18121
19183
20123
21143
22091
1522, 1612, 15233 16139 1716, 1,183 bW7 18131 15259 16183 15241 16141 17191 17189 18143 18133
1920, 19211 19219 19213
20129 20143 20149 20147
21149 21157 21169 21163
22093 22109 22123 22111
Lz
421 419
1091 ,087
1831 1823
262, 2633
,449 3433
4243 4241
5101 5099
5953 5981
6857 6841
,741 ,727
8689 868,
954, 10463 9539 1047,
1146, 1144,
12409 12413
,": 85
431 433 439
1093 109, 1103
1861 184, 186,
265, 264, 2659
3457 3461 3463
4253 4259 4261
510, 5113 5119
6007 5987 6011
6863 6869 6871
,753 775, 7759
8693 8699 8707
9551 10487 958, 10499 9601 10501
11471 11483 11489
12421 13331 12433 13337 12437 13339
1432, 14.341 1434, 14369 14387
15263 lb187 15269 16189 15271 16193 1527, 16217 1528, 16223
17203 1,207 1,209 1,231 1,239
18149 18169 18181 18191 18194
19231 19237 19249 19259 19267
20161 20173 20177 20183 20201
21179 2118, 21191 21193 21211
22129 22133 22147 22153 22157
86 2
443 449 457
1109 111, 112,
1871 ,873 187,
266, 2671 2677
,467 ,469 3491
4271 4273 4283
514, 516, 5153
6029 6043 6037
6883 6899 690,
,789 ,793 ,817
8713 8719 8731
9613 10513 9619 10529 9623 10531
1,491 1149, 11503
12451 13367 1245, 13381 12473 1339,
14389 14401 14407
15289 16229 1,257 15299 16249 1530, 16231 17291 17293
18211 18217 18223
19273 19301 19289
20219 20231 20233
21221 21227 21247
22159 22189 22171
,";
463 461
1129 1151
1889 1879
2683 268,
3511 ,499
4289 429,
5179 5171
6053 604,
6917 6911
,829 ,823
8741 8737
963, 10559 9629 10567
1152, 11519
12479 1248,
15319 16253 15313 1626,
1,317 1,299
182.33 18229
19319 19309
20261 20249
2127, 21269
22229 22193
15,29
1,321
18251
19333
20269
21283
2224,
1332, 1,313
13411 14411 13399 14419 14423
2 ,':
46, 479 491 48,
1151 1163 1181 1171
1901 190, 1931 1913
2693 2689 270, 2699
352, 351, ,533 ,529
432, 433, 4349 4339
5189 5197 5209 5227
6073 606, 6079 6089
694, 6949 6961 6959
7841 ,853 7873 ,867
8753 8747 876, 8779
9649 10589 9643 10597 9677 10601 9661 10607
95
499
1187
1933
2711
,539
435,
523,
609,
696,
7877
8783
I," 9'9" 100
509 503 523 521 541
120, 1193 1217 ,213 1223
1949 1951 1979 1973 198,
2719 2713 2729 2731 2141
,541 3547 3559 355, ,571
4373 4363 439, 4391 4409
5237 5233 5273 5261 5279
6113 6101 6131 6121 6133
697, 6971 6991 6983 6997
7883 ,879 7907 7901 ,919
8807 8803 8819 8821 883,
11551 11549 1158, 1,579
16273
9679 10613
12491 13417 1249, 13421 14431 12511 1,451 12503 13441 1443, 1444, 11593 1251, 13457 14449
15331 lb301 15349 16319 15359 16333 15361 16339
1X327 1,333 1,341 17351
18253 18257 18269 18287
19373 19379 19301 19387
2028, 2029, 20323 2032,
21313 21317 21319 21323
22259 22271 22273 2227,
9689 9697 10631 10627 9721 10639 9719 10651 9733 10657
11617 1159, 11633 11621 ,165,
,537, 16349 15373 16361 1,359 ,,,,, 15391 16363 153.83 lb369 1,383 1,387 15401 16381 17389
18301 18289 18311 18307 18313
19403 1939, 19421 19417 19423
20341 20333 20353 20347 20357
21347 21341 21177 21379 21383
22283 22279 22303 22291 22307
12539 13463 ,252, 13469 14461 14479 12541 1,487 1254, 13477 14489 14503 12553 13499 14519
COMBINATORIAL
871
ANALYSIS PRIME:S
25
26
27
28
19
B”
:a
6 1 8 9 10
22391 22397 22409 22433 22441
23371 23399 23417 23431 23447
24373 24379 24391 24407 24413
25453 2545, 25463 25469 25471
26449 26459 26479 26489 26497
27527 2,529 2,539 2,541 21551
28549 28559 2857, 28573 28579
11 12 13 14 15
22447 22453 22469 22481 22483
23459 23473 23497 23509 23531
24419 24421 24439 24443 24469
25523 2553, 25541 25561 25577
26501 26513 26539 26557 26561
2,581 2,583 2,611 2,617 2,631
I6 17 18 19 20
22501 22511 22531 22541 22543
2~35~37 23539 23549 2355, 23561
24473 24481 24499 24509 2451,
25579 25583 25589 25601 25603
26573 26591 2659, 2662, 26633
21 22 23 24 25
22549 22567 22571 22573 22613
23563 2356, 23581 23593 23599
2452, 24533 2454, 24551 2457,
25609 25621 25633 25639 25643
26 2, 28 29 30
22619 22621 22637 22639 22643
23603 23609 23623 23627 23629
24593 24611 24623 24631 24659
31 32 33 34 35
22651 22669 22679 22691 2269,
23633 23663 23669 23671 2367,
36 3, 38 39 40
22699 22709 22717 22721 22727
41 42 43 44 45
:12
55
36
57
Tddc-
:a
34
s8
39
4”
41
12
43
29531 2953, 2956, 29569 29573
30649 30661 30611 3061, 30689
3,663 31667 31687 31699 31721
3268, 32693 ,270, 32713 32717
33641 3364, 33679 3,703 33713
34693 3470, 34721 34729 34739
35831 35837 35839 35851 35863
36833 36847 36857 36871 3687,
37879 37889 3,897 37907 37951
38911 38993 39019 39023 39041
40031 4003, 40039 40063 40087
41149 41161 41117 41179 41183
42157 42169 42179 42181 4218,
2859, 2859, 28603 28607 28619
29581 2958, 29599 2961, 29629
30697 30703 30707 30713 ,072,
31723 3,727 31729 ,174, 31751
32719 32749 ,2,,1 32779 ,278,
,3,21 3,739 3,749 3,751 3,757
,474, 3475, 34759 34763 34781
35869 35879 35897 35899 35911
36887 36899 36901 36913 36919
3795, 3,963 3796, 3,987 37991
39043 3904, 39079 39089 39097
40093 40099 40111 40123 40121
41189 41201 41203 41213 41221
2,647 2,653 2,673 2,689 27691
28621 2862, 2863, 2864, 28649
29633 29641 2966, 29669 29671
30751 30763 30713 30781 30803
31769 ,I,,1 31793 31799 ,181,
32789 3279, 32801 32803 32831
33767 33769 ‘3,,,, 3379, 3,797
3480, 34819 ,4841 34843 3484,
35923 35933 35951 35963 35969
36923 36929 36931 36943 3694,
37993 37991 38011 38039 38047
39103 39101 39113 39119 39133
40129 40151 40153 40163 40169
26641 2664, 26669 26681 26683
2,697 2,701 2,733 2,737 27739
2865, 28661 28663 28669 2868,
2968, 29717 29723 29741 29753
30809 30811 30829 30839 30841
3,847 31849 31859 31873 31883
,28,3 32839 32843 32869 32881
3,809 33811 3382, 3,829 33851
,4849 34871 ,487, 34883 34897
35977 35983 35993 35999 36001
36973 36979 36997 31003 3,013
38053 38069 38083 38113 38119
39139 39157 39161 39163 39181
2565, 2566, 25673 25679 25693
26681 26693 26699 26701 26711
21743 2,749 2,751 2,763 2,767
2869, 28703 28711 28723 28729
29759 29761 29789 29803 29819
,085, 3085, 30859 30869 30811
31891 ,190, 31957 31963 31973
32909 3291, 32917 329,3 32939
3385, 33863 33871 33889 33893
34913 34919 34939 34949 34961
36011 36013 36017 36131 36061
3,019 3,021 31039 37049 3,057
38149 38153 3816, 3817, 38183
24671 2467, 24683 24691 2469,
25703 25717 25733 25741 25747
26713 2671, 26723 26729 26731
2,773 2,779 2,791 27793 27799
28751 28753 28759 28771 28789
29833 2983, 29851 29863 2986,
30881 30893 30911 30931 3093,
3198, 31991 32003 32009 32027
32941 ,295, 32969 32971 32983
33911 3392, 33931 33937 33941
34963 34981 35023 35027 35051
3606, 36073 36083 36097 36107
3,061 3,087 31097 31117 37123
23687 23689 23719 23741 23743
24709 24733 24749 24763 2476,
25759 25763 25771 25793 25799
26737 26759 26777 26783 2680,
2,803 2,809 2,817 2,823 2,827
28793 2880, 28813 2881, 2883,
29873 29879 29881 29917 29921
30941 30949 30971 3097, 30983
32029 32051 3205, ,2059 32063
32981 ,299, 32999 3,013 3,023
33961 ,396, 33997 34019 340,l
35053 35059 ,5069 35081 ,508)
36109 36131 36137 36151 36161
22739 22741 22751 22769 2277,
2374, 23753 23761 23767 2,773
24781 24793 24799 24809 24821
25801 25819 25841 25847 25849
26813 26821 26833 26839 26849
2,847 2,851 27883 2,893 2,901
28843 28859 2886, 28871 28879
2992, 2994, 29959 29983 29989
31013 31019 31033 31039 31051
32069 3207, 32083 32089 32099
33029 3303, 33049 33053 33071
34033 34039 3405, 34061 34123
35089 35099 35107 35111 3511,
46 4, 48 49 5"
22783 22787 22807 22811 22817
23789 23801 23813 23819 23827
24841 2484, 24851 24859 24877
2586, 25873 25889 25903 25913
26861 26863 26879 26881 26891
2,917 2,919 27941 27943 27947
28901 28909 28921 2892, 28933
30011 30013 30029 3004, 30059
31063 31069 31079 31081 31091
3211, 32119 32141 32143 32159
33073 33083 33091 33107 33113
3412, 34129 34141 3414, 3415,
51 52 53 54 55
22853 22859 22861 22871 22877
23831 23833 23857 23869 23873
24889 24907 24917 24919 24923
25919 25931 25933 25939 25943
26893 26903 26921 2692, 26947
2,953 27961 2,967 2,983 21997
28949 28961 28979 29009 29017
30011 30089 30091 3009, 30103
,I121 31123 31139 3,147 31151
,211, 32183 32189 32191 32203
33119 33149 33151 33161 33179
56 57 58 59 60
22901 22907 22921 22937 22943
23879 23887 23893 23899 23909
24943 24953 24967 24971 24977
25951 25969 25981 2599, 25999
26951 26953 26959 26981 2698,
28001 28019 28027 28031 28051
29021 29023 2902, 29033 29059
30109 30113 30119 30133 30137
31153 3,159 3117, 31181 31183
32213 32233 32237 32251 3225,
61 62 63 64 65
22961 22963 22973 22993 23003
23911 2391, 23929 2395, 23971
24979 24989 25013 25031 25033
26003 26017 26021 26029 26041
26993 2,011 2,011 2,031 2,041
28057 28069 28081 28087 2809,
29063 2907, 29101 29123 29129
30139 3016l ,OlbP 30181 30187
31189 31193 31219 31223 31231
66 67 68 69 70
23011 2301, 23021 23027 23029
2397, 23981 23993 24001 24007
25037 2505, 25073 25087 2509,
26053 26083 26099 2610, 26lll
27059 2,061 2,067 2,073 21077
28099 28109 28111 28123 28151
29131 2913, 29141 29153 2916,
30197 30203 30211 30223 30241
71 12 73 74 75
23039 23041 23053 2305, 23059
24019 24023 24029 24043 24049
25111 2511, 25121 2512, 2514,
26113 26119 26141 26153 26161
2,091 2,103 27107 2,109 2,127
28163 28181 28183 28201 28211
29173 29179 29191 29201 29207
76 77 18 79 80
23063 23071 23081 2308, 23099
24061 24071 2407, 24083 24091
25153 25163 25169 25171 25183
26171 2617, 26183 26189 26203
2,143 2,179 27191 2,197 2,211
28219 28229 28277 28279 28283
81 82 83 84 85
2311, 23131 23143 23159 2316,
2409, 24103 2410, 24109 24113
25189 25219 25229 25237 25243
26209 26227 2623, 26249 26251
2,239 2,241 2,253 27259 2,271
86 8, 88 89 90
23173 23189 23197 23201 23203
24121 24133 24137 24151 24169
2524, 25253 25261 25301 25303
26261 26263 26267 26293 26297
91 92 93 94 95
23209 23227 2325, 23269 23279
24179 24181 2419, 24203 24223
2530, 25309 25321 25339 25343
96 9, 98 99 100
23291 23293 23291 23311 23321
24229 24239 2424, 24251 24281
25349 25357 2536, 25373 25391
44
45
P-I.9
40
li
.t”
4Y
43133 43151 43159 4317, 43189
44263 4426, 44269 44273 44279
45343 4536, 4537, 45389 45403
46499 4650, 46511 46523 46549
41591 47599 4,609 4,623 47629
42193 4219, 42209 42221 42223
43201 43207 43223 4323, 43261
44281 44293 44351 4435, 44371
45413 4542, 45433 45439 45481
46559 4656, 46573 46589 46591
4,6,9 4,653 4,657 4,659 41681
41227 41231 41233 41243 41257
42227 42239 42257 42281 42283
43271 43283 43291 43313 43319
44381 44383 44389 4441, 44449
45491 4549, 45503 45523 45533
46601 46619 46633 46639 46643
4,699 47701 4,111 4,713 4,717
40177 40189 40193 40213 40231
41263 41269 41281 41299 41333
42293 42299 4230, 42323 42331
43321 43331 43391 4339, 43399
44453 44483 44491 4449, 44501
45541 45553 45557 45569 4558,
46649 46663 46679 46681 4668,
4,737 4,741 47743 4,777 4,779
39191 39199 39209 39211 3922,
40237 40241 40253 4027, 40283
41341 41351 4135, 41381 41387
4233, 42349 42359 42373 42379
43403 43411 43427 43441 43451
44507 44519 44531 44533 4453,
45589 45599 45613 45631 45641
46691 46703 46723 46727 4674,
41791 4,797 4780, 4,809 4,819
38189 3819, 38201 38219 38231
39229 39233 39239 39241 39251
40289 40343 40351 4035, 40361
41389 41399 41411 41413 41443
42391 4239, 42403 42407 42409
4345, 43481 43487 43499 43517
44543 44549 44563 44579 44587
45659 4566, 45673 4567, 45691
46751 46757 46769 46771 46807
4,831 4,843 4,857 4,869 4,881
3,139 37159 37171 3,181 3,189
38237 38239 38261 38273 38281
39293 39301 39313 39317 39323
4038, 40423 4042, 40429 40433
41453 4146, 41479 41491 4150,
42433 42437 42443 42451 4245,
43541 4354, 43573 43577 43579
4461, 44621 44623 44633 44641
4569, 4510, 45737 45751 4575,
46811 4681, 46819 46829 46831
4,903 4,911 4,917 479,) 4,939
3618, 36191 36209 36217 36229
3,199 37201 31217 3,223 3,243
3828, 38299 38303 38317 38321
39341 39343 39359 39367 39311
40459 40471 40483 4048, 40493
41513 41519 41521 41539 41543
42461 42463 42467 42473 4248,
43591 4359, 43607 43609 43613
4464, 44651 4465, 44683 44687
45763 45767 45779 4581, 45821
46853 46861 46867 46877 46889
4,947 4,951 4,963 4,969 4,977
35129 ,5141 35149 35153 35159
36241 36251 36263 36269 36277
3,253 3,273 3121, 3,307 31309
3832, 38329 38333 38351 38371
39373 39383 3939, 39409 39419
40499 4050, 40519 40529 40531
41549 4,579 41593 4159, 41603
4249, 42499 42509 42533 4255,
4362, 43633 43649 43651 43661
44699 44701 44711 44729 44741
45823 4582, 45833 45841 45853
46901 46919 46933 4695, 46993
4,981 48017 48023 48029 48049
34159 34171 34183 34211 34213
,517, 35201 35221 ,522, 35251
,6293 36299 36307 36,13 36319
,731, 3,321 3,337 3,339 3,357
38,,, 38393 38431 38441 38449
39439 39443 39451 39461 39499
4054, 40559 40577 40583 40591
41609 41611 4161, 41621 4,627
42569 42571 4257, 42589 42611
4,669 43691 43711 43717 43721
44753 44771 44773 44777 44789
45863 45869 45887 45893 45943
4699, 47017 47041 4,051 4,057
4807, 48079 48091 48109 48119
3,181 33191 33199 33203 33211
3421, 3423, 34253 34259 34261
3525, 3526, 35279 35281 35291
36341 36343 36353 36373 ,6383
3736, ,,363 31369 ,13,9 3,397
38453 38459 38461 38501 38543
39503 39509 39511 39521 39541
40597 40609 40627 40631 40639
4,641 4164, 4,651 41659 41669
42641 42643 42649 4266, 4267,
43753 43759 4371, 43781 43783
44797 44809 44819 44839 44843
45949 45953 45959 45971 45979
4,059 4,087 4,093 4,111 47119
48121 48131 4815, 48163 48179
32261 3229, 32299 32303 32309
33223 3324, 3328, 33289 33301
3426, 34273 34283 34291 34301
35311 35317 35323 35327 35339
36389 36433 3645, 3645, 36461
,,409 3,423 3,441 3144, 3,463
3855, 38561 38567 38569 38593
3955-l 39563 39569 19581 3960,
4069, 4069, 40699 40709 40739
41681 4168, 41119 41129 4173,
42683 42689 4269, 4270, 42703
43787 43789 43793 43801 43853
44851 44867 44879 4488, 44893
45989 46021 4602, 46049 46051
4,123 47129 4,137 4,143 41147
48187 48193 4819, 48221 48239
31237 3124, 31249 31253 31259
32321 32323 32327 32341 32353
33311 3331, 33329 33331 33343
34303 34313 34319 34321 34331
35353 35363 35381 35393 35401
36469 36473 36479 36493 3649,
3,483 3,489 3,493 3,501 3,507
38603 38609 38611 38629 38639
39619 ,9623 39631 39659 3966,
40751 40159 40763 40771 40787
41759 4,761 41771 41777 41801
42709 42719 4272, 4273, 42743
43867 43889 43891 43913 43933
44909 4491, 4492, 44939 44953
46061 46073 46091 46093 46099
41149 4,161 47189 4,207 4,221
48247 48259 48271 48281 48299
30253 30259 30269 30211 30293
3126, 31271 31277 31307 31319
32359 32363 32369 32371 3237,
3334, 33349 33353 33359 3337,
34351 34361 3436, 34369 34381
35407 35419 35423 35431 3544,
3652, 3652, 36529 ,6541 36551
3,511 3,517 37529 3,537 3,547
38651 38653 ,8669 38671 38677
39671 39679 39703 39709 39719
40801 40813 40819 40823 40829
41809 41813 41843 41849 41851
42751 42767 42773 4278, 42793
43943 43951 43961 43963 43969
44959 44963 44971 44983 4498,
46103 46133 46141 46141 46153
4,237 4,251 47269 47279 4,287
48311 48313 48337 48341 48353
29209 29221 29231 29243 29251
3030, 30313 30319 30323 30341
31321 31327 31333 31337 31351
32381 32401 32411 32413 32423
33391 33403 33409 33413 33427
34403 34421 34429 34439 3445,
35449 35461 35491 3550, 35509
36559 36563 ,6511 36583 3658,
3,549 3,561 3156, 3157, 3,573
38693 38699 38707 3871, 38713
3972, 39733 39149 39761 39769
4084, 4084, 40849 40853 4086,
4186, 41879 4,887 41893 41891
4279, 42821 42829 42839 42841
4,973 4398, 43991 4399, 44017
4500, 45013 45053 45061 4501,
4617, 46181 46183 4618, 46199
4729, 4,297 4,303 4,309 4,317
48371 48383 4839, 4840, 48409
28289 2829, 2830, 28309 28319
29269 2928, 2929, 29303 29311
3134, 3036, 30389 30391 30403
31379 31387 31391 31393 31397
32429 32441 32443 32467 32479
33457 33461 33469 33479 3348,
34469 34411 34483 34487 34499
35521 35527 35531 35533 35537
,6599 3660, ,6629 3663, ,664,
31519 3,589 ,759, 3,607 37619
38723 38729 3873, ,874, 38149
39779 39791 39199 3982, 39821
40879 40883 4089, 40903 4092,
41903 41911 4192, 41941 41941
42853 42859 42863 42899 42901
44021 4402, 44029 44041 4405,
45083 45119 45121 4512, 451,1
46219 46229 4623, 46261 46271
4,339 4,351 4,353 4,363 47381
48413 4843, 48449 48463 4847,
2127, 2,281 27283 2,299 2,329
28349 28351 2838, 28393 28403
2932, 29333 29339 29347 29363
3042, 30431 30449 3046, 30469
31469 31471 31481 31489 31511
32491 32497 32503 3250, 32531
33493 33503 33521 33529 33533
34501 34511 34513 34519 34537
35543 35569 35573 35591 35593
3665, 3667, 3667, 36683 36691
3,633 3,643 ,1649 ,765, 3,663
3876, 38783 38791 3880, 38821
39829 39839 39841 ,984, 3985,
40933 40939 40949 40961 40973
41953 4,957 41959 4,969 41981
42923 42929 42937 42943 42953
44059 44071 4408, 44089 44101
4513, 45139 45161 45179 45181
46273 46279 46301 46307 46,09
4,387 41389 4,407 4,417 4,419
48479 48481 4848, 4849, 4849,
26309 26317 26321 26339 2634,
2,337 27361 2,367 2,397 2740,
28409 28411 28429 28433 28439
29383 29387 29389 29399 29401
30491 30493 3049, 30509 30517
31513 3151, 31531 31541 31543
32533 3253, 32561 32563 32569
33547 33563 33569 3357, 33581
34543 34549 34583 34589 34591
35597 35603 35617 35671 35677
36691 16709 36713 36721 36739
3,691 3,693 31699 3,717 ,714,
38833 38839 3885, 38861 38861
39863 39869 3987, 39883 3988,
40993 41011 4,017 4,023 41039
4,983 41999 42013 42017 42019
42961 42961 42979 42989 43003
44111 44119 44123 44129 44131
4519, 4519, 45233 45247 45259
4632, 4633, 46349 46351 46381
4743, 4,441 4,459 4,491 4,497
48523 4852, 48533 485,9 48541
2635, 26371 2638, 26393 26399
2,409 27427 2,431 27437 21449
2844, 28463 28477 28493 28499
29411 29423 29429 2943, 29443
30529 30539 30553 3055, 30559
3154, 3156, 31513 31583 31601
32573 32579 3258, 32603 32609
33587 33589 33599 33601 33613
34603 34607 34613 34631 34649
35729 35731 35747 35753 35759
36749 36161 36767 36779 3678,
3,781 3,783 3,799 3,811 3,813
38873 38891 38903 38911 38921
39901 39929 39937 3995, 39971
4,047 41051 41057 4107, 41081
42023 42043 42061 42071 42073
43013 43019 43037 43049 43051
44159 44171 44179 44189 4420,
45263 45281 45289 45293 4530,
46399 46411 46439 4644, 4644,
4,501 4,507 4,513 L7521 4,527
48563 48571 48589 48593 48611
872
COMBINATORIAL
‘I’ulh
m.9
ANALYSIS PRIhlES 02 83
63
54
56
66
67
58
58
84
61
a5
86
67
68
88
70
71
72
7%
48619 49667 4862, 49669 48647 49681 48649 49697 4866, 49711
50767 51817 50773 51827 50777 51829 50789 51839 50821 5,853
52937 52951 52957 5296, 5296,
54001 54011 54013 54037 54049
55109 55117 55127 55147 55163
56197 56207 56209 562,7 56239
5719, 57203 57221 5722, 57241
58243 58271 58309 58313 58321
59369 59377 59187 59J93 59399
60509 60521 60527 60539 60589
61637 6164, 61651 61657 61667
62791 62801 62819 62827 62851
6,823 6,839 63841 6,853 6,857
65071 65089 65099 65101 65111
66107 66109 66137 66161 66169
67247 67261 67271 67213 67289
68389 68399 60437 6844, 68447
69497 69499 695,9 695,7 6959,
7066, 70667 70687 70709 70717
71719 71741 71761 71777 71789
72859 72869 72871 7288, 72889
7,999 74017 74021 74027 74047
75083 75109 7513, 75149 75161
6 7 8 9 10
4867, 48677 48679 48731 48733
49727 49739 49741 49747 49757
5083, 50839 50849 50857 50867
52973 52981 52999 53003 5,017
54059 54083 54091 54101 54121
55171 55201 55207 55213 55217
56249 57251 5626, 57259 56267 57269 56269 57271 56299 5728,
58337 SD63 58367 58369 58379
59407 60601 59417 60607 59419 60611 59441 606l7 5944, 60623
6167, bl68l 61687 61703 61717
62861 62869 6287, 62897 6290,
b,a63 6,901 6,907 6,913 6,929
65119 6512, 65129 65141 65147
6617, 66179 66191 66221 66239
67JO7 67339 6734, 67349 67369
ba449 6847, 68477 68483 ba489
6962, 69653 69661 69677 69691
70729 7075, 70769 7078, 7079,
71807 71809 71821 71837 7184,
7289, 72901 72907 72911 7292,
74051 74071 74077 7409, 74099
75167 75169 75181 75193 75209
11 12 1, 14 15
48751 48757 48761 48767 48779
4978, 50873 49787 50891 49789 5089, 49801 50909 49807 50923
51907 53047 51913 5,051 51929 5,069 5,941 5,077 51949 5,087
54133 54139 54151 5416, 54167
55219 56311 55229 56,,3 55243 56359 55249 56369 55259 56377
57287 57301 57329 573,1 57,47
60631 60637 60647 60649 60659
61723 61729 61751 61757 6178,
62921 6,949 62927 6,977 62929 6,997 62939 64007 62969 64013
65167 66271 65171 6629, 6517, 66301 65179 66337 65183 6634,
67391 68491 67399 68501 67409 68507 67411 68521 67421 68531
69697 69709 697,7 69739 69761
7082, 70841 7084, 70849 7085,
71849 71861 71867 7,879 71881
72931 72937 72949 7295, 72959
74101 74131 7414, 74149 74159
75211 75217 7522, 75227 75239
lb 17 10 19 20
4878, 48787 48799 48809 48817
49811 4982, 49831 4984, 4985,
50929 50951 50957 50969 5097,
5,971 5197, 51977 5,991 52009
5,089 53093 5,101 5,113 5,117
54181 54193 54217 54251 54269
5529, 55313 55331 5533, 55337
56383 5639, 56401 56417 56431
57349 58427 57367 58439 57373 58441 57383 58451 57389 58453
59497 59509 5951, 59539 59557
6066, 60679 60689 60703 60719
blal, 61819 61837 61843 61861
62971 64019 62981 6403, 62983 64037 62987 6406, 62989 64067
6520, 66347 6521, 66359 65239 66361 65257 66373 65267 66377
67427 68539 67429 6854, 6743, 68567 67447 685a1 6745, 68597
6976, 69767 69779 69809 69821
70867 70877 70879 70891 70901
71887 71899 71909 71917 719,3
7297, 72977 72997 7,009 7,013
74161 74167 74177 74189 74197
7525, 75269 75277 75289 75307
21 22 2, 24 25
48821 4882, 48847 4885, 48859
4987, 4987, 49891 49919 49921
50989 50993 5,001 51031 5104,
52021 52027 52051 52057 52067
5,129 5,147 5,149 5,161 5,171
54277 5428, 5429, 54311 54319
55339 5534, 55351 5537, 55381
5643, 5644, 56453 56467 5647,
57397 5847, 5741, 58481 5742, 58511 57457 58537 57467 5854,
59561 59567 59581 59611 59617
60727 6073, 60737 60757 60761
61871 61879 61909 61927 61933
63029 63031 6,059 6,067 63073
65269 65287 6529, 65,09 6532,
66383 66403 66413 66431 66449
67477 67481 67489 6749, 67499
68611 68633 68639 68659 68669
69827 69829 69833 69847 69857
7091, 70919 70921 70937 70949
71941 71947 ,196, 71971 71983
73019 73037 73039 7,043 7,061
74201 7420, 74209 74219 74231
7923 75329 75337 75347 75353
26 2, 28 29 30
48869 48871 4888, 48889 4890,
49927 49937 49939 4994, 49957
51047 51059 5,061 51071 51109
52069 52081 52103 52121 5212,
53173 53109 5,197 5,201 5,231
5432, 54331 5434, 54361 54967
55399 55411 55439 55441 55457
5647, 56479 56489 5650, 56503
57487 5749, 57503 5752, 57529
58549 58567 5857, 58579 58601
59621 59627 59629 59651 59659
60763 6077, 60779 60793 60811
61949 63079 61961 6,097 6196, 6,103 61979 6,113 61981 6,127
6415, 65327 64157 65,5, 64171 65X7 64187 65371 64189 65381
66457 6646, 66467 66491 66499
67511 6752, 67531 67537 67547
6868, 6868, 68699 68711 6871,
69859 69877 69899 69911 69929
70951 70957 70969 70979 70981
7198, 71993 71999 72019 720,1
7,063 7,079 73091 7,121 73127
74257 74279 74287 74293 ,429,
75367 75377 75389 75391 75401
,, 32 3, 34 35
48947 4895, 4897, 48989 4899,
49991 51~1 4999, 5,113 49999 51137 50021 5115, 5002, 51157
52147 52153 5216, 52177 52181
5,233 54371 532,9 54377 5326, 54401 5,269 54403 53279 54409
55469 56509 5,557 55487 56519 5,559 55501 56527 5,571 55511 56531 57587 55529 56533 57593
58603 5861, 58631 58657 5866l
59663 60821 59669 60859 59671 60869 5969, 608a7 59699 60889
61987 63131 61991 63149 62003 63179 62011 63197 62017 63199
64217 6539, 64223 65407 64231 6541, 64237 65419 64271 6542,
66509 6652, 66529 66533 66541
67559 67567 67577 67579 67589
60729 69931 60737 69941 68743 69959 68749 69991 68767 69997
70991 ,099, 70999 71011 7102,
72043 72047 72053 72073 72077
,313, 73141 73181 73189 7,237
74311 74317 74323 74353 74357
75403 75407 75431 75437 75479
36 37 38 39 40
49003 50033 49009 5004, 49019 50051 49031 5005, 4903, 50069
51169 5119, 51197 51199 51203
52183 52189 52201 5222, 52237
5,281 5,299 5,,09 5,,23 5,827
5441, 54419 54421 54437 5444,
55541 55547 55579 55589 55603
56543 56569 56591 5659, 56599
57601 57637 57641 5,649 5765,
58679 5970, 58687 59723 5869, 59729 58699 5974, 58711 5974,
62039 62047 62053 62057 62071
64219 64283 64301 64303 64319
65437 65447 65449 65479 65497
66553 67601 66569 67607 66571 67619 66587 67631 66593 67651
68771 68771 68791 68813 68819
70001 70003 70009 70019 70039
71039 71059 71069 71081 71089
72089 72091 72101 ,210, 72109
7,243 7,259 7,277 73291 ,330,
7436, 74377 74381 ,4,8, 74411
75503 75511 75521 75527 7553,
41 42 4, 44 45
4903, 4904, 49057 49069 49081
5007, 5008, 5009, 50101 50111
5,217 51229 5,299 51241 5,257
52249 5225, 52259 5226, 52289
5,353 53359 53,,, 5,381 53401
54449 54469 5449, 5449, 54499
55609 55619 55621 55631 5563,
56611 56629 5663, 56659 5666,
5766, 58727 57679 5873, 57689 58741 5,697 58757 57709 5876,
46 4, 48 49 50
4910, 49109 49117 49121 4912,
50119 5012, 50129 50131 50147
5,263 52291 5,283 52301 5,287 5231, 5,307 52,2l 51329 52361
5,407 5,411 53419 53437 5,441
54503 54517 54521 54539 54541
55639 55661 5566, 55667 5567,
56671 57713 56681 57719 56687 57727 56701 57731 56711 5773,
51 52 5, 54 55
49139 49157 49169 49171 49177
5015, 50159 5017, 50207 50221
51341 52,6, 5,343 52369 51347 52379 51349 5238, 51361 52391
5,453 5,479 5,503 53507 5352,
5454, 54559 5456, 5457, 54581
55681 55691 55697 55711 55717
56713 5,751 56731 5777, 56737 57781 56747 57787 56767 57791
56 5, 58 59 60
49193 49199 4920, 4920, 49211
50227 50231 50261 5026, 50273
5138, 51407 51413 51419 51421
52433 5245, 5245, 52489 52501
5,549 54583 53551 54601 5,569 54617 53591 5462, 5,593 54629
61 62 6, 64 65
4922, 4925, 49261 49277 49279
5028, 50291 50311 50321 50329
51427 51431 51437 514,9 5,449
5251, 5,597 5251, 5,609 52529 5,611 52541 5,617 5254, 5,623
66 67 68 69 70
49297 49,07 4933, 49333 49339
5033, 50341 50359 50363 50377
51461 5255, 5147, 5256, 51479 52567 51481 52571 5,487 52579
71 72 7, 74 75 76 77 78 79 80
49363 49367 49369 4939, 49393 49409 49411 49417 49429 4943,
50,8, 50,8, 50411 50417 50423 50441 50459 50461 5049, 5050,
5,503 5151, 51517 5,521 51539 5,551 5,563 5,577 51581 51593
5258, 52609 5262, 52631 52639 52667 5267, 5269, 5269, 52709
8, 82 8, a4 85
4945, 49459 4946, 49477 49481
5051, 50527 50539 50543 50549
51599 5,607 5161, 5,631 5,6,,
5” 1 2 3 4 5
61
86 49499 5055, 88 87 49529 4952, 5058,
62
51859 51869 51871 5189, 51899
5975, 59771 59179 59791 59797
60923 62081 60937 62099 60943 62119 6095, 62129 60961 62131
6,299 64327 63311 64333 63313 64373 63317 64381 63,,l 64399
65519 65521 65537 65539 6554,
66601 66617 66629 66643 66653
67679 67699 67709 67723 67733
68821 68863 68879 68881 68891
70051 70061 70067 70079 70099
71119 71129 7114, ,114, 71153
72139 72161 72167 72169 72173
73,09 7,327 73331 73351 7,361
74413 74419 74441 14449 7445,
75539 75541 75553 75557 75571
58771 58787 58789 58831 58889
59809 59833 5986, 59879 59887
6lOOl 6100, 61027 61031 6104,
62137 62141 62143 62171 62189
63337 64403 63347 64433 6335, 64439 6,361 64451 6,367 6445,
65551 65557 6556, 65579 65581
6668, 6669, 66701 66713 66721
67741 67751 67757 67759 6776,
68897 68899 68903 68909 68917
70111 70117 70121 70123 70139
71161 7116, 71171 71191 71209
72211 72221 7222, 72227 72229
73363 7,369 73379 7,387 7,417
74471 74489 74507 74509 74521
75577 7558, 75611 75617 75619
5889, 58901 58907 58909 58913
59921 61051 59929 bl057 59951 61091 59957 61099 59971 61121
62191 62201 62207 62213 62219
6,377 63389 6,391 6,397 6,409
6448, 64489 64499 64513 64553
65587 6671, 65599 66739 65609 66749 65617 66751 65629 6676,
67777 68927 6778, 68947 67709 68963 67801 68993 67007 69001
70141 70157 70163 70177 70181
71233 71237 71249 71257 71261
72251 7225, 72269 72271 72277
7,421 7,433 7345, 7,459 7,471
74527 74531 74551 74561 74567
75629 75641 7565, 75659 75679
62233 63419 62273 6,421 62297 6,439 62299 6344, 62303 6,463
64567 64577 64579 64591 64601
65633 65647 65651 65657 65677
66791 66797 66809 66821 66841
67819 69011 67829 69019 6784, 69029 67053 69031 67867 69061
7018, 70199 70201 70207 ,022,
7126, 71287 7129, 71317 71327
72287 72107 72313 7233, 72341
7,477 7,483 73517 ,352, 73529
7457, 7458, 74597 74609 74611
7568, 75689 75703 75707 75709
55799 55807 55813 55817 55819
5681, 56821 56827 5684, 56857
57847 58979 60037 57853 58991 60041 57859 58997 60077 57881 59009 60083 57899 59011 60089
61211 61223 61231 6125, 61261
62311 62323 62327 62347 62351
6,467 63473 6348, 6,493 6,499
64609 65687 64613 65699 64621 65701 64627 65707 6461, 6571,
66851 6685, 66863 6687, 66883
6788, 67891 67901 67927 6,931
69067 69073 69109 69119 69127
70229 70237 70241 70249 70271
i1329 71333 71339 ,I,41 71347
7235, 7236, 72,79 72383 72421
7,547 7,553 7,561 7,571 73583
7462, 7465, 74687 74699 7470,
75721 75731 75743 75767 7577,
5,629 5,633 53639 5,653 5,657
54709 55823 54713 55829 5472, 55837 54727 55843 54751 55849
56873 56891 5689, 56897 56909
57901 59021 57917 59023 57923 59029 57943 59051 57947 59053
60091 60101 6010, 60107 60127
61283 62383 61291 62401 61297 62417 61331 62423 61333 62459
63521 6,527 6353, 6,541 6,559
64661 65717 64663 65719 64667 65729 64679 657,1 6469, 6576,
66889 67933 66919 6,9,9 6692, 6,943 66931 67957 6694, 67961
6914, 69149 69151 6916, 69191
70289 70297 70309 70313 70321
,135, 71359 7136, 71387 71,89
72431 72461 7246, 72469 72481
73589 7,597 7,607 7,609 73613
7471, 74717 74719 74729 74731
75781 75787 7579, ,579, 75821
5,681 5369, 5,699 5,717 53719 5,731 5,759 5,773 5,777 5,783
54767 5477, 54779 54787 54799 54829 548,) 54851 54869 5487,
55871 55889 55897 55901 55903 55921 55927 55931 55933 55949
56911 5797, 56921 57977 56923 57991 56929 58013 56941 58027 56951 58031 5695, 58043 5696, 58049 56983 58057 56989 58061
59063 59069 59077 59083 59093 59107 59113 59119 59123 59141
60133 60139 60149 60161 60167 60169 60209 60217 60223 60251
61,,9 61343 61357 61363 61379 61381 61403 61409 61417 61441
62467 6247, 62477 6248, 62497 62501 62507 62533 62539 62549
6357, 6,587 6,589 6,599 6,601 6,607 6,611 6,617 6,629 6,647
64709 64717 6474, 6476, 64781 64783 6479, 64811 6481, 64049
6694, 66949 66959 6697, 66977 6,003 6702, 670,) 6,043 67049
6796, 67979 6,987 6799, 68023 68041 68053 68059 68071 6&,0,
69193 69197 69203 69221 6923, 69239 69247 69257 69259 6926,
70327 70351 ,037, 70,79 70381 ,039, ,042, 70429 704)9 70451
71399 71411 ,141, 71419 71429 7,437 7,144, ,145, 71471 7147,
7249, 72497 ,250, 7253, 72547 72551 72559 7257, 72613 72617
7,697 ,364, 73651 7,673 7,679 7,681 7369) 7,699 7,709 7,721
,474, 74759 74761 74771 74779 ,479, 74821 7482, 74031 74043
,583, 7585, 75869 7588, ,591, 759,1 75937 75941 75967 75979
52711 5,791 52721 5,813 52727 53819 52733 538,, 52747 5,849
5488, 54907 5491, 54919 54941
55967 55987 55997 56003 56009
5699, 56999 5,037 57041 57047
59149 59159 59167 59183 59197
60257 60259 60271 60289 6029,
6146, 61469 61471 61483 61487
65881 6705, 65899 6,061 65921 6707, 6592, 67079 65929 6710, 62617 6,691 6490, 65951 67121 62633 62627 63697 64919 65957 6,129 6370, 64921 65963 6,139 62639 63709 64927 65981 6714, 62653 6,719 6493, 6598, 67153 62603 62659 6,727 64951 6599, 67157 63737 64969 66029 6,169 62701 62687 6,743 64997 66037 67101 62723 6,761 65003 66041 67107 6,773 65011 66047 67189
60099 68111 6811, 68141 68147
69313 69317 69337 6934, 69371
70457 70459 70401 70487 70489
71479 ,148, 71503 71527 ,l5,,
7262, ,264, 72647 72649 72661
7,727 7,751 7,757 7,771 7)70,
74857 74861 74869 7487, 7408,
75903 75909 7599, ,599, 76001
68,6l 69379 @I,1 69383 6820, 69389 68209 69401 68213 6940,
70501 70507 ,,,529 70537 70549
71549 71551 71563 71569 ,159,
72671 7267, 72679 72609 72701
7,819 ,382, ,384, 7,049 7,059
74891 7489, ,490, 7492, 74929
,600, 760,1 76039 76079 76,381
60219 6942, 6022, 69.,,1 68239 69439 68261 69457 68279 6946,
70571 705,) 70583 70509 ,"6,,7
,159~ ,163, 71647 71663 71671
,270~ 72719 72727 7273, ,27,9
,386, 7,877 ,388; 7,897 ,,9,,,
749,) 74941 74959 75011 7501,
,609, 76099 7610; 7612, 76129
69467 70619 6947) 70621 69481 70627 69491 70639 6949, ,065,
7169, 71699 ,I,", 71711 71713
7276, 72767 ,279, 72017 7282,
7,939 7,943 7,951 7,961 7397,
,501, 75029 ,503~ 75041 75079
7614, 76157 76159 7t 16; 7 207
51647 52757 52769 5167, 51659 52783
546X 54647 5466, 5467, 54679
55721 5677, 55733 56779 55763
92 91 49549 49547 5062, 50599 5171, 51691
5283, 52817 5,899 5389,
52889 52883 52901 5290, 52919
58067 58073 58099 58109 58111
53857 54949 56039 57059 58129 59207 60317 61493 5,881 5,861 5497, 54959 5605, 56041 5707, 57073 58151 58147 59219 59209 60337 60331 61511 61507 5,087 54979 56081 57089 53891 54983 56087 57097 55009 5500, 56099 5609,
93 94 49597 49559 50651 50647 51721 51719 52861 52859 53923 53917 55049 55021 56113 56101 95 4960, 50671 5,749 52879 5,927 55051 5612, 50707 50683 51769 51767 50723 51787 50741 51797 5075, 5180,
6,211 63241 63247 63277 63281
61129 61141 61151 61153 61169
5280, 5281,
49627 4961, 49633 49639 4966,
60899 60901 6091, 60917 60919
64081 64091 64109 6412, 64151
74
57793 58921 59981 57803 58937 59999 56783 57809 58943 60013 55787 56807 57829 58963 60017 55793 56809 57839 58967 60029
89 49531 5059, 51679 90 49537 50593 5168,
97 96 98 99 100
58391 59447 5839, 5945, 5840, 59467 58411 59471 58417 5947,
M
53951 5,939 5,959 5,987 5,993
55061 5505, 56149 56131 5507, 56167 55079 56171 5510, 56179
58153 59221 58169 59233
57119 5710, 58189 58171
60343 61519 60353 61543
59243 59239 60383 60373 61553 6154,
57139 57131 58199 58193 5927, 59263 60413 60397 61561 61559 5,143 58207 59281 60427 6158, 5716, 57149 57173 57179 57191
58217 58211 58229 58231 58237
59341 59333 59351 59357 59359
60449 60443 61609 6160, 60457 61613 60493 61627 60497 61631
6256, 62581 62591 62597 62603
62731 6274, 62753 62761 62773
65777 65789 65809 65827 65831 65837 65839 65843 65051 65867
6,649 64853 6,659 64871 6,667 64877 6,671 64879 6,689 64091
6,781 6,793 6,799 6,803 6,809
6502, 66067 65029 66~71 65";; 6608, 65053 66009 65063 6610,
6,211 67213 6,217 67219 67231
68201 68311 68329 68351 68371
COMBINATORIAL
873
ANALYSIS
rdh 94
I ‘Hlhl BO
80779 80783 80789 80803 80809
8188, 81899 81901 81919 81929
81971 81973 8200, 8200, 82009
81
x2
83
x4
82903 8291, 82939 8296, 82981
84131 84137 84143 84163 84179
85243 8524, 85259 8529, 85303
86?m 86389 86399 86413 8642,
8880, 88811 88813 88.91, 88819
82997 83003 83009 83023 8,047
84181 84191 84199 84211 8422,
85313 85331 85333 8536, 85363
8644, 86453 8646, 8646, 8647,
8884, 8885, 88861 88867 88873
83093 83101 8,117 8,137 8,177
84299 84307 84X3 8017 84319
85439 8544, 85451 85453 85469
86539 8656, 86573 86579 8658,
86
Hi 8986, 89891 8989, 89899 89909 95483 95507 9552, 95531 95539
88951 88969 88993 8899, 89003
21.9 95
9,829 9,841 9784, 97847 9,849
9895, 98963 98981 98993 98999
9,859 97861 9787, 9,879 9,883
99013 99017 99023 9904, 99053 99079 9908, E; 99109
95549 9556, 95569 95581 9559,
96737 96739 EG 96763
9,919 9,927 979,1 9,943 97961
95603 95617 95621 95629 956,,
96769 96779 96787 9679, 96799
9,961 9,973 9,987 98009 98011
99119 99,,, 99133 9913, 99139
95651 95701 95707 95713 95717
96821 96823 9682, 9684, 96851
98017 9804, 9804, 98057 98081
99149 9917, 99181 99191 99223
26 27 28 29 30
,650, 76511 76519 76537 76541
77591 77611 ,761, 7,621 7,641
7878, 78787 78791 ,879, 78803
79889 79901 7990, 799P7 799s
81001 8,013 81017 8,019 51023
82051 82067 8207, 82129 82139
83231 8,233 8324, 83257 8,267
84401 84407 84421 84431 84437
85549 85571 85577 8559, 85601
86693 8671, 86719 86729 86743
89057 89069 89071 89083 89087
90089 90107 90121 90127 90149
9572, 95731 9573, 9574, 95773
9685, 9689, 96907 9691, 96931
98101 9812, 98129 98143 98179
99233 99241 99251 9925, 99259
31 32 33 34 35
7654, 76561 76579 76597 76603
,764, 77659 77681 77687 77689
78809 ,882, 78839 78853 78857
,994, 79967 7997, 79979 7998,
810,1 81041 8,043 81047 81049
82141 8215, 8216, 82171 82183
83269 8327, 83299 83311 833,9
8444, 84449 8445, 8446, 8446,
8560, 85619 8562, 85627 85639
8675, 8676, 8677, 86783 8681,
89101 8910, 8911, 89119 89123
90163 90173 9018, 9019, 9019,
95783 95789 95791 95801 95803
96953 96959 96973 96979 96989
98207 E: 98227 98251
99277 99289 9931, 9934, 99349
K: 89189 89203 89209
90199 9020, 90217 90227 90239
95813 95819 95857 95869 95873
96997 9,001 9700, 9,007 9,021
9825, 98269 98297 98299 98317
9936, 99371 99377 99391 9939,
89213 8922, 89231 89237 89261
90247 90263 90271 90281 90289
95881 95891 95911 9591, 9592,
9,0,9 97073 9,081 9,103 9,117
9832, 9023 9832, 98347 98369
9940, 99409 994,1 99439 99469
89269 89273 892% 89303 89317
WI,,, 90,53 90359 90,,1 90,7,
95929 9594, 9595, 95959 95971
9,127 9,151 9715, 97159 9,169
9x377 98x7 98x9 98407 98411
9948, 99497 9952, 99527 99529
89329 8936, 8937, 89381 89387
90,,9 90397 9040, 90403 90407
95987 95989 96001 96013 96017
9717, 9,177 9,187 9,213 9723,
98419 98429 9844, 9845, 98459
99551 99559 9956, 9957, 9957,
89393 90437 90439 EE 90469
96043 96053 96059 96079 96097
97241 97259 9,283 97301 9,301
98467 98473 98479 98491 98507
9958, 99607 9961, 9962, 9964, 99661 9966, 99679 99689 99707
83563 8,579 83591 8,597 8,609
84719 84131 84737 84751 84761
85889 85903 85909 85931 85933
8,071 8,083 8710, 8,107 8,119
8941, 8943,
9047, 90481
61 6Z 63 64 65
7691, 76919 ,694, 76949 ,696,
77983 7,999 ,800, ,801, 78031
79187 7919, 79201 79229 ,923,
96137 96149 9615, 96167 96179
97327 9,367 9,369 ::::z
98519 98533 9854, 98561 9856,
66 6, 68 69 70
7696, 76991 77003 ,701, 7,023
,804, 78049 78059 78079 78101
7924, 79259 ,927, 79279 ,928,
96181 96199 96211 96221 96223
97,81 9,387 9739, 9742, 97429
98573 9859, 9862, 9862, 98639
99709 99713 99719 99721 99,,,
71 72 73 74 75
7,029 7,041 77047 77069 ,708,
,812, 78137 78119 ,815, ,816,
96233 96259 96263 96269 96281
9,441 9745, 97459 9,463 9,499
98641 98663 98669 98689 98711
99761 99767 99787 99793 99809
96289 9629, 96,2, 96329 96331
9,501 9,511 9752, 9,547 9,549
9871, 9871, 98729 987,l 987,7
9981, 9982, 99829 9983, 99839
96337 96353 9637, 96401 96419
97553 9,561 97571 9,577 97579
98773 98779 98SOl 98807 98809
99859 9987, 99877 99881 99901
96431 9644, 96451 96457 96461
9,583 97607 9,609 9761, 97649
9&a, 98849 98867 98869 9887,
99907 9992, 99929 99961 9997,
96469 96479 9648, 9649, 96497
9765, 9767, 9,687 97711 9,729
9888, 9889, 98897 98899 98909
99989 9999,
9651, 9652, 9655, 9655, 96581
9,771 9,777 9,787 9,789 97813
98911 9892, 98929 98939 9894,
89533 E: 8956, 89591 8,813 83833 8,843 83857 83869
81 cl* 8, 84 85
,716, 7,171 77191 77201 ,721,
,820, 78229 ,82,, 78241 78259
,9,9, 79399 ,941, ,942, ,942,
86 8, 88 89 90
7723, ,,2,9 77243 7,249 77261
,827, 7828, ,830, ,830, 78311
794,) ,945, 79481 79493 ,953,
96 9, 98 99 100
7,317 77323 7,339 7,347 7,351
,842, 7843, 78439 ,846, 78479
79589 ,960, 79609 ,961, 79621
84979 84991 85009 85021 8502,
8616, 86171 86179 8618, 86197
87293 87299 8731, 8,317 8732,
EG 89689 89753 89759
25. Numerical PHILIP
Interpolation, and Integration J. DAVIS l’ AND IVAN
Differentiation, POLONSKY
2
Contents Formulas
Page
25.1.
25.2. 25.3. 25.4. 25.5.
Differences ...................... ..................... Interpolation .................... Differentiation ...................... Integration Ordinary Differential Equations
.............
. . . . . . . . . . . . . . . . . . . . . . . . .
898
Coefficients (3 In 58) . .
900
References
. .
Table
n-Point
25.1.
877 878 882 885 896
Lagrangian
Interpolation
n=3, 4, p= -pq]
(.01) E],
Exact
n=5,
6, p=-pq]
(.Ol) E],
10D
n=7,
8, p= -p$]
(.l)
10D
E-j,
*Point Coefficients for k-th Order Differentiation (15k55) . . . . . . . . . . . . . . . . . . . . . . . . . . k=l, n=3(1)6, Exact k=2(1)5, n=k+l(l)6, Exact
Table
Table
25.2.
25.3. n-Point Lagrangian Exact
Integration
Coefficients
(3 in 5 10) . .
914
915
n=3(1)10, Table
25.4. Abscissas and Weight Factors for Gaussian Integration . . . . . . . . . . . . . . . . . . . . . . . . . n=2(1)10, 12, 15D n=16(4)24(8)48(16)96, 2lD
(2In196).
Table
25.5. Abscissas
(2In59)
n=2(1)7,
for
Equal
Weight
Chebyshev
Integration
. . . . . . . . . . . . . . . . . . . . . . . . . .
9,
916
920
10D
25.6. Abscissas and Weight Factors for Lobatto Integration (3lnslO). . . . . . . . , . . . . . . . . . . . . . . . . . n=3(1)10, 8-1OD
920
25.7. Abscissas and Weight for Integrands with a Logarithmic n=2(1)4, 6D
920
Table
Table
1 National 2 National
Bureau of Standards. Bureau of Standards.
Factors for Gaussian Singularity (2in14)
(Presently,
Integration . . . . .
Bell Tel. Labs., Whippany,
N.J.) 875
NUMERICAL
876
ANALYSIS
Table 25.8. Abscissas and Weight Factors for Gaussian Integration of Moments (l
Page 921
25.9. Abscissas and Weight Factors for Laguerre Integration (25~~115). . . . . . . . . . . . . . . . . . . . . . . . . . n=2(l)lO, 12, 15, l2D or S
923
Abscissas and Weight Factors for Hermite Integration . . . . . . . . . ‘. . . . . . . . . . . . . . . . 12, 16, 20, l3-15D or S
924
Table
Table
25.10.
(2
25.11. Coefficients for Filon’s Quadrature Formula (0 _<0_<1) . , 0=0(.01).1(.1)1, 8D
924
25. Numerical
Interpolation,
Numerical analysts have a tendency to accumulate a multiplicity of tools each designed for highly specialized operations and each requiring special knowledge to use properly. From the vast stock of formulas available we have culled the present selection. We hope that it will be useful. As with all such compendia, the reader may miss his favorites and find others whose utility he thinks is marginal. We would have liked to give examples to illuminate the formulas, but this has not been feasible. Numerical analysis is partially a science and partially an art, and short of writing a textbook on the subject it has been impossible to indicate where and under what circumstances the various formulas are useful or accurate, or to elucidate the numerical difficulties to which one might be led by uncritical use. The formulas are therefore issued together with a caveat against their blind application.
Differentiation,
and Integration Central
Differences
25.1.2
&=At+-k) Forward
if n and
Diflerences
Central
fl
Xl
A0
x2
f2
53
f3
6-t
Ai AI
Notation: Abscissas: xO<xI< . . .; functions: valy f(xi> =J;iJ~;;4=~fl. J, f@~cissis Q;,,;, *$t . . . are equally )spac)ed,x t+l--zf=h an’d f,=f(~+pW d”,i”,“d”,.ecessarily integral). R, R, indicate re-
Forward
G
G
Xl
fl
x2
fz
6::
4
6 312
A2
25.1.3
6:
fo 4
A;
Mean
25.1. Differences
Differences
x-1 f-l
x0 f0 Formulas
are of same parity.
k
Differences
dfn)=wn+l+fn-t)
Differences
25.1.1 Divided
Differences
A(fn>=An=At=fn+l-fn 25.1.4
A:=A:+,-A;=fn+r-2fn+l+fn
[xo,xl]=fo-fl=[xl,xol x0--21
A:=A”,+,-Ai=fn+r3fn+zf3fn+l-fn
[x0,x1,. . .,x&,1=[x0, * Divided
A:=&:-A:-‘=$
(-W(;)
fn+k-,
25.1.5
Differences
* *,xk-I]-[%,
in Terms
[X00,%. * .,x,1&
* * .,xk:l
x0-Xk
of Functional
Values
&k-0 Tn(Xk) 877
878
NUMERICAL
where n,(z)=(r-ZO) and n:(z) is its derivative:
(r-21)
25.1.6
ANALYSIS
. . . (z-2,)
Remainder
in
Lagrange
Interpolation
Formula
25.2.3
25.1.7
?r:,(GJ=(a--x0:0>* * . (zk--k-1)(~f-~k+1) . * . cw-&) Let D be a simply connected domain with a piecewise smooth boundary C and contain the points zo, . . ., z, in its interior. Let j(z) be analytic in D and continuous in D+ C. Then,
=?r,(x) .f3 @+I)!
(%<5<Xnn)
25.2.4
IR,(x) 15 “Tn$));+’
max (jcn+l)(x) 1 * iz,IzIz,
25.2.5 25.1.8
[zo,zl, . . .,zJ=&
25.1.9
A:=h”f’“’
(t)
The conditions
(xo<E<xJ
Lagrange
25.1.10
of 25.1.8 are assumed here.
Interpolation,
Equally
n Point
[x0,x1,. . *,xn]-LLf’“‘(E) n!h” n!
(xo<.i<&z)
25.2.6
f(s+ph)=T
Spaced
Abscissas
Formula
&x~)f,+Rn-~
2S.l.11 * * *,&lo, * * .++Bao”
Ix-,,x-,+I,
For n even,
-f
(W-2)
For n odd,
-f
(n-l)
Sk<
f n).
h2"(2n)!
Reciprocal
Differences
i (n-1)).
25.1.12
P(Xo,21)=yy
o-
25.2.7 1
AixP)=(,;2 x0--22 P2(xo,%52)=
);-(~~;)!,, fl (p++t)
+.f1 P(Xoco, X11-P
(a, x0-
P3(~0:0,%~2,x3)=
22)
n even.
x3 -tPh
s)
P2~~0,~1,~2)-~2~~1,~2,~3~
Pnbo,&~ * .,x,)=
X0--% Pn-1(x0,* *
.,&&-d-&*(x1, +Pn-zh
25.2.1 25.2.2
Interpolation
* * .,&a)
p+y-t
>
n odd.
>
25.2.8
* * .,x7&-1>
R,_I=$
25.2. Interpolation Lagrange
n-l fIo A
y (p-k)Pj(“)(t)
Formulas
---$ y (p-k)Af
(xo
k has the same range as in 25.2.6. Lagrange
rn (4 z’(x)=(x-x*)R;(xl)
Two Point Interpolation (Linear Interpolation)
(xZJ *(x~-X*-,)(xi-xt+l)*.‘.-. (x--t-*)(x--i+*) =~x~z?~:. (x,-x,) 25.2.9
25.2.10
j(xo+ph)
= (1 -p)jo+pfi+R,
R,(p) =.125h2f’2’(5)
=.125A2
Formula
NUMERICAL Lagrange
Three
Point
Interpolation
879
ANALYSIS
25.2.18
Formula
MP) =
25.2.11
.0049h6j’E’(t) = .0049A6
KKP
f(xo+phl =A-,f-~+Aofo+Afi+Rz
.0071h6j(6)(~) = .0071As
(--l
.024hBf6'(.f) =.024As
P(P-1) “~j-I+(l--pZ)jo+p~jl
l
(-2<~<--1,2<~<3) (2-2
25.2.12 Lagrange
R2(p) = .065h3fc3’(i) = .065A3
(IPILl)
Lagrange
Formula
Four
Point
Interpolation
25.2.19
25.2.13
25.2.14 .024/-&j'"(() =.024A4 .042hy'"(l) =.042A4 Lagrange
Five
R,(P)
(P) =
25.2.21
l
j-2-(~-1)~(~2-4)f-
+(P”-l)(P2-4) 4
jo-(P+l)P(p2-4~ 6
j
1
+(P2-l)P(p+2)
24
25.2.16
R4(p)
.031hyf’s’(f) =.031As
(l
2
Interpolation
Formula
,-P(P~-I)(P-~)cP-3) 120
Formula
AJi+R7 (O
I
.0014h*j’8’ (c$)n. .0014A8
(--l
.0033hsj@‘(E)= .0033A8
(-2
.016h8j@‘([) = .016A8
c--3cp.e2) (3
2
24 j(P2-4) (P-3) 1
(P2-4) (P-3) jl-P(P2-l)
12
Interpolation
.OO1lhsj’s’(~)=.0011A8
fbhJa,x1>=
j-
f(4xo,x2)=
_ (P”- 1) (P2-4) (P-3) f 0 12 +P(p+l)
Point
Iteration
Method
25.2.23
Atf,+Rs
+PlP-1)
(2
Let f(4~o,21,. . .,x,J denote the unique polynomial of kth degree which coincides in value with j(x) at x0, . . ., xk.
k2<5
25.2.17 =ik2
Eight
Aitken’s
Ma
Six Point
f
=
.Olahy(s)([) = .012As
Lagrange
R7 (P) =
1
6
(l
N .019A’
25.2.22 c
24
.019h’j”‘([)
(IPl
.0046A'
fbo+ph) =i$,
Formula
z(~2-l)P(~-2)
Formula
(2-3
25.2.15
fh+ph)
.0046h’j”’ (0 =
Lagrange
Interpolation
Interpolation
.0025h’j”’ ([) A .0025A’
1
=
(O
Point
Rs
Point
f (xoofph) =i&3 Adi+&
25.2.20
j(~+ph)=A-,f-,+Aojo+A,f,+A,f,+R3 ,-P(P-WP--2) f-I+(P2-1)(P--2)f 0 2 6 -P(P+NP--2) j1+P2!j2 2
Seven
f(4xo,%%)=-
(p+2) (P-3) 24 f
+P(PW
(P2-4)
120
“f3
2
fc+o, Xl,x2,
x&l?
::A
AoI-gI
:::I
1 x2-21 1
x3 rel="nofollow"> =-
X3-Q
f(~l~O,~l)
x1-x
f(xlxo,
x2)
22-z
f(xlxo,
Xl,
x2>
x2-x
f(xlxo,
Xl,
23)
x3-x
880
NUMERICAL Taylor
ANALYSIS
Everett’e
Expansion
25.2.24
Formula
25.2.31
f(xo+ph)=(1-p)jo+p~l-p(p-13)l(p-2) + (x-XOP n!
+(P+lMP--l)
P++Rn
s2+
1
3!
R,=
25.2.25
+(
$$)
6;
F’-t-
. . .-(p22;1)
R2n
=(l-~)fo+pj,+E26~+F26~+E,6~
@3<5<4
-l-F&Newton’s
Divided
Difference
Interpolation
Formula x0
fo
Xl
2,
25.2.26
s: 61
0l=zf0+$~
n+--l(4 [a,xl,
s”,
. . .,4+R,
. . . +Rz,
q 8;
s:
e:
25.2.32 %I fo
RZn=h2”+2 ( &y2>f(2”+2)
[x0,XII
Xl f*
[X0,%X21 h%zl
x2
[~0,~1,~2,&1
j2
6)
-(;+“2) [“““;A”“]
[%X2,X31
(x-,
[x2:2,231 x3
f3
Relation
25.2.27
Between
Everett
and
Lagrange
25.2.33
R,(x)=*,(x)
[xo, . . .,x.,x]=r&)‘~
(xo<~<x?J
(For T, see 25.1.6.) Newton’s
Forward
Difference
Ez=A’_,
E4=AB-*
EB=Af8
F2=A:
F,=A:
F,,=&
Everett’s Formula With Throwback (Modified Central Difference)
Formula
25.2.34
25.2.28 g
f(Xo+Ph)=fo+pA~+
&+
f(xo+ph)=(l--p)fo+pf,+E2~a,,o+F2C.,+R
. . . +@A;+&
0
25.2.35
x0 fo Ao Xl fl x2
j2
x3
f3
25.2.36
& Al
G
6f,,=62--.18464 R=.00045~p6;(+.00061~6;(
25.2.37
A: A2
f(s+ph)=(l--p)fo+pf,+E26~+Fzs:
25.2.29
+E&,,o+F&,+R 25.2.38
Relation
Between
Newton
and
Lagrange
(xo
25.2.39
Coefficients
25.2.4Q
25.2.30
0
Coefficients
; =&(P)
fbo+ph)
@=-At,(p)
0
; =A;(l--p)
0
; =A;(2--p)
6:=64-.20769-
. . .
R= .000032~p1s~~+.000052~s’,~
= (1 -p).fo+pfi +E&+ F& +E4~+F,s:+E,sa,,o+FgbB,.l+R
25.2.41
68,=6°-.21868+.049610+
25.2.42
R =.0000037[rs;~+
... . . .
NUMERICAL Simultaneous
881
ANALYSIS
25.2.54
Throwback
m=2n+l
25.2.43 ak=Gl
f(xo:o+ph)=(1-p)fo+pjl+~2~~,0+~*~~.1
g j, cos kx,;
b,=2&
$’ jr sin kx,
+J%G~~-F,$,I+R
(k=O,l,
25.2.44
6;=62-
.0131266+.004368-.001610
25.2.45
6;=a4-
.27827P+ .06856*- .01661°
25.2.55
R = .00000083 I/d;1 +
25.246
2
Formula
With
1 2n-1 jr
COS
kx,;
bk=;
2
jr
sin
kx7
.00000946’ (k=O,l,
Bessel’s
m=2n
1 2n-1 at=;
. . .,n)
. . .,n)
(k=O,l,
. . .,%-I)
Throwback
25.2.47
b, is arbitrary. Subtabulation
f(zo+ph)=(l--p)fo+pfl+B2(6~,o+6K.1)
+B38;+R, B2-p(p;l), 25.2.48
B3,p(p-l;
k-3)
6;=62-.18464
25.2.49
Interpolation
initially in intervals of to subtabulate f(z) in Let A and x designate to the original and the
final intervals respectively.
R-.00045(&[+.00087/6~[ Thiele’s
Let j(x) be tabulated width h. It is desired intervals of width h/m. differences with respect
-.f(z,). Assuming that differences are zero,
Formula
25.2.50
Thus xo=j the original
x0+: ( ) 5th order
25.2.56
f(x) =.mJ + x-x,
x0=$
(l-m)(l-2m) 6m3
Ao+ &:A;+
ti
P(z1,~2)++~2
+(l-m)(l-2m)(l-3m) 24m4
Pz(z,,22,23)-f(21)+2--23
(
P3(%~2,5,&) -P(c92)+.
**>
ti
(For reciprocal differences, p, see 25.1.12.) Trigonometric Gauss’
25.2.51
Interpolation Formula
f(x) -@klk(s)=tn(z)
25.2.52 sin #(z-G) . . . sin $(2--x~-,) ln(x>= sin ~(x~-zo) . . . sin +(z~-x+~) sin $(2-~~+~) . . . sin i(z-x2J sin $(xk--4+1) . . . sin 3(~~-2~~)
From this information we may construct the final tabulation by addition. For m=lO, 25.2.57 L\o=.1Ao-.045A~+.0285~-.02066A~
t,(x) is a trigonometric polynomial of degree n such that tn(zn) =fn (k=O,l, . . .,2n) Harmonic
~=.OlA$.OO9A:+.OO7725& Z=.OOlG-.00135&
Analysis
z4= 0 *OO01A4 0
Equally spaced abscissas 51, * * .,&-l,X~cm=27r
x0=0,
Linear Find
25.2.53 f(X) dj
Inverse
P, givenj,(=j(~+ph)). Linear
a0+2
(ak cos kx+bk sin kz)
25.2.58
Interpolation
882
NUMERICAL Quadratic
Inverse
ANALYSIS
Bivariate
Interpolation
25.2.59
Three
Interpolation
Point
Formula
(Linear)
25.2.65 Inverse
25.2.60
Interpolation
by
Reversion
Given f(xo+ph) =jp=&
of Series
spk
25.2.61
+
. . ., A=(jl,-ao)/al
p=X+c2X2+cJ3+
f(s+ph,yofq~)=(l-p---)jo,o
25.2.62 c2= -a2/al
+pfi,o+efo,l+O(h2) Four
Point
Formula
25.2.66 0
Inversion
of Newton’s
Forward
Difference
+
Formula
f(xo++h,yo+qk)=(l-p)(l--)jo,o+p(l--q)fl,o
25.2.63 ao=fo
+a(l-p)jo,1+pefi,1+O(h2) Six Point
Formula
25.2.67 &
A;
a2=T-;i-+24+
A: A: a”=x-z+ G a’=%+
Inversion
...
0
... +
...
(Used in conjunction 25.2.64
llg
f(xo+ph,yo+qk)=q~
with 25.2.62.) of Everett’s
Formula
joy,+‘p
+u+P!J-P2-!12)fo,o
ao=jo
+P(P--2P+l)
a,=a,-$-$+!t+!i+
+!zk2Pfl)
25.3. Differentiation
25.3.1 ...
with 25.2.62.)
.f(x)=$o
Formula
z;(djk+R:@)
(See 25.2.1.) 25.3.2
(Used in conjunction
fo,l+Pafl,l+ow)
2
Lagrange’s
-S:+S: 120
f LO
2
...
g s; a2=2-zi + . . .
a5=-+
j-l.0
?mw
1; (x) =& j;rk”
(x-xk)
(x-+ddxk)
NUMERICAL
25.3.3
883
ANALYSIS
25.3.10
h$t”=&+&+++;+
...
25.3.11
h3j,++;~;+&+!?~+. Equally
Spaced
..
Abscissas 25.3.12
Three
Points
h~j++2$,+!..&++
25.3.4
...
25.3.13
h~j~“‘=&d~+~&+~+ Four
Points
Everett’s
25.3.5
Formula
25.3.14
j;=jys+*h)+{
-3p2-p+2j-l j
+3p* -4p-1
Five
3p2-2p-2 2
f1
Pointa
A:+?
j6=j’(~+ph),;(2P3-3~~-P+l
5p4-20p3+15p2+10p-6 120
,,+5$-15p2+4 0 120
hj; c: -jo+j1-,
j-*
A,,=hj;+; +2p3+3pe-p-1
For; numerical values of differentiation cients see Table 25.2.
of Derivatives
n)+;
jia)+$
je)+;
coeffi25.3.18
Formulae Formula
in Terms
s:+231 %+a1 8
25.3.17
fi)+R;
12
Difference
1
25.3.16
_4pa+3p*--8p-4 6 -f1
Forward
1 6-g
Differences
f4 r-l+Qfpjo
Markoff’e
Differentiated)
25.3.7
25.3.19
25.3.20
+3~‘-6~+2~+ 6
25.3.21
. . . +$
@
&]+R:
25.3.8
+
(a0
hj;=A,,-a@+;
6:
25.3.15
25.3.6
4p3-3p*----8p 6
~-jo+jl-3p2-~+2
hj’(G+ph)
0-
2
(Newton’s
...
A;-$+
...
ajo 0 z=%
1
(ho-j-l.o rel="nofollow">+O(h*)
j:“’
r.’ 1
NUMERICAL
884
ANALYSIS
25.3.26
25.3.22
wo0 1 (j1,1-j-l.l+fl.-l-f-l.-l)+O(h2) *=a
a2jo 0 --L=~ bxby 4h2 Cr,,l-ji,-I-f-l.l+j-l.-1)+0(h2)
25.3.27
25.3.23
0
0
t
+
woo 1 Lbx2 h* (fl,o-2f,,o+f-,,,)+O(~2)
a2jo )=-
0
bxby
1
-1
2h2
Ci1,o+j-l,o+fo,l+jo,
-1
-?fo,o--f,,,-j-1,
-J+0(h2)
25.3.24 25.3.28
+ wo
d=L 32
0
12h2(-fi,o+l6j~o--3Ojc,,o +Xj-l,o-j-z,o)+O(h4)
a4.fo 0 d ==+, bX4
.f-~~>+
25.3.29
25.3.25 0
0
0
0
0
0
l
0
+
+
b”fo 0 g=gp
-?f-LO+
V2.0-4j~.0+6j0,0
1
avo o i
----=- h4 cfl,l+f-l,l+fl.-l+j-l,-1 bx2by2
~~l.~-2~o.~+j-~.~+j~,o-2jo,o+j~~,o +.fi. -I--?fo,
-&-I,
-JfO(h2)
--2f,,o-
2f-~,o--jo,~--2jo,-,+4jo,o)+O(h2)
O(h2)
NUMERICAL
885
ANALYSIS
25.3.33
Laplacian
25.3.30
v4uo,o=& I---(uo,3+uo.-2+u2,o+u-2,0)
25.3.31
25.4. Integration Trapezoidal
Rule
25.4.1
J)m=; uo+x,-; SC’ (t--5) (21--t)j”(t)dt v2uo.o=1&2 [--GOuo.o+l6(a,,+u,,,+u-l,,+u,,-1) (u2,o+uo.2+u-2.o+uo,
-2)l+w4)
Extended
Trapezoidal
Biharmonic
Rule
f.
25.4.2 Operator
25.3.32 Error l
0
0
+
0
Term
in Trapezoidal Functions
Formula
for
Periodic
If f(z) is periodic and has a continuous ktb derivative, and if the integral is taken over a period, then constant 25.4.3 IError I mk Mod&d
25.4.4
Trapezoidal
Rule
NUMERICAL
886 Simpson’s
ANALYSIS
Rule
s
zyj(x)dx=;
[fo+4h+.f*l +y-“’
z~‘~b9dx=h
Newton-Cotes
(x~-t)*(xl-t)p(t)dt
Formulas
(For Trapezoidal 25.4.6.) 25.4.13
(x,-t)*(xl-t)p(t)dt =1 =;
Extended
f -& =-
*
A,(m>f<+Rn
(See Table 25.3 for A,(m) .)
20 +;J-“’
[!I
S
15.4.12
25.4.5
(Closed
Type)
and Simpson’s Rules see 25.4.1(Simpeon’e
i rule)
[fo+4h+j2l-~j”‘(E)
Simpson’s
Rule
25.4.6
+32j3+7fi)-8’;$h’ 25.4.15 Euler-Maclaurin
Summation
Formula
S
‘sj(z)dx=$8
25.4.7
wh+75j1+50j2+50
20
-
+w4+19fa)
275j (O)(5) h’ 120g6
25.4.16 (41f,+216f1+27f2+272fa
Rlr=~R2w2h2k+3 zo!$~*“~f(2k+2’
(2/t+2)!
(For B,,, If jw+a q,
Cx) 1)
(-1gEl)
Bernoulli numbers, see chapter 23.) (2) andf’2R+4)(x) do not change sign for then IRzkl is less than the first neglected f(2k+2)(5) does not change sign for lRzkl is less than twice the first neglected
+27j~+216j~+41j,kg';;~~hs 25.4.17
S
d’J(x)dx=&
+2989f,+2989j4+1323js+3577jLJ Lagrange
Formula
+751j7) -
25.4.8 s
abj(4dx=&
(L:“‘(b)--LI”‘(a))fi+R,
=s z. ef(ddx=&
518400
w
(989j,,+5888jr928js
+10496f,-4540j4+10496j,-928js+5888j7
25.4.9
2368fW +9@! 8)_ 467775
?, dt= ’ Z,(t)dt s 20 t--2, s 20 25.4.19
S
25.4.10 R,=- &!
:r.(rlf’“+“(~(x))dx
Equally
Spaced
S
z)4dx=&o
Abscissae
25.4.11
z;f(x)dx=$,
8183j’q~)hQ
25.4.18
S
(See 25.2.1.)
S
(751j,,+3577fI+1323fi
{2857(fo+fB)
+15741(fl+fa)+1080U2+~7)+19344(fa+fe)
go I j, &.
s” T,(2> dx+R, * IO x-x<
*See page Ix.
+5778(f4+fs)}
-&gl”(Uh”
([)h"
NUMERICAL
25.4.20
Io-h
210 =.
zo+h s
ANALYSIS
I16067 Cfo+fm)
f(z)d~=&~
mz=;
887
I24f(zo)
+4wo+w
+f(zo--h)]
-[f(2o+ih)+f(zo--h)ll
s
+R
/RI 2 ls90 lh” Max ~f~“~(z) I, S designates the square rrs with vertices z,+Ph(k=O, 1,2,3); hcan be complex. Chebyshev’s Newton-Castes
Formulae
(Open
Equal
Weight
Integration
Formula
Type)
25.4.21
Abscissas: xr is the jth zero of the polynomial of
part
25.4.22 (See Table 25.5 for z+)
For n=8 complex. Remainder:
25.4.23
R,= 25.4.24
S:“f(x)dx=$
and n> 10 some of the zeros are
S
_:’ &!
f(“+l) (Odx
-2
n(n+l)!
(1lj~-l4j2+26j3-l4f,+l~.f3)
+4lj'"(~)h' 140
where E=E(x) satisfies OI.$<x (i=l,
25.4.25 Integration
of Gaussian
Type
see chapter 22)
Formula
1
-Ij(z)dz=$
25.4.29 s
and O<&<X~
Polynomials Gauss’
25.4.26
j-1
. . . ) n)
Formulas
(For Orthogonal
A x:+If’“+“(&)
z;j(rc)dz=s5
(46Oj~-954f,+2196jr2459j,
+2196f,-954f,+46Of,)+Five
Point
Rule
for
Analytic
l~l;;r(3)
we
Related ortbogonal polynomials: nomials P,(z), P,(l)=1
Weights:
w,=2/(1-ti)
20
h
zo+
Gauss’
h 25.4.30
+ to-
Legendre
poly-
*
[P:(cc~)]~
(See Table 25.4 for xt and w,.)
ih
R,= (2n2;;J1;‘;;;l 2,-
+Rn
Abscissas: x1 is the it” zero of P,,(Z)
Functions
25.4.27 z,+
w.f(4
s
ih *See page II.
Formula,
!13fzn)
(4)
Arbitrary
(-l
Interval
NTJME RICAL
888
*
AN-ALY SIS
25.4.33
Related orthoLcona1 polynomkk: P,(Z), P,(l)=1 Abscissas: xi is the it” zero of P,(x) Weights: wl=2/(l-x:) [Pb(x31”
s0 Related
orthogonal
(2”)
R = (b-u,2n+yn!)4
n (27&+1)[(2n)!]3f
’ Y(z)dx=&
mf (4 +R.
polynomials:
qn(x)=4k+27L+1P;“‘0)(1-2x)
(o
(For the Jacobi polynomials Radau’e
Integration
Formula
Abscissas:
25.4.31
xi is the i* zero of q,,(x) l f!xMr=~f-l+n~
WJ(XJSR”
s -1 Related
Pir,o’ see chapter 22.)
Weights:
polynomials:
*
wr= { z [*,(zr)l’} -I
Pn-l(x~)+Pn(d x+1
(See Table 25.8 for x1 and w,.) Remainder:
Abscissas: CC*is tho z? zero of p,-,(x)+P&> x+1
25.4.34
Weights: 1 wi=2
1-x<
1
1
[P,-l(xJ2=iq
[P:-,(,,)I2
Remainder:
Related
R,_[(;;-I;;L!13
[ (7&-1)!]4f(2*-1)(,$)
Lobatto’s
Integration
(---1<,E
Formula
25.4.32 s
‘,f (ddx=
%q&) vu)+f(--l)l n-l +g
wf(xJ
+Rn
v’l--zdx=& wJ(xt)+Rn s.‘f(d orthogonal --A&i
polynomials:
PZn+l
(a=),
P2,+1(l)=l
Abscissas: xr= 1 -f$ where .$* is the jth positive zero of Psn+,(x). Weights: ~~=25!~1~~+l’ where w12”+l) are the Gaussian weights of order 2n+ 1. Remainder: 24”+3[ (2n+ l)!]’ (O
Related
polynomials:
Ph-,(x)
Abscissas: xt is the (i-l)llt
s
abf(y) db-ydy=(b-a)3’2
zero of P:-,(x)
w&/r)
yi=a+ (b--ah
Weights: 2 W’=n(n-l)[P,-,(z~)]Z
Related
(XiZfl)
(See Table 25.6 for xI and wl:)
(2~+-1)[(2~-2)!13
41-x
f""-"(G (---1<E
*see p*ge II.
orthogonal 1P2,+1
Remainder: R =-n(n-1)322n-l[(n-2)!14 n
fi
polynomials:
w--2),
P2,+,(1)=l
Abscissas: x1= 1-5: where lr is the ith positive zero of P2n+1(x). w*&?gWy+l where wi2n+1) are the Weights: Gaussian weights of order 2n + 1.
NUMERICAL
25.4.36 Related
s
o1ex
as=8
orthogonal
ANALYSIS
889
Abscissas:
wJ(xJ +R,
(2&l)* xr=CoS 2n
polynomials:
Weights: w,2
PZn(-+Qz), Pzn(l)=l Abscissas: xl=1 -Et where tr: is the ?” positive zero of Ptn(x). Weights: w1=2wj2”), w/*“) are the Gaussian weights of order 2n. Remainder: z4”+’
[cw
Rn=4rL+1
(6)
!I” j(2m)
(O<W)
[(47&l!]*
25.4.40
n
+1 --1 f(x) +x*~~=&d(x3+Rn
s
Related orthogonal polynomials: Chebyshev nomials of Second Kind sin [(n+l) arccos x] U,(x)=
sin (arccos
Poly-
2)
Abscissas: 25.4.31
’&
dy=&a
s a db-y
5 w&y,) i-1
+ R,
x*=cos .-I.-
yt=a+(b--ah Related
orthogonal
7r
71+1
Weights:
polynomials:
wi
P2nG--LPzn(l)=l
=- lr
sin* - i
n+l
‘]r
n+l
Remainder:
Abscissas: where tr is the it” positive
q=l--[:
Weights: ~,=2wj*~), of order 2n.
zero of P,,(x).
WI*“’ are the Gaussian weights s.‘&/-4
S
25.4.38
+’ f(z)
-1
dx=g
(b--7J)f WY=(~)*
3
Chebyshev
y.=b+a 8 2+2
PolyRelated
orthogonal
mx~,w1)=&
xf=cos n+l
Weights:
Remainder:
25.4.42 (--l
(b- y) y_b+a f T+T”’
Related orthogonal
=& wJ(yi)+R, i-1 b-a
polynomials:
2)
=
i - lr sin* WL=n+ 1 n+l
n
S’ f(y)dy
sin (arccos
i
Weights:
R.=~2n~~2n-,f(2nY~)
sin [ (75+ 1) arccos x]
Abscissas:
xI=cos w-1)s 2n w,=L
b-a x*
polynomials:
U&> =
Abscissas:
= &,+a)
wtf (yr) +Rn
w, j(x,) +R,
414
Related orthogonal polynomials: nomials of First Kind
25.4.39
8
s Related
1 of(x)
J
orthogonal
ex
dx=&
* w.f@i> +Rn
polynomials: $
T*n+I(m
Abscissas: x*=cos*
2i-1 y-&j
A -2
Weights: 2r w=2n+l
T,(z),T.(1)=& *See
pageII.
xi
NUMERICAL
890
ANALYSIS
Remainder:
Remainder:
25.4.43
Filon’s
Integration
Formula
a
25.4.41 x--a dx= (b-u)
2
i=l
wJ(yJ SR,
S
Zhf(x) co9 tx dx=h
y,=a+(b--ah Related
orthogonal
20
[
a(th) ( f2n sin tq,
-fosin t3 +Nth) -C,,+r(th) *C2+1
polynomials:
+;
th4S:,_,]-
R,
25.4.48
Abscissas: x
t-
--cos2
Weights: w=2n+l
2i-l -.-
g
2n+l
2
2s
25.4.49
xi
R c2n-1=~f26-1
cos
txn-1
i=l
25.4.44
S 0
l In xf(x)dz=&
wJ(x,>
25.4.50
+R,
S4,-l=C
Related orthogonal polynomials: polynomials orthogonal with respect to the weight function --In x Abscissas: See Table 25.7 Weights: See Table 25.7 25.4.45
n
f#,
sin tx2t-1
i=l
25.451 R.=~~hy”‘(~)+O(th’) 25.4.52 1 sin 20 2 sin2 8 a(e)=s+~-fP
w,f(xi> +& So-a-Y(x)dx=Z$
Related orthogonal polynomials: Laguerre nomials L,(x). Abscissas: x1 is the it” zero of L,(x) Weights:
polyFor small e we have 25.4.53
283 2e5 2e7 cu=jg-~5+4725-
** -
(See Table 25.9 for xr and wt.) Remainder :
y=~-g+~o-&~+ 25.4.54
25.4.46
S
=rnf(x) sin
Related orthogonal polynomials: Hermite nomials H,(x). Abscissas: xt is the ith zero of H,(x) Weights: 2”-‘n! & n2EL-1(~012 (See Table 25.10 for xr and wt.)
...
tx dx=h[a(th)
(f.
cos
IS-fin
+B&+Y&,,--~+~
poly-
CO9
1
th4CL,
--Rn
25.4.55 S2n=I&
f 2i sin (tx2d -f
[fzn
sin
(tx2.)+f0
t&J
sin
(tx0)l
a For certain difficulties associated with this formula, see the article by J. W. Tukey, p. 400, “On Numerical Approximation,” Ed. R. E. Langer, Madison, 1959.
NUMERICAL
25.4.56
fJ2.-l=~j2c-1
ANALYSIS
891
(Xr,Yr)
sin (taf-J
(0,
25.4.57
Wi
112
0)
(*ho),
(0,khh)
R=0(h4)
l/8
(See Table 25.11 for a, /3, y.) Iterated
Integrals
25.4.58 s 0 z at,
s 0
In d&e, . . . s 0 13dt, s 0 “f(t,)dtl (x- t)“-tf(t)dt
25.4.59
s s =dtn 0
” dtn-, . . . l3 dt, 12f(tl)dtl a sa sa l =- (x-a)n t”-‘f(z(n-l)! o
S
Multidimensional
Circumference
(x-a) t)dt
Integration
of Circle
h,Yf)
wr
(+;)
l/4
(Xf,YJ
Wf
(0, 0)
Ai2
(&O)
l/12
R=0(h4)
r: d+y2=h2.
25.4.60
’ sr.f(z,y)ds=& 2*h
$f(h
cos Et h sin z) +O(h*m-a)
Circle C: z2+y2
1 *h2 ss cjCw)duly=$
l/12
w.f(x,,yJ
+R
R= O(h’)
892
NUMERICAL
hY3 (0,0)
WC
CM, 0)
l/24
(0,fh)
l/24
Square4
*i
(0, 0)
l/4
(zt$h,O)
l/s
S:
lzl
25.4.62
116
(Xr,Yt)
ANALYSIS
R = O(he)
(%Yc)
*f
(O,O)
419
( fh, fh)
l/36
(fh,o)
l/9
(0, f h)
l/9 0
w--B
R=O(he)
r-l
1
0
i 0 1 0 I ..a--
(Xi,Yr)
*i
(&A&,
;th,@
l/4
(XOYJ
16/M
4 For regions, such as the square, cube, cylinder, etc., which are the Cartesian products of lower dimensional regions, one may always develop integration rules by “multiplying together” the lower dimensional rules. Thus if
(0, 0)
6-d6h (J
10
cos g,
I- o’f(z)dz
(k=l, 6+*h 10
2?rk 6+& cos loy J 1.
R=O(h4)
*i
NO) kG,YJ
R=0(h4)
h
sin
2d 10
. . .,lO>
is a one dimensional
=&
Wifh)
rule, then
-IS--&
360
R=O(hlO)
becomes a two dimensional rule. necessarily the most “economical”.
Such rules are not
NUMERICAL
(l
$
h,f $
h)
‘ANALYSIS
893
251324 R=O(h6)
(,,h$
lO/Sl
h)
lo/81
(+,o) Equilateral
Radius
Triangle
of Circumscribed
T
Circle=h
25.4.63 1 a&h2
Tf(x,~)d2dy=I&
ss
270/1200
wif(x,,~r)+R ((9)
h,,O >
I
155-yml 1200
I
h,
((-T+‘) --w-
+-
--
h(v)
W
D I
R=O(he)
314
((-i+l)
,Bh)
40 >
155+fl
h,*(F)
((T)
@h)
1200
R=0(h3) Regular
l/12 Radius
Hexagon
of Circumscribed
H
Circle=h
25.4.64 1 ssH
;fihz
Rx, y)drdy=&
wJ(xr,
YJ +R
I 1 --u--me t---lI --I I
I I
(Xi,YJ
Wi
o-40)
27160
(h,o)
3160 3160
R=0(h4)
(X*,Y*)
Wi
(0,O)
21/36
8160 (f;,&; 8160
(fho)
$3)
5172 5172
R=O(h4)
NUMERICAL
894
0
ANALYSIS
I I
I
---
:4 --
0
(&&h,+,O)
l --*
--
(*&h,o,+)
’
l/15
0
R=O(he) 258/1008 125/1008
>
R=Oth9
125/1008 Surface of Sphere Z:
l/30
(0, *ho)
1+y2+z2=h2
(o,o, fh) WI
(Xi,Yl,%)
(*&h,$h,&&h)
27/840
25.4.65
(&$h,O,&&h)
32/840
R=O(h”)
(fh,O,O) (0, f&O)
40/840
to,% f h) Sphere S: za+y2+z2Sh2 25.4.66
(k&O,@
WJ
(o,khh,O)
l/6
R=O(h4)
1 4 -rh3 3
-SSS
.f(w,
,g
dd=Wz=&
wJ(xi,yi,
4 +R
NUMERICAL
(Xf,Yf,Zf)
Wf
((40,
215
0)
(fh,o,o)
l/10
(0, *hh,o)
l/l0
(o,o, fh)
l/l0
ANALYSIS
895
~ji=sum
of values of j at the 6 points midway from the center of C to the 6 faces. ~ji=sum of values of j at the 6 centers of the faces of C. cjO=sum of values of j at the 8 vertices of C. ~j~=sum of values of j at the 12 midpoints of edges of C. ~jd=sum of values of j at the 4 points on the diagonals of each face at a distance of
R=O(h’)
Cube 6 C: Izj_
i&h from the center of the face.
Ivl Sh
Y
bllh 25.4.67
1 8ha sss f(z,y,z)dzdydz=&
wJ(xi,yr,4+R
C
Tetrahedron: bf,Yf, zr>
Wf
(hhh,o,o)
l/6
(0, f h, 0)
116
(0, 0, *h)
l/6
5
25.4.70
R=O(h”) +terms
of 4th order
+terms
of 4th order
25.4.68
where
=ko [-496j~+128~j,+8r,j,+5CfD1+O(he)
C jD : Sum of values of the function of ..F. I
25.4.69 =ko
V: Volume of F
[91~f,--40~j~+16Cj~l+O(h6)
where f,,,=f(O, 0,O). 6 See footnote
to 25.4.62.
Cf.:
at the vertices
Sum of values of the function at midpoints of the edges of 37 cj,: Sum of values of the function at the center of gravity of the faces of 9Y jm: Value of function at center of gravity of .F.
NUMERICAL
896 25.5. Ordinary
Differential
Equations”
First Order: y’=f(z, Point
25.5.1
Slope
y)
ANALYSIS
25.5.9 Y.+I=Y.+;
Formula
k,+;
ka+O(h’)
k,=hf(~n,yJ,kz=hf
(xv,+;
h,y%+; kl)
Yn+l=Yn+~Y:,+W) ka=hf
25.5.2
h, y,+i
(x%+%
k2)
Ytl+l=y,-*+2hY:,+wa) Trapezoidal
Fourth
Formula
Order
25.5.10 25.5.3
Y.+*=Y.+; Adams’
(Y:+l+y:)+o(ha)
Y.+I=Y~+;
Extrapolation
Formula
k,+;
kz+; k,+;
kl=hf@n,yn).,kz=hf
k,+O(h*)
(~,a+; h,y.+;
kl)
25.5.4 ka=hf (~-l-a
h,y.+!j
kt), k4=hf(z,+h,y,+k,)
(55yh-59y:,4+37y:,4-9yL>+O(h*)
Yn+l=Y.+&
25.5.11 Adams’
Interpolation
Formula
Y.+I=Y.+;
k,+;
k,+;
k,+;
k,+O(h*)
25.5.5 kl=h~(r.,y.),4=hf(a+5),k~=h~(~~+~ h,y,+; Y.+l=Yn+$
kl)
(~:+1+19Yl-5y:-1+Yh_z)+O(h6>
ka=hj (xn+; Runge-Kutta
h, y,r;
k,+k,),
L=hf(z,+h,y,+kl-k~+k,)
Methods
Gill’s Second
Order
25.5.12
25.5.6
Yn+l=yn+;
h=hf(s,
25.5.7
h,y,+;
(1-d)
kz
kl)
ka+kd)+O(hb)
YJ
kz=hf (z.+;
Yn+l=yn+kz+O(ha)
Third
(k,+2
i-2 (I+&)
kl=hf(~n,Yn),ka=hj(x,+h,y,+kl>
kl=hf(r.,y,),ka=hj(x,+~
Method
ht y,+;
kl)
ka=hf(~n+~h,y.+(-~+&)kl
Order
+(1-&h)
25.5.8 h=hj Y~+I=YII+~
k,+$ k,+k ka+O(h*)
(
x,+h, yn -&,f(l+&) Predictor-Corrector
kl=hf(Zn,yn),kz=hf
(z,s+;
h,y.+;
kl)
ka=hfb+h,y,-kl+2k2) ‘The reader is cautioned against possible instabilities especially in formulas 25.5.2 and 25.5.13. See, e.g. [25.11], [25.12].
Milne’s
ka) Methods
Methods
25.5.13 P:
Yn+,=Yn-a+4i
c:
Y.+l=Y.-I+;
(2y~-yy:-1+2y:-,)+O(h*) (y:-l+4y:+y:+1)+O(h*)
NUMERICAL
897
ANALYSIS
,25.5.14
p: Y.+l=Y.-5+;~ (1ly:-14Y:-I +26y:-,--14y:-,+lly:-,)+O(h’) c:
ka=hf(x,th,y,+k,,z,tz3)
2h
Yn+l=Yyn-3+rs (7YJ+,t32y:
Z4=hg(z,+h,y,t~~,z,+zr) Second
+12y:-~+32y:-*+7y:-3)+O(h7) Formulas
Using
Higher
p:
c:
R+l-Yn+;
Method
Yk+~=y:-3+$
(2y~k--y~.q+2y’,)+O(h5)
(2: Yk+l=Y:-,t!j (Yh+l+yh) -&
y, y’)
25.5.19
25.5.15
yn+,=yn-2+3(yn-yn-J+h2(y::-yL)+O(hs)
y”=f(z,
Milne’s
Derivatives
P:
Order:
(y::-l-t-4y;+y;+&t-O(h6)
(d’+:+1---y3+W5) Runge-Kutta
25.5.16
Method
25.5.20
p:
y.+l=y~-3+3(y~-y,-~)+~(y~~+y~~~)
c:
Yyn+l=Ys+g (Yb+l+Yb)-pj
h
tO(h') h2
yln+l=yn+h 1ybt; (k,tkz+kJ]+O(h9 Yk+l=Y:t;
(!/ii+1 -Y3
(h+%+%+k,)
kl=Mxn,y,,y’,>
+go
@k’L+yk”)
+O(h’)
y:+,,y,+$)
kz=hf(z,+;h,y,+; Systems of Differential First
Order:
Equations
y’=f(x,y,z),
Second
Order
ka=h.f (xn+;
z’=g(x,y,z).
Runge-Kutta k4=hf
25.5.17 ~n+l=~n+;
(h+kJ
2 .+1=2.+; kl=VCwwn),
vl+z2) +O(h3)
Order: Milne’s
Fourth
Order
c:
~y::+10yi,‘-:-l-ty;-:-,)+O(h6)
Runge-Kutta Runge-Kutta
Method
(k,+21ez+21c,+k,)+O(h6), 2.+I=%+;
h=hf(~n,Yn,Gb)
k=hf
(5y::t2y~-:_,t5y~-:-,)+O(h6)
Y.=2yn-ryn-St;
25.5.18 Y.+l=Yn+;
y”=f(x,y) Method
t; z,+Z,)
k3,y;tk3)
Yn+l=Yn+Yn-2-yn-3
kz=hf(x,+h,y,+kl,z,+zl), 4=Mxn+hy,+k,,
k,,y;,t+)
25.5.21 p:
h=hg(x,,yy,,zn)
y;+;
(zn+h,y.+hy:+; Second
+O(h3),
h,y.t;
(-.+a
(Z1+2Z,+2Z3+ZJ+O(h5)
Y:+l=yht;
k,-t;
k,+;
k3
4=Mxn,yn,Zn) by,+;
k,,z,+f
k2=h.f(x.t;~y.t;
zl) z.+;,
y,+;,
y:t;
k,=hf (z.+h,y.+hy:t~kz).
z,,+$) *see
pnge
II.
kl)
NUMERICAL
898
ANALYSIS
References Texts (For
textbooks
on numerical analysis, see texts in chapter 3)
[25.1] J. Balbrecht and L. Collats, Zur numerischen Auswertung mehrdimensionaler Integrale, Z. Angew. Math. Mech. 38, 1-15 (1958). 125.21 Berthod-Zaborowski, Le calcul des integrales de 1
la forme:
[25.3] [25.4] [25.5] [25.6] [25.7]
[25.8]
[25.9] [25.10] [25.11] 125.121 [25.13] [25.14] [25.15] [25.16] [25.17]
[25.18]
s
f(x) log x dx.
H. Mineur, ‘Techniques de calcul numerique, pp. 555-556 (Librairie Polytechnique Ch. B&anger, Paris, France, 1952). W. G. Bickley, Formulae for numerical integration, Math. Gas. 23, 352 (1939). W. G. Bickley, Formulae for numerical differentiation, Math. Gaz. 25, 19-27 (1941). W. G. Bickley, Finite difference formulae for the square lattice, Quart. J. Mech. Appl. Math., 1, 35-42 (1948). G. Birkhoff and D. Young, Numerical quadrature of analytic and harmonic functions, J. Math. Phys. 29, 217-221 (1950). L. Fox, The use and construction of mathematical tables, Mathematical Tables vol. I, National Physical Laboratory (Her Majesty’s Stationery Office, London, England, 1956). S. Gill, Process for the step-by-step integration of differential equations in an automatic digital computing machine, Proc. Cambridge Philos. Sot. 47, 96-108 (1951). P. C. Hammer and A. H. Stroud, Numerical evaluation of multiple integrals II, Math. Tables Aids Comp. 12, 272-280 (1958). P. C. Hammer and A. W. Wymore, Numerical evaluation of multiple integrals I, Math. Tables Aids Comp. 11,59-67 (1957). P. Henrici, Discrete variable methods in ordinary differential equations (John Wiley & Sons, Inc., New York, N. Y., 1961). F. B. Hildebrand, Introduction to numerical analysis (McGraw-Hill Book Co., Inc., New York, N.Y., 1956). Z. Kopal, Numerical analysis (John Wiley & Sons, Inc., New York, N.Y., 1955). A. A. Markoff, Differenzenrechnung (B. G. Teubner, Leipzig, Germany, 1896). S. E. Mikeladze, Quadrature formulas for a regular function, SoobBE. Akad. Nauk Gruzin. SSR. 17, 289-296 (1956). W. E. Milne, A note on the numerical integration of differential equations, J. Research NBS 43, 537-542 (1949) RP2046. D. J. Panov, Formelsammlung zur numerischen Behandlung partieller Differentialgleichungen nach dem Differenzenverfahren (Akad. Verlag, Berlin, Germany, 1955). R. Radau, Etudes sur les formules d’approximation qui servent il calculer la valeur d’une integrale definie, J. Math. Pures Appl. (3) 6, 283-336 (1880).
[25.19] R. D. Richtmeyer, Difference methods for initialvalue problems (Interscience Publishers, New York, N.Y., 1957). [25.20] M. Sadowsky, A formula for approximate computation ‘of a triple integral, Amer. Math. Monthly 47, 539-543 (1940). [25.21] H. E. Salzer, A new formula for inverse interpolation, Bull. Amer. Math. Sot. 50, 513-516 (1944). [25.22] H. E. Salzer, Formulas for complex Cartesian interpolation of higher degree, J. Math. Phys. 28,~fZOO-203 (1949). [25.23] H. E. Salzer, Formulas for numerical integration of first and second order differential equations in the complex plane, J. Math. Phys. 29, 207-216 (1950). [25.24] H. E. Salzer, Formulas for numerical differentiation in the complex plane, J. Math. Phys. 31, 155-169 (1952). [25.25] A. Sard, Integral representations of remainders, Duke Math. J. 15,333-345 (1948). [25.26] A. Sard, Remainders: functions of several variables, Acta Math. 84, 319-346 (1951). [25.27] G. &hula, Formelsammlung eur praktischen Mathematik (DeGruyter and Co., Berlin, Germany, 1945). [25.28] A. H. Stroud, A bibliography on approximate integration, Math. Comp. 15, 52-80 (1961). [25.29] G. J. Tranter, Integral transforms in mathematical physics (John Wiley & Sons, Inc., New York, N.Y., 1951). [25.30] G. W. Tyler, Numerical integration with several variables, Canad. J. Math. 5, 393-412 (1953).
Tables
[25.31] L. J. Comrie, Chambers’ six-figure mathematical tables, vol. 2 (W. R. Chambers, Ltd., London, England, 1949). [25.32] P. Davis and P. Rabinowitz, Abscissas and weights for Gaussian quadratures of high order, J. Research NBS 56, 35-37 (1956) RP2645. [25.33] P. Davis and P. Rabinowitz, Additional abscissas and weights for Gaussian quadratures of high order: Values for n=64, 80, and 96, J. Research NBS 60,613-614 (1958) RP2875. [25.34] E. W. Dijkstra and A. van Wijngaarden, Table of Everett’s interpolation coefficients (Elcelsior’s Photo-offset, The Hague, Holland, 1955). [25.35] H. Fishman, Numerical integration constants, Math. Tables Aids Comp. 11, l-9 (1957). [25.36] H. J. Gawlik, Zeros of Legendre polynomials of orders 2-64 and weight coefficients of Gauss quadrature formulae, A.R.D.E. Memo (B) 77/58, Fort Halstead, Kent, England (1958). [25.37] Gt. Britain H.M. Nautical Almanac Office, Interpolation and allied tables (Her Majesty’s Stationery Office, London, England, 1956).
NUMERICAL
[25.38] I. M. Longman, Tables for the rapid and accurate numerical evaluation of certain infinite integrals involving Bessel functions, Math. Tables Aids Comp. 11, 166-180 (1957). [25.39] A. N. Lowan, N. Davids, and A. Levenson, Table of the zeros of the Legendre polynomials of order l-16 and the weight coefficients for Gauss’ mechanical quadrature formula, Bull. Amer. Math. Soc.48, 739-743 (1942). [25.40] National Bureau of Standards, Tables of Lagrangian interpolation coefficients (Columbia Univ. Press, New York, N.Y., 1944). [25.41] National Bureau of Standards, Collected Short Tables of the Computation Laboratory, Tables of functions and of zeros of functions, Applied Math. Series 37 (U.S. Government Printing Office, Washington, D.C., 1954). [25.42] P. Rabinowitz, Abscissas and weights for Lobatto quadrature of high order, Math. Tables Aids Comp. 69, 47-52 (1966). [25.43] P. Rabinowitz and G. Weiss, Tables of abscissas and weights for numerical evaluation of integrals of the form “0, Math. Tables Aids Comp. 68, 285-294 (1959).
ANALYSIS
899
[25.44] H. E. Salzer, Tables for facilitating the use of Chebyshev’s quadrature formula, J. Math. Phys. 26, 191-194 (1947). [25.45] H. E. Salzer and R. Zucker, Table of the zeros and weight factors of the first fifteen Laguerre polynomials, Bull. Amer. Math. Sot. 55, 10041012 (1949). [25.46] H. E. Salzer, R. Zucker, and R. Capuano, Table of the zeros and weight factors of the first twenty Hermite polynomials, J. Research NBS 48, 111-116 (1952) RP2294. [25.47] H. E. Salzer, Table of coefficients for obtaining the first derivative without differences, NBS Applied Math. Series 2 (U.S. Government Printing Office, Washington, D.C., 1948). [25.48] H. E. Salzer, Coefficients for facilitating trigonometric interpolation, J. Math. Phys. 27,274-278 (1949). [25.49] H. E. Salzer and P. T. Roberson, Table of coefficients for obtaining the second derivative without differences, Convair-Astronautics, San Diego, Calif. (1957). [25.50] H. E. Salzer, Tables of osculatory interpolation coefficients, NBS Applied Math. Series 56 (U.S. Government Printing Office, Washington, D.C., 1958).
NUMERICAL
900 Table
25.1
THREE-POINT
LAGRANGJAN
A&)=(-ly+’ Ao
ANALYSIS
INTERPOLATION P(P2-1)
(l+k) ! (l-k) ! (p-k) A-1
o.spo
P 0.00
A-1 -0.00000
OIOl 0.02 0.03 0.04
-0I00495 -0.00980 -0101455 -0.01920
1.00000 0.99990 0.99960 0.99910 0.99840
0.05 0.06 0.07 0.08 0.09
-0.02375 -0.02820 -0.03255 -0.03680 -0.04095
0.99750 0.99640 0.99510 0.99360 0.99190
0.02625 0.03180 0.03745 0.04320 0.04905
0.55 0.56 0.57 0.58 0.59
0.10 0.11 0.12 0.13 0.14
-0.04500 -0.04895 -0.05280 -0.05655 -0.06020
0.99000 0.98790 0.98560 0.98310 0.98040
0.05500 0.06105 0.06720 0.07345 0.07980
0.15 0.16 0.17 0.18 0.19
-0.06375 -0.06720 -0.07055 -0.07380 -0.07695
0.97750 0.97440 0.97110 0.96760 0.96390
0.20 0.21 0.22 0.23 0.24
-0.08000 -0.08295 -0.08580 -0.08855 -0.09120
0.25 0.26 0.27 0.28 0.29
AI 0.00000
COEFFICIENTS
Ao
AI
0.75000 0.73990 0.72960 0.71910 0.70840
0.37500 0.38505 0.39520 0.40545 0.41580
-0.12375 -0.12320 -0.12255 -0.12180 -0.12095
0.69750 0.68640 0.67510 0.66360 0.65190
0.42625 0.43680 0.44745 0.45820 0.46905
0.60 0.61 0.62 0.63 0.64
-0.12000 -0.11895 -0.11780 -0.11655 -Oil1520
0.64000 0.62790 0.61560 0.60310 0.'59040
0.48000 0.49105 0.50220 0.51345 0.52480
0.08625 0.09280 0.09945 0.10620 0.11305
0.65 0.66 0.67 0.68 0.69
-0.11375 -0.11220 -0.11055 -0.10880 -Oil0695
0.57750 0.56440 0.55110 0.53760 0.52390
0.53625 0.54780 0.55945 0.57120 0.58305
0.96000 0.95590 0.95160 0.94710 0.94240
0.12000 0.12705 0.13420 0.14145 0.14880
0.70 0.71 0.72 0.73 0.74
-0.10500 -0.10295 -0.10080 -0.09855 -0.09620
0.51000 0.49590 0.48160 0.46710 0.45240
0.59500 0.60705 0.61920 0.63145 0.64380
-0.09375 -0.09620 -0.09855 -0.10080 -0.10295
0.93750 0.93240 0.92710 0.92160 0.91590
0.15625 0.16380 0.17145 0.17920 0.18705
0.75 0.76 0.77 0.78 0.79
-0.09375 -0.09120 -0.08855 -0.08580 -0.08295
0.43750 0.42240 0.40710 0.39160 0.37590
0.65625 0.66880 0.68145 0.69420 0170705
0.30 0.31 0.32 0.33 0.34
-0.10500 -0.10695 -0.10880 -0.11055 -0.11220
0.91000 0.90390 0.89760 0.89110 0.88440
0.19500 0.20305 0.21120 0.21945 0.22780
0.80 0.81 0.82 0.83 0.84
-0.08000 -0.07695 -0.07380 -0.07055 -0.06720
0.36000 0.34390 0.32760
i%:i .
0.72000 0.73305 0;74620 0.75945 0.77280
0.35 0.36 0.37 0.38 0.39
-0.11375 -0.11520 -0.11655 -0.11780 -0.11895
0.87750 0.87040 0.86310 0.85560 0.84790
0.23625 0.24480 0.25345 0.26220 0.27105
0.85 0.86 0.87 0.88 0.89
-0.06375 -0.06020 -0.05655 -0.05280 -0.04895
0.27750 0.26040 0.24310 0.22560 0.20790
0.78625 0.79980 0.81345 0.82720 0.84105
0.40 0.41 0.42 0.43 0.44
-0.12000 -0.12095 -0.12180 -0.12255 -0.12320
0.84000 0.83190 0.82360 0.81510 0.80640
0.28000 0.28905 0.29820 0.30745 0.31680
0.90 0.91 0.92 0.93 0.94
-0.04500 -0.04095 -0.03680 -0.03255 -0.02820
0.19000 0.17190 0.15360 0.13510 0.11640
0.85500 0.86905 0.88320 0.89745 0.91180
0.45 0.46 0.47 0.48 0.49
-0.12375 -0.12420 -0.12455 -0.12480 -0.12495
0.79750 0.78840 0.77910 0.76960 0.75990
0.32625 0.33580 0.34545 0.35520 0.36505
0.95 0.96 0.97 0.98 0.99
-0.02375 -0.01920 -0.01455 -0.00980 -0.00495
0.09750 0.07840 0.05910 OiO3960 0.01990
0.92625 0.94080 0.95545 0.97020 0.98505
0.50
-0.12500
0.75000
0.37500
1.00
-0.00000 A1
0.00000 Ao
1.00000 A-1
-P
AI
Ao
0.00505 0.01020 0.01545 0.02080
A-1
0.51 0.52 0.53 0.54
-P
-0.12500 -0.12495 -0.12480 -0.12455 -0.12420
*
See 25.2.6. Compiled from National Bureau of Standards, Tables of Lagrangian interpolation coefficients. Columbia Univ. Press, New York, N.Y., 1944 (with permission).
NUMERICAL FOUR-POINT
o.:o
LAGRANGIAN
A-1 0.00000
00
INTERPOLATION
Ao 1.00000
901
ANALYSIS COEFFICIENTS
00
Al 0.00000
0.01004 0.02019 0.03043 0.04076
Table
25.1
A2
0.00000
00
95 60 65 80
-0.00166 -0.00333 -0.00499 -0.00665
65 20 55 60
1.00 0. 99 0.98 0.97 0.96
00
0. 01 0. 02 0. 03 0. 04
-0.00328 -0.00646 -0.00955 -0.01254
35 80 45 40
0.99490 0.98960 0.98411 0.97843
05 40 35 20
0.05 0. 06 0.07 0. 08 0. 09
-0.01543 -0.01823 -0.02094 -0.02355 -0.02607
75 60 05 20 15
0.97256 0.96650 0.96027 0.95385 0.94726
25 80 15 60 45
0.05118 0.06169 0.07227 0.08294 0.09368
75 20 85 40 55
-0.00831 -0.00996 -0.01160 -0.01324 -0.01487
25 40 95 80 85
0.95 0.94 0.93 0.92 0.91
0.10 0.11 0.12 0.13 0.14
-0.02850 -0.03083 -0.03308 -0.03524 -0.03732
00 85 80 95 40
0.94050 0.93356 0.92646 0.91919 0.91177
00 55 40 85 20
0.10450 0.11538 0.12633 0.13735 0.14842
00 45 60 15 80
-0.01650 -0.01811 -0.01971 -0.02130 -0.02287
00 15 20 05 60
0.90 0. 89 0.88 0.87 0.86
0.15 0.16 0.17 0.18 0.19
-0.03931 -0.04121 -0.04303 -0.04477 -0.04642
25 60 55 20 65
0.90418 0.89644 0.88855 0.88051 0.87232
75 80 65 60 95
0.15956 0.17075 0.18199 0.19328 0.20462
25 20 35 40 05
-0.02443 -0.02598 -0.02751 -0.02902 -0.03052
75 40 45 80 35
0.85 0.84 0.83 0.82 0.81
0.20 0. 21 0.22 0.23 0.24
-0.04800 -0.04949 -0.05090 -0.05224 -0.05350
00 35 80 45 40
0.86400 0.85553 0.84692 0.83818 0.82931
00 05 40 35 20
0.21600 0.22741 0.23887 0.25036 0.26188
00 95 60 65 80
-0.03200 -0.03345 -0.03489 -0.03630 -0.03769
00 65 20 55 60
0.80 0.79 0.78 0.77 0.76
0.25 0.26 0.27 0.28 0.29
-0.05468 -0.05579 -0.05683 -0.05779 -0.05868
75 60 05 20 15
0.82031 0.81118 0.80194 0.79257 0.78309
25 80 15 60 45
0.27343 0.28501 0.29660 0.30822 0.31985
75 20 85 40 55
-0.03906 -0.04040 -0.04171 -0.04300 -0.04426
25 40 95 80 85
0.75 0.74 0.73 0.72 0.71
0.30 0.31 0. 32 0. 33 0.34
-0.05950 -0.06024 -0.06092 -0.06153 -0.06208
00 85 80 95 40
0.77350 0.76379 0.75398 0.74406 0.73405
00 55 40 85 20
0.33150 0.34315 0.35481 0.36648 0.37814
00 45 60 15 80
-0.04550 -0.04670 -0.04787 -0.04901 -0.05011
00 15 20 05 60
0.70 0.69 0.68 0.67 0.66
0.35 0.36 0.37 0.38 0.39
-0.06256 -0.06297 -0.06332 -0.06361 -0.06383
25 60 55 20 65
0.72393 0.71372 0.70342 0.69303 0.68255
75 80 65 60 95
0.38981 0.40147 0.41312 0.42476 0.43639
25 20 35 40 05
-0.05118 -0.05222 -0.05322 -0.05418 -0.05511
75 40 45 80 35
0. 65 0.64 0.63 0.62 0.61
0.40 0.41 0.42 0.43 0. 44
-0.06400 -0.06410 -0.06414 -0.06413 -0.06406
00 35 80 45 40
0.67200 0.66136 0.65064 0.63985 0.62899
00 05 40 35 20
0.44800 0.45958 0.47115 0.48269 0.49420
00 95 60 65 80
-0.05600 -0.05684 -0.05765 -0.05841 -0.05913
00 65 20 55 60
0.60 0.59 0.58 0.57 0.56
0. 45 0.46 0.47 0.48 0.49
-0.06393 -0.06375 -0.06352 -0.06323 -0.06289
75 60 05 20 15
0.61806 0.60706 0.59601 0.58489 0.57372
25 80 15 60 45
0.50568 0.51713 0.52853 0.53990 0.55122
.75 20 85 40 55
-0.05981 -0.06044 -0.06102 -0.06156 -0.06205
25 40 95 80 85
0.55 0. 54 0.53 0.52 0.51
0.50
-0.06250
00
0.56250 00
0.56250 00
-0.06250
00
AI
Ao
0.50 P
A2
A-1
902
NUMERICAL Table 25.1
FOUR-POINT
LAGRANGIAN
ANALYSIS INTERPOLATION
65 20 55 60
Ao 0.00000 00 -0.00994 95 -0.01979 60 -0. 02953 65 -0.03916 80
Al 1.00000 1.00489 1.00959 1.01408 1.01836
0.00831 0.00996 0.01160 0.01324 0.01487
25 40 95 80 85
-0.04868 75 -0.05809 20 -0.06737 85 -0.07654 40 -0.08558 55
1.10 1.11 1.12 1.13 1.14
0.01650 0.01811 0.01971 0.02130 0.02287
00 15 20 05 60
-0.09450 -0.10328 -0.11193 -0.12045 -0.12882
1.15 1.16 1.17 1.18 1.19
0.02443 0.02598 0.02751 0.02902 0.03052
75 40 45 80 35
-0.13706 -0.14515 -0.15309 -0.16088 -0.16852
1.20 1.21 1.22 1.23 1.24
0.03200 0.03345 0.03489 0.03630 0.03769
1.25 1.26 1.27 1.28 1.29
P 1. 00
A-1 0.00000
00
1.01 1.02 1. 03 1. 04
0.00166 0.00333 0.00499 0.00665
1. 05 1.06 1. 07 1.08 1.09
COEFFICIENTS
A2
00 95 60 65 80
0.00000 0.00338 0.00686 0.01045 0.01414
00 35 80 45 40
1.02243 1.02629 1.02992 1.03334 1.03653
75 85 40 55
0.01793 0.02183 0.02584 0.02995 0.03417
75 60 05 20 15
00 45 60 15 80
1.03950 1.04223 1.04473 1.04700 1.04902
00 45 60 15 80
0.03850 0.04293 0.04748 0.05214 0.05692
00 85 80 95 40
0.10 0.11 0.12 0.13 0.14
25 2,o 35 40 05
1.05081 25 1.05235 20 1.05364 35
25
1.05547 05
0.06181 0.06681 0.07193 0.07717 0.08252
55 20 65
0.15 0.16 0.17 0.18 0.19
00 65 20 55 60
-0.17600 00 -0; 18331 95 -0.19047 60 -0.19746 65 -0.20428 80
1.05600 00 1.05626 95 1.05627 60 lt 05601 65 1.05548 80
0.08800 .oo 0.09359 35 0.09930 80 0.10514 45 0.11110 40
0.20 0.21 0.22 0.23 0.24
0.03906 0.04040 0.04171 0.04300 0.04426
25 40 95 80 85
-0.21093 -0.21741 -0.22370 -0.22982 -0.23575
75 20 85 40 55
1.05468 1.05361 1.05225 1.05062 1.04870
75 20 85 40 55
0.11718 0.12339 0.12973 0.13619 0.14278
75 60 05 20 15
0.25 0.26 0. 27 0.28 0.29
1.30 1.31 1.32 1.33 1.34
0.04550 0.04670 0.04787 0.04901 0.05011
00 15 20 05 60
-0.24150 -0.24705 -0.25241 -0.25758
1.04650 1.04400 1.04121 1.03813 1.03474
00 45
-0.26254
00 45 60 15 80
15 80
0.14950 0.15634 0.16332 0.17043 0.17768
00 85 80 95 40
0.30 0.31 0.32 0.33 0.34
1.35 1.36 1.37 1.38 1.39
0.05118 0.05222 0.05322 0.05418 0.05511
75 40 45 80 35
-0.26731 -0.27187 -0.27622 -0.28036 -0.28429
25 20 35 40 05
1.03106 1.02707 1.02277 1.01816 1.01324
25 20 35 40 05
0.18506 0.19257 0.20022 0.20801 0.21593
25 60 55 20
0.35 0.36 0.37 0.38 0.39
1.40 1.41 1. 42 1.43 1. 44
0.05600 0.05684 0.05765 0.05841 0.05913
00 65 20 55 60
-0.28800 -0.29148 -0.29475 -0.29779
1.00800 1.00243 0.99655 0.99034 0.98380
00 95 60 65 80
0.22400
00
0.23220 35 0.24054 80 0.24903 45
-0.30060
00 95 60 65 80
1.45 1.46 1.47 1.48 1.49
0.05981 0.06044 0.06102 0.06156 0.06205
25 40 95 80 85
-0.30318 -0.30553 -0.30763 -0.30950 -0.31112
75 20 85 40 55
0.97693 75
1.50
0.06250 00
-0.31250 00 Al
A2
1.05468
20
40
60
60
65
0.25766
40
0.26643
75
0.00
0.01 0.02 0.03 0.04 0. 05 0.06
0. 07 0.08 0.09
0.40 0.41 0.42 0.43 0.44
0.95430 40 0.94607 55
0.27535 0.28442 0.29363 0.30299
60 05 20 15
0.45 Oi46 0. 47 0.48 0.49
0.93750 00
0.31250 00
0.50
Ao
A-1
0.96973 0.96218
20 85
-P
NUMERICAL FOUR-POINT
1.;0 1. 51 1.52 1.53 1.54
LAGRANGIAN
INTERPOLATION
A-I
Ao
0.06250 00 0.06289 15
-0.31250 00 -0.31362 45 -0.31449 60 -0.31511 15 -0.31546 a0
0.06323 0.06352 0.06375
20 05 60
1.55 1.56 1.57 1.58 1.59
0.06393 0.06406
75 40
1.60 1.61 1.62 1.63 1. 64
0.06400 00
1. 65 1.66 1.67 1.68 1.69
0.06256
1.70 1.71 1.72 1.73 1.74
0.05950 00 0.05868 15
-0.28350 00 -0.27899 45
0.05683 05
-0.26904 15 -0.26358 80
1.75 1.76 1. 77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89
0.06413 45 0.06414 a0 0.06410 35
-0.31556 -0.31539 -0.31495 -0.31424 -0.31326
25 20 35 40 05
0.06383
65
-0.31200 00 -0.31045 95
0.06332 0.06297
55 60
-0.30412 a0
0.06361 20
0.06208 0.06153 0.06092 0.06024
0.05779 0.05579
25
40 95 80 85
20
60
0.05468 75
0.05350 0.05224 0.05090 0.04949
40 45
a0 35
0.04aoo 00 0.04642 0.04477 0.04303
65 20 55
0.04121 60 0.03931 25 0.03732 0:03524
40 95
0.03308 80 0.03083 a5
-0.30863 -0: 30652
60 65
-0.30143 -0.29845 -0.29516 -0.29158 -0.28769
75
-0.27417
20 a5 40 55
60
-0.25781
25
-0i25171 -0.24528 -0l23852 -0.23143
20 35 40 05
-0.22400 -0.21622 -0.20811 -0.19965 -0.19084
00 95 60 65 80
0. 51 0.52 0.53 0.54 0.55
0.37273
60
0.38331 55 0.39405 0.40494
20 65
0. 56 0. 57
0.83200 00 0.81940 95
0.41600 0.42721 0.43858 0.45012 0.46182
00 35 a0 45 40
0.60 0. 61 0.62 0.63 0.64
0.76518 75
75
a5 0.72038 40
0.47368 0.48571 0.49791 0.51027 0.52280
0. 65 0. 66 0. 67
0.68850 00 0.67194 45
0.53550 00 0.54836 a5 0.56140 a0
0.75065 0.73571
60 65 80
20
0. JO464 55
0.65497 0.63759
60
15 0.61978 a0 0.60156 25 0.58291 20 0.56383 35 0.54432
40
0.52438 05 0.50400 00 0.48317 95 0.46191 60
0.57461
60 05 20 15
95
0.58800 40 0.60156 25 0.61529 60
0.58 0.59
0.68 0.69 0.70
0. 71 0.72 0.73 0.74 0.75 0.76 0.77
0.62920 0.64329 0.65755
55 20 65
0.67200 0.68662
00 35
0.80 0. al 0.82 0.83 0.84
0.78 0. 79
-0.16229 a5 -0.15206 40 -0.14146 55
75 20
0.34884 a5 0.32486 40 0.30041 55
0.74693 0.76247
75 60
0.77820 05 0.79411 20 0.81021 15
0.85 0.86 0.87 0.88 0.89
-0.13050 00 -0.11916 45 -0.10745 60 -0.09537 15 -0.08290 a0
0.27550
00
0.82650 0.84297 0.85964 0.87650 0.89356
00 a5 80 95 40
0.90 0.91 0.92 0.93 0.94
-0.07006
25
0.14381 25 0.11603 20
0.91081 25 0.92825 60 0.94589 55
0.95 0.96
-0.02920
40
20
-0.01480 05
2.00
0.00000 00
0.00000 00
A2
40
0.50
0.39543 0.37237
-0.18168 75 -0.17217
0.00328 35
45 80
0.35204
00 a5 a0 95
0.36231 25
0.80643 0.79307 0.77932
25 20 35 40 05
0.31250 0.32215 0.33196 0.34192
0.41804 80
0.01543 75 0.01254 40 0.00955 0.00646
A2 00 45
0.91929 60 0.90966 15 0.89966 80 0.88931 0.87859 0.86750 0.85604 0.84421
25.1
0.70142 a0 0.71641 45 0.73158 40
1.95 1.96 1.97 1.98 1.99
0.01823 60
AI 0.93750 0.92857
Table
65
0.02850 00 0.02607 15 20 05
COEFFICIENTS
0.44020
1.90 1.91 1.92 1.93 1.94
0.02355 0.02094
903
ANALYSIS
-0.05683 20 -0.04321 35
AI
0.25011 45 0.22425 0.19792 0.17110
0.08776 0.05900 0.02975
60
15 a0
35 40 05
o*oooAooo O0
0.96373
20
0.98176 65 I.. """P
1O0
0.97
0.98 0.99 1.00 -P
904 Table
NUMERICAL 25.1
FIVE-POINT
LAGRANt
A;(P)=(
o.io
;IAN
ANALYSIS
INTERPOLATION
COEFFICIENTS
P(P2-l)(P2--4)
-1)k+2 (2+k)!(2-k)!(p-k) AI Ao 1.00000 00000 0.00000 00000 0.99987 50025 0.00673 31650 0.99950 00400 0.01359 86400 0.99887 52025 OiO2059 53650 0.99800 06400 0.02772 22400
A2
0.01 0.02 0.03 0.04
0.00000 0.00082 0.00164 0.00246 0.00326
A-I 0.00000 00000 00000 90838 -0.00659 98350 93400 -0.01306 53600 02838 -0.01939 56350 14400 -0.02558 97600
0. 05 0.06 0.07 0. 08 0.09
0.00405 0.00483 0.00560 0.00635 0.00710
23438 25400 15838 90400 44838
-0.03164 -0.03756 -0.04334 -0.04898 -0.05448
68750 61600 68350 81600 94350
0.99687 0.99550 0.99388 0.99201 0.98989
65625 0.03497 81250 -0.00426 01563 32400 OiO4236 18400 -0.00513 14600 10025 0.04987 21650 -0.00600 79163 02400 0.05750 78400 -0.00688 89600 14025 0.06526 75650 -0.00777 40163
0.05 0.06 0.07 0.08 0.09
0.10 0. 11 0.12 0.13 0.14
0.00783 0.00855 0.00926 0.00995 0.01063
75000 76838 46400 79838 73400
-0.05985 -0.06506 -0.07014 -0.07508 -0.07987
00000 92350 65600 14350 33600
0.98752 0.98491 0.98205 0.97894 0.97559
50000 16025 18400 64025 60400
0.07315 0.08115 0.08927 0.09751 0.10587
00000 37650 74400 95650 86400
-0.00866 -0.00955 -0.01044 -0.01134 -0.01223
25000 38163 73600 25163 86600
0.10 0.11 0.12 0.13 0.14
0.15 0.16 0.17 0.18 0. 19
0.01130 0.01195 0.01258 0.01320 0.01381
23438 2‘6400 78838 77400 18838
-0.08452 -0.08902 -0.09338 -0.09760 -0.10167
18750 65600 70350 29600 40350
0.97200 0.96816 0.96408 0.95976 0.95520
15625 38400 38025 24400 08025
0.11435 0.12294 0.13164 0.14045 0.14937
31250 14400 19650 30400 29650
-0.01313 -0.01403 -0.01492 -0.01582 -0.01671
51563 13600 66163 02600 16163
0.15 0.16 0.17 0.18 0.19
0.20 0.21 0.22 0.23 0.24
0.01440 0.01497 0.01552 0.01606 0.01658
00000 17838 69400 51838 62400
-0.10560 -0.10938 -0.11301 -0.11650 -0.11984
00000 06350 57600 52350 89600
0.95040 0.94536 0.94008 0.93457 0.92882
00000 12025 56400 46025 94400
0.15840 0.16753 0.17676 0.18610 0.19554
00000 23650 82400 57650 30400
-0.01760 -0.01848 -0.01936 -0.02024 -0.02110
00000 47163 50600 03163 97600
0.20 0.21 0.22 0.23 0.24
0.25 0.26 0.27 0.28 0. 29
0.01708 0.01757 0.01804 0.01849 0.01892
98438 57400 36838 34400 47838
-0.12304 -0.12609 -0.12900 -0.13176 -0.13438
68750 89600 52350 57600 06350
0.92285 0.91664 0.91020 0.90353 0.89664
15625 24400 36025 66400 32025
0.20507 0.21470 0.22443 0.23425 0.24415
81250 90400 37650 02400 63650
-0.02197 -0.02282 -0.02367 -0.02451 -0.02534
26563 82600 58163 45600 37163
0.25 0.26 0.27 0.28 0.29
0.30 0.31 0.32 0.33 0. 34
0.01933 0.01973 0.02010 0.02046 0.02079
75000 13838 62400 18838 81400
-0.13685 -0.13917 -0.14135 -0.14338 -0.14527
00000 40350 29600 70350 65600
0.88952 0.88218 0.87462 0.86683 0.85884
50000 38025 14400 98025 08400
0.25415 0.26422 0.27439 0.28463 0.29495
00000 89650 10400 39650 54400
-0.02616 -0.02697 -0.02776 -0.02854 -0.02931
25000 01163 57600 86163 78600
0.30 0.31 0.32 0.33 0.34
0.35 0.36 0.37 0.38 0.39
0.02111 0.02141 0.02168 0.02194 0.02218
48438 18400 89838 61400 31838
-0.14702 -0.14862 -0.15008 -0.15139 -0.15256
18750 33600 14350 65600 92350
0.85062 0.84219 0.83356 0.82471 0.81565
65625 90400 04025 28400 86025
0.30535 0.31582 0.32636 0.33697 0.34765
31250 46400 75650 94400 77650
-0.03007 -0.03081 -0.03153 -0.03224 -0.03293
26563 21600 55163 18600 03163
0.35 0.36 0.37 0.38 0.39
0.40 0. 41 0.42 0. 43 0.44
0.02240 0.02259 0.02277 0.02292 0.02306
00000 64838 25400 80838 30400
-0.15360 -0.15448 -0.15523 -0.15584 -0.15631
00000 94350 81600 68350 61600
0.80640 0.79693 0.78727 0.77742 0.76737
00000 94025 92400 20025 02400
0.35840 0.36920 0.38006 0.39098 0.40195
00000 35650 58400 41650 58400
-0.03360 -0.03425 -0.03487 -0.03548 -0.03607
00000 00163 94600 74163 29600
0.40 0.41 0.42 0.43 0.44
0.45 0.46 0.47 0.48 0.49
0.02317 0.02327 0.02334 0.02339 0.02342
73438 09400 37838 58400 70838
-0.15664 -0.15683 -0.15689 -0.15681 -0.15659
68750 97600 56350 53600 98350
0.75712 0.74669 0.73607 0.72527 0.71428
65625 36400 42025 10400 70025
0.41297 0.42404 0.43516 0.44632 0.45751
81250 82400 33650 06400 71650
-0.03663 -0.03717 -0.03768 -0.03817 -0.03863
51563 30600 57163 21600 14163
0.45 0. 46 0.47 0.48 0.49
0.50
0.02343 75000
-0.03906 25000
0.50 -P
A-2
A2
-0.15625 00000 Al
0.70312 50000 Ao
0.46875 00000 A-I
0.00000 -0.00083 -0.00168 -0.00253 -0.00339
A-2
00000 74163 26600 52163 45600
0. 00
0.01 0.02 0.03 0. 04
NUMERICAL
FIVE-POINT
LAGRANGIAN
INTERPOLATION
Ah)=(-1)k+2 A-Z
P
A-I
905
ANALYSIS
P(P2--1)
COEFFICIEM
TS
Table
25.1
(P2-4)
(2+k)!(2-k)!(p-k) Ao
Al
A2
0.50 0. 51 0. 52 0.53 0.54
0.02343 0.02342 0.02339 0.02334 0.02327
75000 -0.15625 00000 70838 -0.15576 68350 58400 -0.15515 13600 37838 -0.15440 46350 09400 -0.15352 77600
0.70312 0.69178 0.68027 0.66860 0.65675
50000 80025 90400 12025 76400
0.46875 0.48001 0.49131 0.50263 0.51398
00000 61650 26400 63650 42400
-0.03906 -0.03946 -0.03983 -0.04017 -0.04048
25000 44163 61600 67163 50600
0.50 0. 51 0.52 0.53 0. 54
0.55 0. 56 0.57 0. 58 0.59
0.02317 0.02306 0.02292 0.02277 0.02259
73438 30400 80838 25400 64838
la750 al600 78350 21600 24350
0.64475 0.63258 0.62026 0.60779 0.59516
15625 62400 50025 12400 84025
0.52535 0.53673 0.54814 0.55955 0.57097
31250 98400 11650 38400 45650
-0.04076 -0.04100 -0.04120 -0.04137 -0.04150
01563 09600 64163 54600 70163
0.55 0.56 0.57 0.58 0.59
0.60 0.61 0. 62 0.63 0.64
0.02240 0.02218 0.02194 0.02168 0.02141
00000 -0.14560 00000 31838 -0.14384 62350 61400 -0.14197 25600 89838 -0.13998 04350 la400 -0.13787 13600
0.58240 0.56948 0.55644 0.54325 0.52994
00000 96025 08400 74025 30400
0.58240 0.59382 0.60525 0.61667 0.62808
00000 -0.04160 67650 -0.04165 14400 -0.04166 05650 -0.04163 06400 -0.04156
00000 33163 58600 65163 41600
0.60 0. 61 0.62 0.63 0.64
0.65 0.66 0.67 0.68 0.69
0.02111 0.02079 0.02046 0.02010 0.01973
48438 al400 la838 62400 13838
-0.13564 -0.13330 -0.13085 -0.12829 -0.12562
68750 85600 a0350 69600 70350
0.51650 0.50293 0.48925 0.47545 0.46154
15625 68400 28025 34400 28025
0.63947 0.65085 0.66222 0.67355 0.68486
81250 94400 09650 90400 99650
76563 58600 76163 17600 71163
0. 65 0.66 0.67 0. 68 0. 69
0.70 0.71 0.72 0.73 0.74
0.01933 0.01892 0.01849 0.01804 0.01757
75000 47838 34400 36838 57400
-0.12285 -0.11996 -0.11698 -0.11389 -0.11070
00000 76350 17600 42350 69600
0.44752 0.43340 0.41918 0.40487 0.39046
50000 42025 46400 06025 64400
0.69615 0.70739 0.71860 0.72976 0.74088
00000 -0.04016 25000 53650 -0.03975 67163 22400 -0.03929 85600 67650 -0.03878 68163 50400 -0.03822 02600
0.70 0.71 0. 72 0.73 0.74
0.75 0.76 0.77 0.78 0.79
0.01708 0.01658 0.01606 0.01552 0.01497
98438 62400 51838 69400 17838
-0.10742 -0.10404 -0.10056 -0.09699 -0.09334
la750 09600 62350 97600 36350
0.37597 0.36140 0.34675 0.33203 0.31725
65625 54400 76025 76400 02025
0.75195 0.76296 0.77392 0.78481 0.79564
31250 70400 27650 62400 33650
-0.03759 -0.03691 -0.03617 -0.03538 -0.03452
76563 77600 93163 10600 17163
0.75 0.76 0.77 0.78 0.79
0.80 0.81 0. a2 0.83 0.84
0.01440 0.01381 0.01320 0.01258 0.01195
00000 18838 77400 78838 26400
-0.08960 -0.08577 -0.08185 -0.07786 -0.07379
00000 10350 a9600 60350 45600
0.30240 0.28749 0.27253 0.25752 0.24246
00000 la025 04400 08025 78400
0.80640 0.81708 0.82768 0.83820 0.84863
00000 19650 50400 49650 74400
-0.03360 -0.03261 -0.03156 -0.03044 -0.02926
00000 46163 42600 76163 33600
0.80 0. al 0.82 0.83 0.84
0.85 0.86 0.87 0.88 0. a9
0.01130 0.01063 0.00995 0.00926 0.00855
23438 73400 79838 46400 76838
-0.06964 -0.06542 -0.06113 -0.05677 -0.05234
68750 53600 24350 05600 22350
0.22737 0.21225 0.19709 0.18192 0.16673
65625 20400 94025 38400 06025
0.85897 0.86922 0.87936 0.88940 0.89933
a1250 26400 65650 54400 47650
-0.02801 -0.02668 -0.02529 -0.02382 -0.02228
01563 66600 15163 33600 08163
0. a5 0. 86 0.87 0.88 0.89
0.90 0.91 0. 92 0.93 0.94
0.00783 0.00710 0.00635 0.00560 0.00483
75000 44838 90400 15838 25400
-0.04785 -0.04329 -0.03868 -0.03401 -0.02929
00000 64350 41600 58350 41600
0.15152 0.13631 0.12109 0.10588 0.09068
50000 24025 82400 a0025 72400
0.90915 0.91884 0.92841 0.93786 0.94717
00000 65650 98400 51650 78400
-0.02066 -0.01896 -0.01719 -0.01533 -0.01340
25000 70163 29600 89163 34600
0.90 0. 91 0.92 0.93 0.94
0.95 0. 96 0.97 0.98 0.99
0.00405 23438 OiOO32614460 0.00246 02838 0.00164 93400 0.00082 90838
-0.02452 -0.01970 -0.01483 -0.00992 -0.00498
la750 0.07550 15625 17600 0.06033 66400 66350 0.04519 a2025 93600 0.03009 20400 28350 0.01502 40025
0.95635 0.96538 0.97427 0.98300 0.99158
31250 62400 23650 66400 41650
-0.01138.51563 -0.00928 25600 -0.00709 42163 -0.00481 a6600 -0.00245 44163
0.95 0.96 0.97 0.98 0.99
1.00
0.00000
1.00000 00000 A-I
0.00000 00000
1.00
00000 A2
-0.15252 -0.15138 -0.15012 -0.14874 -0.14723
0.00000 00000 A1
0.00000 00000 Ao
-0.04144 -0.04128 -0.04107 -0.04082 -0.04051
A-2
-P
306
NUMERICAL
Table
25.1
FIVE-POINT
LAGRANGIAN
ANALYSIS INTERPOLATION
0.00000
A-Z 00000
0.00000
A-1 00000
:IENTS
P(P2-1) (P2-4) (2+k)!(2-k)!(p-k)
4(P)=-k+2 P 1.00
COEFFIC
Ao 00000
Al
A2 00000
00000 91650 66400 73650 62400
60838 53400 92838 94400
1. 00 1. 01 1.02 1.03 1.04
0.00000
1.01 1.02 1.03 1.04
-0.00083 -0.00168 -0.00253 -0.00339
74163 26600 52163 45600
61650 -0.01497 39975 26400 -0.02989 19600 63650 -0.04474 77975 42400 -0.05953 53600
1.oocoo 1.00824 1.01632 1.02422 1.03194
1.05 1.06 1.07 1.08 1.09
-0.00426 -0.00513 -0.00600 -0.00688 -0.00777
01563 0.02535 31250 -0.07424 84375 14600 0.03048 98400 -0.08888 07600 79163 0.03564 11650 -0.10342 59975 89600 0.04080 38400 -0.11787 77600 40163 0.04597 45650 -0.13222 95975
1.03947 1.04681 1.05396 1.06089 1.06763
81250 0.01367 73438 78400 0.01670 45400 01650 0.01983 25838 98400 0.02306 30400 15650 0.02639 74838
1.05 1.06 1.07 1.08 1.09
1.10 1.11 1.12 1.13 1.14
-0.00866 -0.00955 -0.01044 -0.01134 -0.01223
25000 38163 73600 25163 86600
0.05115 00000 -0.14647 50000 0.05632 67650 -0.16060 73975 0.06150 14400 -0.17462 01600 0.06667 05650 -0.18850 65975 0.07183 06400 -0.20225 99600
1.07415 1.08044 1.08652 1.09237 1.09798
00000 97650 54400 15650 26400
1.15 1.16 1.17 1.18 1.19
-0.01313 -0.01403 -0.01492 -0.01582 -0.01671
51563 13600 66163 02600 16163
0.07697 0.08210 0.08722 0.09230 0.09736
81250 94400 09650 90400 99650
1.20 1.21 1.22 1.23 1.24
-0.01760 -0.01848 -0.01936 -0.02024 -0.02110
00000 47163 50600 03163 97600
0.10240 0.10739 0.11235 0.11726 0.12213
00000 -0.28160 00000 53650 -0.29422 77975 22400 -0.30666 63600 67650 -0.31890 83975 50400 -0.33094 65600
1.25 1.26 1.27 1.28 1.29
-0.02197 -0.02282 -0.02367 -0.02451 -0.02534
26563 82600 58163 45600 37163
0.12695 0.13171 0.13642 0.14106 0.14564
31250 70400 27650 62400 33650
1.30 1.31 1.32 1.33 1.34
-0.02616 -0.02697 -0.02776 -0.02854 -0.02931
25000 0.15015 00000 -0.39847 50000 01163 0.15458 19650 -0.40887 51975 57600 0.15893 50400 -0.41901 05600 86163 0.16320 49650 -0.42887 31975 78600 0.16738 74400 -0.43845 51600
1.35 1.36 1.37 1.38 1.39
-0.03007 -0.03081 -0.03153 -0.03224 -0.03293
26563 21600 55163 18600 03163
0.17147 0.17547 0.17936 0.18315 0.18683
1.40 1.41 1.42 1.43 1.44
-0.03360 -0.03425 -0.03487 -0.03548 -0.03607
00000 00163 94600 74163 29600
1.45 1.46 1.47 1.48 1.49
-0.03663 -0.03717 -0.03768 -0.03817 -0.03863
51563 0.20635 31250 30600 0.20913 62400 57163 0.21177 23650 21600 0.21425 66400 14163 0.21658 41650
1.50
-0.03906 25000 A2
0.00501 0.01006 0.01513 0.02023
0.00000
-0.21587 -0.22934 -0,24265 -0.25580 -0.26879
0.02983 0.03338 0.03704 0.04080 0.04468
75000 46838 06400 69838 53400
1.10 1.11 1.12 1.13 1.14
34375 1.10335 31250 0.04867 01600 1.10847 74400 0.05278 31975 1.11334 99650 0.05700 55600 1.11796 50400 0.06135 01975 1.12231 69650 0.06581
73438 46400 88838 17400 48838
1.15 1.16 1.17 1.18 1.19
00000 0.07040 00000 83650 0.07510 87838 62400 0.07994 29400 77650 0.08490 41838 70400 0.08999 42400
1.20 1.21 1.22 1.23 1.24
1.12640 1.13020 1.13373 1.13697 1.13992
48438 77400 46838 74400 77838
1.25 1.26 1.27 1.28 1.29
1.15115 1.15188 1.15227 1.15232 1.15201
00000 0.12333 75000 49650 0.12937 83838 90400 0.13556 22400 59650 0.14189 08838 94400 0.14836 61400
1.30 1.31 1.32 1.33 1.34
84375 49600 65975 51600 23975
1.15135 1.15032 1.14891 1.14713 1.14496
31250 06400 55650 14400 17650
0.15498 98438 0.16176 38400 0.1686.8 99838 0.17577 01400 0.18300 61838
1.35 1.36 1.37 1.38 k.39
0.19040 00000 -0.48960 00000 0.19384 65650 -0.49698 95975 0.19716 98400 -0.50403 27600 0.20036 51650 -0.51072 09975 0.20342 78400 -0.51704 57600
1.14240 1.13943 1.13607 1.13229 1.12809
00000 0.19040 00000 95650 0.19795 34838 38400 0.20566 85400 61650 0.21354 70838 98400 0.22159 10400
1.40 1.41 1.42 1.43 1.44
1.12347 1.11842 1.11293 1.10699 1.10060
81250 42400 13650 26400 11650
81250 26400 65650 54400 47650
-0.34277 -0.35438 -0.36576 -0.37691 -0.38781
0.00254 0.00518 0.00791 0.01074
34375 1.14257 81250 15600 1.14492 50400 33975 1.14696 17650 13600 1.14868 22400 77975 1.15008 03650
-0.44774 -0.45674 -0.46543 -0.47381 -0.48187
-0.52299 -0.52857 -0.53375 -0.53853 -0.54291
84375 03600 27975 69600 39975
0.21875 00000 -0.54687 50000 1.09375 00000 Al
Ao
A-I
0.09521 0.10056 0.10605 0.11167 0.11743
0.22980 0.23818 0.24673 0.25545 0.26436
23438 1.45 29400 1.46 47838 1.47 98400 1.48 00838 1.49
0.27343 75000 A-2
1.50 -P
NUMERICAL FIVE-POINT
LAGRANGIAN
907
ANALYSIS INTERPOLATION
A;(P)
=(--l)k+Q &g
COEFFICIENTS
Table
25.1
) (p2-4)
-k)!(p-k)
1.50 1.51 1.52 1.53 1.54
-0.03906 -0.03946 -0.03983 -0.04017 -0.04048
25000 44163 61600 67163 50600
0.21875 0.22074 0.22257 0.22422 0.22569
00000 91650 66400 73650 62400
-0.54687 -0.55041 -0.55351 -0.55617 -0.55837
50000 09975 29600 17975 83600
Al 1.09375 00000 1.08643 21650 1.07864 06400 1.07036 83650 1.06160 82400
0.27343 0.28269 0.29213 0.30175 0.31155
75000 40838 18400 27838 89400
1.50 1.51 1.52 1.53 1.54
1.55 1.56 1.57 1.58 1.59
-0.04076 -0.04100 -0.04120 -0.04137 -0.04150
01563 09600 64163 54600 70163
0.22697 0.22806 0.22896 0.22964 0.23013
81250 78400 01650 98400 15650
-0.56012 -0.56139 -0.56219 -0.56249 -0.56230
34375 77600 19975 67600 25975
1.05235 1.04259 1.03232 1.02154 1.01023
31250 58400 91650 58400 85650
0.32155 0.33173 0.34210 0.35267 0.36343
23438 50400 90838 65400 94838
1.55 1.56 1.57 1.58 1.59
1.60 1.61 1.62 1.63 1.64
-0.04160 -0.04165 -0.04166 -0.04163 -0.04156
00000 33163 58600 65163 41600
0.23040 0.23044 0.23027 0.22987 0.22923
00000 97650 54400 15650 26400
-0.56160 -0.56037 -0.55863 -0.55634 -0.55351
00000 0.99840 00000 93975 0.98602 27650 11600 0.97309 94400 55975 0.95962 25650 29600 0.94558 46400
0.37440 0.38556 0.39692 0.40848 0.42025
00000 01838 21400 79838 98400
1.60 1.61 1.62 1.63 1.64
1.65 1.66 1.67 1. 68 1. 69
-0.04144 -0.04128 -0.04107 -0.04082 -0.04051
76563 58600 76163 17600 71163
0.22835 0.22722 0.22584 0.22421 0.22231
31250 74400 99650 50400 69650
-0.55012 -0.54616 -0.54163 -0.53651 -0.53079
34375 71600 41975 45600 81975
0.43223 0.44443 0.45683 0.46945 0.48228
98438 01400 28838 02400 43838
1.65 1.66 1.67 1.68 1.69
1.70 1.71 1.72 1.73 1.74
-0.04016 -0.03975 -0.03929 -0.03878 -0.03822
25000 0.22015 00000 67163 0.21770 83650 85600 0.21498 62400 68163 0.21197 77650 02600 0.20867 70400
-0.52447 -0.51753 -0.50996 -0.50176 -0.49290
50000 0.84915 00000 . 0.49533 75000 47975 0.83097 13650 0.50861 17838 73600 0.81217 02400 0.52210 94400 23975 0.79273 87650 0.53583 26838 95600 0.77266 90400 0.54978 37400
1.70 1. 71 1.72 1.73 1.74
1.75 1.76 1.77 1.78 1.79
-0.03759 -0.03691 -0.03617 -0.03538 -0.03452
76563 77600 93163 10600 17163
0.20507 0.20117 0.19696 0.19243 0.18758
81250 50400 17650 22400 03650
-0.48339 -0.47321 -0.46235 -0.45081 -0.43856
84375 0.75195 31250 0.56396 48438 85600 Oi73058 30400 0.57837 82400 93975 0.70855 07650 0.59302 61838 03600 0.68584 82400 0.60791 09400 07975 0.66246 73650 0.62303 47838
1.75 1.76 1.77 1.78 1.79
1.80 1.81 1.82 1.83 1.84
-0.03360 -0.03261 -0.03156 -0.03044 -0iOi926
00000 46163 42600 76163 33606
0.18240 0.17688 0.17102 0.16482 0.15826
00000 49650 90400 59650 94400
-0.42560 -0.41191 -0.39750 -0.38234 -0.36642
00000 0.63840 00000 0.63840 00000 71975 0.61363 79650 0.65400 88838 15600 0.58817 30400 0.66986 37400 21975 0.56199 69650 0.68596 68838 81600 0.53510 14400 0.70232 06400
1.80 1.81 1.82 1.83 1.84
1.85 1.86 1.87 1.88 1.89
-0.02801 -0.02668 -0.02529 -0.02382 -0.02228
01563 0.15135 31250 66600 0.14407 06400 15163 0.13641 55650 33600 0.12838 14400 08163 0.11996 17650
-0.34974 -0.33229 -0.31404 -0.29500 -0.27515
84375 19600 75975 41600 03975
0.50747 0.47911 0.45001 0.42015 0.38953
81250 0.71892 73438 86400 0.73578 93400 45650 0.75290 89838 74400 0.77028 86400 87650 0.78793 06838
1.85 1.86 1.87 1.88 1.89
1.90 1.91 1.92 1.93 1.94
-0.02066 -0.01896 -0.01719 -0.01533 -0.01340
25000 0.11115 00000 70163 0.10193 95650 29600 0.09232 38400 89163 0.08229 61650 34600 0..07184 98400
-0.25447 -0.23296 -0.21061 -0.18740 -0.16332
50000 65975 37600 49975 87600
0.35815 0.32598 0.29302 0.25927 0.22472
00000 0.80583 75000 25650 0.82401 14838 78400 0.84245 50400 71650 0.86117 05838 18400 0.88016 05400
1.90 1.91 1.92 1.93 1.94
1.95 1.96 1.97 1.98 1.99
-0.01138 -0.00928 -0.00709 -0.00481 -0.00245
51563 25600 42163 86600 44163
-0.13837 -0.11252 -0.08577 -0.05811 -0.02952
34375 0.18935 31250 73600 0.15316 22400 87975 0.11614 03650 59600 Or07827 86400 69975 0.03956 81650
P
2.00
A-1
A-2
0.00000 00000 AZ
0.06097 0.04967 0.03793 0.02574 0.01310
-40
81250 42400 13650 26400 11650
0.00000 00000 A1
0.00000
00000
Ao
0.93097 0.91579 0.90002 0.88367 0.86671
81250 54400 89650 10400 39650
A2
0.89942 0.91897 0.93880 0.95891 0.97931
73438 34400 12838 33400 20838
1.95 1.96 1.97 1.98 1.99
0.00000 00000 1.00000 00000 A-1 A-2
2.00 -P
908
NUMERICAL SIX-POINT
Table 25.1
LAGRANGIAN
INTERPOLATION
&p)+l)k+” A-1
Ao
COEFFICIENTS
P(P2-l)(P2-4) (P-3) (2+k) ! (3-k) ! (p-k) AI 0.00000 0.01006 0.02026 0.03058 0.04102
00000 60817 19736 41170 89152
0.00000 -0.00250 -0.00501 -0.00752 -0.01004
00000 38746 43268 95922 78976
0.00000 0.00033 0.00066 0.00099 0.00133
A3 00000 32917 63334 88752 06675
1.00 0.99 0.98 0.97 0.96
19531 31752 04458 66336 46604
0.05159 0.06227 0.07306 0.08396 0.09496
27344 19048 27217 14464 43071
-0.01256 -0.01508 -0.01760 -0.02011 -0.02262
74609 64924 31946 57632 23873
0.00166 0.00199 0.00231 0.00264 0.00296
14609 10065 90557 53606 96742
0.95 0.94 0.93 0.92 0.91
0.95460 0.94879 0.94276 0.93652 0.93006
75000 81771 97664 53917 82248
0.10606 0.11726 0.12855 0.13994 0.15140
75000 71904 95136 05758 64552
-0.02512 -0.02761 -0.03008 -0.03255 -0.03500
12500 05290 83968 30217 25676
0.00329 0:OOjbl 0.00392 0.00424 0.00455
17500 13426 82074 21011 27815
0.90 0.89 0.88 0.87 0.86
18359 88576 13273 00868 60096
0.92340 0691652 0.90945 0.90217 0.89470
14844 84352 23870 66936 47517
0.16295 0.17457 0.18627 0.19803 0.20986
32031 68448 33805 87864 90158
-0.03743 -0.03984 -0.04224 -0.04461 -0.04695
51953 90624 23240 31332 96417
0.00486 0.00516 0.00546 0.00575 0.00604
00078 35405 31416 85746 96051
0.85 0.84 0.83 0.82 0.81
-0.07392 -0.07629 -0.07854 -0.08067 -0.08269
00000 29929 59532 98752 57824
0.88704 0.87918 0.87114 0.86292 0.85452
00000 59183 60264 38830 30848
0.22176 0.23370 0.24570 0.25775 0.26984
00000 16492 78536 64845 93952
-0.04928 -0.05157 -0.05383 -0.05606 -0.05826
00000 23583 48668 56760 29376
0.00633 0.00661 0.00689 0.00716 0.00743
60000 75284 39614 50719 06355
0.80 0.79 0.78 0.77 0.76
94141 15055 18513 04314 72328
-0.08459 -0.08637 -0.08804 -0.08960 -0.09104
47266 77876 60729 07168 28802
0.84594 0.83720 0.82828 0.81920 0.80996
72656 00952 52783 65536 76929
0.28198 0.29415 0.30635 0.31858 0.33083
24219 13848 20892 03264 18746
-0.06042 -0.06254 -0.06463 -0.06667 -0.06868
48047 94324 49783 96032 14711
0.00769 0.00794 0.00819 0.00843 0.00866
04297 42345 18324 30086 75510
0.75 0.74 0.73 0.72 0.71
0.01044 0.01061 0.01077 0.01092 0.01106
22500 54844 69446 66459 46105
-0.09237 -0.09359 -0.09470 -0.09571 -0.09660
37500 45385 64832 08458 89124
0.80057 0.79102 0.78132 0.77148 0.76150
25000 48096 84864 74242 55448
0.34310 0.35538 0.36768 0.37998 0.39229
25000 79579 39936 63433 07352
-0.07063 -0.07254 -0.07441 -0.07622 -0.07798
87500 96127 22368 48054 55076
0.00889 0.00911 0.00932 0.00953 0.00973
52500 58993 92954 52378 35295
0.70 0.69 0.68 0.67 0.66
t::.
0.01119 0.01130 0.01140 0.01149 0.01157
08672 54515 84054 97774 96219
-0.09740 -0.09809 -0.09867 -0.09916 -0.09955
19922 14176 85435 47468 14258
0.75138 0.74113 0.73075 0.72024 0.70962
67969 51552 46195 92136 29842
0.40459 0.41688 0.42917 0.44144 0.45369
28906 85248 33480 30664 33833
-0.07969 -0.08134 -0.08293 -0.08447 -0.08594
25391 41024 84077 36732 81254
0.00992 0.01010 0.01028 0.01044 0.01060
39766 63885 05783 63626 35618
0.65 0.64 0.63 0.62 0.61
0.40 0.41 0.42 0.43 0.44
0.01164 0.01170 0.01175 0.01178 0.01180
80000 49786 06306 50351 82765
-0.09984 -0.10003 -0.10012 -0.10013 -0.10004
00000 19092 86132 15915 23424
0.69888 0.68802 0.67706 0.66599 0.65482
00000 43508 01464 15155 26048
0.46592 0.47811 0.49028 0.50241 0.51450
00000 86167 49336 46520 34752
-0.08736 -0.08870 -0.08998 -0.09120 -0.09234
00000 75421 90068 26598 67776
0.01075 0.01089 0.01102 0.01114 0.01125
20000 15052 19094 30487 47635
0.60 0.59 0.58 0.57 0.56
0.45 0.46 0.47 kE .
0.01182 0.01182 0.01181 0.01179 0.01176
04453 16375 19546 15034 03961
-0.09986 -0.09959 -0.09923 -0.09879 -0.09826
23828 32476 64892 36768 63965
0.64355 0.63220 0.62075 0.60922 0.59762
75781 06152 59108 76736 01254
0.52654 0.53854 0.55048 0.56236 0.57418
71094 12648 16567 40064 40421
-0.09341 -0.09441 -0.09534 -0.09619 -0.09696
96484 95724 48621 38432 48548
0.01135 0.01144 0.01153 0.01160 0.01166
68984 93025 18292 43366 66877
0.55 0.54 0.53 0.52 0.51
0.50
0.01171 87500
-0.09765
62500
0.58593 75000 Al
0.58593 75000 Ao
-0.09765
62500
0.01171 87500
0.50
A-2
o.‘do 0.01 0.00049
00000
0.02 0.03 0.04
57921 0.00098 30066 0.00146 14085 0.00193 07725
0.00000 -0.00493 -0.00973 -0.01440 -0.01893
00000 33767 36932 12590 64224
1.00000 0.99654 0.99283 0.98888 0.98469
0.05 0.06 0.07 0.08 0.09
0.00239 0.00284 0.00328 0.00371 0.00413
08828 15335 25281 36794 48096
-0.02333 -0.02761 -0.03175 -0.03576 -0.03964
95703 11276 15567 13568 10640
0.98026 0.97559 0.97069 0.96555 0.96019
0.10 0.11 0.12 0.13 0.14
0.00454 0.00494 0.00533 0.00571 0.00608
57500 63412 64326 58827 45585
-0.04339 -0.04701 -0.05050 -0.05387 -0.05710
12500 25223 55232 09296 94524
0.15 0.16 0.17 0.18 0.19
0.00644 0.00678 0.00712 0.00744 0.00776
23359 90995 47422 91654 22787
-0.06022 -0.06320 -0.06607 -0.06881 -0.07142
0.20 0.21 0.22 0.23 0.24
0.00806 0.00835 0.00863 0.00890 0.00915
40000 42553 29786 01118 56045
0.25 0.26 0;27 0.28 0.29
0.00939 0.00963 0.00985 0.01006 0.01025
0.30
0.00000
E 0:33 0.34 0.35 0.36 037
'
ANALYSIS
A3
A2
00000 20858 67064 64505 39648
A2
A-1
A-2
P
NUMERICAL SIX-POINT
LA( ;RANGIAN
INTERPOLATION
P 1.00 1.01 1.02 1.03 1.04
-0.00033 32917 -0.00066 63334 -0.00099 88752 -0.00133 06675
1.05 1.06 1.07 1.08 1.09
A-2
Ao
A-1
COEFFICIENTS
P@-l)(P*-4) (2+k) ! (3-k)
&)+l)k+3
909
ANALYSIS Table
25.1
(Y-3) ! (p-k)
AI
-42
A3
0.0024955421 0.0049810068 0.0074546597 0.0099147776
0.0000000000 -0.00993 27517 -0;01972 86936 -0.02938 43870 -0.03889 64352
1.0000000000 1.0032079192 1.0061633736 1.0088639545 1.0113073152
0.0000000000 0.0050667067 0.0102669732 0.0156009890 0.0210689024
0.0000000000 -0.00050 41246 -0.00101 63266 -0.00153 63410 -0.00206 38925
0.00
-0.00166 14609 -0.00199 10065 -0.00231 90556 -0.00264 53606 -0.00296 96742
0.0123596484 0.0147875724 0.0171968621 0.0195858432 0.0219528547
-0.04826 14844 -0.05747 62248 -0.06653 73917 -0.07544 17664 -0.08418 61771
1.0134911719 1.0154133048 1.0170715592 1.0184638464 1.0195881446
0.0266708203 0.0324068076 0.0382768866 0.0442810368 0.0504191940
-0.00259 86953 -0.00314 04535 -0.00368 88606 -0.00424 35994 -0.00480 43420
0.05 0.06 0.07 0.08 0.09
1.10 1.11 1.12 1.13 1.14
-0.00329 17500 -0.00361 13426 -0.00392 82074 -0.00424 21011 -0.00455 27815
0.0242962500 0.0266143965 0.0289056768 0.0311684892 0.0334012476
-0.09276 75000 -0.10118 26604 -0.10942 86336 -0.11750 24458 -0.12540 11752
1.0204425000 1.0210250279 1.0213339136 1.0213674133 1.0211238552
0.0566912500 0.0630970523 0.0696364032 0.0763090596 0.0831147324
-0.00537 07500 -0.00594 24737 -0.00651 91526 -0.00710 04152 -0.00768 58785
0.10 0.11 0.12
1.15 1.16 1.17 1.18 1.19
-0.0048600078 -0.00516 35405 -0.00546 31415 -0.00575 85746 -0.00604 96051
0.0356023828 -0.13312 19531 0.0377703424, -0.14066 19648 0.0399035915 -0.14801 84505 0.0420006132 -0.15518 87064 0.0440599092 -0.16217 00858
1.0206016406 1.0197992448 1.0187152180 1.0173481864 1.0156968533
0.0900530859 0.0971237376 0.1043262572 0.1116601668 0.1191249396
-0.00827 51484 -0.00886 78195 -0.00946 34747 -0.01006 16854 -0.01066 20112
0.15 0.16 0.17 0.18 0.19
1.20 1.21 1.22 1.23 1.24
-0.00633 60000 -0.00661 75284 -0.00689 39614 -0.00716 50719 -0.00743 06355
0.0460800000 0.0480594258 0.0499967468 0.0518905435 0.0537394176
-0.16896 00000 -0.17555 59192 -0.18195 53736 -0.18815 59545 -0.19415 53152
1.0137600000 1.0115364867 1.0090252536 1.0062253220 1.0031357952
0.1267200000 0.1344447229 0.1422984332 0.1502804052 0.1583898624
-0.01126 40000 -0.01186 71878 -0.01247 10986 -0.01307 52443 -0.01367 91245
0.20 0.21 0.22 0.23 0.24
1.25 1.26 1.27 1.28 1.29
-0.00769 04297 -0.00794 42345 -0.00819 18324 -0.00843 30086 -0.00866 75509
0.0555419922 0.0572969124 0.0590028458 0.0606584832 0.0622625385
-0.19995 11719 -0.20554 13048 -0.21092 35592 -0.21609 58464 -0.22105 61446
0.9997558594 0.9960847848 0.9921219267 0.9878667264 0.9833187121
0.1666259766 0.1749878676 0.1834746029 0.1920851968 0.2008186102
-0.01428 22266 -0.01488 40255 -0.01548 39838 -0.01608 15514 -0.01667 61653
0.25 0.26 _~0.27 0.28 0.29
1.30 1.31 1.32 1.33 1.34
-0.00889 52500 -0.00911 58993 -0.00932 92954 -0.00953 52378 -0.00973 35295
0.0638137500 0.0653108802 0.0667527168 0.0681380729 0.0694657876
-0.22580 25000 -0.23033 30279 -0.23464 59136 -0.23873 94133 -0.24261 18552
0.9784775000 0.9733427954 0.9679143936 0.9621921808 0.9561761352
0.2096737500 0.2186494685 0.2277445632 0.2369577758 0.2462877924
-0.01726 72500 -0.01785 42169 -0.01843 64646 -0.01901 33784 -0.01958 43305
0.30 0.31 0.32 0.33 0.34
1.35 1.36 1.37 1.38 1.39
-0.00992 39766 -0.01010 63885 -0.01028 05783 -0.01044 63626 -0.01060 35618
0.0707347266 0.0719437824 0.0730918752 0.0741779532 0.0752009929
-0.24626 16406 -0.24968 72448 -0.25288 72180 -0.25586 01864 -0.25860 48533
0.9498663281 0.9432629248 0.9363661855 0.9291764664 0.9216942208
0.2557332422 0.2652926976 0.2749646735 0.2847476268 0.2946399558
-0.02014 86797 -0.02070 57715 -0.02125 49379 -0.02179 54974 -0.02232 67544
0.35 t:; 0138 0.39
1.40 1.41 1.42 1.43 1.44
-0.01075 20000 -0.01089 15052 -0.01102 19094 -0.01114 30487 -0.01125 47635
0.0761600000 0.0770540096 0.0778820868 0.0786433273 0.0793368576
-0.26112 00000 -0.26340 44867 -0.26545 72536 -0.26727 73220 -0.26886 37952
0.9139200000 0.9058544542 0.8974983336 0.8888524895 0.8799178752
0.3046400000 0.3147460392 0.3249562932 0.3352689215 0.3456820224
-0.02284 80000 -0.02335 85111 -0.02385 75506 -0.02434 43676 -0.02481 81965
0.40 0.41 0.42 0.43 0.44
1.45 1.46 1.47 1.48 1.49
-0.01135 68984 -0.01144 93025 -0.01153 18292 -0.01160 43366 -0.01166 66877
0.0799618359 0.0805174524 0.0810029296 0.0814175232 0.0817605223
-0.27021 58594 -0.27133 27848 -0.27221 39267 -0.27285 87264 -0.27326 67121
0.8706955469 0.8611866648 0.8513924942 0.8413144064 0.8309538796
0.3561936328 0.3668017276 0.3775042192 0.3882989568 0.3991837265
-0.02527 82578 -0.02572 37575 -0.02615 38871 -0.02656 78234 -0.02696 47286
0.45 0.46 0.47 0.48 0.49
0.00000
00000
0.00000
00000
0.01 0.02 0.03 0.04
FiE .
1.50 -0.01171 87500 0.0820312500 -0.27343 75000 0.8203125000 0.4101562500 -0.02734 37500 0.50 A2 A-1 -43 Al Ao A-2 -P
910
NUMERICAL
Table 25.1
SIX-POINT
LAGRANGIAN
ANALYSIS
INTERPOLATION
COEFFICIENTS
P 1.50 1.51 1;52 1.53 1.54
A-2 -0.01171 87500 -0.01176 03961 -0.01179 15034 -0.01181 19546 -0.01182 16375
A-1 0.08203 12500 0.08222 90640 0.08235 33568 0.08240 35567 0.08237 91276
P(P2-VW4) (P-3) (2+k) ! (3-k) ! (p-k) Ao AI -0.27343 75000 0.82031 25000 -0.27337 07954 0.80939 19629 -0.27306 63936 0.79819 40736 -0.27252 41808 0.78672 07483 -0.27174 41352 0.77497 40152
1.55 1.56 1.57 1.58 1.59
-0.01182 -0.01180 -0.01178 -0.01175 -0.01170
04453 82765 50350 06306 49786
0.08227 0.08210 0.08185 0.08152 0.08112
95703 44224 32590 56932 13767
-0.27072 -0.26947 -0.26797 -0.26624 -0.26428
63281 09248 81855 84664 22208
0.76295 0.75066 0.73811 0.72529 0.71221
60156 90048 53530 75464 81883
0.46625 0.47769 0.48921 0.50080 0.51244
08984 84576 59897 06868 96721
-0.02893 -0.02919 -0.02942 -0.02962 -0.02980
97109 26835 13812 48294 20377
0.55 0.56 0.57 0.58 0.59
1.60 1.61 1.62 1.63 1.64
-0.01164 -0.01157 -0.01149 -0.01140 -0.01130
80000 96219 97774 84054 54515
0.08064 0.08008 0.07944 0.07873 0.07793
00000 12933 50268 10110 90976
-0.26208 -0.25964 -0.25697 -0.25406 -0.25092
00000 24542 03336 44895 58752
0.69888 0.68528 0.67143 0.65734 0.64299
00000 58217 86136 14570 75552
0.52416 0.53592 0.54775 0.55962 0.57155
00000 86554 25532 85377 33824
-0.02995 -0.03007 -0.03016 -0.03022 -0.03025
20000 36943 60826 81108 87085
0.60 0.61 0.62 0.63 0.64
1.65 1.66 1.67 1.68 1.69
-0.01119 -0.01106 -0.01092 -0.01077 -0.01061
08672 46105 66459 69446 54845
0.07706 0.07612 0.07509 0.07399 0.07280
91797 11924 51133 09632 88061
-0.24755 -0.24395 -0.24012 -0.23606 -0.23178
55469 46648 44942 64064 18796
0.62841 0.61358 0.59851 0.58322 0.56769
02344 29448 92617 28864 76471
0.58352 0.59553 0.60758 0.61967 0.63179
37891 63876 77354 43168 25427
-0.03025 -0.03022 -0.03015 -0.03004 -0.02990
67891 12495 09703 48154 16318
0.65 0.66 0.67 0.68 0.69
1.70 1.71 1.72 1.73 1.74
-0.01044 -0.01025 -0.01006 -0.00985 -0.00963
22500 72328 04314 18513 15055
0.07154 0.07021 0.06879 0.06730 0.06573
87500 09477 55968 29404 32676
-0.22727 -0.22253 -0.21758 -0.21241 -0.20702
25000 99629 60736 27483 20152
0.55194 0.53597 0.51978 0.50338 0.48678
75000 65304 89536 91158 14952
0.64393 0.65610 0.66830 0.68050 0.69272
87500 92010 00832 75083 75124
-0.02972 -0.02949 -0.02923 -0.02893 -0.02858
02500 94834 81286 49649 87545
0.70
1.75 1.76 1.77 1.78 1.79
-0.00939 -0.00915 -0.00890 -0.00863 -0.00835
94141 56045 01118 29786 42553
0.06408 0.06236 0.06056 0.05869 0.05674
69141 42624 57427 18332 30604
-0.20141 -0.19559 -0.18956 -0.18332 -0.17688
60156 70048 73530 95464 61883
0.46997 0.45296 0.43575 0.41836 0.40079
07031 14848 87205 74264 27558
0.70495 0.71718 0.72942 0.74165 0.75387
60547 90176 22061 13468 20883
-0.02819 -0.02776 -0.02727 -0.02674 -0.02616
82422 21555 92045 80814 74609
0.75 0.76 0.77 0.78 0.79
1.80 1.81 1.82 1.83 1.84
-0.00806 -0.00776 -0.00744 -0.00712 -0.00678
40000 22787 91654 47422 90995
0.05472 0.05262 0.05045 0.04821 0.04589
00000 32771 35668 15948 81376
-0.17024 -0.16339 -0.15635 -0.14911 -0.14168
00000 38217 06136 34570 55552
0.38304 0.36511 0.34702 0.32876 0.31035
00000 45892 20936 82245 88352
0.76608 0.77827 0.79043 0.80258 0.81469
00000 05717 92132 12540 19424
-0.02553 -0.02485 -0.02411 -0.02332 -0.02247
60000 23376 50946 28741 42605
0.80 0.81 0.82 0.83 0.84
1.85 1.86 1.87 1.88 1.89
-0.00644 -0.00608 -0.00571 -0.00533 -0.00494
23359 45585 58826 64326 63412
0.04351 0.04106 0.03853 0.03594 0.03328
40234 01324 73971 68032 93898
-0.13407 -0.12627 -0.11829 -0.11013 -0.10180
02344 09448 12617 48864 56471
0.29179 0.27309 0.25425 0.23528 0.21619
99219 76248 82292 81664 40145
0.82676 0.83879 0.85078 0.86272 0.87460
64453 98476 71516 32768 30590
-0.02156 -0.02060 -0.01957 -0.01848 -0.01733
78203 21015 56336 69274 44750
0.85 0.86 0.87 0.88 0.89
1.90 1.91 1.92 1.93 1.94
-0.00454 -0.00413 -0.00371 -0.00328 -0.00284
57500 48096 36794 25281 15335
0.03056 0.02777 0.02492 0.02201 0.01904
62500 85315 74368 42242 02076
-0.09330 -0.08464 -0.07582 -0.06684 -0.05770
75000 45304 09536 11158 94952
0.19698 0.17766 0.15823 0.13871 0.11910
25000 04979 50336 32833 25752
0.88642 0.89817 0.90985 0.92145 0.93297
12500 25173 14432 25246 01724
-0.01611 -0.01483 -0.01347 -0.01205 -0.01056
67500 22067 92806 63882 19265
0.90 0.91 0.92 0.93 0.94
1.95 1.96 1.97 1.98 1.99
-0.00239 -0.00193 -0.00146 -0.00098 -0.00049
08828 07725 14086 30066 57921
0.01600 0.01291 0.00976 0.00656 0.00330
67578 53024 73265 43732 80442
-0.04843 -0.03900 -0.02945 -0.01975 -0.00994
07031 94848 07205 94264 07558
0.09941 0.07964 0.05981 0.03992 0.01998
03906 43648 22880 21064 19233
0.94439 0.95573 0.96696 0.97809 0.98910
87109 23776 53223 16068 52046
-0.00899 -0.00735 -0.00563 -0.00383 -0.00195
42734 17875 28077 56534 86242
0.95
0.00000 00000 A-2
1.00 -P
&)+l)k+3
2.00
0.00000 00000 -43
0.00000 00000 A2
0.00000 00000 Al
0.00000 00000 Ao
A2 0.41015 62500 0.42121 41848 0.43235 51232 0.44357 65921 0.45487 60524
-0.02734 -0.02770 -0.02804 -0.02836 -0.02866
37500 40202 46566 47617 34225
0.50 0.51 0.52 0.53 0.54
1.00000 00000 A-1
-43
2:: 0:73 0.74
% 0:98 0.99
NUMERICAL
SIX-POINT
LAGRANGIAN
INTERPOLATION
&+(4)k+3
P
A-1
A-2
911
ANALYSIS
Ao
COEFFICIENTS
Pk-l)(P2-4) (P-3) (2+k) ! (3-k) ! (p-/c) Al
Table 25.1
A2
A3
2.00 2.01 2.02 2.03 2.04
0.00000 0.00050 0.00101 0.00153 0.00206
00000 41246 63266 63410 38925
0.00000 -0.00335 -0.00676 -0.01021 -0.01371
00000 80392 42932 69214 40224
0.00000 0.01005 0.02022 0.03049 0.04087
00000 74108 59064 97755 31648
0.00000 -0.02001 -0.04005 -0.06011 -0.08017
00000 52433 52264 12080 42848
1.00000 1.01076 1.02140 1.03190 1.04226
00000 97879 82732 90702 57024
0.00000 0.00204 0.00416 0.00638 0.00868
00000 19592 90134 29427 55475
1.00 1.01 1.02 1.03 1.04
2.05 2.06 2.07 2.08 2.09
0.00259 0.00314 0.00368 0.00424 0.00480
86953 04535 88605 35994 43420
-0.01725 -0.02083 -0.02445 -0.02810 -0.03179
36328 37276 22191 69568 57264
0.05134 0.06189 0.07252 0.08323 0.09401
00781 43752 97708 98336 79854
-0.10023 -0.12028 -0.14031 -0.16031 -0.18027
53906 52952 46033 37536 30179
1.05247 1.06252 1.07240 1.08211 1.09165
16016 01076 44679 78368 32752
0.01107 0.01356 0.01614 0.01881 0.02159
86484 40865 37232 94406 31417
1.05 1.06 1.07 1.08 1.09
2.10 2.11 2.12 2.13 2.14
0.00537 0.00594 0.00651 0.00710 0.00768
07500 24737 91526 04151 58785
-0.03551 -0.03926 -0.04304 -0.04684 -0.05066
62500 61847 31232 45921 80524
0.10485 0.11575 0.12669 0.13767 0.14868
75000 15021 29664 47167 94248
-0.20018 -0.22003 -q.23981 -0.25951 -0.27911
25000 21346 16864 07492 87448
1.10100 1.11016 1.11912 1.12787 1.13641
37500 21335 12032 36409 20324
0.02446 0.02744 0.03052 0.03370 0.03699
67500 22100 14874 65686 94615
1.10 1.11 1.12 1.13 1.14
2.15 2.16 2.17 2.18 2.19
0.00827 0.00886 0.00946 0.01006 0.01066
51484 78195 34747 16854 20112
-0.05451 -0.05837 -0.06224 -0.06612 -0.07002
08984 04576 39898 86868 16721
0.15972 0.17078 0.18185 0.19292 0.20399
96094 76352 57120 58936 00767
-0.29862 -0.31801 -0.33728 -0.35642 -0.37541
49219 83552 79445 24136 03092
1.14472 1.15281 1.16066 1.16827 1.17562
88672 65376 73385 34668 70208
0.04040 0.04391 0.04754 0.05129 0.05515
21953 68205 54091 00546 28726
1.15 1.16 1.17 1.18 1.19
2.20 2.21 2.22 2.23 2.24
0.01126 0.01186 0.01247 0.01307 0.01367
40000 71878 10986 52443 91245
-0.07392 -0.07782 -0.08172 -0.08561 -0.08950
00000 06554 05532 65377 53824
0.21504 0.22606 0.23706 0.24801 0.25892
00000 72433 32264 92080 62848
-0.39424 -0.41289 -0.43137 -0.44966 -0.46773
00000 96758 73464 08405 78048
1.18272 1.18954 1.19609 1.20235 1.20832
00000 43042 17332 39865 26624
0.05913 0.06324 0.06747 0.07182 0.07631
60000 15959 18414 89394 51155
1.20 1.21 1.22 1.23 1.24
2.25 2.26 2.27 2.28 2.29
0.01428 0.01488 0.01548 0.01608 0.01667
22266 40255 39838 15514 61653
-0.09338 -0.09724 -0.10109 -0.10492 -0.10872
37891 83876 57353 23168 45427
0.26977 0.28055 0.29126 0.30188 0.31240
53906 72952 26033 17536 50179
-0.48559 -0.50322 -0.52060 -0.53772 -Ok55457
57031 18152 32358 68736 94504
1.21398 1.21934 1.22438 1.22908 1.23346
92578 51676 16841 99968 11915
0.08093 0.08568 0.09057 0.09559 0.10076
26172 37145 06999 58886 16184
1.25 1.26 1.27 1.28 1.29
2.30 2.31 2.32 2.33 2.34
0.01726 0.01785 0.01843 0.01901 0.01958
72500 42169 64646 33784 43305
-0.11249 -0.11624 -0.11994 -0.12361 -0.12723
87500 12010 80832 55083 95124
0.32282 0.33312 0.34329 0.35333 0.36323
25000 41346 96864 87492 07448
-0.57114 -0.58741 -0.60337 -0.61900 -0.63429
75000 73671 52064 69817 84648
1.23748 1.24115 1.24446 1.24739 1.24994
62500 60498 13632 28571 10924
0.10607 0.11152 0.11712 0.12287 0.12878
02500 41668 57754 75053 18095
1.30 1.31 1.32 1.33 1.34
2.35 z76 2138 2.39
0.02014 0.02070 0.02125 0.02179 0.02232
86797 57715 49379 54974 67544
-0.13081 -0.13434 -0.13781 -0.14121 -0.14456
60547 10176 02060 93468 40883
0.37296 0.38253 0.39191 0.40111 0.41010
49219 03552 59445 04136 23092
-0.64923 -0.66380 -0.67798 -0.69177 -0.70513
52344 26752 59770 01336 99417
1.25209 1.25384 1.25519 1.25610 1.25659
65234 94976 02548 89268 55371
0.13484 0.14105 0.14743 0.15397 0.16067
11641 80685 50458 46426 94293
1.35 1.36 1.37 1.38 1.39
2.40 2.41 2.42 2.43 2.44
0.02284 0.02335 0.02385 0.02434 0.02481
80000 85111 75506 43676 81965
-0.14784 -0.15104 -0.15416 -0.15720 -0.16016
00000 25717 72132 92540 39424
0.41888 0.42743 0.43574 0.44380 0.45160
00000 16758 53464 88405 98048
-0.71808 -0.73057 -0.74260 -0.75416 -0.76522
00000 47083 82664 46730 77248
1.25664 1.25623 1.25536 1.25401 1.25219
00000 21204 15932 80027 08224
0.16755 0.17459 0.18181 0.18920 0.19677
20000 49727 09894 27162 28435
1.40 1.41 1.42 1.43 1.44
2.45 2.46 2.47 2.48 2.49
0.02527 0.02572 0.02615 0.02656 0.02696
82578 37575 38870 78234 47286
-0.16302 -0.16579 -0.16845 -0.17101 -0.17345
64453 18476 51516 12768 50590
0.45913 0.46637 0.47331 0.47993 0.48623
57031 38152 12358 48736 14504
-0.77578 -0.78580 -0.79529 -0.80421 -0.81256
10156 79352 16683 51936 12829
1.24986 1.24704 1.24370 1.23983 1.23542
94141 30276 08004 17568 48077
0.20452 0.21245 0.22058 0.22889 0.23739
40859 91825 08967 20166 53552
1.45 1.46 1.47 1.48 1.49
2.50
0.02734 37500
-0.17578
12500
0.49218 75000
-0.82031
25000
1.23046t~7500
0.24609 37500
1.50
-43
A2
AI
Ao
1
-1-2
-P
912
NUMERICAL fjIX.POINT
Table 25.1
ANALYSIS
LAGRANGIAN
INTERPOLATION
&+(-l)k+3
P(P2-l)(P2-4)(P-3)
COEFFICIENTS
(2+k) ! (3-k) !(p-k) -40 Al 0.4921875000 -0.82031 25000 0.4977893671 -0.82745 11996 0.5030232064 -0.83395 95264 0.5078749817 -0.83981 94142 0.5123304648 -0.84501 25848
A2 1.2304687500 1.2249522660 1.2188639232 1.2121921734 1.2049253524
A3 0.2460937500 0.2549900635 0.2640871834 0.2733880221 0.2828955175
1.50 1.51 1.52 1.53 1.54
2.50 2.51 2.52 2.53 2.54
0.0273437500 0.0277040203 0.0280446566 0.0283647616 0.0286634225
A-1 -0.17578 12500 -0.17798 45173 -0.18005 94432 -0.18200 05246 -0.18380 21724
2.55 2.56 2.57 2.58 2.59
0.0289397109 0.0291926835 0.0294213812 0.0296248294 0.0298020377
-0.18545 87109 -0.18696 43776 -0.18831 33223 -0.18949 96068 -0.19051 72046
0.5163752344 0.5199946752 0.5231739770 0.5258981336 0.5281519417
-0.84952 05469 -0.85332 45952 -0.85640 58095 -0.85874 50536 -0.86032 29742
1.1970516797 1.1885592576 1.1794360710 1.1696699868 1.1592487533
0.2926126328 0.3025423565 0.3126877026 0.3230517106 0.3336374461
1.55 1.56 1.57 1.58 1.59
2.60 2.61 2.62 2.63 2.64
0.0299520000 0.0300736943 0.0301660826 0.0302281107 0.0302587085
-0.19136 00000 -0.19202 17879 -0.19249 62732 -0.19277 70702 -0.19285 77024
0.5299200000 0.5311867083 0.5319362664 0.5321526730 0.5318197248
-0.86112 00000 -0.86111 63408 -0.86029 19864 -0.85862 67055 -0.85610 00448
1.1481600000 1.1363912367 1.1239298532 1.1107631190 1.0968781824
0.3444480000 0.3554864894 0.3667560574 0.3782598730 0.3900011315
1.60 1.61 1.62 1.63 1.64
2.65 2.66 2.67 2.68 2.69
0.0302567891 0.0302212495 0.0301509704 0.0300448154 0.0299016317
-0.19273 16016 -0.19239 21076 -0.19183 24679 -0.19104 58368 -0.19002 52752
0.5309210156 0.5294399352 0.5273596683 0.5246631936 0.5213332829
-0.85269 13281 -0.84837 96552 -0.84314 39008 -0.83696 27136 -0.82981 45154
1.0822620703 1.0669016876 1.0507838166 1.0338951168 1.0162221240
0.4019830547 0.4142088905 0.4266819134 0.4394054246 0.4523827520
1.65 1.66 1.67 1.68 1.69
2.70 2.71 2.72 2.73 2.74
0.0297202500 0.0294994834 0.0292381286 0.0289349650 0.0285887545
-0.18876 37500 -0.18725 41335 -0.18548 92032 -0.18346 16409 -0.18116 40324
0.5173525000 0.5127031996 0.5073675264 0.5013274142 0.4945645848
-0.82167 75000 -0.81252 96321 -0.80234 86464 -0.79111 20467 -0.77879 71048
0.9977512500 0.9784687823 0.9583608832 0.9374135896 0.9156128124
0.4656172500 0.4791123003 0.4928713114 0.5068977188 0.5211949855
1.70 1.71 1.72 1.73 1.74
2.75 2.76 2.77 2.78 2.79
0.0281982422 0.0277621555 0.0272792044 0.0267480814 0.0261674609
-0.17858 88672 -0.17572 85376 -0.17257 53385 -0.16912 14668 -0.16535 90208
0.4870605469 0.4787965952 0.4697538095 0.4599130536 0.4492549742
-0.76538 08594 -0.75084 01152 -0.73515 14420 -0.71829 11736 -0.70023 54067
0.8929443359 0.8693938176 0.8449467873 0.8195886468 0.7933046696
0.5357666016 0.5506160845 0.5657469793 0.5811628586 0.5968673228
1.75 1.76 1.77 1.78 1.79
2.80 2.81 2.82 2.83 2.84
0.0255360000 0.0248523376 0.0241150946 0.0233228741 0.0224742605
-0.16128 00000 -0.15687 63042 -0.15213 97332 -0.14706 19865 -0.14163 46624
0.4377600000 0.4254083408 0.4121799864 0.3980547055 0.3830120448
-0.68096 00000 -0.66044 05733 -0.63865 25064 -0.61557 09380 -0.59117 07648
0.7660800000 0.7378996529 0.7087485132 0.6786113352 0.6474727424
0.6128640000 0.6291565462 0.6457486454 0.6626440097 0.6798463795
1.80 1.81 1.82 1.83 1.84
2.85 2.86 2.87 2.88 2.89
0.0215678203 0.0206021015 0.0195756335 0.0184869274 0.0173344751
-0.13584 92578 -0.12969 71676 -0.12316 96841 -0.11625 79968 -0.10895 31915
0.3670313281 0.3500916552 0.3321719008 0.3132507136 0.2933065154
-0.56542 66406 -0.53831 29752 -0.50980 39333 -0.47987 34336 -0.44849 51479
0.6153172266 0.5821291476 0.5478927329 0.5125920768 0.4762111402
0.6973595234 0.7151872385 0.7333333502 0.7518017126 0.7705962087
1.85 1.86 1.87 1.88 1.89
2.90 2.91 2.92 2.93 2.94
0.0161167500 0.0148322068 0.0134792806 0.0120563881 0.0105619265
-0.10124 62500 -0.09312 80498 -0.08458 93632 -0.07562 08571 -0.06621 30924
0.2723175000 0.2502616321 0.2271166464 0.2028600467 0.1774691048
-0.41564 25000 -0.38128 86646 -0.34540 65664 -0.30796 88792 -0.26894 80248
0.4387337500 0.4001435985 0.3604242432 0.3195591059 0.2775314724
0.7897207500 0.8091792770 0.8289757594 0.8491141956 0.8695986135
1.90 1.91 1.92 1.93 1.94
2.95 2.96 2.97 2.98 2.99
0.0089942734 0.0073517875 0.0056328077 0.0038356534 0.0019586242
-0.05635 65234 -0.04604 14976 -0.03525 82547 -0.02399 69268 -0.01224 75371
0.1509208594 0.1231921152 0.0942594420 0.0640991i'36 0.0326874067
-0.22831 61719 -0.18604 52352 -0.14210 68745 -0.09647 24936 -0.04911 32392
0.2343244922 0.1899211776 0.1443044035 0.0974569068 0.0493612858
0.8904330703 0.9116216525 0.9331684760 0.9550776866 0.9773534596
1.95 1.96 1.97 1.98 1.99
0.00000 00000
1.0000000000 2.00
P
A-2
3.00 0.0000000000 0.00000 00000 -43 A2
0.00000 00000
Al
0.00000 00000
Ao
A-1
A-2
-P
NUMERICAL
SEVEN-POINT
LAGRANGIAN
INTERPOLATION
A-3
A-2
COEFFICIENTS
Table
25.1
(p2-4)(p2-9) (3+k) !(3-k) ! (p-k)
&+~l)k'3Ppl)
P
913
ANALYSIS
A-1
0.0 0.1 0.2 0.3 0.4
0.00000 -0.00159 -0.00295 -0.00400 -0.00465
00000 10125 68000 28625 92000
0.00000 0.01409 0.02580 0.03445 0.03960
00000 18250 48000 94250 32000
0.00000 -0.06725 -0.11827 -0.15241 -0.16972
00000 64375 20000 66875 80000
1.00000 0.98642 0.94617 0.88062 0.79206
Ao 00000 77500 60000 97500 40000
0.00000 0.08220 0.17740 0.28305 0.39603
Al 00000 23125 80000 95625 20000
0.00000 -0.01557 -0.03153 -0.04662 -0.05940
A2 00000 51750 92000 15750 48000
0.00000 0.00170 0.00337 0.00489 0.00609
00000 07375 92000 23875 28000
0.0 0.1 0.2 0.3 0.4
0.5 0.6 0.7 0.8 0.9
-0.00488 -0.00465 -0.00400 -0.00295 -0.00159
28125 92000 28625 68000 10125
0.04101 0.03870 0.03291 0.02407 0.01283
56250 72000 24250 68000 78250
-0.17089 -0.15724 -0.13068 -0.09363 -0.04898
84375 80000 16875 20000 64375
0.68359 0.55910 0.42315 0.28089 0.13788
37500 40000 97500 60000 77500
0.51269 0.62899 0.74052 0.84268 0.93074
53125 20000 95625 80000 23125
-0.06835 -0.07188 -0.06835 -0.05617 -0.03384
93750 48000 65750 92000 51750
0.00683 0.00698 0.00643 0.00510 0.00295
59375 88000 93875 72000 47375
0.5 0.6 0.7 0.8 0.9
A3
1.0 1.1 :*: 1:4
0.00000 0.00170 0.00337 0.00489 0.00609
00000 07375 92000 23875 28000
0.00000 -0.01349 -0.02661 -0.03824 -0.04730
00000 61750 12000 95750 88000
0.00000 0.04980 0.13719 0.09676 0.16755
00000 73125 95625 80000 20000
0.00000 -0.12678 -0.32365 -0.23654 -0.38297
00000 22500 02500 40000 60000
1.00000 1.04595 1.05186 1.06444 1.00531
00000 35625 80000 33125 20000
0.00000 0.04648 0.10644 0.18031 0.26808
00000 68250 94250 48000 32000
0.00000 -0.00367 -0.00788 -0.01237 -0.01675
00000 00125 48000 48625 52000
1.0 1.1 1.2 1.3 1.4
1.5 1.6 1.7
0.00683 0.00698 0.00643 0.00510 0.00295
59375 88000 93875 72000 47375
-0.05273 -0.05358 -0.04907 -0.03870 -0.02227
43750 08000 85750 72000 41750
0.18457 0.18547 0.16813 0.13132 0.07488
03125 20000 95625 80000 73125
-0.41015 -0.40185 -0.35606 -0.2723'3 -0.15240
62500 60000 02500 40000 22500
0.92285 0.80371 0.64853 0.45964 0.24130
15625 20000 83125 80000 35625
0.36914 0.48222 0.60530 0.73543 0.86869
06250 72000 24250 68000 28250
-0.02050 -0.02296 -0.02328 -0.02042 -0.01316
78125 32000 08625 88000 20125
1.5 1.6 1.7 1.8 1.9
2.0 2.1 2.2 2.3 2.4
0.00000 -0.00367 -0.00788 -0.01237 -0.01675
00000 00125 48000 48625 52000
0.00000 0.02739 0.05857 0.09151 0.12337
00000 0'3250 28000 64250 92000
0.00000 -0.09056 -0.19219 -0.29812 -0.39916
00000 64375 20000 16875 80000
0.00000 0.17825 0.37273 0.57031 0.75398
00000 77500 60000 97500 40000
0.00000 -0.25523 -0.51251 -0.75677 -0.96940
00000 26875 20000 04375 80000
1.00000 1.12302 1.23002 1.31173 1.35717
00000 38250 66000 54250 12000
0.00000 0.02079 0.05125 0.09369 0.15079
00000 67375 12000 53875 68000
2.0 2.1 2.2 2.3 2.4
2.5 2.6 2.7 2.8 2.9
-0.02050 -0.02296 -0.02328 -0.02042 -0.01316
78125 32000 08625 88000 20125
0.15039 0.16773 0.16940 0.14810 0.09508
06250 12000 54250 '38000 88250
-0.48339 -0.53580 -0.53797 -0.46771 -0.29867
84375 80000 66875 20000 b4375
0.90234 0.98918 0.98296 0.84633 0.53555
37500 40000 97500 60000 77500
-1.12792 -1.20556 -1.17089 -0.98739 -0.61307
96875 80000 04375 20000 26875
1.35351 1.28593 1.13743 0.88865 0.51770
56250 92000 64250 28000 58250
0.22558 0.32148 0.44233 0.59243 0.77655
59375 48000 63675 52000 87375
2.5 2.6 2.7 2.8 2.9
3.0
0.00000
00000 A3
0.00000
00000 A2
00000
0.00000
00000
0.00000
00000
1.00000
00000
3.0 -p
0.00000 Al
EIGHT-POIKT
LAGRANGIAN
A;(p)=(pl)kt’ A-3
P
0 00000
A-2 00000
if -0'00086 0:2. -0:00160 0.3 -0.00211 0.4 -0.00239 0.5 -0.00244
64213 51200 57988 61600 14063
0.00000
A-1 00000
0.00915 0.01634 0.02124 0.02376 0.02392
0.00000
96863 30400 99787 19200 57812
-0.05246 -0.08988 -0.11278 -0.12220 -0.11962
00000
0.00000
Ao
A-1
A-3
A-2
INTERPOLATION
COEFFICIENTS
P(P2-1)(P2-4)(P2-g)(p4) (3+k)!(4-k)!(p-k) Ao
4
A2
A4
A3
00213 67200 83487 41600 89062
1.00000 0.96176 0.89886 0.81458 0.71285 0.59814
00000 70563 72000 25188 76000 45312
0.00000 0.10686 0.22471 0.34910 0.47523 0.59814
00000 30063 68000 67938 84000 45313
0.00000 -0.03037 -0.05992 -0.08624 -0.10692 -0.11962
00000 15913 44800 99137 86400 89062
0.00000 0.00663 0.01284 0.01810 0.02193 0.02392
00000 28763 09600 18337 40800 57812
0.00000 -0.00070 -0.00135 -0.00188 -0.00226 -0.00244
00000 45913 16800 70638 30400 14062
00000
E 0:6 0.5
1.0 1.1
0.00000 0.00070
00000 45912
0.00000 -0.00652
00000 31512
0.00000 0.02888
00000 82412
0.00000 -0.09191
00000 71312
1.00000 1.01108
00000 84438
0.00000 0.06740
00000 98962
0.00000 -0.01064
00000 30362
0.00000 0.00099
00000 61462
:*: 1:4
0.00135 0.00188 0.00226
16800 70638 30400
-0.01241 -0.01721 -0.02050
23088 85600 04800
0.05419 0.07408 0.08712
77638 00600. 70400
-0.21846 -0.16558 -0.24893
08000 39188 44000
0.99348 0.94667 0.87127
48000 69812 04000
0.14902 0.24343 0.34850
27200 12238 81600
-0.03341 -0.02207 -0.04356
74400 21288 35200
0.00300 0.00202 0.00382
75200 53238 97600
J-1" -0:2 -0.3 -0.4
;:; 1:8 1.9
0.00239 0.00244 0.00211 0.00160 0.00068
61600 14062 57988 51200 64213
-0.02197 -0.01881 -0.02143 -0.01419 -0.00779
26562 34538 23200 26400 59613
0.09228 0.07734 0.08902 0.05778 0.03145
51562 41988 65600 43200 26712
-0.24111 -0.20473 -0.25634 -0.14981 -0.08001
76562 46438 36000 12000 11812
0.76904 0.49721 0.64296 0.33707 O.lb891
29688 27062 96000 52000 24938
0.57867 0.46142 0.69609 0.80898 0.91212
26400 57812 77888 04800 74662
-0.05126 -0.05354 -0.05511 -0.04494 -0.02764
95312 59838 16800 33600 02263
0.00439 0.00432 0.00459 0.00350 0.00206
45312 35888 26400 20800 83163
-0.5 -0.6 -0.7 -0.6 -0.9
2.0 2.1 2.2 2.3 2.4
0.00000 -0.00099 -0.00202 -0.00300 -0.00382
00000 61462 75200 53238 97600
0.00000 0.00867 0.01757 0.02592 0.03290
00000 37612 18400 96538 11200
0.00000 -0.03441 -0.06918 -0.10136 -0.12773
00000 52462 91200 13738 37600
0.00000 0.08467 0.16773 0.24238 0.30159
00000 24312 12000 58938 36000
0.00000 -0.16164 -0.30750 -0.42883 -0.51701
00000 73600 72000 65812 76000
1.00000 1.06687 1.10702 1.11497 1.08573
00000 26338 59200 51112 69600
0.00000 0.03951 0.09225 0.15928 0.24127
00000 38012 21600 21588 48800
0.00000 -0.00267 -0.00585 -0.00936 -0.01292
00000 38662 72800 95388 54400
-1.0 -1.1 -1.2 -1.3 -1.4
2.5 2.6 2.7 2.8 2.9
-0.00439 -0.00459 -0.00432 -0.00350 -0.00206
45312 26400 35888 20800 83162
0.03759 0.03913 0.03670 0.02962 0.01743
76562 72800 45088 17600 29512
-0.14501 -0.15002 -0.13987 -0.11225 -0.06570
95312 62400 39388 08600 88162
0.33837 0.34621 0.31946 0.25390 0.14727
89062 44000 51688 08000 83812
-0.56396 -0.56259 -0.50738 -0.39495 -0.22479
48438 84000 58562 68000 33188
1.01513 0.90015 0.73933 0.53319 0.28473
67188 74400 36762 16800 82038
0.33837 0.45007 0.57503 0.71092 0.85421
89062 87200 73038 22400 46112
-0.01611 -0.01837 -0.01895 -0.01692 -0.01109
32812 05600 72738 67200 36962
-1.5 -1.6 -1.7
-2.0 -2.1 -2.2 -2.3 -2.4
1:::
3.0 3.1 3.2 3.3 3.4
0.00000 0.00267 0.00585 0.00936 0.01292
00000 38662 72800 95388 54400
0.00000 -0.02238 -0.04888 -0.07796 -0.10723
00000 70762 57600 16338 32800
0.00000 0.08354 0.18157 0.28827 0.39481
00000 20162 56800 67388 34400
0.00000 -0.18415 -0.39719 -0.62605 -0.85155
00000 17562 68000 55438 84000
0.00000 0.27184 0.57774 0.89825 1.20637
00000 30688 06000 36062 44000
0.00000 -0.31138 -0.63551 -0.95353 -1.24084
00000 38788 48800 07512 22400
1.00000 1.14174 1.27102 1.37732 1.44764
00000 08888 97600 21962 92800
0.00000 0.01812 0.04539 0.08432 0.13787
00000 28712 39200 56400 13600
;,;.
0.01837 0.01611
05600 32812
-0.15155 -0.13330
07812 71200
0.55351 0.48876
29600 95312
-1.17877 -1.04736
32812 76000
1.63215 1.46630
36000 85938
-1.59134 -1.46630
97600 85938
1.41453 1.46630
31200 65930
0.30311 0.20947
42400 26562
:-'8 3:9
0'001692 01895 0:OllOS
72738 67200 36962
-015598 -0' 13891 -0:09081
17788 58400 78862
0.56750 0.50356 0.32805
81738 99200 64462
-1.20148 -1.06014 -0.68695
12688 72000 58062
1.64647 1.43877 0.92383
43312 12000 71188
-1.34285 -1.56899 -0.84604
31200 31862 03088
1.00713 1.27013 0.59536
73412 98400 16988
0.57550 0.42337 0.76546
91138 84800 50412
1:; -2:e -2.9
4.0
0.00000
00000
0.00000
00000
0.00000
00000
0.00000 00000 A-2
1.00000
00000
-3.0
00000 A4
0.00000 A3
00000 A2
0.00000 4
00000 Ao
0.00000 A-1
A-3
-2.5
P
914 Table
NUMERICAL
25.2
COEFFICIENTS
Differentiation FlRST
DERIVATIVE
4 0
DIFFERENTlATlON
dkf (,l) I xx $ Aif -,,,&Y ,z=zj / It~!hki,o
Formula:
THIRD A- r)
Three Point (m=2) -3 -1 l-4
FOR
(k=l)
4
* j
ANALYSIS
-1 1 3
j
!!!Error k! l/3 -l/b l/3
h3f
10 2
(3)
3
A0
A; -6 9
-:
-9 -18
-:
;
-10
4 (4)
-:::2h
z;
*
2 6
Five Point (~11=4) -50
-;t -1612
-72 36 -36 0
-32
72
-6
-: b
32 -12 16
-6
l/5 -l/20 1/30 -l/20 l/5
-:
560
600
-46 -2:
-130 -60 30 -40 150
-600
240 -40 -120 120 -400
SECOIVD *
j
.-I()
400 -120 120 -2:: 600
DERIVATIVE 112
AI
-150 40 -30 b0 130 -bOO
24 -b
-85
Three Point (m=2) 0
1
-2
1
1
-2
1
2
1
-2
1
t
-i
-15-b 1:
123
-3
-2
11/24 -1124 -1/24h 11/24
i b
-40
1 h3f(3) h4f
: 1 1
-36
-590 -170 50 -1:: -490
490 110 -70 -50 170 590
DERIVATIVE A-
-1 I
(4)
-4 -4 -4
-4:s
b 6
-4 -4
6
r;
i
-4 -4
h3ft3)
2
160
-205 -35 35
35
2
-5/lb -l/48 l/48 -l/46 l/48 5/16
A
EError
2 5
-12: -355
h6f~6)
(L4) -44
*
-l/12 -l/24 -l/144 l/24 l/12
:
-4 :
1
h5f(5) h’f(‘) ,5*(S)
Six Point (t/1=5)
Four Point (m=3) 0 1 2 3
48
7/24 l/24 -l/24 h5fc5) l/24 7/24
-2 -6
Five Point (7)~=4)
k!
1/2
-28
FOURTH
h” Error
-l/24
:; -2
2;:
l/6
-l/2
1
h4f(4)
6 (6) *
j
A;
-4* -24 240
-3: -2 -35
(k=2)
A:{
2 -1;
355 125
-1:
-l/b lj30 -l/60 l/60h -1130
227:
-l/4 -l/12 l/12 l/4
:
*
h” Error iz
Six Point (1~5) h5fc5)
Six Point (!)1=5) -274 -24
A;
-44
:
-3 -3
3 3
1:
(k=3)
Five Point (m=4)
l/12
1:
1:
;
-l/4 -11 -2
Al & -4i Four Point (m=3)
r:
Four Point @=3)
DERIVATIVE
15 10 5
4 c4) *
-; -10
-70 -45 -20
130 80 -2
5 30 55
-70 -120
-120 -70 -20 30 80 130
55 30
-10 -5
-2: -45 -70
; 10 15
17/144 5/144 -l/144 -l/144 5/144 17/144
-I,
$ Error
h6 *(b)
Five Point (ttf-4) 0 1 2 3 4
11
-104 -20
114
-1 11 -1
lb -5:
-3: 11:
-it -104
225 50 -5
-770 -75 80 -5 -30 305
1070 -20 -150 80 70 -780
-780 70 80 -150 -20 1070
::
-56 4
-5/12 ,5,(s) l/24 1/180h6f’b) 5/12 h5f (5) -l/24
1: 11 35
j
.I0
FIFTH
DERIVATIVE
-41
A-
:I:{
(k -44
5)
*
Six Point (N -=5) 10 2 3 4 5
-50
305 -30 -5
-50 2
l/180 -5
-87; -770
137/360 -13/360
2%
-1 h6f
(6)
l/180 -13/360 137/360
Compiled from W. G. Bickley, Formulae for numerical differentiation, *See page II.
1: -1 -1 -1
: 5
-10 -10
10 too
1: -5
5 :
-10 -10
10 10
1: -5
: 1 1 1 1
-i/48 -l/80 -l/240 l/24(! l/60 l/48
Math. Gaz. 25, 19-27, 1941 (with permission).
h6f(6)
NUMERICAL
LAGRANGIAN
915
ANALYSIS
INTEGRATION
COEFFICIENTS
Jzy+‘f(,r)dr = /b 2 Ak(rn)f@k)
Table 25.3
*
k
DAD4 n
m\k
4
n = odd 0
1
5
8
-1
251 -19
646 346
-264 456
106 -74
-19 11
19087 -863 271
65112 25128 -2760
-46461 46989 30819
37504 -16256 37504
-20211 7299 -6771
6312 -2088 1608
-863 271 -191
4467094 1:;;;;; 36394
-4604594 3244786 1638286 -216014
5595358 -1752542 2631838 1909858
-5033120 -833120 1317280 2224480
3146338 -755042 397858 425762
-1291214 -142094 294286 126286
312874 -68906 31594 -25706
-33953 -3233 7297 2497
2
1
0
-3
-4
-2
-3
-1
3 -1
5 1:
7 -3 1,'
9 -4 1; -1
1070017 -3;;;; -3233
4
3
2
3
4
D
0
-1
i
-2
12 720
60480
2' 1 0
3628800
k\m
n = even n m\k
-4
-3
-2
-1
0
1
2
-':
19 13
-5 13
-:
475 -27 11
1427 637 -93
-798 1022 802
482 -258 802
-173
4 -1 0 6 -2 -1 0
41
8 -3
36799
139849
-121797
123133
-88547
41499
1; 0
-1375 351 -191
-4183 47799 1879
101349 57627 -9531
-44797 81693 68323
-20227 26883 68323
-11547 7227 -9531
1.O -4 -3 1; 0
3
4
5
-2 11 -11351 -1719 2999 1879
-342136 3133688 162680
3609968 5597072 -641776
-2166334 4763582 -1166146 1295810 4134338 4134338
-617584 462320 -141304 206072 -641776 162680
24
2
1440
i 1375
;
-351 191 -191
ii
57281 2082753 9449717 -11271304 16002320 -17283646 13510082 -7394032 2687864 -583435 -57281 2655563 6872072 -4397584 3973310 -2848834 1481072 -520312 110219 -1;;;; -3969 -163531 10625 50315 2497 -28939
D ii
-42187 27467 -28939
-2497 2497
4 ; 1 0
5 4 3 2 1 0 -1 -2 -3 -4 k\m Compiledfrom National Bureau of Standards,Tablesof Lagrangianinterpolation coefficients. Columbia Univ. Press,New York, N.Y., 1944(with permission).
*SeepageII.
120960
7257600
916
NUMERICAL Table 25.4
Abscissas=iri *xi
ABSCISSAS
AND
WEIGHT
ANALYSIS
FACTORS
02691 a9626
0.00000 00000 00000 0.77459
Weight Factors=w;
10435 84856 63115 94053
0.00000 00000 00000 0.53846 0.90617
93101 98459
05683 38664
0.23861 0.66120 0.93246
91860 93864 95142
83197 66265 03152
1.00000
00000
00000
0.88'388 0.55555
88888 55555
88889 55556
0.65214 0.34785
51548 48451
0.56888 0.47862 0.23692
88888 88889 86704 99366 68850 56189
0.46791 0.36076 0.17132
39345 15730 44923
n= 5
n=6
0.00000
0.40584 0.74153 0.94910
00000
00000
m-7 ‘” ~'
51513 77397 11855 99394 79123 42759
0.41795 0.38183 0.27970 0.12948
0.18343 0.52553 0.79666 0.96028
46424 95650 24099 16329 64774 13627 98564 97536
0.00000
00000
00000
0.32425 0.61337 0.83603 0.96816
34234 14327 11073 b2395
03809 00590 26636 07626
014887 0:43339 0.67940 0.86506 0.97390
43389 81631 53941 29247 95682 99024 33666 88985 65285 17172
0.12523 0.36783 0.58731 0.76990 0.90411 0.98156
34085 14989 79542 26741 72563 06342
72691 48139 79170
--i%: o:a3911 0.91223 0.96397 0.99312
65211 58511 60887 70019 36807 19064 69718 44282 19272 a5991
33497 41645 15419 50827 26515 60150 22218 51325 77913 85094
333755 078080 560673 098004 025453 792614 823395 905868 791268 924786
0.06405 0.19111 031504 0.43379 0.54542 0.64809 0.74012 0.82000 0.88641 0.93827 0.97472 0.99518
68928 80674 26796 35076 14713 36519 41915 19859 55270 45520 a5559 72199
62605 73616 96163 26045 88839 36975 70554 73902 04401 02732 71309 97021
626085 309159 374387 138487 535658 569252 364244 921954 034213 758524 498198 360180
n=10
11469 98180 86617 94305 70475 46719
A= 16 440185 913230 386342 748447 033895 743880 576078 932596
0.36268 0.31370 0.22238 0.10122
37833 78362 66458 77887 10344 53374 85362 90376
0.33023 0.31234 0.26061 0.18064 0.08127
93550 70770 06964 81606 43883
0 29552 0:26926 0.21908 0.14945 0.06667
42247 14753 67193 09996 63625 15982 13491 50581 13443 08688
0.24914 0.23349 0.20316 0.16007 0.10693 0.04717
70458 25365 74267 a3285 93259 53363
01260 40003 02935 94857 61574
a=12
91836 73469 00505 05119 53914 89277 49661 68870
37637 79258 57227 02643 55003 87831 73232 91649
8
n=g
62546 37454
*xi 25098 35507 67776 62444 44083 12023 50230 09349
,Q+O9501 A28160 Q45801 CA1787 o&75540 La6563 0.94457 0.98940
u)i IL =
n=3
66692 41483
INTEGRATION
*xi
IL=4
0.33998 0.86113
GAUSSIAN
(Zeros of Legendre Polynomials) Wi n==Z
0.57735
FOR
13403 38355 23066 43346 95318 86512
wi 0.18945 0.18260 0.16915 0.14959 0.12462 0.09515 0.06225 0.02715
06104 ;5068 34150 44923 65193 95002 59888 16576 89712 55533 85116 a2492 35239 38647 24594 11754
496285 588867 538189 732081 872052 784810 892863 094852
IL=20 0.07652 0.22778 0.37370 0.51086
0.15275 33871 0.14917 29864 0.14209 61093 0.13168 86384 0.11819 45319 0.10193 01198 0.08327 67415 0.06267 20483-_ _~._~ ~. 0.04060 14298 0.01761 40071
30725 72603 18382 49176 61518 17240 76704 34109 _ .~.. 00386 39152
850698 746788 051329 626898 417312 435037 748725 063570 ______ 941331 118312
0.12793 0.12583 0.12167 0.11550 xl0744 0.09761 0.08619 0.07334 0.05929 0.04427 0.02853 0.01234
46752 46828 27803 53725 15965 04113 31953 11080 15436 17419 28933 99987
156974 296121 91204 6 1353 63 "s, 783 888270 275917 305734 780746 806169 663181 199547
n=24 81953 74563 04729 56680 42701 86521 01615 64814 85849 74388 13886 12297
Compiled from P. Davis and P. Rabinowitz, Abscissas and weights for Gaussian quadratures of high order, J. Research NBS 56, 35-37, 1956, RP2645; P. Davis and P. Rabinowitz, Additional abscissas and weights for Gaussian quadratures of high order. Values for ~~=64, 80, and 96, J. Research NBS 60, 613-614,1958, RP2875; and A. N. Iowan, N. Davids, and A. Levenson, Table of the zeros of the Legendre polynomials of order 1-16 and the weight coefficients for Gauss’ mechanical quadrature formula, Bull. Amer. Math. Sot. 48,739-743, 1942 (with permission).
NUMERICAL ABSCISSAS
AND
WEIGHT
FACTORS
FOR
GAUSSIAN
Abscissas= fzi (Zerosof LegendrePolynomials) n=32 0.048307665687738316235 0.144471961582796493485 0.239287362252137074545 0.331868602282127649780 0.421351276130635 345364 0.506899908932229390024 0.587715757240762329041 0.663044266930215200975 0.732182118740289680387 0.794483795967942406963 0.849367613732569970134 0.896321155766052123965 0.934906075937739689171 0.964762255587506430774 0.985611511545268335400 0.997263861849481563545
917
ANALYSIS Table 25.4 INTEGRATION
Weight Factors=wi Wi
0.096540088514727800567 0.095638720079274859419 0.093844399080804565639 0.091173878695763884713 0.087652093004403811143 0.083311924226946755222 0.078193895787070306472 0.072345794108848506225 0.065822222776361846838 0.058684093478535547145 0.050998059262376176196 0.042835898022226680657 0.034273862913021433103 0.025392065309262059456 0.016274394730905670605 0.007018610009470096600
n=40 0.038772417506050821933 0.116084070675255208483 0.192697580701371099716 0.268152185007253681141 0.341994090825758473007 0.413779204371605001525 0.483075801686178712909 0.549467125095128202076 0.612553889667980237953 0.671956684614179548379 0.727318255189927103281 0.778305651426519387695 0.824612230833311663196 0.865959503212259503821 0.902098806968874296728 0.932812808278676533361 0.957916819213791655805 0.977259949983774262663 0.990726238699457 006453 0.998237709710559 200350 0.032380170962869362033 0.0970046992 09462698930 0.161222356068891718056 0.224763790394689 061225 0.287362487355455576736 0.348755886292160 738160 0.408686481990716729916 0.4669029047 50958404545 01523160974722233033678 0.577224726083972 703818 0.628867396776513623995 0.677872379632663905212 0.724034130923814654674 0.767159032515740 339254 0.807066204029442 627083 0.843588261624393530711 0.876572020274247885906 0.905879136715569672822 0.931386690706554333114 0.952987703160430860723 0.970591592546247250461 0.984124583722826857745 0.993530172266350757548 0.998771007252426118601
0.077505947978424811264 0.077039818164247965588 0.076110361900626242372 0.074723169057968264200 0.072886582395804059061 0.070611647391286779695 0.067912045815233903826 0.064804013456601038075 0.061306242492928939167 0.057439769099391551367 0.053227846983936824355 0.048695807635072232061 0.043870908185673271992 0.038782167974472017640 0.033460195282547847393 0.027937006980023401098 0.022245849194166957262 0;016421058381907888713 0.010498284531152813615 0.004521277098533191258 nF48
0.064737696812683922503 0.064466164435950082207 0.063924238584648186624 0.0631141922 86254025657 0.062039423159892663904 0.060704439165893880053 0.059114839698395635746 0.057277292100403215705 0.055199503699984162868 0.052890189485193667096 0.0503590355 53854474958 0.047616658492490474826 0.044674560856694280419 0.041545082943464749214 0.038241351065830706317 0.0347772225 64770438893 0.0311672278 32798088902 0.027426509708356948200 0.023570760839324379141 0.019616160457355527814 0.015579315722943848728 0.011477234579234539490 0.0073275539 01276262102 0.003153346052305838633
918
NUMERICAL Tttble 25.4 ABSCISSAS
AND
Abscissas=*q
WEIGHT
FACTORS
ANALYSIS FOR
GAUSSIAN
(Zeros of Legendre Polynomials) *xi
Weight Factors=wi 21 )i
n=64
0.02435 0.07299 0.12146 0.16964 0.21742 0.26468 0.31132 0.35722 0.40227 0.44636 0.48940 0.53127 0.57189 0.61115 0.64896 0.68523 0;719ai 0.75281 0.78397 0.81326 0.84062 0.86599 0.88931 0.91052 0.92956 0.94641 0.96100 0.97332 0.98333 0.99101 0.99634 0.99930
02926 31217 28192 44204 36437 71622 28719 01583 01579 60172 31457 94640 56462 53551 54712 63130 18501 99072 23589 53151 92962 93981 54459 21370 91721 13748 87996 68277 62538 33714 01167 50417
63424 a7799 96120 23992 40007 08767 90210 37668 63991 53464 07052 19894 02634 72393 54657 54233 71610 60531 43341 22797 52580 54092 95114 78502 31939 58402 52053 89910 a4625 76744 71955
432509 039450 554470 818037 084150 416374 956158 115950 603696 087985 957479 545658 034284 250249 339858 242564 826849 896612 407610 559742 362752 819761 105853 805756 575821 816062 718919 963742 95693I 320739 279347
0.01951 0.05850 0.09740 0.13616 0.17471 0.21299 0.25095 0.28852 0.32566 0.36230 0.39839 0.43387 0.46869 0.50280 0.53614 0.56867 0.60033 0.63107 0.66085 0.68963 0.71736 0.74400 0.76950 0.79383 0.81695 0.83883 0.85943 0.87872 0.89667 0.91326 0.92845 0.94224 0.95459 0.96548 0.97490 0.98284 0.98929 0.99422 0.99764 0.99955
13832 44371 83984 40228 22918
56793 52420 41584 09143 32646 57666 92272 84511 47701 99487 81969 31756 70544 88784 97131 22709 29751 46871 86119 42027 62099 a3597 35041 04605 81463 80255 63111 78213 38770 71757 72445 09872 43634 43799 85727 38629 99755 65688 98237 51630
997654 668629 599063 886559 812559 132572 120493 853109 914614 315619 227024 093062 477036 987594 932020 784725 743155 966248 801736 600771 880254 272317 373866 449949 470371 275617 096977 828704 683194 654165 795953 674752 905493 251452 793386 070418 531027 277892 688900 629880
INTEGRATION
0.04869 0.04857 0.04834 0.04799 0.04754 0.04696 0.04628 0.04549 0.04459 0.04358 0.04247 0.04126 0.03995 0.03855 0.03705 0.03547 0.03380 0.03205 0.03023 0.02833 0.02637 0.02435 0.02227 0.02013 0.01795 0.01572 0.01346 0.01116 0.00884 0.00650 0.00414 0.00178
09570 54674 47622 93885 01657 81828 47965 16279 05581 37245 35151 25632 37411 01531 51285 22132 51618 79283 46570 96726 74697 27025 01738 48231 17157 60304 30478 a1394 67598 44579 70332 32807
09139 41503 34802 96458 14830 16210 81314 27418 63756 29323 23653 42623 32720 78615 40240 56882 37141 54851 72402 14259 15054 68710 08383 53530 75697 76024 96718 60131 26363 68978 60562 21696
720383 426935 957170 307728 308662 017325 417296 144480 563060 453377 589007 528610 341387 629129 046040 383811 609392 553585 478868 483228 658672 873338 254159 209372 343085 719322 642598 128819 947723 362856 467635 432947
0.03901 0.03895 0.03883 0.03866 0.03842 0.03812 0.03777 0.03736 0.03689 0.03637 0.03579 0.03516 0.03447 0.03373 0.03294 0.03210 0.03121 0.03027 0.02928 0.02825 0.02718 0;02607 0.02492 0.02373 0.02250 0.02124 0.01995 0.01862 0.01727 0.01589 0;01449 0.01306 0.01162 0.01016 0.00868 0.00719 0.00569
78136 83959 96510 17597 49930 97113 63643 54902 77146 37499 43939 05290 31204 32149 19393 04986 01741 23217 83695 98160 82275 52357 25357 18828 50902 40261 06108 68142 46520 61835 35080 87615 41141 17660 39452 29047 09224
EE 0:00114
% 49500
56306 62769 59051 74076 06959 14477 62001 38730 38276 05835 53416 44747 51753 84611 97645 73487 88114 59557 83267 57276 00486 67565 64115 65930 46332 15782 78141 08299 56269 83725 40509 92401 20797 41103 69260 68117 51403 24694 89512 03186
654811 531199 968932 463327 423185 638344 397490 490027 008839 978044 054603 593496 928794 522817 401383 773148 701642 980661 847693 862397 380674 117903. 491105 101293 461926 006389 998929 031429 306359 688045 076117 339294 826916 064521 858426 312753 198649 895237 681669 941534
n=80
2%; 80548 43707 47534 34058 53708 66151 41118 59208 12681 06228 57730 98989 76443 51853 02975 24201 27175 41386 14735 14066 25676 55794 31025 98771 27613 07663 50890 91405 85727 13024 75409 98643 38226
NUMERICAL ABSCISSAS
AND WEIGHT
919
ANALYSIS
FACTORS
FOR GAUSSIAN
Table 25.4 INTEGRATION
S_:lf(x)dx= 2 wif(xi) i=l
Abscissas= &xi (Zeros of Legendre Polynomials) *Xi
Weight Factors=wi Wi
n=96
0.01627 0.04881 0.08129 0.11369 0.14597 0.17809
67448 29851 74954 58501 37146 68823
49602 36049 64425 10665 54896 67618
969579 731112 558994 920911 941989 602759
0.03255 0.03251 0.03244 0.03234 0.03220 0.03203
06144 61187 71637 38225 62047 44562
92363 13868 14064 68575 94030 31992
166242 835987 269364 928429 250669 663218
0.21003 0.24174 0.27319 0.30436 0.33520 0.36569
13104 31561 88125 49443 85228 68614
60567 63840 91049 54496 92625 72313
203603 012328 141487 353024 422616 635031
0.03182 0.03158 0.03131 0.03101 0.03067 0.03029
87588 93307 64255 03325 13761 99154
94411 70727 96861 86313 23669 20827
006535 168558 355813 837423 149014 593794
0.39579 Oii2547 0.45470 0.48345 0.51169 0.53938
76498 89884 94221 79739 41771 81083
28908 07300 67743 20596 54667 24357
603285 545365 008636 359768 673586 436227
0.02989 0.02946 0.02899 0.02849 0.02797 0.02741
63441 10899 46141 74110 00076 29627
36328 58167 50555 65085 16848 26029
385984 905970 236543 385646 334440 242823
0.56651 -0.59303 I).61892 0.64416 0.66871 0.69256
04185 23647 58401 34037 83100 45366
61397 77572 25468 84967 43916 42171
168404 080684 570386 106798 153953 561344
0.02682 0.02621 0.02557 0.02490 0.02420 0.02348
68667 23407 00360 06332 48417 33990
25591 35672 05349 22483 92364 85926
762198 413913 361499 610288 691282 219842
0.71567 0773803 0.75960 0178036 0.80030 0.81940
48967 44400 76647 67433 39140 37931
626225 132851 498703 217604 817229 675539
0.02273 0.02196 0.02117 0.02035 0.01951 0.01866
70696 66444 29398 67971 90811 06796
58329 38744 92191 54333 40145 27411
374001 349195 298988 324595 022410 467385
0.83762 0.85495 0.87138 0.88689 0.90146 0.91507
68123 06437 23411 90438 87441 03107 A-. 35112 90334 85059 45174 06353 14231
28187 121494 34601 455463 09296 502874 02420 416057 15852 341319 2089e74206
0.01778 0.01688 0.01597 0.01503 0.01409 0.01312
16045 64245 02562 26994 72314 66961
260838 172450 291381 938006 860916 572637
0.92771 0.93937 0.95003 0.95968 0196832 0.97593
24567 03397 27177 82914 68284 91745
22308 52755 84437 48742 63264 85136
690965 216932 635756 539300 212174 466453
0.01215 0.01116 0.01016 0.00914 0.00812 0.00709
25023 54798 05629 87210 09417 82295 -.. 16046 21020 07705 86712 68769 64707
71088 99838 35008 30783 25698 91153
319635 498591 415758 386633 759217 865269
0.98251 0.98805 0.99254 0.99598 0.99836 0.99968
72635 41263 39003 18429 43758 95038
63014 29623 23762 87209 63181 83230
677447 799481 624572 290650 677724 766828
0.00605 0.00501 0.00396 0.00291 0.00185 0.00079
85455 42027 45543 07318 39607 67920
04235 42927 38444 17934 88946 65552
961683 517693 686674 946408 921732 012429
920
NUMERICAL
Table 25.5
ABSCISSAS
FOR
EQUAL
ANALYSIS
WEIGHT
CHEBYSHEV
INTEGRATION
Abscissas= *.~i f.Ci
,I
2
0.57735 02692
3
0.70710 67812 0.00000 00000
4
0.79465 0.18759 Compiled from H. Phys. 26,191-194, Table
fR’i
5
0.83249 74870 0.37454 14096 0.00000 00000
J_:l.fw
3
*xi
1
0.88386 17008 0.52965 61153 0.32391 18105 0.00000 00000
0.91158 93077 0.60101 86554 0.86624 68181 0.52876 17831 6 44723 0.42251 86538 0.16790 61842 24141 0.26663 54015 0.00000 00000 E. Salzer, Tables for facilitating the use of Chebyshev’s quadrature formula, J. Math. 1947 (with permission). WEIGHT
FACTORS
FOR n--l
I < I E w,f( -l)+;ga
Abscissas= * .~‘i * .r’i Uli
1,
n
9
ABSCISSAS AND
25.6
,I
LOBATTO
w;f(.ri) + G!(l) I, 7
1.00000 000 0.00000 000
0.33333 333 1.33333 333
4
1.00000 000 0.44721 360
0.16666 667 0.83333 333
5
1.00000 000 0.65465 361 0.00000 000
0.10000 000 0.54444 444 0.71111 111
INTEGRATION
Weight Factors=wi * .ri I1.i 1.00000 000 0.04761 904 0.83022 390 0.27682 604 0.46884 a79 0.43174 538 0.00000 000 0.48761 904
a
1.00000 0.87174 0.59170 0.20929
000 015 018 922
0.03571 0.21070 0.34112 0.41245
428 422 270 880
9
1.00000 0.89975 0.67718 0.36311 0.00000
00000 79954 62195
0.02177 0.16549 0.27453 0.34642 0.37151
77778 53616 a7126 a5110 92744
74638 00000
10
6
1.00000 0.76505 0.28523 Compiled from permission).
Table
25.7
1.00000 00000 0.02222 22222 0.91953 39082 0.13330 59908 000 0.06666 667 0.73877 38651 0.22488 93420 0.47792 49498 0.29204 26836 532 0.37847 496 152 0.55485 a38 0.16521 89577 0.32753 97612 Z. Kopal, Numerical analysis, John Wiley & Sons, Inc., New York, N.Y., 1955 (with
ABSCISSAS FOR
AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION INTEGRANDS WITH A LOGARITHMIC SINGULARITY
Jo’ f(,v) 1n.r (/.r =ig, wif(.ri) +‘gy Abs&sas=.ri *
K~I
Weight Factors- ,,I;
?, .)'I -W K,, 4 0.041448 0.383464 0.00001 0.245275 0.386875 0.556165 0.190435 0.848982 0.039225 Compiled from Berthod-Zaborowski, Le calcul des integrales de la forme $ j(r) log ,” rl.l,. H. Mineur, Techniques de calcul numerique, pp. 555-556. Librairie Polytechnique Ch. B&anger, Paris, France, 1952 (with permission).
71 .ri O;rlws;39 Kn 2 0.112009 0.00285 0.602277 0.281461
*See page 11.
11 .r; -W ICI, 3 0.063891 0.513405 0.00017 0.368997 0.391980 0.766880 0.094615
*
NUMERICAL
ABSCISSAS
AND WEIGHT
FACTORS
FOR GAUSSIAN
INTEGRATION
OF MOMENTS
Table
25.8
Weight Factors=wi
Abscissas=z; k=O
921
ANALYSIS
k=l
k=2
n
1
o.5000criooooo
l.ooooowiooooo
o.66666zi66667
2
0.21132 48654 0.78867 51346
0.50000 00000 0.50000 00000
3
0.11270 16654 0.50000 00000 0.88729 83346
4
0.06943 0.33000 0.66999 0.93056
5
o.750002iooooo
0.33333%33
0.35505 10257 0.18195 86183 0.84494 89743 0.31804 13817
0.45584 81560 0.87748 51773
0.10078 58821 0.23254 74513
0.27777 77778 0.44444 44444 0.27777 77778
0.21234 05382 0.59053 31356 0.91141 20405
0.29499 77901 0.65299 62340 0.92700 59759
0.02995 07030 0.14624 62693 0.15713 63611
18442 94782 05218 81558
0.17392 0.32607 0.32607 0.17392
74226 25774 25774 74226
0.13975 0.41640 0.72315 0.94289
98643 0.03118 09710 95676 0.12984 75476 69864 0.20346 45680 58039 0.13550 69134
0.20414 0.48295 0.76139 0.95149
85821 27049 92624 94506
0.01035 0.06863 0.14345 0.11088
22408 38872 87898 84156
0.04691 0.23076 0.50000 0.76923 0.95308
00770 53449 00000 46551 99230
0.11846 0.23931 0.28444 0.23931 0.11846
34425 43352 44444 43352 34425
0.09853 0.30453 0.56202 0.80198 0.96019
50858 57266 51898 65821 01429
79145 88701 69871 46381 15902
0.14894 0.36566 0.61011 0.82651 0.96542
57871 65274 36129 96792 10601
0.00411 0.03205 0.08920 0.12619 0.08176
38252 56007 01612 89619 47843
6
0.03376 0.16939 0.38069 0.61930 0.83060 0.96623
52429 53068 04070 95930 46932 47571
0.08566 0.18038 0.23395 0.23395 0.18038 0.08566
22462 07865 69673 69673 07865 22462
0.07305 0.23076 0.44132 0.66301 0.85192 0.97068
43287 0.00873 83018 61380 0.04395 51656 84812 0.09866 11509 53097 0.14079 25538 14003 0.13554 24972 35128 0.07231 03307
0.11319 0.28431 0.49096 0.69756 0.86843 0.97409
43838 88727 35868 30820 60583 54449
0.00183 0.01572 0.05128 0.09457 0.10737 0.06253
10758 02972 95711 71867 64997 87027
7
0.02544 0.12923 OI29707 0.50000 0.70292 0.87076 0.97455
60438 0.06474 24831 44072 0.13985 26957 74243 0.19091 50253 00000 0.20897 95918 25757 0.19091 50253 55928 0.13985 26957 39562 0.06474 24831
0.05626 0.18024 0135262 0.54715 0.73421 0.88532 0.97752
25605 0.00521 43622 06917 0.02740 83567 47171 OIO6638 46965 36263 0.10712 50657 01772 0.12739 08973 09468 0.11050 92582 06136 0.05596 73634
0.08881 0.22648 0.39997 0.58599 0.75944 0.89691 0.97986
68334 27534 84867 78554 58740 09709 72262
0.00089 0.00816 0.02942 0.06314 0.09173 0.09069 0.04927
26880 29256 22113 63787 38033 88246 65018
8
0.5000~00000
0.06982 69799 0.22924 11064 0.20093 19137
0.01574 0.07390 0.14638 0.16717 0.09678
0.01985 50718 0.05061 42681 0.04463 39553 0.00329 51914 0.07149 10350 0.00046 85178 0.10166 67613 0.11119 05172 0.14436 62570 0.01784 29027 0.18422 82964 0.00447 45217 0.28682 47571 0.04543 93195 0.33044 77282 0.01724 68638 0.23723 37950 0.15685 33229 0.40828 26788 0.18134 18917 0.45481 33152 0.07919 95995 0.49440 29218 0.04081 44264 0.59171 73212 0.18134 18917 0.62806 78354 0.10604 73594 0.65834 80085 0.06844 71834 0.76276 62050 0.15685 33229 0.78569 15206 0.11250 57995 0.80452 48315 0.08528 47692 0.89833 32387 0.11119 05172 0.90867 63921 0.09111 90236 0.91709 93825 0.07681 80933 0.98014 49282 0.05061 42681 0.98222 00849 0.04455 08044 0.98390 22404 0.03977 89578 Compiled from H. Fishman, Numerical integration constants, Math. Tables Aids Comp. 11, l-9,1957 (with permission).
922 Table
NUMERICAL 25.8
ABSCISSAS
AND
WEIGHT
ANALYSIS
FACTORS
FOR
Abscissas=s
GAUSSIAN
INTEGRATION
OF
MOMENTS
Weight Factors=wi k=4
o.*3333zi33333
k=5 o.20000wiooooo
0.857142i8571~
0.1666766667
0.52985 79359 0.06690 52498 0.89871 34927 0.18309 47502
0.58633 65823 0.04908 24923 0.91366 34177 0.15091 75077
0.63079 15938 0.03833 75627 0.92476 39617 0.12832 91039
0.36326 46302 0.01647 90593 0.69881 12692 0.10459 98976 0.93792 41006 0.12892 10432
0.42011 30593 0.01046 90422 0.73388 93552 0.08027 66735 0.94599 75855 0.10925 42844
0.46798 32355 0.00729 70036 0.76162 39697 0.06459 66123 0.95221 09767 0.09477 30507
0.26147 77888 0.53584 64461 0.79028 32300 0.95784 70806
0.00465 83671 0.04254 17241 0.10900 43689 0.09379 55399
0.31213 54928 0.57891 56596 0.81289 15166 0.96272 39976
0.00251 63516 0.02916 93822 0.08706 77121 0.08124 65541
0.35689 37290 0.61466 93899 0.83107 90039 0.96658 86465
0.00153 44797 0.02142 84046 0.07205 63642 0.07164 74181
5
0.19621 20074 0.41710 02118 0.64857 00042 0.84560 51500 0.96943 57035
0.00152 06894 0.01695 73249 0.06044 49532 0.10031 65045 0107076 05281
0.23979 20448 0.46093 36745 0.68005 92327 0.86088 63437 0.97261 44185
0.00069 69771 0.01021 05417 0.04402 44695 0.08271 27131 0.06235 52986
0.27969 31248 0.49870 98270 0.70633 38189 0.87340 27279 0.97519 38347
0.00036 97155 0.00672 96904 0.03376 77450 0.07007 13397 0.05572 81761
6
0.15227 31618 0:33130 04570 0.53241 15667 0.72560 27783 0.88161 66844 0.97679 53517
0.00056 17109 0:00708 53159 0.03052 61922 0.06844 32818 0.08830 09912 0.05508 25080
0.18946 95839 0.37275 11560 0.56757 23729 0.74883 64975 0.89238 51584 0.97898 52313
0.00021 94140 0.00372 67844 0.01995 62647 0.05223 99543 0.07464 91503 0.04920 84323
0.22446 89954 0.40953 33505 0.59778 90484 0.76841 36046 0.90135 07338 0.98079 72084
0.00010 13258 0.00218 79257 0.01396 96531 0.04148 63470 0.06445 88592 0.04446 25560
7
0.12142 71288 0.26836 34403 0.44086 64606 0.61860 40284 0.78025 35520 0.90636 25341 0.98176 99145
0.00022 99041 0.00314 75964 0.01531 21671 0.04099 51686 0.06975 00981 0.07655 65614 0.04400 85043
0.15324 14389 0.30632 65225 0.47654 00930 0.64638 93025 0.79771 66898 0.91421 99006 0.98334 38305
0.00007 70737 0.00144 70088 0.00892 69676 0.02854 78428 0.05522 48742 0.06602 18459 0.03975 43870
0.18382 87683 0.34080 75951 0.50794 05240 0.67036 34101 0.81258 84660 0.92085 64173 0.98466 74508
0.00003 11046 0:00075 53838 0.00566 04137 0.02095 92982 0.04510 49816 0.05790 76135 0.03624 78712
8
0.09900 17577 0.22124 35074 0.36912 39000 0.52854 54312 0.68399 32484 0.82028 39497 0.92409 37129 0.98529 34401
0.00010 24601 0.00148 56841 0.00785 50738 0.02363 15807 0.04745 43798 0.06736 18394 0.06618 20353 0.03592 69468
0.12637 29744 0.25552 90521 0.40364 12989 0.55831 66758 0.70600 95429 0.83367 15420 0.92999 57161 0.98646 31979
0.00002 97092 0.00059 89500 0.00407 79241 0.01490 99334 0.03471 99507 0.05491 00973 0.05800 05653 0.03275 28699
0.15315 06616 0.28726 44039 0.43462 74067 0.58451 85666 0.72512 64097 0.84518 94879 0.93504 35075 0.98746 05085
0.00001 05316 0.00027 83586 0.00233 53415 0.01004 46144 0.02648 53011 0.04588 56532 0.05153 42238 0.03009 26424
NUMERICAL
ABSCISSAS
AND WEIGHT
FACTORS
923
ANALYSIS
FOR LAGUERRE
s,$-zf(~)~-i~, wf(xJ
INTEGRATION
Jomg(x)d-i;,w+g(xi)
Abscissas=xi (Zeros of Laguerre Polynomials) xi
Weight Factors =wi
wie’i
wi
Xi
1.53332 603312 4.45095 733505
0.15232 0.80722 2.00513 3;78347 6.20495 9.37298 13.46623 18.83359 26.37407
22277 00227 51556 39733 67778 52516 69110 77889 18909
32 42 19 31 77 88 92 92 27
0.13779 0.72945 1.80834 3.40143 5.55249 8.33015 11.84378 16.27925 40422 08 21.99658 29.92069 787360 324237 690092 635435
34705 45495 29017 36978 61400 27467 58379 78313 58119 70122
40 03 40 55 64 64 00 78 81 74
0.11572 0.61175 0.57353 55074 23 1.51261 1.36925 259071 2.83375 2.26068 459338 4.59922 3.35052 458236 6.84452 4.88682 680021 9.62131 7.84901 594560 13.00605 17.11685 22.15109 28.48796 37.09912
21173 74845 02697 13377 76394 54531 68424 49933 51874 03793 72509 10444
58 15 76 44 18 15 57 06 62 97 84 67
78120 17403 54120 95262 27217 66274
17 02 71 04 51 14
62266
13
n=3 0.41577 45567 83 2.29428 03602 79 6.28994 50829 37
-2)1.03892
565016
n=4 0.32254 1.74576 4.53662 9.39507
76896 11011 02969 09123
0.83273 2.04810 3.63114 6.48714
19 58 21 01
n=5 0.26356 1.41340 3.59642 7.08581 12.64080
03197 30591 57710 00058 08442
18 07 41 59 76
3.98666 811083 3.61175 867992 2.33699 723858
n=6 0.22284 1.18893 2.99273 5.77514 9.83746 15.98287
66041 21016 63260 35691 74183 39806
79 73 59 05 83 02
0.19304 1.02666 2.56787 4.90035 8.18215 12.73418 19.39572
36765 48953 67449 30845 34445 02917 78622
60 39 51 26 63 98 63
0.17027 0.90370 2.25108 4.26670 7.04590 10.75851 15.74067 22.86313
96323 17767 66298 01702 54023 60101 86412 17368
05 99 66 88 93 81 78 89
1.07769 285927 2.76214 296190 5.60109 462543
n=7
0.67909 1.63848 2.76944 4.31565 7.21918
0.49647 1.17764 1.91824 2.77184 3.84124 5.38067 8.40543
n=8 -1 3.69188 -1 4.18786 -1 1.75794 -2 3.33434 -3 2;79453 -5 9.07650 -7 8.48574 -9 I 1.04800
589342 780814 986637 922612 623523 877336 671627 117487
91238 38 243845 630582 508441
75975 40 306086 978166 863623 912249 820792 248683
0.09330 0.49269 1.21559 2.26994 3.66762 5.42533 7.56591 0.43772 34104 93 10.12022 1.03386 934767 13.13028 1.66970 976566 16.65440 2.37692 470176 20.77647 3.20854 091335 25.62389 4.26857 551083 31.40751 5.81808 336867 38.53068 8.90622 621529 48.02608
wiezi
Wi
n=2 0.58578 64376 27 3.41421 35623 73
Table 2.59
n=9
- 1 3.36126 421798 - 1 4.11213 980424 - 1 1.99287 525371 - 4I 3.05249 - 6 6.59212 - 8 4.11076 -11 3.29087
767093 302608 933035 403035
n=lO
85680 24821 77083 88994 42267 91697 33064 55726
19 76 30 49 29 54 86 86
-
1 3.08441115765 1 14.01119 929155 1 2.18068 287612 2 6.20874 560987
7.53008 - 5 2.82592 - 7 4.24931 - 9 I 1.83956 -13 9.91182
388588 334960 398496 482398 721961
n=12
-
n=15
11 2.18234 1 3.42210 1 12.63027 1 1.26425 2 4.02068 3 8.56387 3 1.21243
885940 177923 577942 818106 649210 780361 614721
0.39143 0.92180 1.48012 2.08677 2.77292 3.59162 4.64876 6.21227 9.36321
11243 16 50285 29 790994 080755 138971 606809 600214 541975 823771
0.35400 0.83190 1.33028 1.86306 2.45025 3.12276 3.93415 4.99241 6.57220 9.78469
97386 07 23010 44 856175 390311 555808 415514 269556 487219 248513 584037
0.29720 0.69646 1.10778 1.53846 1.99832 2.50074 3.06532 3.72328 4.52981 5.59725 7.21299
96360 44 29804 31 139462 423904 760627 576910 151828 911078 402998 846184 546093
0.23957 0.56010 0.88700 1.22366 1.57444 1.94475 2.34150 2.77404 3.25564 3.80631 4.45847 5.27001 6.35956 8.03178 11.52777
81703 11 08427 93 82629 19 440215 872163 197653 205664 192683 334640 171423 775384 778443 346973
Compiled from H. E. Salzer and R. Zucker, Table of the zeros and tieight factors of the first fifteen Laguerre polynomials, Bull. Amer. Math. Sot. 55, 1004-1012, 1949 (with permission).
E8i2
NUMERICAL
924
Table
25.10
ABSCISSAS
AND
WEIGHT
Abscissas =l xi (Zeros of Hermite *Xi Wi
FACTORS
ANALYSIS
FOR
HERMITE
Polynomials) 2 WieZi
INTEGRATION
Weight
Factors=w;
*-xi
0.70710
E%
67811
Ko3
86548
(-1)8.86226
Kii
92545
[- 01 12.95408 1.18163
28
1.46114
11826
611
n=3 59006 97515
04 09
1.32393 1.18163
11752 59006 136 037
0.34290
13272
1.03661 1.75668
n=lO
6.10862 2.40138
23705
08297 89514 36492 99882
2.53273
16742
3.38743 1.34364 b)7.64043
32790
3.43615
91188 37738
0.31424 0.94778
03762 83912
n=4 1”:Et:
22’:: E%
I- 12 18.04914 8.13128
0.00000 00000 00000 0.95857 2.02018
24646 28704
35447 09000 25 55
1.24022 1.05996
58176 44828 958 950
n=5 -1)9.45308 1.99532
0.94530
87204
32315 22
29
0.98658
09967 514
829
42059
05
1.18148
86255
360
44 29 09
0.87640 0.93558
13344 05576
362 312
1.13690
83326 745
63373 53 61108 23
0.68708 0.70329
18539 513 63231 049
94455 57467 28552
48 81 33
0.74144 0.82066 1.02545
19319 16913
657
25
0.62930
78743
695
29 88
0.66266 0.70522 0.78664 0.98969
27732 03661 39394 90470
669 122 633 923
378 675
436
61264 048
n=12
1.59768
72048
3.93619
13819 56086
W&
Wi
n=2
54359 40164
- 1 I 5.70135 - 1 2.60492 -
26351 52605
2 5.16079 3 1 3.90539 5 8.57368 7)2.65855
23626
31026 42 85615 88 05846 70435
0.63962
12320 203
2.27950 3.02063 3.88972
70805 70251 48978
OlObO 20890 69782
0.27348 0.82295 1.38025 1.95178
10461 14491 85391 79909
3815 4466 9888 1625
0.54737 0.55244
52050 19573
0.56321 0.58124
78290 882 72754 009
2.54620 3.17699 3.86944 4.68873
21578 91619 79048 89393
4748 7996
0.60973 0.65575 0.73824 0.93687
69582 56728
560
44928
841
0.24534 0.73747
07083 37285
009 454
1.23407 1.73853
62153 953 77121 lbb
0.49092 0.49384 0.49992 0.50967
15006 33852 08713 90271
667 721 363 175
2.25497 2.78880 3.34785 3.94476
40020
893
45673
832
03509 17423 24428
486 644 525
4.60368
40401 156 24495 507
0.52408 0.54485 0.57526
5.38748
08900
0.89859
19614
532
16843 56
n-6 0.43607 1.33584 2.35060
74119 90740 49736
-1 I 7.24629
27617 13697 74492
-1 -3
59522 32032 99055
1.57067 4.53000
n=7 0.00000 0.81628
00000 78828
00000 58965
1.67355 2.65196
16287 67471 13568 35233
-1 I 8.10264 -1 4.25607 -2 5.45155 -4)9.71781
b1755 68 25261 01 82819 13
0.81026 0.82868 0.89718
24509
95
1.10133
82 49 41 14
0.76454 0.79289
46175 568 73032 836 46002 07296
252 103
fZ=lfi
6012 0582
n=8 0.38118
1.15719 1.98165 2.93063
69902
07322
37124 46780 67566 95843
74202
57244
0.00000 00000 00000
-1) 6.61147 I -1 1 2.07802 -2 1.70779 (-4)1.99604
01255 32581 83007 07221
10187
52838
1.46855
32892 lb668
7.20235 -1 4.32651
2.26658 3.19099
05845 32017
31843 81528
-2 8.84745 -3)4.94362 -5)3.96069
0.72355
00483 26065 01442
1.07193
864 634 480
n=9 1 -1 I
21560 61 55900 26 27394 42755 77263
38 37 26
n=20
41286 517
0.86675
0.72023
52156 061 24527 451
0.73030 0.76460 0.84175 1.04700
81250 27014 35809
946 787 767
- 1 4.62243 - 1 2.86675 - 1 I 1.09017
66960 06 50536 28 20602 00
- 2 I 2.48105 - 3 3.24377 - 4 2.28338 - 6 7.80255 - 7 1.08606
20887 33422
60584 281
-10 4.39934
112
(-13
I 2.22939
64785
46 38 b3 32
36455
34
63601
93707 69 09922 73
0.62227 0.70433
Compiled from H. E. Salzer, R. Zucker, and R. Capuano, Table of the zeros and weight factors of the first twenty Hermite polynomials, J. Research NBS 48,111-116,1952, RP2294 (with permission). Table
25.11
COEFFICIENTS e 0. 00 0. 01
FOR
FILON’S
0.0000~
000
0.00000 0.00000 0.00000 0.00000
004 036 120 284
0.00000
555
0.00000 0.00001
961 524
0.00002 0.00003
274 237
0.00004 0.00035
438 354
0.00118
467
0.00278 0.00536
012 042
Xl
0.00911 0.02076 0.01421
797 156 151
1":;
0.03850 0.02884
683 188
0.02 0.03 0.04 0. 05 0.06 0.07
2 i; :: 0: 3
0.6
See 25.4.47.
761 56222 777
QUADRATURE 0.66666 0.66668 0.66671
B
667 000 999
0.66678
664
0.66687
990
0.66699 0.66714
976 617
0.66731
909
0.66751 0.66774
844 417
0.66799
619
0.67193
927
0.67836
065
FORMULA 7 1.33333 1.33332 1.33328 1.33321 1.33312
333 000 000 334 001
1.33300 1.33285 1.33268 1.33248 1.33225
003 340 012 020 365
1.33200 1.32800 1.32137
048 761 184
0.68703
909
1.31212
154
0.69767
347
1.30029
624
0.70989
111
0.72325 0.73729 0.76525 0.75147
813 136 168
1.28594 1.26913 1.24992
638 302 752
1.22841
118
831
1.20467
472
86961 914 29611 769
26. Probability MARVIN
Functions
ZELEN l AND NORMAN
C. SEVERO 2
Contents Page 927 927 931 936 940 944 946 948
Mathematical Properties .................... 26.1. Probability Functions: Definitions and Properties ..... 26.2. Normal or Gaussian Probability Function ........ 26.3. Bivariate Normal Probability Function ......... 26.4. Chi-Square Probability Function ............ 26.5. Incomplete Beta Function ............... 26.6. F-(Variance-Ratio) Distribution Function ........ 26.7. Student’s t-Distribution ................ Numerical Methods ....................... 26.8. Methods of Generating Random Numbers and Their Applications ........................ 26.9. Use and Extension of the Tables .............
949
References
961
..........................
Table 26.1. Normal Probability Function and Derivatives (0 1255). P(x), Z(x), Z”‘(x), 15D zqx)) 10D; Z(*)(x), n=3(1)6, 8D x=0(.02)3 P(x), 1OD; Z(x), 10s; Z@)(x), n=1(1)6, 8s 2=3(.05)5
.
949 953
966
Table 26.2. Normal Probability Function for Large Arguments (552<500) . . . . . . . . . . . . . . . . . . * . . . . . . -log Q(x), x=5(1)50(10)100(50)500, 5D
972
Table 26.3. Higher Derivatives of the Normal Probability Function (O<s<5) . . . . . . . . . . . . . . . . . . . . . . . . . . Z(“)(x), n=7(1)12, x=0(.1)5, 8S
974
Table 26.4. Normal Probability Function-Values of Z(x) in Terms of P(x) and Q(x) . . . . . . . . . . . . . . . . . . . . . . . . Q(z>=0(.001).5, 5D
975
Table 26.5. Normal Probability Function-Values of x in Terms of P(x) and Q(x) . . . . . . . . . . . . . . . . . . . . . . . . ‘Xx)=0(.001).5, 5D
976
l National Bureau of Standards. z National
Bureau
of Standards.
(Presently, (Presently,
National Institutes of Health.) University of Buffalo.)
925
PROBABILITY
FUNCTIONB
Table 26.6. Normal Probability Function-Values of 2 for Extreme Values of P(z) and Q(z) . . . . . . . . . . . . . . . . . . . . ~(~)=0(.0001).025, 5D m=4(1)23, 5D Q(z) = lo-“, Table 26.7. Probability Function, Cumulative
Integral of x2-Distribution, Incomplete Gamma Sums of the Poisson Distribution . . . . . .
Page
977
978
x”=.001(.001).01(.01).1(.1)2(.2)10(.5)20(1)40(2)76 Y= 1(1)30, 5D Table
26.8. Percentage
TermsofQandu
Points of the x2-Distribution-Values of x2 in . . . . . . . . . . . . . . . . . . . . . . .
984
Q(x2(u)=.995, .99, .975, .95, 2, .75, .5, .25, .l, .05, .025, .Ol, .005, .OOl, .0005, .OOOl v==1(1)30(10)100, 5-6s Table
26.9. Percentage
TermsofQ,
yl, La.
Points of the F-Distribution-Values of F in . . . . . . . . . . . . . . . . . . . . . .
Q(Fjv1, Y&=.5, .25, .l, .05, .025, .Ol, .005, .OOl
986
v1=1(1)6, 8, 12, 15, 20, 30, 60, a V2=1(1)30, 40, 60, 120, Q), 3-5s 26.10. Percentage Points of the t-Distribution-Values of t in TermsofAandv . . . . . . . . . . . . . . . . . . . . . . .
Table
990
A(tlv)=.2,.5,.8,.9,.95,.98,.99,.995,.998,.999,.9999,.99999,.999999 v=1(1)30,
40, 60, 120, OJ, ZD
Table 26.11. 2500 Five Digit
Random
Numbers
. . . . . . . . . .
991
The authors gratefully acknowledge the assistance of David S. Liepman in the prep aration and checking of the tables and graphs and the many helpful comments received from members of the Committee on Mathematical Tables of the Institute of Mathematical Statistics.
26. Probability Mathematical 26.1.
Functions Properties
Probability
Univariate
Cumulative
: Definitions
Distribution
and
Functions
A real-valued function F(Z) is termed variate) cumulative distribution function or simply distribution function if
a (uni(c.d.f.)
i) F(z) is non-decreasing, i.e., F(z1)5F(a) XII% ii) F(s) is everywhere continuous from right, i.e., F(s) =2+ F(z+t) iii) F(-
=)=O,
for the
F(a)=l.
The function F(s) signifies the probability of the event “X
which
need only
X=s,}
be subject
20
26.1.1
FCd=WXSx?
Properties
distribution
function
can
=zqz~. ”
* Commenton notationand conventions. a. We follow the customary convention of denoting a random variable by a capital letter, i.e., X, and using the corresponding lower case letter, i.e., z, for a particular value that the random variable assumes. b. For statistical applications it is often convenient to have tabulated the “upper tail area,” 1 -F(z), or the c.d.f. for 1x1, F(z)-F(-z), instead of simply the c.d.f. F(z). We use the notation P to indicate the c.d.f. of X, Q = 1 -P to indicate the “upper tail area” and A = P-Q to denote the c.d.f. of 1x1. In particular we use P(z), Q(z), and A(z) to denote the corresponding functions for the normal or Gaussian probability function, see 26.2.2-26.2.4. When these distributions depend on other pnrametcrs, say ~91 and 82, we indiwtr this by writing P(rJh, 021, Q(zl01, et), or .4(rl&, 0,). For csamplc the chisquare distribution 26.4 depends on the parameter Y and the tabulated function is n ritten Q(x~~v).
’
where the summation is over all values of z for which ~5s. The set { 2,) of values for which p,>O is termed the domain of the random variable X. A discrete distribution of a random variable is called a lattice distribution if therL exist numbers a and b #O such that every possible value of X can be represented in the form a+ bn where n takes on only integral values. A summary of some properties of certain discrete distributions is presented in 26.1.19-26.1.24. Continuous Distributions. Continuous distributions are characterized by F(x) being absolutely continuous. Hence F(z) possesses a derivative F’(s)=j(z) and th e c.d.f. can be written 26.1.2
The
S
’ f(t)dt. -0D
F(z)=Pr{X
derivative
j(z) is termed the probability (p.d.f.) or frequency junction, and the values of 5 for which J(r)>0 make up the domain of the random variable X. A summary of some properties of certain selected continuous distributions is presented in 26.1.25-26.1.34.
density junction
Multivariate
to the restriction
l$Pa=l.
The corresponding then be written
Functions
The real-valued defines an n-variate tion if
Probability
Functions
function cumulative
F(z,,
q, . . . z,)
distribution
func-
i) F(s, x2, . . . 2,) is a non-decreasing function for each 5; ii) F(s, q, . . . 2,) is continuous from the right in each sl; i.e., F(s, ~2, . . . z,) =lim F(s, . . ., zf+t, . . ., s,) 4+ when x2, . . . x.)=0 F(~D, co, . . ., a~)=l.
iii) F(xl, iv)
any q=--o3;
F(s,, z2, . . ., x,) assigns nonnegative
ability
to
the
x2<X21x2+h2,
event
t,<X,<
*
probqfh,,
. . .,x,<-KA~,+h, for x:,+M---F(s+h,,
all x1, q, . . ., zn and all nonnegative h,, hz, . . ., h,, e.g., for n=2, F(x,+hl, x2>+
sz+M--F(G
F(z,, z2> 20 and in general for s,<X& sr+hr (i=l, 2, . . ., n), the kth order
difference k=l,
AIF(q,
G, . . ., s,)>O
2, . . ., n.
927
for
PROBABILITY
928 The
probability of the event XI
x25x2,
joint *
* ‘,
Characteristics
of diutribution
functione:
ntb moment about 0rWn
26.1.4
meau
vectors (21, 22, . . ., s,) and continuous distributions are characterized by absolute continuity of F(G, x2, . . ., CC,).
Moments,
Contlauous
26.1.2
FUNCTIONS
funclions,
characteristic
distdbutions
=
cumulants
Discrete distributlona
--
26.13 moment
73th central
26.1.6 26.1.7 26.1.8 26.1.9
chartitoristic U(x)
function
26.1.11
InversIon fowluls
01 PI--
Relation
of
26.1.11
the
Characterirtic Ahout the
4’“‘(O)=
[$9(t)]
Cumulant
26.1.12
Function Origin
to
rP8-“+4(f)df
(lsttice dlstrlbutions
CoeiBcientr
Momenta
only)
of Skewneee
26.1.15
and
Exceu
(skewness)
,_o=i”p: 26.1.16
Function
In +(t) -2
b
2r J -r/b
n-0
K$$
Occasionally (or kurtosis)
(excess) coefficients of skewness and excess are given by
K,, is called the 72”’ cumulant. 26.1.17
26.1.13 Relation
26.1.14
K1=?n,
of
Central
Im--8
K~=c?,
K8=p2,
Momenta Origin
K4=p4-3pi
to Moments
(Y) (-l)n-‘p~mn-5
About
the
26.1.18
A=d=($)
(skewness)
82=%+3=$
(excess or kurtosis)
PROBABILITY
F’UNCTIONS
: 3
929
Some one-dimensional Probabilfty Function
Nl3UM
Density f(z)
wntinuous
distribution
co 8
functions
Skewmaw 71
MWJI
CUIIIUlSnt.3
0
1 5i3
D
NOrUN
(II
z
D
0
i&e I c
~*=m. x:=6,
26.1.27
Cauchy
not de5cd
not defined
not defined
not defined
,i.H-#I II
not de5ed
26.1.28
Exponential
a
2
rt=a+8,
26.1.29
Lapbce, ordouble
w
0
L[*=a, r2=2p
26.1.2s
Error
26.1.26
function
exponential
26.1.30
26.131
s”+*-ilJ
; expt-r-e-q
Extreme-Value,’ (Fisher-Tim&t Type I or doubly exponential)
Pearson
Type
with
-(4)’ 6
1.3
2.4
Iy1-i&p*
VP
(1-fl)-p
seefcotnote 6.
M(a,
-1.2
$h (T) sin
..=o
for
K.=pr(n)
‘”
?a>2
for n>l
‘) ~olgr. n for n=1.2.
i!
. . .
y-=T
III %-
26.1.32
Oamma
distribution 5
26.133
Beta
distribution
-
B(a, 1 L
26.136
1 b)
z*‘(l-z)*I
2(a-b)
(a+b+2) 0
xlop,K.=pr(n)
o+b.
fore4
it) x,=nl, n.+1=0 hz=Bt. ““=-iii-
*
B,. (Bernoulli B,=%.
* -t (Euler’s
catstad)~67721
56649
. . . .
nUmbers). B,=-
3fr. . . .
g m P 3 cc
PROBABILJTY
Inequalities (F@) denotes
the C.&f. of the random
variable
Xand
1denotes
R positive
931
FUNCTIONS
for distribution cmstmt;
further
functions m is always
assumed
to be fmite and all expectations
are assumed
to exist.)
Conditions
Inequality
_-
26.1.35
Prig(X) It1 S%?(X)I/t
26.1.36
Pr(
(9 8(x) 20 (i) PrlX
X>t) <m/t
F(1)21-y Pr( IX-rnl>tu)
26.1.37
(i) E(X)= m (ii) E(X- rn)?=G
F(m+to)-F(m-tc)
*
21-i
26.1.38
(i) E(XJ =mi E(Xi-Tlnli)‘=U? (iii) E([Xi-mmil[Xi-mil) (ii)
=O(i#$
26.1.39
(i) E(X-m)‘=2 (ii) F(z) is a continuous c.d.f. (iii) F(z) is unimodal at ~0’
26.1.40
Pr( IX--ml
(i) E(X-m)a=a* F(z) is a continuous c.d.f. (iii) F(z) is unimodal at xoe (iv) m=zo
>tu) <4/9tS
(ii)
PY( IX--ml
26.1.41
>to)
Fb+td-F(m--tul
(i) JC(X-m)a=2 (ii) E(X-rn)‘=p4
< pr+;;f2pd
11-p,+;;;f2p,
620is mlcll that EV(ZO)>F’(I)forZZIO.
26.2. Normal or Gaussian Probability
Function
Pr{X<x}=-L
26.2.1 26.2.2 P(z) =&
26.2.4
&(x)=+~
n.m
J
S
.
S nm
=- e-t1’2dt=
g/2*
--(t-m)’ ’ e 24 dt --
_=(DZ(t)dt
J
The corresponding
2- Z(t)dt
probability
density
function
is
A(x) -1 -JZ;SI.L-t’12dt=SI;Z(t)dt
26.2.5 26.2.6 26.2.7 Probability
S
;. e -“12dt =
.
26.2.3
26.2.8
26.2.9
P(x) + Q(x) = 1 PC-x)=&(4 A(x)=2P(z)-1 Integral
with
Mean
and is symmetric m and
Variance
around m, i.e.
d
A random varirtble X is said to be normally distributed with mean m and variance 2 if the probability that X is less than or equal to z is given by
The infiexion points of the probability function are at m f u. *see page n.
density
PROBABILITY
932 Power
Series
FUNCTIONS Polynomial
(z 20)
and
Rational and
Approximations Z(x)
05x<
7 for
P(x)
-
26.2.16 26.2.11
- 1
P(z)=l--Z(x)(aIt+a2t"+a~t~)+B(x),
t=l+px
le(s)1<1X10-6 Asymptotic
Expansions
p= .33267
(x>O)
26.2.12
al=.43618 36 us=-. 12016 76 a3= .93729 80
26.2.17
Q(x)=?{
I-$+y+.
.. P~x)=l-z(x)(b,t+b2t2+b2t2+blt4+b~t~)+t(Z),
+(-1)“l.
3.. . (2?2--1) +R n x2n 1
1 t=l+pz
where
[e(z) [<7.5x
R,=(-l)“+‘1.3
. . . (2n+l$-
g
0%
10-s
p=.23164 19 .31938 1530 b4=-1.82125 5978 b,=-.35656 3782 bb= 1.33027 4429 ba= 1.78147 7937 6,=
which is less in absolute value than the first neglected term.
26.2.18
26.2.13
p(x)=&;
-(x2+2)
je(x)(<2.5X 1O-4 cl=.196854 c3= .000344 c2=.115194 cd=.019527
(s”a;4) (x2+6) + . * . )
where al=l, a2=l, a3=5, a4=9, aS=129 and the general term is
(1+c~x+c2~+c3~++c4x4)-4+,(~)
26.2.19
u,=col -3 . . . (2~1) +2cIl -3 . . . (2~33) +22c21-3 . . . (2n-5) + . . . +2”-‘c,-, +d4x4+d3x3+d3x3)-13+t(x)
and cli is t,he coefficient of t”-” in the expansion of trt-1) . . . (t-n+l). Continued
Fraction
Expansions
26.2.14
Q(d)=%)
Je(x))<1.5XlO-7
dl=.04986 &=.02114
10061
ds=.00327
76263
26.2.20
{
&&$$&.
. .}
(XX)
26.2.15
Q(x~=;--z(x) 1
2 x2 23? 3x2 4;c2 -_-_-l-3$5-77+9-.”
)
(x20)
73470
d,=.00003 80036 d,=.OOOO4 88906 da=.00000 53830
Z(X)=(U~+U~X~+~Z~X~+CZ~X')-'+~(~)
Je(z)1<2.7X 1O-3 a,=2.490895 a4= - .024393 a, = 1.466003 a6= .178257 1 Basedon approximationsin C. Hastings,Jr., Approximations for digital computers. Princeton Univ. Press, Princeton, N.J., 1955 (with permission).
PROBABILITY
FUNCTIONS
933
26.2.25
26.2.21 z(x)=(bo+b2x2+b4x4+bax6+bsx8+b,020)-1+e(x) (e(~)[<2.3XlO-~ 3,=2.50523
67
bs=
bz=1.28312
04
b,=-.02024
b4= .22647 18 Rational
b,O=
Approximations
7 for
90
.00391 32 Q(x,)=p
xp where
Cx>O)
P(x) 2 I P4(x) = 1-i
.13064 69
(2n)+e-xz2/2
b>2.2)
See Figure 26.1 for error curves.
o
+6(p),
k(P) 1<3X lO-3 ao=2.30753
bl = .99229
al=
b2=.04481
.27061
P>l-PM
FIGURE
26.2.23 co+C1t+c2tZ
2p=t-
l +d,t
+e(p),
/
- ,006
t=
+d3t”+d3t3
Error
26.1.
curves for distribution.
bounds
on
normal
In-l-
P2
J-
Derivatives
of the
Normal
Probability
Density
Function
Jc(p))<4.5x10-4
Bounds
q=2.515517
d, = 1.432788
cl = .802853
d,=
c2= .010328
da= .001308
Useful
26.2.26
Z(m)(2) =d$m Z(x)
.189269
as Approximations Distribution Function
to
Differential
the
Normal
26.2.27
Equation
Zcm+2~(x)+xZ(m+‘~(x)+(m+1)Z’“‘(x)=.0 Value
26.2.24
at x=0
26.2.28 P,(x)=++;
(l--e-tiz/r)+
(x>O)
(- lym!
P(x) 2 p2(x) = I-
(4+22Y--s 2
(27r)-+e-22/2 (x>l.4)
for m=2r, r=O, 1, . . .
&i2m’2 (g)!
Z(m)(0) = i
1
0
for odd m>O
PROBABILITY
934 Relation
of P(r)
and
FUNCTIONS Z(m)(z)
to Other
Functions
Relation
Function
26.2.29
26.2.30
Error function
erf 2=2P(zJz)-1
Incomplete
y~ ;,x =[2P
gamma
function
(special case)
(
rf
(x20)
>
0 n
26.2.31
Hermite
polynomial
26.2.32
“
26.2.33
Hh function
26.2.34
“
26.2.35
Tetrachoric
26.2.36
Confluent case)
(x20)
(&GC) - l]
Z’“‘(x)
He&$=(-1)
z(x)
2(*)(x&?) &-Jz)
H,(z)=(-1)“2”‘2
VC4 H&(x)
=y
72.
Hh-l(x)
-& (@)
(00)
function hypergeometric
function
(XX)
(special
26.2.37
I‘
(x>O)
26.2.38
‘I
(x2 0)
26.2.39
II
(x20)
function
(G-0)
26.240
Parabolic
cylinder
Repeated
Integrals
26.2.41
I,(x)=
of the
Normal
mIn-l(t)dt sz
Probability
Integral
(n2 0)
where I-l(z>=Z(x) 26.2.42
(n2 -1) 26.2.43
(-g+x
~-+(x)=0
26.2.44 ~n+l>~,+l(x)+x~~(x)--I,-l(x)=O
(n>-1)
PROBABILITY
26.2.45 I,(x)
=
935
FUNCTIONS Asymptotic
S
Let
z
26.2.46
I,(O)=I-n(O)= 0
Asymptotic Density
Expansion Arbitrary
Expansions Function
l s+2 ; !2 2
of an Arbitrary and Distribution
Let Y, (i=1,2,
for the Distribution
the cumulative
Inverse Function Function
distribution
of an
function
of
(n>--1)
Y=$,
(n even)
l&he;) asymptotic expansion with respect to n for the value of yp such that Q&=1--p is
Probability Function
. . ., n) be n
Y, be denoted by F(y).
26.2.49
Then the (Cornish-
ypmfm
where wx+
LYlh (x> I
independent random variables with mean m,, variance I& and higher cumulants K~, c Then asymptotic expansions with respect to n for the probability density and cumulative distribution function of Zi!i (Yi---mJ + are
+r:hI(dl+
and &(x>=p,
26.2.47
Y,-2=$2,
t-=3,4,.
*** ..
26.2.50
j(x)-Z(x)-k P’(x)]+~g 2’4’(x)+~Z’e) (x)] h,(x)=: - [z. P’(x)+Tz; 2’7’ (x)+g6Z’@(x)] +[goz’“‘(x)+& .z@‘(x)+~~; P)(x) +& 2’10 (x)+aM P’(x)]+... Md=& h2Cd
He2(xj
=A
Hea
[2Hfh(d+Hh(dl
h,(X)=-&
We4(41
26.2.48
F(x) -P(x) -pi P’(x)]+~; P(x)+g2’”(XjJ - LgoP(x)+yg;2’6’ (2,+& 2’~’ (x)] +[go2’6’ (x)+A 2’7’(x) +?S2(7’(x) +g z(yx)+&4 zyx)]+... where
h2(a)=-& $ll(x~=~4
We4W
1
%-2=nf,-1
0
K7 -p
He&4
[3He6(4 -I-6He3(d -I-‘JHel(dl
h22@l=-&4
IL,~~(z)=~&
1
[12He4(x)+l9~e2(x~l
h,(~)=$~
h13(z)=--
Terms in brackets are terms of the same order with respect to n. When the Y, have the same distribution, then mt=m, d=u2, K,,t=K, and
+He2(41
1 180
[2Heds) +3He&)l
D4He6(d +37He3(4 +@Jel(dl
hill@) = -17776[252He6(x)+832He3(x)
+227Hel(x) 1 Terms in brackets in 26.2.49 are terms of the same order with respect to n. The He,(x) are the Hermite polynomials. (See chapter 22.)
936
PROBABILJTY
Z(n)(x) El t- 1)” z(z)=n! mgo 2mm!(n-2m)! P-2m
*&)=(-l)”
26.2.51 In the following
auxiliary
table, the polynomial
functions h,(z), h,(z) . . . /Lag,,
are tabulated
for
.l, .05, ,025, .Ol, .005, .0025, .OOl, .0005.
p=.25, Auxiliary
FUNCTIONS
coe$cientaB for use with Corn&h-Fisher
26.2.49
asymptotic expansion.
.2&i
--
* 81449
‘:“I%!!
-:i%i
.00372 -. 14607 -. 04410
:EE .00282
GE .14704 -.06333
3%
26.3. Bivariate
Normal
to mathematical 4, l-14 (lQ37) (with
Probability
statlstlcs. Paper permission).
22;
30 (with
3% :34331
: 67070
-:E -%z -3% -. 174Q3 l.wH45 -1.3QlQQ
-‘:%2
-‘:Z
-%% :04sQ1 -.5@00
-t
x2 -3: 32’108
E. A. Comlsh)
Extralt
-
23: : 1OQsO
r:g; 7123307 -5.40702
de la Revue
de
Pr{XSh,
The probability 26.3.4
Q--h,
-k, p)=
’ dx ’ g(x, y, p)dy s -aD s -(D
26.3.5
L(-h,
k, -p)=
’ dx ?J(x, y, p)dy f -0 sk
L(h, -k, -p)=
26.3.6
26.3.7
W,
26.3.8
U--h,
26.3.9
L(-h,
s
=dr h
s
k, d-Uk,
k, P)+U&
-k, p)-L(h,
&$j=%g
’ g(x, y, p)dy -0D
Probability
Function uZ, &
uy ‘p >
where
k, -p)=Q(lc)
k, p)=P(k)-Q(h)
-p>+W)-Q(k)l---l A = dx k s -h s -k With Means and Correlation
m,,
my,
Normal
Probability
Density
Function
26.3.13 dx, Y, PMY
1 x-mm, ;2”9 ( -’ u
Variances
p
The random variables X, Y are said to be distributed as a bivariate Normal distribution with page
( a,
h, P)
Circular
h
is
x-mm, y-m,
26.3.10 k, p)+Uh,
density function
26.3.12 2rc**v1&7exp
*Bee
.alOs
.-
26.3.11
g(x,y, p)=(l-p*)-iz(x)z
26.3.3
+ WW,
.oOl
means and variances (m,, my) and (4, ~“y) and correlation p if the joint probability that X is less than or equal to A and Y less than or equal to k is given by
Function
26.3.1
26.3.2
“:&%
-:IIE .3wd6 -.4tx34
-: .ZE
8 From R. A. Fisher. Contributions 1’Institute Intematlonal de Statlstique
.0025
.38012 -. 58171 . OeJxo -.53531 . bQ767 -. 02821
$!+I$
-:i%
.Qo.5
y-mm, -10 u
>
=
&* exp- (x-m2+(y-mv~2 2V2
XI. hJA
PROBABILITY
Special
26.3.14
Values
of L(h,
k, P)
L(h,
L(h, k, -l)=O
(h+k
Uh, k, l)=&(h)
(klh)
26.3.18
Uhk, l)=&(k)
(k>N
p)=;+arc2y
+L
-
.h
.
0
13
p
where sgn h=l
P 0
k o W--h)kn
0, p)
>
if hk>O or hk=O and h+k>O otherwise
if h>O and sgn h=-1
.I"
.LC
k)
’ ’ dh2-2phk+k2
26.3.17
L(O,O,
of L(h,
L(h, k, p)=L
(h+kZ 0)
26.3.16 L(h, k, - 1) =P(h) -Q(k)
26.3.19
k, p) as a Function
26.3.20
Uh,kQ)=Q(h)Q(k)
26.3.15
937
FUNCTIONS
.I"
if h
-.I
-*2
-.3
-.4
l/l
IX
l/IA
l/l
I/I
/VI .03
-.6
r
-v I/
h
FIWJB~ 26.2. Vabs
L(h,
0,
p) for 0
for h
using
and -1
L(h, 0, --p)+-L(-h,
PROBABILITY
l/l
0
.OS
.I0
.I5
.20
.25
I/I
.30 FIQIJRE
.35
Y
.40
26.3.
Valuesforh
.45
L(h,
FUNCTIONS
I n
30 0,
l/l
.ss
.60
p) for O
beobtainedusing
L(h.0,
I/I
.65
30
.75
and O
p).
.60
.65
.90
.95
1.00
PROBABILITY
939
FUNCTIONS
P .I4
.I2
.I0
.09
.06
.07
.06
.05
.04
.03
.02
.Ol
-.I /’ /’
/
-.2
/
A’ 1
/’
/’
/. /
/ /
/’
/
/ -.3
/
I
/’
I
/
/’
/’
/’ 0’
/ /’
-.4 / /’
4.0
-rh 1.00 LO5 I.10
I.15 120
L25
1.30 1.35
I.40 1.45 1.50 I.55
FIQURE 20.4.
I.60
1.65 1.70 I.75
1.60 I.65 1.90 t95 200
205
2JO 2.15 2.20 225
L(h, 0, p) fo7 h21 and -1 1~51.
Values for h
0, P.)
2.30
2.35 2.40
245
2.50
940
PROBABILITY
Integral
Over
an Ellipse
With
Center
at (m,,
FUNCTIONS Approximation
m,)
to P(pI
2,s)
26.3.25
26.3.21
Approximation
where A is the area enclosed by the ellipse (Y- mu>
%4x-d
WG +(y), Integral
Over
Condition
26.3.26
P(xl)
R>l
26.3.27
P(x2)
RX
=d(l-$)
an Arbitrary
Region
26.3.22
=ss A’(& I)
where A*(s, t) is the transformed from the transformation se-
1
--
t-JzA-p
g(s, t, o)dsdt
region obtained
(
x-m+ ---
Q(h)-Fk
&---k>O,
k, d<&(h)
Series
O
26.3.29
Q > Probability v=l Over
Z(k) [Q (j+2)-@h
where
y-mm,
a,
Integral of the Circular Normal With Parameters m.=n,=O, Rounded by y=O, y=ox, x=h
Inequality
Qv >
gz
*
26.3.28
-x- mZ+y-- m,
4 42+2p
R, r both large
x2=R-,fi
L(h, k, p) =Q(h) Q(k) +$
Function the Triangle
26.4. Chi-Square
m
Z’n~~l;;(k)
Probability
p”+’
Function
26.4.1 26.3.23 P(x~J,)+~I V(h, ah)=&
=;
(;)]-‘12
(t)+e-+dt
sh s”: e-f(z2+v2)dxdy 0 0 +Uh,
0, P)--L(O,
0, p)-
(Olx2< a) 26.4.2
; Q(h)
Q(x"lv>=1-P(x"lv)
where
+I
r (!L)]-lsx; Relation
Integral of Circular Normal Distribution Over Circle With Radius Ru and Center a Distance h9 m,)
an O&et ru From
26.3.24 0) dxdy=P(R2(2, r’)
where P(R212, r”) is the c.d.f. of the non-central x2 distribution (see 26.4.25) with v=2 degrees of freedom and noncentrality parameter 9.
(t)+-‘e-t
to Normal
dt
Distribution
Let XI, X2, . . ., X, be independent and identically distributed random variables each following a normal distribution with mean zero and unit variance.
t ‘T,
@9"< ->
Then X2=$X:
is said to follow the
chi-square distribution with v degrees of freedom and the probability that x25x2 is given by P(x’~v). Cumulants
26.4.3
K,,+l=2%!Y
(n=O, 1, . . .)
PROBABILITY Series
941
FUNCTIONS Approximations
Expansions
,to
the
Cl&Square Large Y
26.4.4 26.4.13
QW>
Distribution
Approzimation x&E+i%z = &(a,,
for
Condition (v>lOO)
26.4.14 (x*/v,l~3-( l-2)
(V odd) and x=fi Q(x'l4 =&(x4,
26.4.5
(v>30)
x2= 4s
26.4.15
Q(x*lv) =Qb2+hA,
hv=T
(v even)
hao
(u>30)
Values of hm
26.4.6
Approximations
26.4.7
for
the
Inverse
Function
If Q(x’,~v) =p and Q(z,> = 1--P(g)
p(X*lv)
=p,
for
then Condition
Approximation Recurrence
26.4.9
and
Differential
b"Q(x*ld =F 1 $ (7) b(X2)" Continued
26.4.16
xl, =;
{ x.+Ji;=r)s
(v>lOO)
26.4.17
x;~:Y{ ~-$+x~G}~
(v>30)
26.4.18
x”, = v.
(v>30)
Relations
lG+
(5 -h”)g}”
(-1~“+‘Q(x’l~--2~~ where h, is given by 26.4.15.
Fraction
Relation
26.4.19
Incomplete
to Other
Functions
gamma
function
y=?#a,x2=2x
~$g=P(x’Iv,, 1
l-v/2
1
2-v/2
2
- *) { x2/2+1+x2/2+1+@% Asymptotic
26.4.11
Distribution
P(x*lv) -P(x) Asymptotic
for
Large
where z=Expanxionx
for
~=Q(x*lv, 26.4.20
Y
Pearson’s incomplete
x2-u Jz;
Large
26.4.21
x2
2,+1
x2=2u 4g
&@*I~> =&lj
cm
5)
c=i,
n=$
(-1)’ r
1-i (
(x2)’ >
function
Poisson distribution C-l
r (++j) *seepageIL
gamma
v=2(p+l),
26.4.12
Q(x2,.)~~~~,~;~~;;s&
Large
Q(~~~v>-Q(~~(v-2)=e-‘”
&!
(v even)
Y
942
PROBABILITY
26.4.22
FUNCTIONS Non-Central
Pearson Typo III
X*
Distribution
Function
26.4.25 v=2abf2, 26.4.23
Incomplete
moments
P (X’21v, A)=g
x2=2b(s+a)
of Normal
distribu-
where Xl0 eter.
tion (n- 1) !! ‘9
(n even)
@$?P(xzlv) T
(n odd)
Generalized
ng (-lP+’ n!L(“,) (2)s PO
Laguerre (“;‘>
SS
Polynomials
A
g(x, y, O~dx&/=P(x2=R2~v=2,
Q(x21v+2--237
Approximations
=1-g
to the
Non-Central
a=v+h
b=-
x2 distribution
P(X’2lv, M-P
26.4.28
Normal
distribution
P(x’2lv, A) =P(x),
26.4.29
Normal
distribution
P(x’2(v, A) =P(x),
Approximations
l+b
to the X*
If Q(x~lv, X)=p, Q(xilv*)=p, x2
26.4.31
Normal
26.4.32
Normal
x v+x
( x2I>*
26.4.27
26.4.30
Distribution
X*
Approximation
Function
Variable
param-
26.4.26
x=x2/2, cz=v/2
Approximating
the non-centrality
vsn+l
2”[Q(x21v+2> - &(x2141
Approximating
P(Xt21v+2j)
Relation of Non-Central xz Distribution With v=2 to the Integral of Circular Normal Distribution (u*=l) Over an O&et Circle Having Radius R and Center a Distance r=h From the Origin. (See 26.3.2446.3.2’7.)
x2=$,
26.4.24
is termed
emhiy
and Q(x~)=~ Approximation
v )
v*=&
x+cJ-[~-l]
Inverse Function Distribution
of Non-Central
then to the
x;=(l+b)x;
Inverse Function
A) $7
Q(R2(2+2$
PROBABILITY
FTJNCTIONS
943
944
PROBABILITY
26.5. Incomplete
FUNCTIONS Continued
Beta Function
26.5.1
Iz(u,b)=B(;,b)
s
O=tyl--t)L-ldl
(Olxil)
b+m)(a+b+m)
dh+l=-
Zz(u,b)=l-Z,-,(b,u) Chi-Square
Distribution
If X: and Xi are independent random variables following chi-square distributions 26.4.1 with Y, and v2 degrees of freedom respectively, then X is said to follow a beta distribution with x:+x: vI and v2 degrees of freedom and has the distribution function
Best results
are obtained
zQ(l-x)b-’ uB(u b) f
b)=
e2m=-
Expansions
&f!, b-5
.2
l+.g b)
mJSl,n+l) n-o @+b, n+l)
x”+l
1
e,=l
(u+m-l)(b-m) (u+2m--2)(u+2m-1)
(u+2m-l)(u+2m) Recurrence
Z,(u, +“(‘-x)b aNa,
* * *
.122
m(u+b-l+m) e2d=
(O<x
26.5.4 *
el ez e3 C 1+ 1+ 1+ -
xc1
*
Series
when x<s2.
26.5.9
26.5.3
2
’
Also the 4m and 4 m+ 1 convergents are less than Zz(u, b) and the 4m+2, 4m+3 convergents are greater than Z,(u, b).
z&,
=L(a,b)
X
(a+2m)(a+2m+l) m(b-m) (u+2in- l)(u+2m)
d2m= to the
*
---. 1 4 4 .. Zz(u, +f(l-x)b aB(a, b) 1+ 1+ 1+
26.5.2
Relation
Fractions
26.5.8
II,
Relations
26.5.10
Z,(a,b)=xZ,(u-l,b)+(l-x)Z,(u,b-1) 26.5.11
26.5.5
Zz(a,b)=
xyl -Zy-’
Zz(u,b)=;{Zz(u+l,b)-(l-x)Zz(u+l,b-1))
uB(u, b)
26.5.12 *
[ 1
Lb, b)= ucl-;,+bi
=2(1--r)b-’ Wa, b)
bzz(d’+l)
+u(l-x)Z,(u+l,b-1)
1
26.5.13
+Zz(a+s, b-s) 26.5.6
l-Z&,
I,(a,b)=;;-
{uZ,(u+l,b)+bZ~(~,b+l)}
26.5.14 b)=Z,-,(b,u)
Jl-x)b Bm
I
z&,u)=; I,-,t (u, f)!
O--l (-l)i C i-0
(“;i’)
5:)
(integer a>
x)=4 (x-;y[x
26.5.15
26.5.7 1-Z,(u, =
b) =I,-r(b,
(1s-@+b-’
a.)
g
(“+t-‘)
26.5.16
(+r)i
(integer a)
Z&b)=
-- r(“+b) r(a+l)r(b)
P(l-r)b+Z,(u+l,b)
s ;I
PROBABILITY Asymptotic
Expansions
and y is taken negative when x< ~ u-l
26.5.17 r@
l-lz(a,b)=I~-*(b,a)---
945
FUNCTIONS
u+b-2
Y)
r(b) Approximations
26.5.20
If (u+b-1)(1-x)5.8
I&
Q(x'lv)+ e,
b) =
]c]<~X~O-~
if u+b>6
x’=(u+b-l’)(l-x)(3-x)-(l-x)(b-1), v=2b
26.5.18
If (a+b-1)(1-x)2.8
26.5.21
Lb,
b)=W+e,
(ej<5X10W3
if u+b>6
26.5.19 Lb, b) -Q/)--z(y)
[u,f”‘f$--$ +%(l+?m+
. . .
1 +a2
ul=;
wz=[u(l-x)]“”
~~=(bx)“~,
(b--a)[(u+b-2)(u-l)(b-
1
Approximation
to the
Inverse
Function
,1)1--M
26.5.22 If &(a,
1
and Q(y,)=p
b)=p
then
U 5”,+be2”
,=Yv@+v’
+(b-1)
In
b-l
(u+b-1)(1-x)
Relations
to Other
1
h=2
Functions
and
h,Yz-3 6 Distributions
Function
26.5.23
Hypergeometric
26.5.24
Binomial
Relation
function
&;
F(u, 1-b;
9
u+l;
n n p”(l--p)“-‘=l,(u, ,-II s c(>
distribution ‘I
26.5.25
-
h
X
b)
x)=1&
n-‘u+l)
r pa(l--p)“-“=I,(u,n-u+l)--l&2+1,
n-a)
0
26.5.26
Negative
binomial
26.5.27
Student’s
distribution
265.28
F-(variance-ratio)
distribution
2
(“‘:-‘)
p”q’=I,(u,
;[l-&j+;
distribution
1, (;$,
Q(F/vl, vJ=Iz
(‘II, ;;?)P
n) x=--f-
x=2 vz+vr
*See
page
II.
*
v+t2
F
*
946 26.6.
F-(Vdance-Ratio)
PROBABILITY
FUNCTIONS
Function
26.6.5
Distribution
26.6.1
Q(F~v,,v,)=1-(l-2)"'2[l+~
Ftf(“1-2)(Y2+Ylt)-f(“I+“l)dt
PWIVI,d=
* . * (V2+Vl--4)
+vlh+2) V'2
2.4.
. . (~~-2)
Q(Flv,, vJ=1-(l-2)
2
0)
26.6.2
x+w
x2+...
1
xT
(v2 even)
26.6.6 Q(Fjv,, vJ=l-P(FIvI,
vJ=Iz
(
z,;
>
where x=-----
v2
v2+v1
Relation
to the
F
Chi-Square
Distribution
If X,” and Xi are independent random variables following chi-square distributions 26.4.1 with v1 and v2 degrees of freedom respectively, then the distribution of F=m2WV1 is said to follow the variance ratio or F-distribution with degrees of freedom. The corresponding tion function is P(FJv,, v2). Statistical
26.6.3
26.6.7
and v2 distribu-
v1
Properties
QU%, VZ
mean :
m=-
variance:
g2=vl(v2-q2(v24)
v2)=1-4tlv2)+/3(~1,
bJP>2)
vz-2
2&vl+v2-2)
23.54 -**(‘=I;;
4t\v2y=
h>4)
.
cos --2e]
. . .
;
( > Vz--l
,
$
\sinecosv~e
l+
>
v2+1 -sin*f3++..+
P(v1, Vz)=
3
(V2+1)(V2+3).
. . (~~+V2-4)
Oforv,=l
*
where
Expansions
f3= arctan
v2 vz+vP
26.6.4
+v2b2+2)
‘See
Reflexive ~2)=s”~~[lf;(l--r)++9(1
. . . (vz+v~--4) 2.4.. * h-2)
page II.
q-3
e
for v2>l
l$(t)=E(P)=M ( 2, 2, -z it>
* Q(Flv,,
Sin
3*5...(v1-2)
functioni
xc-----
v2>1
{ (
Series
for 1
F for v2=l
about the origin:
characteristic
(VI, v2 odd)
~2)
O+sin B[cosO+~ cos3 O+ . . . +
third central moment:
moments
(v2 even)
26.6.8
-x)2+.
Y,-2
(l-x)2
1
. .
(IQ even)
Relation
If Fp(vl, v2) and F,-,(v2, v,) satisfy
QV'vh, &VI-ph,
V2) lV1, V2) =P VAIV2, Vd=l---p
PROBABILITY
26.6.9
947
FUNCTIONS
26.6.15
then
x/113 (l-ia-(l-&)
Q(Flv,, ~2) =Q&(d, Relation
to Student’s
26.6.10
t-Distribution
Q(FIvI=l,
Function
(See 26.7)
J
t=@
v,)=l-A(ljvz)
Approximation Limiting
Inverse
Function
Forma
26.6.16
26.6.11
~2)=Q(x21~~),
lim QU%, *a+-
to the
$+F2j3 &
If Q(FvIv,, v2)=p, then
F, = e2wwhere w is given by 26.5.22, with
x2=vIF
vI=2b, v2=2a
26.6.12 x2=-
lim Q(FIv,, v~)=P(~~ld,
n-f-
Non-Central
;
P’ P(F’IvI,
vz,N=
s0
26.6.13
(vl
- v2 v,--2
J
~(tlv,,vz,~)dt=l-Q&(F’Iv~,v2,X)
where
F-Y& v*-z
x=
and v2 large)
Function
26.6.17
Approximations
QV'Iv,, v2> =&Cd,
F-Distribution
-
2(v,+w--2) 5 h-4)
26.6.14
J
v*+u--2
(2v2-1) ; F-d-
&U%,
~2)
x=
=Q(d,
xt
I-
d
l+:F
Relation
of
Non-Central
- b,+2j+v,)/2
[v2+~v1+2j)tl
and A>0 is termed the non-centrality F-Distribution
Function
to Other
Functions
P(F’Iv,,
F-distribution
v2,A)= F. evN2 y
.
P(F’I ~1,~2,x=O)=P(F’(VI,
26.6.19
Non-central
tdistribution
26.6.20
Incomplete
Beta function
P(F’JvI=l, P(F’Iv,,
v2,X)=P(t’lv,
S), t’=dF’,
eMAl yIz
v,)=%
P(F’lvl+2j,v2)
v2)
v=vg, S=J);
(;+j,
2)
j-0
2-7
vlF’ * v,F -4-a
pa
--1
26.6.21
parameter.
Relation
Function
26.6,18
2
Confluent hypergeometric
function
P(F’IvI,
~2,
A)=
2ebN2
2x
i-o (vl+v2)B
(
.
v2
(?,i,l,
even and x=-
;-i)”
v2
v$“+vz >
23
PROBABILITY Series
FUNCTIONS
is called Student’s
Expansion
26.6.22
freedom.
-x 0-a
P(F’Ivl,vz,N=e
z~b,+y2-2)
2
‘2
Ti
(v2 even)
t-distribution
The probability
with
that
& in absolute value than a fixed constant
degrees of
v
will be less is
t
26.7.1
where To=1 T,=;
(v,+vq-2+Xz)
T t =q x=-
e
[(vl+vz--2i+Xs)T,-,+X(1-z)T,-,]
where
VP v,F’+v, Limiting
v-l-i*
Forms Statistical
26.6.23 x’*=v,F’,
lim P(F’Iv~,v~,X)=P(X’*IV,X), vr+m 26.6.24
x2=v2(1
lim P(F’~v,,v~,X)=&(~*~V),
“I-+”
~-
v=v,
+c*1 F’
Approximations
to the
P(F’lv,,v,,M
Proper&s
26.7.2
mean :
m=O
variance:
g&Y
(v>2)
v-2
skewness: r,=O
where X/v,-+* as vl+ Q).
26.6.25
V
xc-
Non-Central
F-Distribution
cxccss:
(v, and v2 largr)
=P(q),
where
r*=&
(v>4)
moments: ~*..-(vl;)~v~~~)
(2n-l)v” . . . (v-2n)
(v>W
VI (v2 -a
x1=
CL*n+1=O
g+v,+2h
characteristic
I
function:
26.6.26 PiF’lv~,vn,V
-W7b:,v2),
F-
‘1 v,+x
F’,
v~-(v1+X’2
Series
v1+2x
(
@=arctan -!4 >
26.6.27 PW’h,v2,M
4x2:,),
26.7.3
,=[&l"" [I-&I-[l-29(;1,:31 (& q3] [
~{0+sin0[cos8+~ros30+. + 2.4 . . . (v-3) 1.3.. . (v-2)
; 55i+&
A(+)=.
26.7.
Student’s
then the distribution
of the ratio x Jx*Iv
..
2 -8 n-
*
cosy-2 0.
(v>l
t-Distribution
If X is a random variable following a normal distribution with mean zero and variance unity, and X* is a random variable following an independent chi-square distribution with v degrees of freedom,
Expansions
II
and odd)
(V’l)
26.7.4
A(tlv)=sin +
0
1 1.3 1+z cos* e+m c-OS4 e+ ,
1.3.5 . . . (v-3) 2.4~6.. . (v-2)
cosy-* g 1
(V
even) *
PROBABILITY Asymptotic
Expansion
If A(t,(v)=l-2p
for
the
Inverse
and Q(z,)=p,
949
FUNCTIONS Approximation
Function
26.7.8 +!Jl(X,)
sP(xP)+gdxP)
7+7
P
--$-+
p
&Iv)
=2P(x)-1,
x=
I-
+2
- * *
!a)=; (xa+x) gz(z)=&
Large
then
26.7.5
t -x P
for
Non-Central
t-Distribution
e-s2f2 9
1z ($i+j),
26.7.9
(5scb+l62’+3s)
P (t/Iv, S) = g&)=&
(32’+191+1721-152) (79x9+776x7+ 1482x5- 192023-945x) Limiting
Distribution
=1-s
26.7.6
x-
where 6 is termed the non-centrality Approximation
a, b,
Large
Values
of
t
and
v<S
Approximation
A(tlv) E31-2 { ;+$}
26.7.7 Y
for
1
9
.3183 .oooo
.4991 .0518
3
1.1094 - .0460
to the
v , + v+t”
parameter.
Non-Central
t-Distribution
26.7.10 4 3.0941 -2.756
i!’
.5
P(t’Jv, 6) =zqx)
9.948
where x=
- 14.05
Numerical 26.8. Methods of Generating
Methods
Random Numbers and Their Applications
Random digits are digits generated by repeated independent drawings from the population 0, 1, 2 9 where the probability of selecting any * *, digit is one-tenth. This is equivalent to putting 10 balls, numbered from 0 to 9, into an urn and drawing one ball at a time, replacing the ball after each drawing. The recorded set of numbers forms a collection of random digits. Any group of n successive random digits is known as a random number. Several lengthy tables of random digits are available (see references). However, the use of random numbers in electronic computers has resulted in a need for random numbers to be generated in a completely deterministic way. The numbers so generated are termed pseudo-random numbers. The quality of pseudo-random numbers is determined by subjecting the numbers to several statistical tests, see [26.55], [26.56]. The purpose of these statistical tests is to detect any properties of the pseudo-random numbers which are different from the (conceptual) properties of random numbers. 0 The authors wish to express their appreciation Professor J. W. Tukey who mnde many penetrating helpful suggestions in this section.
9
Experience has shown that the congruence method is the most preferable device for generating Let the sequence random numbers on a computer. of pseudo-random numbers be denoted by {X,} , n=o, 1, 2, . . . . Then the congruence method of generating pseudo-random numbers is X,,+,=aX,,+b(mod T) where b and T are relatively prime. The choice of T is determined by the capacity and base of the computer; a and b are chosen so that: (1) the resulting sequence {X,,} possesses the desired statistical properties of random numbers, (2) the period of the sequence is as long as possible, and (3) the speed of generation is fast. A guide for choosing a and b is to make the correlation ’ between
the numbers
be near zero, e.g., the correla-
tion between X,, and X,,+* is +e
where al=aa (mod T)
to and
b,=(l+a+a2+
lel
pa&-e II.
. . . +a’-‘)b
(mod 7’)
950
PROSABILITY
which
FUNCTIONS
a= 1 (mod 4). When T= 10q, b need only be not divisible by 2 or 5, and a=1 (mod 20). The most convenient choices for a are of the form a=2”+1 (for binary computers) and a=lO”+l (for decimal computers). This results in the fastest generation of random numbers as the operations only require a shift operation plus two additions. Also any number can serve as the starting point to generate a. sequence of random digits. A good summary of generating pseudo-random numbers is [26.51]. Below are listed various congruence schemes and their properties.
occur in Xn+s=asXn+h
(mod T rel="nofollow">
When a is chosen so that a= PIP, the correlation p1z T-l’“. The sequence defined by the multiplicative congruence method will have a full period of T numbers if (i) (ii) (iii)
b is relatively prime to T a= 1 (mod p) if p is a prime factor of a= 1 (mod 4) if 4 is a factor of T.
T
Consequently if ?‘=2q, b need only be odd, and Congruence
= = a
methods
for
X.+,=aX.+b(mod T
b
Period
generating
X0
Special
_1+t*
odd
T=tp
O<Xo
26.8.2
r2’fl (r odd, 812)
0
T=to
relatively
26.8.3
r2*fl (r odd, 822) -pa
T=tcfl
Fme relatively
T= 100
pTrime tc relatively
T=lO*
Fme relatively
26.8.5
10x0 given
*
point
for random
numbers
when
,
I
Generation
of Random
Deviates
Let {X} be a generated sequence of independent random numbers having the domain (0, T). Then { U} = { T-lx} is a sequence of random deviates (numbers) from a uniform distribution on the interval (0, 1). This is usually a necessary preliminary step in the generation of random deviates having a given cumulative distribution function F(y) or probability density function f(y). Below are summarized some general techniques
‘See
page U.
cases for which
random numbers tests for randomness
have 10
passed
statistical
T=218, Xa unknown; a=27+1. b=l; T=247, a=Z@+l. b=2974109625 8473. X0=76293 94531 25. T=W, 211, X0=1; a=5”(8=2) T=2as, X0=1; T=219, X0=1-2-19, 5478126193; a=5’#(8=2) T=286, X0=1; a=515(8=2) T=aas+l, X0=10,987,654,321; 0=23; period = 106 T=los+l, X0=47,594,118; a=23; period=5.8XlOs T=lOlo, T=lOl$
to
Prime to
is the starting
to
X0=1; X0=1;
a=7 a=71:
-
statistical
When the numbers are generated using a congruence scheme, the least significant digits have short periods. Hence the entire word length cannot be used. If one desired random numbers with as many digits as possible, one would have to modify the congruence schemes. One way is to generate the numbers mod T* 1. This unfor1 iunatelv reduces the neriod. .
numbers prime
_-
26.8.1
26.8.4
random
T), T and b relatively
tests were made.
for producing arbitrary random deviates. (In what follows { U} will always denote a sequence of random deviates from a uniform distribution on the interval (0, ., l).) 1. Inverse
Method
The solutions {y) of the equations {u=F(y)) form a sequence of independent random deviates with cumulative distribution function F(y). (If F(y) has a discontinuity at y= yo, then whenever u is such that F(y,-O)
a Discrete
Random
Variable
Let Y be :I discrete random variable with point probabilities p,=Pr{ Y=y,] for i=l, 2, . . . .
PROBABILITY
The direct way to generate Y is to generate and put Y=y, if
FUNCTIONS
{ lJ]
. * - +Pi. * * * +p*-l
P,=lO-’
6,* for r=l,
i=l
II.=&
r=O
2, . . . , k, and
lO’P,, s=l,
2, . . . , k.
Number
the computer memory locations by 0, 1, 2, . , . ) Q-1. The memory locations are divided into k mutually exclusive sets such that the 8th set consists of memory locations II,.-,, q-,+1, . . . ) Q-1. The information stored in the memory locations of the sth set consists of y1 in 6,, locations, y2 in a#2 locations, . . . , yn in 6,, locations. Denote the decimal expansion of the uniform deviates generated by the computer by u = .d,d,d, . . . and finally let a {m} be the contents of memory location m. Then if .-I nut .¶-I
y=a
d,d2 . . . ds+us-l--os
g
Pi
.
This method is perhaps the best all-around method for generating random deviat#es from a discrete distribution. In order to illustrate this method consider the problem of generating deviates from the oinomial distribution with point probabilities
PI=0y for n=5
and p=.20.
py1-py
The point probabilities
thus
P,,=O,
K=43, divided
Set 1 2 3 4
;
: 5
p,= p,= p,=
p,=
.2048 .0512 .0064 .0003
Ps=.027,
Memory Locations 0,1,...,8 9, 10, . . . , 15 16, . . . , 42 43, . . . , 72
Frequency Frequency Frequency Frequency
(set (set (set (set
1)
2) 3) 4)
0
1
2
3
4
5
3 2
4 0
2 0
7 7
9 6
4 8
0 5 1 2
0 0 6 4
0 0 0 3
Then to generate the random 0
y=a{dld2-81} y=a{ddld2d3-954) y=a{d,d,d,d,-9927}
.97
variables if
y=aIdlj
Put
a Continuous
Random
Variable
The method for generating deviates from a discrete distribution can be adapted to random variables having a continuous distribution. Let F(y) be the cumulative distribution function and assume that the domain of the random variable (If the is (a,b) where the interval is finite. domain is infinite, it must be truncated at (say) the points a and b.) Divide the interval (b-a) into n sub-intervals of length A (nA=b-a) such that the boundary of the ith interval is (yl+ yr) where yr=a+iA for i=O, 1, . . . , n. Now define a discrete distribution having domain
to
zt-Yf+Yf-l 2
{ Point Probabilities p0=0.3277 p,= .4096
P2=.07,
Among the nine memory locations of set 1, zero is stored &=3 times, 1 is stored 6,,=4 times, 2 is stored a12=2 times; the seven locations of set 2 store 0 a2,=2 times and 3 823=5 times; etc. A summary of the memory locations is set out below: Value of Random Variable
4 D are Value of Random Variable 0
P,=.9,
from which II,=O, I&=9, 112=16, 114=73. The 73 memory locations are into 4 mutually exclusive sets such that
P,=.OO30
PI+P2-k
PO-O,
and
951
)
with point probabilities pi=F(yr) Finally, let W be a random variable uniform
distribution
done by setting
on
.
-F(y+J.
having
a
This can be Then
random
952
PROBABILITY
deviates from the distribution function F(y), can be generated (approximately) by setting y=z+w 1 =z+A u-. This is simply an approximate 2 ( > decomposition of the continuous random variable into the sum of a discrete and continuous random variable. The discrete variable can be generated quickly by the method described previously. The smaller the value of A the better will be the approximation. Each number can be generated by using the leading digits of U to generate the discrete random variable Z and the remaining digits forming a uniformly distributed deviate having (0,l) domain. 4. Acceptance-Rejection
Methods
In what follows the random variable Y will be assumed to have finite domain (a, b). If the domain is infinite, it must be truncated for computational purposes at (say) t’he points a and b. Then the resulting random deviates will only have this truncated domain. a) Let j be the maximum of j(y). Then the procedure for generating random deviates is: (1) generate a pair of uniform deviates VI, U, ; (2) compute a point y=a+(b--a)uz in (a, b); accept y as the random deviate, (3) if u~
b) Let F(y) be such that f(y)=f,(~)j&) where the domain of y is (a, b). Let ji and ji be the maximum of ji(y) and ji(y) respectively. Then the procedure for generat’ing random de-
FUNCTIONS
viates having the probability density function j(y) is: (1) generate U,, U,, US; (2) define z=u + (b-ah;
(3)
if both ul<
take z as the random another sample of three acceptance ratio of this and can be increased by intervals as in the previous c) Let the probability f(y) =saBs(~, W,
‘y
and uz< j?,
deviate: otherwise uniform deviates. method is [(b-u)jlji]-’ dividing (a, b) into case. density function of
(6 t 93,
(sly<
take The subY be
b).
Let g be the maximum of g(y, t). Then the procedure for generating random deviates having the probability density function j(y) is: (1) generate Ul, U2, U2; (2) define a=~+@--(Y)u~; ~=a+ (b-u)u,;
(3) if u,< $-%
take z as the random
deviate; otherwise take another sample of three. The acceptance ratio for this method is [ (b-u)g]-’ and can be increased by dividing t)he domain of t and y into sub-domains. 5. Composition
Method
Let g,(y) be a probability density function which depends on the parameter z; further let H(z) be the cumulative distribution function for z. In order to generate random deviates Y having the frequency function f(Y)
=Jrn
g,(yMH(z) -m
one draws a deviate having the cumulative distribution function H(z); then draws a second sample having the probability density function gp(y). 6. Generation
a. Normal
of Random Deviates Distributions
From
Well
Known
distribution
(1) Inverse method: The inverse method depends on having a convenient approximation to the inverse function x=P-l(u) where UC
&)
-l/2
S =
-m
e-1212dt.
Two ways of performing this operation are to (i) 112 use 26.2.23 with t= In r or (ii) approximate U2 > ( x=P-l(u) piecewise using Chebyshev polynomials, see [26.54]. (2) Sum of unijorwz deviates: Let U,, U2, . . ., U, be a sequence of ‘n uniform deviates. Then
PROBABILITY
xn=(& CL-;) (;)-I” will be distributed asymptotically as a normal random deviate. When n=12, the maximum errors made in the normal deviate are 9X 10e3 for jXl<2, 9X10-l for 2
as the normal deviate where az, are suitable coefficients. These coefficients may be calculated using (say) Chebyshev polynomials or simply by making the asymptotic random deviate agree with the correc normal deviate at certain specified points. When n=12, the maximum error in the normal deviate is 8X 10e4 using the coefficients * a6= (-7) -5.102 * a0 = 9.8746 * *
a:! = (- 3)3.9439 a,= (-5)7.474
*
ax=
(-7)1.141
(3) Direct method: Generate a pair of uniform deviates (U,, U,). Then Xi= (-2 In IU,)“~ cos 2*UZ, X*=(--2 In U1)1’2 sin 27rUz will be a pair of independent normal random deviates with mean zero and unit variance. This procedure can be modified by calculating cos 21rl.J and sin 2rU using an acceptance rejection method; e.g., (l)generate(UI, U,);(2)if (2U,-1)*+(2U~-l)*
Yl=(--ln
u3J1’*$$$yZ=*2(-ln
random). deviates. *
213)*12a (h I Both y, and yz are the desired random
(4) Acceptunce-rejection method: 1) Generate a pair of uniform deviates (U,, Uz); 2) compute z = -In u1 ; 3) if e-H(z-na >u2 (or equivalently (z-1)*5 -2 (In N) accept 2, otherwise reject the
953
FUNCTIONS
pair and start over. The quantity will be the required normal deviate with mean zero and unit variance. b. Bivariate
normal
distribution
Let {XI, X2] be a pair of independent normal deviates with mean zero and unit variance. Then {X,, pX,+ (1 -p2)“*XZ} represent a pair of deviates from a bivariate normal distribution with zero means, unit variances, and correlation coefficient p. c. Exponential
distribution
(1) Inverse method: Since F(z) =e-I’*, X= -0 In U will be a deviate from the exponential distribution with parameter 0. (2) Acceptance-rejection method: 1) Generate a pair of independent uniform deviates (U,, U,); 2) if Ul
an exponential
26.9. Use and Extension of the Tables Use of Probability
Example 1. Let X be a random finite mean and variance equal respectively. Use the inequalities functions 26.1.37, 40, 41 to place on A(t)=F(f)-F(-t)=P
for t=1(1)4. *See page 11.
variable with to m and 2, for probability lower bounds
IX-ml
Function
Inequalities
Lower bounds on A(t) = F(t) - F( - t) Remarks
0 .7500 .8889 .9375 no knowledge F(t);
.5556 .8889 .9506 .9722 >
0 .8182 .9697 .9912
of
26.1.37
is unimodal and continuous; 26.1.40 F(t) is such that F(t)
/~,=3; 26.1.41
954
PROBABILITY
It is of interest to note that the standard normal distribution is unimodal, has mean zero, unit variance pL4=3, is continuous, and such that
A(t)=P(t)-P(-t) =.6827, for t=l,
for
values we can write x=x0+.01 and a two-term Taylor series is P(x) = P(z,) +Z(Z,) 10p2. Thus one need only multiply 2(x,) by 1O-2 and add the result to P&J. Calculation
.9545, .9973, and .9999
2, 3 and 4 respectively. Interpolation
FUNCTIONS
P(z)
in Table
26.1
Example 2. Compute P(Z) for x=2.576 to fifteen decimal places using a Taylor expansion. Writing x=x0+8 we have P(x)=P(x,)+Z(x,)e+Z(l~(x~)
;
of P(z)
for
z Approximate
Example 4. Using Table 26.1, find P(x) for Z= 1.96, when there is a possible error in z of & 5 x 10-3. This is an example where the argument is only The question arises as to known approximately. how many decimal places one should retain in P(x). If As and AP(z) denote the error in 2 and the resulting error in P(x), respectively, then AP(x) = Z(x) Ax
+.r2’(x())~+2’3’(xo) e”+ ..* 41 3! Taking x0=2.58 and 13=-4X10-~ the successive terms to l6D
we calculate
Hence AP(l.960) =3 X low4 which indicates tha6 P(1.960) need only be calculated to 4D. Therefore P(1.960) = .9750. Inverse
-j-.99505 5 -
99842 42230 72204 35976 2952 57449 8 63097
4 9
84265
7
-
.99500 The result correct
24676
Example
for
3.
P(s)
to l7D is
P(2.576)=.99500 Calculation
for
5. Find the value of z for which P(x)=.97500 00000 00000 using Table 26.1 and determining as many decimal places as is consistent with the tabulated function. For inverse interpolation the tibulated function P(x) may be regarded as having a possible error of .5X 1C1-l~. Hence L.
6 6 8
1439
-
Interpolation
Example
24676
Arbitrary
84264
Mean
and
98
Variance
Find the value to 5D of
Let P(x,J correspond to the closest tabulated value of P(x). Then a convenient formula for inverse interpolation is x=xo+t+ig+%p
using 26.2.8 and Table This represents the variable being less than distribution with mean Using 26.2.8 we have
26.1. probability of the random or equal to .5 for a normal m=l and variance a2=4.
p
where ,=w
-ml) a&J
If only the first two terms (i.e., r=x,,+t)
are used,
the error in x will be bounded by g X lop4 and the
F{X<.5j=P Since P(--2)=1--P(z),
(
q
>
=P(-.25)
we have
P(-.25)=1-P(.25)=1-.59871=.40129 where a two-term Taylor series was used for interpolation. Note that when interpolating for P(x) for a value of x midway between the tabulated
true value will always be greater than the value thus calculated. With respect to this example, Ax= 10-l’ and thus the interpolated value of x may be in error by one unit in the fourteenth place. The closest value to P(x)=.97500 0000000000 is P(x,)=.97500 21048 51780 with x0=1.96. Hence using the preceding inverse interpolation formulas with
’
PROBABILITY
t=-.00003
and carrying sive terms
I ,
60167 31129
fifteen decimals 00000 60167 12
00000 31129 71261 68 0
+ 1.95996
39845
40064
Asymptotic
Q(X’jv)=l--F(t)=l--F
where (2v-1)f
and 1-d
are the mean and vari-
ance to terms of order v-’ of 4s The values of y1 and yz for 42x2 are
(see 26.4.34).
Thus we obtain
Expansion
Example 6. Find the Edgeworth asymptotic expansion 26.2.49 for the c.d.f. of chi-square. Method 1. Expansion for x2
Let /
(y;--ijl)‘)
we have the succes-
+ 1.96000 - .00003 + -
Edgeworth
955
FUNCTIONS
F(t)--P(t)--f [g (1+;)P(t)] +$[~z’“‘(t)+~(1+~)22(5)(t)]
For numerical
&(X2lv)=l--F(t)
examples using these expansions
see Example 12.
where
Calculation
x2-v te-.----
@VP
Example 7.
Since the values of y1 and y2 26.4.33 are
Using
26.3.20
J.O9=.3
L(.5, .4, ,8)=L(.5,O,O)+L(.4,0,
-.S)
Reference to Figure 26.2 yields
WV,
we obtain, by using the first two bracketed of 26.2.49
k, p)
Find L(.5, .4, .8). -
,/h2-2phk+k2=
y1=2&p Y2=
of L(h,
terms
L(.5,O,O)+L(.4,0,
-.6)=.16+.08=.24
The answer to 3D is L(.5, .4, .8)=.250. Calculation
+; [; P(t)+; m(t)] The Edgeworth expansion is an asymptotic expansion in terms of derivatives of the normal distribution function. It is often possible to transform a random variable so that the distribution of the transformed random variable more closely approximates the normal distribution function than does the distribution of the original random variable. Hence for the same number of terms, greater accuracy may be achieved by using the transformed variable in the expansion. Since the distribution of 42x2 is more closely approximated by a normal distribution than x2 itself (as judged by a comparison of the values of y1 and y2), we would expect that the Edgeworth asymptotic expansion of 42x2 would be superior to that of x2. Method b. Expansion for @. Let
of the
Bivariate Function
Normal
Probability
Example 8. Let X and Y follow a bivariate normal distribution with parameters m,=3, mv=2, a,=4 , uv=2, and p= -.125. Find the value of P,{X>2, Y>4} using 26.3.20 and Figures 26.2, 26.3. SinceP,{X>h,Y>k}=L
have P{X>2,
Y24j
( =L(-.25,
‘*,F,p)
we
1, -.125).
Using
26.3.20 L(-.25,1,
-.125)=L(-.25,0,
.969) +L(l,
0, .125)-i
Figure 26.2 only gives values for h>O, however, using the relationship 26.3.8 with k=O, L( - h, 0, p) =$-L(h, 0, -p) and thus L(-.25,0, .969) =&L(.25,0, --.969). Therefore L(-.25,1, -.125) =-L(.25,0,-.969)+L(l,
0, .125)=-.01+.09=.08. l., -.125)=.080.
The answer to 3D is L(-.25,
956 Integral
PROBABILITY of
a Bivariate
Normal Polygon
Distribution
Over
FUNCTIONS a
For the following
two configurations
we define
Example 9. Let the random variables X and Y have a bivariate normal distribution with parameters m,=5, uZ=2, mv=9, uy=4, and p=.5. Find the probability that the point (X, Y) be inside the triangle whose vertices are A= (7, S), B=(9, l3), and C=(2,9). When obtaining the integral of a bivariate normal distribution over a polygon, it is first necessary to use 26.3.22 in order to transform the variates so that one deals with a circular normal distribution. The polygon in the region of the transformed variables is then divided into configurations such that the integral over any selected configuration can be easily obtained. Below are listed some of the most useful configurations. Y
(0 I ,b2)
(02
,b2
1
(al,
(a2
SKI
1
bt)
FIGURE
ss
m
FIGURE
26.5
FIGURE
26.6
az
SS
0 dx, Y, OM+=
0
$7(x, AAOB
26.8
Y, w~Y=v@,
k2)-W,
k,)
kz)+V(h,
k,)
arctan a 2* FIGURE
ssdx, AAOB
26.9
Y/, o>d~Y=v(h,
Using the circularizing transformation for our example results in
h
ss0 *I See 26.3.23
$7(x, 0
for
Y, w~Y=v(h,
definition
of V(h,
w
k).
26.3.22
PROBABILITY
The vertices of the triangle in the (s, t) coordinates become A=(&/4, -5/4), B=(&, -1) and (q-g).
These points
are plotted
957
FUNCTIONS
ss
AAOB
below.
From the figure it is seen that the desired probability is the sum of the probabilities that the point having the transformed variables as coordinates is inside the triangles AOB, AOC, and
BOC.
= i+L(1.31,
O,-.76)--L(O,
O,-.76)-;Q(l.31)]
-
0,~.14)--L(O,
O,-.14)-i&(1.31)]
afL(1.31,
=L(1.31,
O,-.76)--L(O,
--L(1.31,0,-.14)+L(0,
O,-.76) o,-.14) =.OO-.ll-.04+.23=.08
t,O)*dt=V(g,g)+V ssg(s,
AAOC
= ;+L(.14, L-
o,-.99)--L(O,
+[;+L(.14,0,--1)
o,--.99)-i
&(.14)]
Q(.14)]
--L(O, 0,-l)-;
=.01+.02=.03
t,O)dsdt=v ssg(s,
FIQURE 26.10
ABOC
For these three triangles we have h
AAOB
= [;+L(.48,
o,-.97)--L(O,
o,-.97)-k
&(.48)]
m4 +[;+L(.48,0,-.96)--L(O,O,--.96)-k
Q(.48)] =.05+.04=.09
Thus adding all parts, the probability that X and Yare in triangle ABCis =.08+.03+.09=.20. The answer to 3D is .21l.
ABOC From the graph it is seen that the probability over AOB may be found in the same manner as that over Figure 26.8, and over AOC and BOC the probabilities may be found as that over Figure
26.9.
Hence
!J@, ?A*5)de/=
ss
A
=
ss
AAOB
ss AABC
g(8, t, 0)dsdt
gb, t, oMdt+
g(s;t, 0)ddt SS
AAOC
Calculation
of a Circular Normal Offset Circle
26.2
Over
an
Example 10. Let X and Y have a circular normal distribution with u=lOOO. Find the probability that the point (X, Y) falls within a circle having a radius equal to 540 whose center is displaced 1210 from the mean of the circular normal distribution. In units of u, the radius and displacement from
the center are, respectively, 1210 =1000=1.21.
and consequently using 26.3.23 and Figure
Distribution
R=go=.54
and T
The problem is thus reduced to
finding the probability of X and Y falling in a circle of radius R=.54 displaced r= 1.21 from the center of the distribution where u=l.
958
PROBABILITY
Since R
2(.54)2
r2)=4+(.54)2
26.3.25 is used.
FUNCTIONS
For this example Ax*= &5X10m4 and %=25. results in
This
-2(1.21)2 exP 4+ (.54)2 as the possible error in Q(x21v).
The answer to 5D is .06870. Interpolation
for
Calculation Q(Xa 1Y)
Example 11. Find Q(25.298120) using the interpolation formula given with Table 26.7. Taking x2=25, 8=.298 and applying the interpolation formula results in
Q(25)16)82+Q(25)18)
(48-282)
+Q(25120)(8--4e+e2) 1 (.06982)(.088804) + (.12492) (1.014392) + (.20143) (6.896804) }
of Q($lv)
A&(x”/ Y)x ‘%$)
the
Range
of Table
26.7
Example 12. Find the value of Q(84172). Since this value is outside the range of Table 26.7 we can approximate &(84/72) by (1) using the Edgeworth expansion for Q(x21u) given in Example 6, (2) the cube root approximation 26.4.14, (3) the improved cube root approximation 26.4.15 or (4) the square root approximation 26.4.13. The results of using all four methods are presented below: 1. Edgeworth
expansion
The successive terms of the Edgeworth expansion for the distribution of chi-square result in l-&(84172)=.841345 .oooooo .001120
= .19027 A less accurate interpolate may be obtained by setting e2 equal to zero in the above formula. This results in the value .19003. The correct value to 6D is &(25.298120)=.190259. On the other hand if x2=25.298 is assumed to have an error of +5X 10d4, then how large an error arises in &(x2(y) ? Denoting the error in x2 by Ax* and the resulting error in Q(x21v) by A&(x”~v), we then have the approximate relationship
Outside
.842465 Hence &(84)72)=.15754. The successive terms of the Edgeworth sion for the distribution of v’@ result in l-&(84172)=.842544 - .000034 - .000138
expan-
.842372
Ax2 Hence Q(84172) =.15764.
Using 26.4.8 we can write
aQ(x21v) 1 [Q(x"lu-a>-Q(x'lu)] -=ija9 and
AQ(x'lu)-f [Q(x2(~-2)-Q(x21~)]~2 For practical purposes it is sufficient to evaluate the derivative to one or two significant figures. Consequently we can write
2. Cube
root
26.4.14
Using the cube root approximation &@4172)=
where
QC@ 0046 *
23 gw
This results R(1.0046)=.15754. The volves Linearly below -.0006
we have
,=(g~‘3 I1-6314 L-1
3. Improved
where xi is the closest value to x2 for which Q is tabulated. Hence
approximation
cube
in root
&(84172)=&(1.0046)=Japproximation
26.4.15
improved cube root approximation incalculating a correction factor h, to 2. interpolating for h,, (which appears 26.4.15) with x=1.0046 results in hao= and hence
PROBABILITY
959
FUNCTIONS
60
2. Cube
approximation
26.4.17
Taking
x.,,, =2.32635
we have
Thus &(84/72)=&(1.0046-.0005)=&(1.0041) =l-I’(1.0041)=.15766 4. Square
root
approximation
26.4.13
Using the square root approximation &(84/72)=Q(s) where
we have
cube
he,=.0012
&(84~72)=&(1.0032)=1--P(1.0032)=.15788 The value correct to 6D is &(84)72)=.157653. Generally the improved cube root approximation will be correct with a maximum error of a few units in the fifth decimal and is recommended for calculations which are outside the range of ~2
for
Q(xZlv) Outside Table 26.8
26.4.18
the
Range
x2=144
(.0012)=.00049
[
2 1-- g(144)
J 1
approximation
x2=;
3
2 g(144)
+(2.32635-.00049)
of
Example 13. Find the value of X* for which Q(x”l144)=.01. Since v=l44 is outside the range of Table 26.8, we can compute it by using (1) the Cornish-Fisher asymptotic expansion 26.2.50, for x2, (2) the cube approximation 26.4.17, (3) the improved cube approximation 26.4.18, or (4) the square approximation 26.4.16. We shall compute the value by all four methods.
and thus h,,,=g
Hence
4. Square
Table 26.7. of
approximation
From the table for h,, we obtain using linear interpolation with x=2.33 (approximately)
This results in
Calculation
3. Improved
-186.394
26.4.16
[2.32635+42(144)-1]*=185.616
The correct answer to 3D is x2=186.394. Generally the improved cube approximation will give results correct in the second or third decimal for v>30. Calculation
Example
of the
Incomplete
Gamma
Function
Find the value of
14.
9
t’.5e-‘dt
-y(2.5,.9)= s 0
1. Cornish-Fisher
x2
asymptotic
expansion
26.2.50
The Cornish-Fisher asymptotic expansion with v=144 can be written as
for
making use of 26.4.19 and Table 26.7. Using 26.4.19 we have y(2.5,.9)=I’(2.5)f’(1.8/5j=I’(2.5)[1-Q(1.815)] y(2.5,.9)=$1-.87607]=.16475
+s
8
[6h,(z)+3h,2(z)+2h,,,(2)1+
@123 [30h,(z) Example
+9~,,(z)+12h,3(r)+6h1,*(2)+4h1~1,(2)1
Hence using the auxiliary table following with p=.Ol we have 144.0000 39.4794 2.9413 -. 0242 -. 0019 +. 0002 x2= 186.395 *see page II.
Poisson
15.
26.2.51
Distribution
Find the value of m for which
y$ e-n z&99 using 26.4.21 and Table 26.8. From Table 26.8 with v=2c=8 and Q=.99 we have x2=1.646482. Hence m=x2/2=.823241. Inverse
Incomplete
Beta
Function
16. Find the value of z for which S)=.lO using Table 26.9 and 26.5.28. * 26.5.28 we have
Example
I,(lO, Using
of the
960
PROBABILITY
FUNCTIONS
where z=2&F
Iz(10,6)=&(F~12,20)=.10
From Table 26.9 the upper 10 percent point of F with 12 and 20 degrees of freedom is F=1.89. Hence 20
Y=
3[(1.8469)(.98942)-(1.8566)(.99306)]=-.0668 (1.8469)2+(1.8566)2 4 10.5 16 [
1
and interpolating
“=20+12(1.89)=‘46g
P(-.0668)=1-P(.O668)=.47336
The correct value to 4D is x=.4683. Calculation
of IJo,
b) for
The answer correct to 5D is I.so(16, 10.5)=.47332.
a or b Small
Integers
Calculate 1.,,(3, 20). Values of I,(a, b) for small integral a or b can conveniently be calculated using 26.5.6 or 26.5.7. Using 26.5.6 we have Example
(.11O39OX1O-2)=.62OO4O
Binomial
Example
18.
Distribution
Find the value of p which satisfies
cc>
p=l-p
using 26.5.24 and Table 26.9. Combining 26.5.24 and 26.5.28 we have
n n a=0 co s P??‘-~=Q(F(~,, ~2) where vl=2(n---a+l),
Example
20.
for
v2=2(u), andp=
Fin
Table
26.9
Find the value of F for which
Q(Fj7, 20) =.05 using Table 26.9. Interpolation in Table 26.9 is approximately linear when the reciprocals of the degrees of freedom (vl, v2) are used as the interpolating variable. For this example it is only necessary to interpolate with respect to l/vi. Thus linear interpolation on l/v1 results in F=2.51 which is the correct interpolate. Calculation
2o 50 p’qW--“=.95, s=o s *
Interpolation
17.
.121576 =.21645OX1O-3
in Table 26.1 gives
of
F for
Q(F[v1,vJ>.50
Find the value of F for which using 26.6.9 and Table 26.9. Table 26.9 only tabulates values of F for which Q(FIv,, v2)=p where p=.500, .250, .lOO, ,050, .025, .OlO, .005, .OOl. However making, use of Table 26.9 we can find the values of Fp for which p=.75, .9, .95, .975, .99, .995, .999. For this example we have Example
21.
Q(F14,8) =.90
a a+@--a+l)F
1
F.80(4'8)=F,10(8,4)
Hence
m 50 cc >p’p~-%+~ 0 50
r-0
s
a=21
s
and referring to the table for which Q(F(vl, v2)=.lO
Pa!Zso-”
=l-
gives
Q(F(60,42)=.95
Harmonic interpolation on v2 in the table for which Q(FI vl, v2)= .05 results in F= 1.624 for 42 vl=60, v2=42, and thus p= 42+60(1.624)=*301’
The correct answer to 4D is p= .3003: Approximating
the
Incomplete
Beta
Function
Example 19. Find I,so(16, 10.5) using 26.5.21. Values of Z(a, b) can conveniently be calculated with good accuracy using the approximation given by 26.5.20 or 26.5.21. For this example (atb-l)(l-x)=10.20 which is greater than .8 and hence 26.5.21 will be used. Thus
F.,,(8,4)=3.95
and
thus
P,(4,8)=&
=.253. Calculation
of Q(Fjv~,vz)
for
Small
Integral
VI or vz
Example 22. Compute Q(2.514, 15) using 26.6.4. Values of Q(FIv,, v2) can be readily computed for small v1 or v2 using the expansions 26.6.4 to 26.6.8 inclusive. We have using 26.6.4
15 2=15+4(2.5O)='6o and Q(2.50j4,15)=(.6)7~5[1+$
(.4)]=.086
735
PROBABILITY Approximating
Example 26.6.15.
23.
Q(F(v1,
Calculate
~2)
using
&(1.714/10,40)
961
FUNCTIONS
h=2
The approximation given by 26.6.15 will result in a maximum error of .0005. For this example we have (1.714)“3 (l-g@
>-ha=,
2= &+(1.714)z/3 C
Interpolating
2222
&-)I”
.
-(f-ii) [
On the other hand the approximation given by 26.6.14 which is usually less accurate results in
and interpolating
U.714,-~=l
1+g
2210
(1.714)
in Table 26.1 gives
of F Outside
the
Range
and thus F=e2”=7.23.
The correct
the Non-Central
Approximating
1
answer is
F-Distribution
Example 25. Compute P(3.7113, 10,4) using the approximation 26.6.27 to the non-central Fdistribution. Using 26.6.27 with v1=3, vz=lO, x=4, F’=3.71 we have x=
of Table
[(&)
we have a=;=lO,
(3.7q3[1-&]-[1-;$$$]
26.9
Example 24. Find the value of F for which Q(FjlO,20) G .OOOl using 26.6.16 and 26.5.22.
For this problem
2 1.8052+.8333-3~,2~2143~
F=7.180.
&(1.714110,40) =Q(1.2210)=1--P(1.2210)=.1112 Calculation
8052 ’
w=.9889
The correct value to 5D is &(1.714)10,40)=.11108.
J
’ ’ +=12.2143 B+g
w=3 71go (12.2143+1.8052)* 12.2143
&(1.714~10,40)=&(1.2222)=1-P(1.2222)=.1108
(;)
sub-
[ 1
X=3*71go2-3=1 6
in Table 26.1 results in
x~+@Wl -
Hence
y=3.7190 (i.e., &(3.7190)=.0001). stituting in 26.5.22 gives
b=:=5,
p=.OOOl. Th e value of the normal deviate which cuts off .OOOl in the tail of the distribution is
[
5 g&+&J
[(&)
(3.7lJl”‘]t = .675
and interpolating
in Table 26.1 gives
P(3.71(3,10,4)
@(.675)=.750
The exact answer is P(3.7113,10,4)
=.745.
References Texts
(26.11 H. Cramer, Mathematical methods of statistics (Princeton Univ. Press, Princeton, N.J., 1951). [26.2] A. Erdelyi et al., Higher transcendental functions, ~01s. I, II, III. (McGraw-Hill Book Co., Inc., New York, N.Y., 1955). [26.3] W. Feller, Probability theory and its applications, 2d ed. (John Wiley & Sons, Inc., New York,
N.Y., 1957). (26.41 R.
A. Fisher, Contributions to mathematical statistics, Paper 30 (with E. A. Cornish), Moments and cumulants in the specification of distributions (John Wiley&Sons, Inc., New York, N.Y., 1950). [26.5] C. Hastings, Jr., Approximations for digital computers (Princeton Univ. Press, Princeton, N.J., 1955). [26.6] M. G. Kendall and A. Stuart, The advanced theory of statistics, vol. I, Distribution theory (Charles Griffin and Co. Ltd., London, England, 1958).
Tables
[26.7] R. A. Fisher and F. Yates, Statistical tables for biological, agricultural and medical research (Oliver and Boyd, London, England, 1949). [26.8] J. Arthur Greenwood and H. 0. Hartley, Guide to tables in mathematical statistics (Princeton Univ. Press, Princeton, N.J., 1962). (Catalogues a large selection of tables used in mathematical statistics). [26.9] A. Hald, Statistical tables and formulas (John Wiley & Sons, Inc., New York, N.Y., 1952). [26.10] D. B. Owen, Handbook of statistical tables (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962). [26.11] E. S. Pearson and H. 0. Hartley (Editors). Biometrika tables for statisticians, vol. I (Cambridge Univ. Press, Cambridge, England, 1954).
962 [26.12]
PROBABILITY K.
Pearson (Editor), Tables biometricians, parts I and Press, Cambridge, England, Normal
[26.13]
[26.14]
[26.15]
[26.16]
[26.17]
[26.18]
Probability
[26.20]
126.211
[26.22]
end
and Univ.
Normal
Probability
(1956). a=.25(.25)1,
h=0(.25)3; 3(.05)3.5(.1)4.7,
u)=$
arctan
h=0(.01)2(.02)3; a=.l,
.2(.05).5(.1).8, 6D.
B. Owen, The bivariate normal probability function, Office of Technical Services, U.S. Department of Commerce (1957). T(h, a) =
[26.24]
Non-Central Gamma
Chi-Square, Incomplete
[26.25]
a-V@,
ah) for
a=O(.ol)l, 1, o),
UJ, h=
a-V(h,
arctan
G.
Function,
m;
a=0(.025)1,
6D. Part II of [26.12]. L(h, p=-1(.05)1, 6D for
Chi-Square, Poisson
Probability Distribution
h=
k, p) p>O
Integral,
A. Campbell, Probability curves showing Poisson’s exponential summation, Bell System Technical Journal, 95-l 13 (1923). Tabulates values 2D;
of
wz=:
.OOOl,
.Ol,
3D;
3D;
.999999,
.99, .9999, [26.26]
ah) for
0(.01)3.5(.05)4.75, Tables VIII and IX, for h, k=0(.1)2.6, and 7D for p
for
which .I,
Q(x2]~)=.000001,
.25,
.5,
.75,
2D for c=i=
Table IV of [26.7]. Tabulates Q(xalu) = .OOl, .Ol, .02, .05, .9, .95, .98, .99 and ~=1(1)30,
.I,
.9,
4D;
l(l)lOl.
values of xz for .2, .3, .5, .7, .8, 3D or 35.
[26.27]
E. Fix, Tables of noncentral xa, Univ. of California Publications in Statistics 1, 15-19 (1949). Tabulates X for P(x’z]~, X) =.1(.1).9, Q(x’~]v)= .Ol, .05; ~=1(1)20(2)40(5)60(10)100, 3D or 35.
[26.28]
H. 0. Hartley and E. S. Pearson, Tables of the x2 integral and of the cumulative Poisson distribution, Biometrika 37, 313-325 (1950). Also reproduced as Table 7’ in [26.11]. P(x2]u) for v=1(1)20(2)70, x2=0(.001).01(.01).1(.1)2(.2)10 (.5)20(1)40(2)134, 5D.
[26.29]
T.
[26.30]
E. C. Molina,
Integral
Tables for computing bivariate normal Ann. Math. Statist. 27, 1075-1090
T(h,
D.
$
Bell Aircraft Corporation, Table of circular normal probabilities, Report No. 02-949-106 (1956). Tabulates the integral of the circular normal distribution over an off-set circle having its center a distance T from the origin with radius R; R=0(.01)4.59, r=0(.01)3, 5D. National Bureau of Standards, Tables of the bivariate normal distribution function and related functions, Applied Math. Series 50 (U.S. Government Printing Office, Washington, D.C., 1959). L(h, k, p) for h, k=0(.1)4, p=O(.O5).95 (.Ol)l, 61); L(h, k, -p) for h, k=O(.l)A, p=0(.05).95(.01)1whereAissuchthatL<.5.10-7, 7D; V(h, ah) for h=O(.Ol)4(.02)4.6(.1)5.6, a, 7D; V(ah, h) for a=.l(.l)l, h=0(.01)4(.02)5.6, a, 7D. C. Nicholson, The probability integral for two variables, Biometrika 33, 59-72 (1943). V(h, ah) for h=.1(.1)3, ah=.1(.1)3, 03, 6D. D. B. Owen, probabilities,
[26.23]
Derivatives
J. R. Airey, Table of Hh functions, British Association for the Advancement of Science, Mathematical Tables I (Cambridge Univ. Press, Cambridge, England, 1931). Harvard University, Tables of the error function and of its first twenty derivatives (Harvard 1952). Univ. Press, Cambridge, Mass., P(z)-+, Z(r), Z(“)(z), n=1(1)4 for 2=0(.004) 6.468, 6D; Z(n)(z), n=5(1)10 for 2=0(.004) 8.236, 6D; Zen)(r), 72=11(1)15 for 2=0(.002) 9.61, 7s; Z(n)(z), n=16(1)20 for 2=0(.002) 10.902, 75 or 6D. T. L. Kelley, The Kelley Statistical Tables (Harvard Univ. Press, Cambridge, Mass., 1948). z for P(x) = .5(.0001) .9999 and corresponding values of Z(z), 8D. National Bureau of Standards, A guide to tables of the normal probability integral, Applied Math. Series 21 (U.S. Government Printing Office, Washington, D.C., 1951). National Bureau of Standards, Tables of normal probability functions, Applied Math. Series 23 (U.S. Government Printing Office, Washington, D.C., 1953). Z(z) and A(z) for s=O(.OOOl) 1(.001)7.8, 15D; Z(z) and 2[1-P(s)] for z=6(.01)10, 7s. W. F. Sheppard, The probability integral, British Association for the Advancement of Science, Mathematical Tables VII (Cambridge Univ. Press, Cambridge, England, 1939). A (x)/Z(z) for 2=0(.01)10, 12D; z=O(.l)lO, 24D. Bivsriate
[26.19]
Integral
for statisticians II (Cambridge 1914, 1931).
FUNCTIONS
Kitagawa, Tables of Poisson distribution (Baifukan, Tokyo, Japan, 1951). e+m*/a! for m=.001(.001)1(.01)5, 80; m=5(.01)10, 7D. (D. 1940).
Van
Poisson’s Nostrand
e-mm*/s!
m=x2/2=0(.1)16(1)100, (.01)3, 7D. [26.31]
[26.32]
exponential Co.,
and
Inc., P(xz]v)=e 6D;
New j=e
binomial
limit
York,
N.Y.,
e-mmi/j!
for
m=O(.OOl).Ol
K.
Pearson (Editor), Tables of the incomplete p-function, Biometrika Office, University College (Cambridge Univ. Press, Cambridge, England, for p=-1(.05)0(.1)5(.2)50, 1934). Z(%P) u=O(.l) Z(u,p)=l to 7D; p=-l(.Ol)-,.75, u=O(.1)6, 5D; ln[Z(u,p)]up+*], p= - 1(.05)0 (.l)lO, u=O(.1)1.5, 8D; [2”?’ r(p+l)l-‘r(p,z), p=-l(.Ol)-.9,z=O(.O1)3, 7D. E. E. Sluckii, Tablitsy dlya. vy%oleniya nepolnoI p-funktsii i funktsii veroyatnosti x2. (Izdat. Akad. Nauk SSSR, Moscow-Leningrad, U.S.S.R., 1950).
l?(x2,v)=
; x2 -‘I2 P @Iv), 9 (&Y) = ( > Q(x+), II@, 2) =Q(x~]v) where 1=(2x2)*(2r)*, ~=(~/2)-+. r(x*,v), x~=o(.05)2(.1)10, y=o(.05) 2(.1)6; Q(xz]v), x2=0(.1)3.2, v=O(.O5)2(.1)6; xz=3.2(..2)7(.5)10(1)35, v=O(.1).4(.2)6; g(t,~), t=-4(.1)4.8, ~=6(.5)11(1)32; Il(t,z): t=-4.5 (.1)4.8, r=O(.02).22(.01).25, 5D.
PROBABILITY Incomplete
Beta
Function,
Binomial
Distribution
[26.33] Harvard University, Tables of the cumulative binomial probability distribution (Harvard Univ. Press, Cambridge, Mass., 1955). gc (:)p*(l-pp)n-*
for p=.O1(.01).5,
l/16, l/12,
l/8, l/6, 3116, 5/16, l/3, 3/S, 5112, 7116, n=1(1)50(2)100(10)200(20)500(50)1000, 5D. [26.34] National Bureau of Standards, Tables of the binomial probability distribution, Applied Math. Series 6 (U.S. Government Printing Office, Washington, D.C., 1950). (:)pa(l-pp)“-e and n a for p-.01(.01).5, n=2(1)49, c C)pa(l-P)n8=C 7D. [26.35] K. Pearson (Editor), Tables of the incomplete beta function, Biometrika Office, University College (Cambridge Univ. Press, Cambridge, Z,(a,b) for z=.Ol(.Ol)l; England, 1948). a,b=.5(.5)11(1)50, &b, 7D. 126.361 W. H. Robertson, Tables of the binomial distribution function for small values of p, Office of Technical Services, U.S. Department of Commerce (1960). go (Jn)~*(l-pp)~-*
for p=.OO1(.001).02,
n=2(1)
p=.O21(.001).05, 100(2)200(10)500(20)1000; n=2(1)50(2)100(5)200(10)300(20)600(50) 1000, 5D. [26.37] H. G. Romig, 50-100 Binomial tables (John Wiley & Sons, Inc., New York, N.Y., 1953).
0 r
P*(~-P)“-*
and
2
z
p*(l-p)n-’
for
0
p=.O1(.01).5 and n=50(5)100, 6D. [26.38] C. M. Thompson, Tables of percentage points of the incomplete beta function, Biometrika 32, 151-181 (1941). Also reproduced as Table 16 in [26.11]. Tabulates values of z for which * I&, b) =.005, .Ol, .025, .05, .l, .25, .5; 2a=1(1)30, 40, 60, 120, 0~; 2b=l(l)lO, 12, 15, 20, 24, 30, 40, 60, 120, 5D. [26.39] U.S. Ordnance Corps, Tables of the cumulative binomial *probabilities, ORDP 20-1, Office of Technical Services, Washington, D.C. (1952). n n p’(l-p)“-’ for p=.O1(.01).5 and n=l 8-c co s (1)150, 7D. F (Variance-Ratio)
126.401 Table Z=i
end
V of [26.7].
Non-Central
Tabulates
In F for Q(Flv,, &=.2,
F Distribution
values
of F and
.l, .05, .Ol, .OOl;
~i=1(1)6, 8, 12, 24, m; vz=1(1)30, 40, 60, 120, a, 2D for F, 4D for 2. [26.41] E. Lehmer, Inverse tables of probabilities of errors of the second kind, Ann. Math. Statist. 15, 388-398 (1944). 4=&(vi+l) for ~i=l(l)lO, 12, 15, 20, 24, 30,.40, 60, 120, 0~; vz=2(2)20, 24, 30, 40, 60, 80, 120, 240, m and P(F’jui, sat 4) = .2, .3 where Q(F’]ri, ~1) = .Ol, .05, 3D or 3s.
963
FUNCTIONS
[26.42] M. Merrington and C. M. Thompson, Tables of percentage points of the inverted beta (F) distribution, Biometrika 33, 73-88 (1943). Tabulates values of F for which Q(Flv,, ~~)=.5, .25, .l, .05, ,025, .Ol, .005; v,=l(l)lO, 12, 15, 20, 24, 30, 40, 60, 120, 0~ ; vz= 1(1)30, 40, 60, 120, a~. [ 26.431 P. C. Tang, The power function of the analysis of variance tests with tables and illustrations of their use, Stat,istical Research Memoirs II, 126149 and tables (1938). P(F’jq, YZ, +) for Y,= 1(1)8, ,,=2(2)6(1)30, 60, ~0 and +=dG= 1(.5)3(1)8 where Q(F’]v,, ~2)= .Ol, .05, 3D. Student’s
t and
Non-Central
t-Distributions
[ 26.441 E. T. Federighi, Extended tables of the percentage points of Student’s t-distribution, J. Amer. Statist. Assoc. 54, 683-688 (1959.) Values of t for which
Q(tlv)=
i [I-A((Ijv)]=.25XlO-“,
.1X lo-“, n=0(1)6, .05X lo-“, n=0(1)5, Y= 1(1)30(5)60(10)100, 200, 500, 1000, 2000, 10000, a; 3D. [26.45] Table III of [26.7]. Values of t for which A(t]v) = .1(.1).9, .95, .98, .99, .999 and r=1(1)30, 40, 60, 120, ~0; 3D. (26.461 N. L. Johnson and B. L. Welch, Applications of the noncentral t-distribution, Biometrika 31, 362-389 (1939). Tabulates an auxiliary funotion which enables calculation of 8 for given t’andp,ort’ for given 6 and p where P(t’jv,b) =p= .005, .Ol, .025, .05, .1(.1).9, .95, .975, .99, .995. [26.4?,] J. Neyman and B. Tokarska, Errors of the second kind in testing Student’s hypothesis, J. Amer. Statist. Assoc. 31, 318-326 (1936). Tabulates 6 for P(t’lv,@=.Ol, .05, .1(.1).9; v=1(1)30, a; Q(t’Iv) = .Ol, .05. [26.48] Table
9 of [26.ll].P(tjv)=a
[l+A(l]v)]
for t=
0(.1)4(.2)8; v=1(1)20, 5D; t=0(.05)2(.1)4, 5; v=20(1)24, 30, 40, 60, 120, 00, 5D. [26.49] G. S. Resnikoff and G. J. Lieberman, Tables of the noncentral t-distribution (Stanford Univ. Press, Stanford, Calif., 1957). dP(t’Iv, s)/at’and P(t’I v,6) for v=2(1)24(5)49, 6= m z, where Q(z,)= p=.25, .15, .l, .065, .04, .025, .Ol, .004, .0025, .OOl and f/J Y covers the range of values such that throughout most of the table the entries lie between 0 and 1, 4D. Random
Numbem
and
Normal
Deviates
[26.50] E. C. Fieller, T. Lewis and E. S. Pearson, Correlated random normal deviates, Tracts for Computers 26 (Cambridge Univ. Press, Cambridge, England, 1955). [26.51] T. E. Hull and A. R. Dobell, Random number generators, Sot. Ind. App. Math. 4. 230-254 (1962). [26.52] M. G. Kendall and B. Babington Smith, Random sampling numbers (Cambridge Univ. Press, Cambridge, England, 1939).
964
PROBABILITY
[26.53] G. Marsaglia, Random variables and computers, Proc. Third Prague Conference in Probability Theory 1962. (Also as Math. Note No. 260, Boeing Scientific Research Laboratories, 1962). [26.54] M. E. Muller, An inverse method for the generation of random normal deviates on large scale computers, Math. Tables Aids Comp. 63. 167174 (1958).
FUNCTIONS
[26.55] Rand Corporation, A million 100,000 normal deviates Glencoe, Ill. 1955).
random digits with (The Free Press,
[26.56] H. Wold, Random normal deviates, Tracts for Computers 25 (Cambridge Univ. Press, Cambridge, England, 1948). I
966
PROBABILITY
NORMAL
Table 26.1
FUNCTIONS
PROBABILITY
FUNCTION
P(r)
.,’
AND DERIVATIVES
Z(x)
Z(l) (.1.) 0.00000 00000 00000
0.50000 0.50797 0.51595 0.52392 0.53188
00000 83137 34368 21826 13720
00000 16902 52831 54107 13988
0.39894 0.39886 0.39862 0.39822 0.39766
22804 24999 32542 48301 77055
01433 23666 04605 95607 11609
-0.00797 -0.01594 -0.02389 -0.03181
72499 49301 34898 34164
98473 68184 11736 40929
0.12 0.14 0.16 0.18
0.53982 0.54775 0.55567 0.56355 0.57142
78372 84260 00048 94628 37159
77029 20584 05907 91433 00901
0.39695 0.39608 0.39505 0.39386 0.39253
25474 02117 17408 83615 14831
77012 93656 34611 68541 20429
-0.03969 -0.04752 -0.05530 -0.06301 -0.07065
52547 96254 72437 89378 56669
47701 15239 16846 50967 61677
0.20 0.22 0.24 0.26 0.28
0.57925 Oi58706 0.59483 0.60256 0.61026
97094 44226 48716 81132 12475
39103 48215 97796 01761 55797
0.39104 0.38940 0.38761 0.38568 0.38360
26939 37588 66151 33691 62921
75456 33790 25014 91816 53479
-0.07820 -0.08566 -0.09302 -0.10027 -0.10740
85387 88269 79876 76759 97618
95091 43434 30003 89872 02974
0.30 0.32 0.34 0.36 0.38
0.61791 0.62551 0.63307 0.64057 0.64802
14221 58347 17360 64332 72924
88953 23320 36028 17991 24163
0.38138 0.37903 0.37653 0.37391 0.37115
78154 05261 71618 06053 38793
60524 52702 33254 73128 59466
-0.11441 -0.12128 -0.12802 -0.13460 -0.14103
63446 97683 26350 78179 84741
38157 68865 23306 34326 56597
0.40 0.42 0.44 0.46 0.48
0.65542 0.66275 0.67003 0.67724 0.68438
17416 72731 14463 18897 63034
10324 51751 39407 49653 83778
0.36827 0.36526 0.36213 0.35889 0.35553
01403 26726 48824 02910 25285
03323 22154 13092 33545 05997
-0.14730 -0.15341 -0.15933 -0.16508 -0.17065
80561 03225 93482 95338 56136
21329 01305 61761 75431 82879
0.50 0.52 0.54 0.56 0.58
0.69146 0.69846 0.70540 0.71226 0.71904
24612 82124 14837 02811 26911
74013 53034 84302 50973 01436
0.35206 0.34849 0.34481 0.34104 0.33717
53267 25127 80014 57886 99438
64299 58974 39333 30353 22381
-0.17603 -0.18121 -0.18620 -0.19098 -0.19556
26633 61066 17207 56416 43674
82150 34667 77240 32997 16981
0.60 0.62 0.64 0166 0.68
0.72574 0.73237 0.73891 0.74537 0.75174
68822 11065 37003 30853 77695
49927 31017 07139 28664 46430
0.33322 0.32918 0.32506 0.32086 0.31659
46028 39607 22640 38037 29077
91800 70765 84082 71172 10893
-0.19993 -0.20409 -0.20803 -0.21177 -0.21528
47617 40556 98490 01104 31772
35080 77874 13813 88974 43407
0.70 0.72 0.74 0.76 0.78
0.75803 0.76423 0.77035 0.77637 0.78230
63477 75022 00028 27075 45624
76927 20749 35210 62401 14267
0.31225 0.30785 0.30338 0.29887 0.29430
39333 12604 92837 24057 50297
66761 69853 56300 75953 88325
-0.21857 -0.22165 -0.22450 -0.22714 -0.22955
77533 29075 80699 30283 79232
56733 38294 79662 89724 34894
0.80 0.82 0.84 0.86 0.88
0.78814 0.79389 0.79954 0.80510 0.81057
46014 19464 58067 54787 03452
16604 14187 39551 48192 23288
0.28969 0.28503 0.28034 0.27561 0.27086
15527 63584 38108 82471 39717
61483 89007 39621 53457 98338
-0.23175 -0.23372 -0.23548 -0.23703 -0.23836
32422 98139 88011 16925 02951
09186 60986 05281 51973 82537
0.90 0.92 0.94 0.96 0.98
0.81593 0.82121 0.82639 0.83147 0.83645
98746 36203 12196 23925 69406
53241 85629 61376 33162 72308
0.26608 0.26128 0.25647 0.25164 0.24680
52498 63012 12944 43410 94905
98755 49553 25620 98117 67043
-0.23947 -0.24038 -0.24108 -0.24157 -0.24187
67249 33971 30167 85674 33007
08879 49589 60083 54192 55702
1.00
0.84134
47460
68543
0.24197
07245
19143
-0.24197
07245
19143
0.00
0.02 0.04 OiO6 0.08
0.10
[ 1 (q3
Z(,r) =$
T
e-v
P(x) =Jy m z(t)dt
Z(“)(x)
=g
2(X!)
Hen(x) = (- 1)wqx)
/Z(Lt$
PROBABILITY
NORMAL
PROBABILITY
ZW(x)
x 0.00 0.02 0.04 0.06 0.08
-0.39894 -0.39870 -0.39798 -0.39679 -0.39512
0.10 0.12 0.14 0.16 0.18
967
FUNCTIONS
FUNCTION
AND
DERIVATIVES
z(*)(x)
22804 29549 54570 12208 26322
Z(3)(x) 0.00000 0.02392 0.04780 0.07159 0.09523
000 856 928 445 664
1.19682 1.19563 1.19204 1.18607 1.17774
-0.39298 -0.39037 -0.38730 -0.38378 -0.37981
30220 66567 87267 53315 34631
0.11868 0.14190 0.16483 0.18744 0.20967
881 445 771 353 776
0.20 0.22 0.24 0.26 0.28
-0.37540 -0.37055 -0.36528 -0.35961 -0.35353
09862 66169 98981 11734 15588
0.23149 0.25286 0.27372 0.29405 0.31380
0.30 0.32 0.34 0.36 0.38
-0.34706 -0.34021 -0.33300 -0.32545 -0.31755
29121 78003 94659 17909 92592
0.40 0.42 E 0:48
-0.30934 -0.30083 -0.29202 -0.28294 -0.27361
0.50 0.52 0.54 0.56 0.58
Tal,lc* 20.1
Z(“)(x)
Z’“‘(X)
684 029 400 800 897
0.00000 -0.11962 -0.23891 -0.35754 -0.47516
000 684 887 249 649
-5.98413 -5.97575 -5.95066 -5.90893 -5.85073
421 893 325 742 151
1.16708 1.15410 1.13884 1.12136 1.10169
019 144 890 503 839
-0.59146 -0.70610 -0.81878 -0.92919 -1.03701
327 997 968 252 674
-5.77625 -5.68577 -5.57961 -5.45815 -5.32182
460 399 395 435 895
727 011 555 426 836
1.07990 1.05604 1.03017 ii06237 0.97272
350 063 556 941 834
-1.14196 -1.24376 -1.34214 -1.43683 -1.52759
980 938 434 568 737
-5.17112 -5.00657 -4.82876 -4.63831 -4.43591
356 387 317 979 441
0.33295 0.35144 0.36926 0.38637 0.40274
156 923 849 828 947
0.94130 0.90818 0.87347 0.83725 0.79963
327 965 711 919 298
-1.61419 -1.69641 -1.77405 -1.84692 -1.91485
723 762 617 643 840
-4.22225 -3.99809 -3.76420 -3.52140 -3.27051
716 459 646 244 871
69179 03372 55692 91055 78339
0.41835 0.43316 0.44716 0.46033 0.47264
488 939 995 566 779
0.76069 0.72055 0.67932 0.63709 0.59398
880 987 193 291 256
-1.97769 -2.03531 -2.08758 -2.13440 -2.17570
904 269 144 537 278
-3.01241 -2.74796 -2147807 -2.20363 -1.92557
439 802 382 810 548
-0.26404 -0.25426 -0.24426 -0.23409 -0.22375
89951 01373 90722 38293 26107
0.48408 0.49464 0.50430 0.51306 0.52090
982 748 874 383 525
0.55010 0.50556 0.46048 0.41496 0.36913
207 372 050 574 279
-2.21141 -2.24148 -2.26589 -2.28463 -2.29771
033 307 443 613 801
-1.64480 -1.36224 -1iO7881 -0.79543 -0.51298
520 740 949 249 749
0.60 0.62 0.64 0.66 0.68
-0.21326 -0.20264 -0.19191 -0.18109 -0.17020
37459 56463 67607 55308 03472
0.52782 0.53382 0.53890 0.54306 0.54630
777 841 643 327 259
0.32309 0.27696 0.23085 0.18486 0.13911
457 332 017 483 528
-2.30516 -2.30703 -2.30336 -2.29426 -2.27980
783 091 981 388 875
-0.23237 +0.04554 Oi31990 0.58988 0.85469
218 255 581 999 355
8.:; 0:74 0.76 0.78
-0.15924 -0.14826 -0.13725 -0.12624 -0.11524
95060 11670 33120 37042 98497
0.54863 0.55005 0.55058 0.55023 0.54901
016 386 359 127 073
0.09370 0.04874 +o.o043TI -0.03944 -0.08247
741 473 808 465 882
-2.26011 -2.23531 -2.20553 -2.17094 -2.13170
583 162 714 715 944
1.11354 1.36570 1.61045 1.84714 2.07512
405 074 709 311 746
0.80 0.82 0.84 0.86 0.88
-0.10428 -0.09337 -0.08253 -0.07177 -0.06110
89590 79110 32179 09916 69120
0.54693 0.54402 0.54030 0.53578 0.53049
765 952 551 644 467
-0.12468 -0.16597 -0.20625 -0.24546 -0.28351
324 047 697 336 458
-2.08800 -2.04002 -1.98796 -1.93204 -1.87248
401 228 617 726 587
2.29381 2.50267 2.70117 2.88887 3.06536
943 061 643 745 044
0.90 0.92 0.94 0.96 0.98
-0.05055 -0.04013 -0.02985 -0.01972 -0.00977
61975 35759 32587 89163 36558
0.52445 0.51768 0.51022 0.50209 0.49332
403 968 310 689 478
-0.32034 -0.35587 -0.39005 -0.42282 -0.45413
003 378 463 627 732
-1.80951 -1.74335 -1.67426 -1.60247 -l.52824
008 486 103 436 456
3.23025 3.38325 3.52407 3.65250 3.76836
923 538 854 673 628
0.48394 145
-0.48394
145
-1.45182
435
3.87153 159
1.00
PROBABILITY
968 Table
26.1
l.“oO 1.02
NORMAL
PROBABILITY
P(x) 0.84134 47460 68543
FUNCTIONS FUNCTIOX
.\ND
DERIVATIVES
Z(I) (2)
Z(x) 0.24197 0.23713 0.23229 0.22746 0.22265
07245 19520 70047 96324 34987
19143 19380 43366 57386 51761
-0.24197 -0.24187 -0.24158 -0.24111 -0.24046
07245 45910 88849 78104 57786
19143 59767 33101 04829 51902
73947 74443 08806 28104 84808
35806 88804 53704 17281 76986
1.04 1.06 1.08
0.84613 0.85083 0.85542 0.85992
57696 00496 77003 89099
27265 69019 36091 11231
1.10 1.12 1.14 1.16 1.18
0.86433 0.86864 0.87285 0.87697 0.88099
39390 31189 68494 55969 98925
53618 57270 37202 48657 44800
0.21785 21770 32551 0.21306 91467 75718 0.20830 Oi20357 0.19886
77900 13882 31193
47108 90759 87276
-0.23963 -0.23863 -0.23747 -0.23614 -0.23465
1.20 1.22 1.24 1.26 1.28
0.88493 0.88876 0.89251 0.89616 0.89972
03297 75625 23029 53188 74320
78292 52166 25413 78700 45558
0.19418 0.18954 0.18493 0.18037 0.17584
60549 31580 72809 11632 74302
83213 91640 63305 27080 97662
-0.23302 -0.23124 -0.22932 -0.22726 -0.22508
32659 26528 22283 76656 47107
79856 71801 94499 66121 81008
1.30 1.32 1.34 1.36 1.38
0.90319 0:906?8 0.90987 0.91308 0.91620
95154 24910 73275 50380 66775
14390 06528 35548 52915 84986
0.17136 0.16693 0.16255 0.15822 0.15394
85920 70417 50552 47903 82867
47807 41714 25534 70383 62634
-0.22277 -0.22035 -0.21782 -0.21518 -0.21244
91696 68950 37740 57149 86357
62150 99062 02216 03721 32434
1.40 1.42 1.44 1.46 1.48
0.91924 0.92219 0.92506 0.92785 0.93056
33407 61594 63004 49630 33766
66229 73454 65673 34106 66669
0.14972 0.14556 0.14145 0.13741 0.13343
74656 41300 99652 65392 53039
35745 37348 24839 82282 51002
-0.20961 -0.20670 -0.20370 -0.20062 -0.19748
84518 10646 23499 81473 42498
90043 53034 23768 52131 47483
1.50 1.52 1.54 1.56 1.58
0.93319 0.93574 0.93821 0.94062 0.94294
27987 45121 98232 00594 65667
31142 81064 88188 05207 62246
0.12951 0.12566 0.12187 0.11815 0.11450
75956 46367 75370 72950 48002
65892 89088 32402 59582 59292
-0.19427 -0.19101 -0.18769 -0.18432 -0.18091
63934 02479 14070 53802 75844
98838 19414 29899 92948 09682
1.60 1.62 1.64 1.66 1.68
0.94520 0.94738 0.94949 0.95154 0.95352
07083 38615 74165 27737 13421
00442 45748 25897 33277 36280
0.11092 0.10740 0.10396 0.10058 0.09728
08346 60751 10953 63684 22693
79456 13484 28764 27691 31467
-0.17747 -0.17399 -0.17049 -0.16697 -0.16343
33354 78416 61963 33715 42124
87129 83844 39173 89966 76865
1.70 1.72 1.74 1.76 1.78
0.95543 0.95728 0.95907 0.96079 0.96246
45372 37792 04910 60967 20196
41457 08671 21193 12518 51483
0.09404 0.09088 0.08779 0.08477 0.08182
90773 69790 60706 63613 77759
76887 16283 10906 08022 92143
-0.15988 -0.15632 -0.15276 -0.14920 -0.14565
34315 56039 51628 63959 34412
40708 08007 62976 02119 66014
1.80 1.82 1.84 1.86 1.88
0.96406 0196562 0.96711 0.96855 0.96994
96808 04975 58813 72370 59610
87074 54110 40836 19248 38800
0.07895 0.07614 0.07340 0.07074 0.06814
01583 32736 68125 03934 35661
00894 96207 81657 56983 01045
-0.14211 -0.13858 -0.13506 -0.13157 -0.12810
02849 07581 85351 71318 99042
41609 27097 50249 29989 69964
1.90 1.92 1.94 1.96 1.98
0.97128 0.97257 0.97381 0.97500 0.97614
34401 10502 01550 21048 82356
83998 96163 59548 51780 58492
0.06561 0.06315 0.06076 0.05844 0.05618
58147 65614 51689 09443 31419
74677 35199 54565 33451 03868
-0.12467 -0.12126 -0.11788 -0.11454 -0.11124
00480 05979 44277 42508 26209
71886 55581 71856 93565 69659
0.05399
09665 rc--6)91
13188
-0.10798
19330
26376
0.97724
Z(x) =&e-f+
[‘y’ 1 98680
51821
P(x) =$I
II 1 ‘3”
L‘ 10' J m Z(f)&
Z(n)(x) =g
Z(x)
He,(x)=(-l)"Z(")(s)/Z(z)
PROBABILITY
NORMAL
PROBABILITY
969
FUNCTIONS
FUNCTION
Table
AND DERIVATIVES
26.1
1.00 1.02 1.04 1.06 1.08
2 (2)(x) 0.00000 00000 0.00958 01309 0.01895 54356 0.02811 52466 0.03704 95422
0.48394 145 0.47397 745 0.46346 412 0.45243 346 0.44091 805
-0.48394 -0.51219 -0.53886 -0.56392 -0.58734
145 739 899 521 012
-1.45182 -1.37346 -1.29343 -1.21197 -1.12934
435 846 272 312 487
3.87153 159 3.96192 478 4.03951 497 4.10431 754 4.15639 308
1.10 1.12 1.14 1.16 1.18
0.04574 89572 0.05420 47909 0.06240 90139 0.07035 42718 0.07803 38880
0.42895 094 0.41656 552 0.40379 549 0.39067 467 0.37723 697
-0.60909 -0.62916 -0.64755 -0.66424 -0.67924
290 776 390 543 129
-1.04580 -0.96159 -0.87697 -0.79217 -0.70744
155 420 050 397 317
4.19584 622 4.22282 430 4.23751 585 4.24014 894 4.23098 941
1.20 1.22 1.24 1.26 1.28
0.08544 18642 0.09257 28784 0.09942 22822 0.10598 60955 0.11226 09995
0.36351 629 0.34954 639 0.33536 083 0.32099 285 0.30647 534
-0.69254 -0.70416 -0.71411 -0.72240 -0.72907
515 524 427 928 143
-0.62301 -0.53910 -0.45594 -0.37373 -0.29268
100 399 161 571 993
4.21033 894 4.17853 305 4.13593 896 4.08295 339 4.02000 029
1.30 1.32 1.34 1.36 1.38
0.11824 43285 0.12393 40598 0.12932 88019 0.13442 77819 0.13923 08305
0.29184 071 0.27712 083 0.26234 695 0.24754 965 0.23275 873
-0.73412 591 -0.73760.168 -0.73953 132 -0.73995 087 -0.73889 953
-0.21299 916 -0.13484 911 -0.05841 584 +0.01613 459 0.08864 645
3.94752 847 3.86600 921 3.77593 384 3.67781 128 3.57216 556
1.40 1.42 1.44 1.46 1.48
0.14373 83670 0.14795 13818 0.15187 14187 0.15550 05559 0.15884 13858
0.21800 319 0.20331 117 0.18870 986 0.17422 548 0.15988 325
-0.73641 -0.73255 -0.72735 -0.72087 -0.71315
957 600 645 087 137
0.15897 463 0.22698 486 0.29255 386 0.35556 954 0.41593 103
3.45953 335 3.34046 152 3.21550 469 3.08522 283 2.95017 891
1.50 1.52 1.54 1.56 1.58
0.16189 69946 0.16467 09400 0.16716 72298 0.16939 02982 0.17134 49831
0.14570 730 0.13172 067 0.11794 528 0.10440 190 0.09111 010
-0.70425 -0.69422 -0.68313 -0.67103 -0.65798
193 823 742 785 890
0.47354 871 0.52834 425 0.58025 051 0.62921 147 0.67518 208
2.81093 657 2.66805 791 2.52210 132 2.37361 937 2.22315 681
11% 1:64 1.66 1.68
0.17303 65021 0.17447 04284 0.17565 26667 0.17658 94284 0.17728 72076
0.07808 827 0.06535 359 0.05292 202 0.04080 829 0.02902 592
-0.64405 -0.62928 -0.61375 -0.59751 -0.58062
073 410 011 005 516
0.71812 810 0.75802 588 0.79486 211 0.82863 352 0.85934 661
2.07124 871 1.91841 857 1.76517 671 1.61201 862 1.45942 351
1.70 1.72 1.74 1.76 1.78
0.17775 27562 0.17799 30597 0.17801 53128 0.17782 68955 0.17743 53495
0.01758 718 +0.00650 315 -0.00421 632 -0.01456 254 -0.02452 804
-0.56315 -0.54516 -0.52670 -0.50785 -0.48864
647 459 954 061 614
0.88701 729 0.91167 051 0.93333 988 0.95206 725 0.96790 228
1.30785 296 1.15774 966 1.00953 633 0.86361 469 0.72036 463
1.80 1.82 1.84 1.86 1.88
0.17684 83546 0.17607 37061 0.17511 92921 0.17399 30717 0.17270 30539
-0.03410 -0.04329 -0.05208 -0.06047 -0.06846
647 263 243 285 193
-0.46915 -0.44942 -0.42952 -0.40949 -0.38940
342 853 621 971 073
0.98090 203 0.99113 045 0.99865 794 1.00356 087 1.00592 110
0.58014 345 0.44328 526 0.31010 045 0.18087 536 +0.05587 197
1.90 1.92 1.94 1.96 1.98
0.17125 72766 0.16966 37866 0.16793 06209 0.16606 57874 0.16407 72476
-0.07604 -0.08323 -0.09001 -0.09640 -0.10238
873 327 655 044 771
-0.36927 -0.34918 -0.32915 -0.30925 -0.28950
924 347 976 250 408
1.00582 548 1.00336 537 0.99863 613 0.99173 666 0.98276 891
-0.06467 -0.18054 -0.29155 -0.39754 -0.49836
2.00
0.16197 28995 C-i)4
-0.10798 193 C-i)7
-0.26995 483 ‘-32
0.97183 740 C-i)4
-0.59390 063
X
[ 1
2(3)(x)
.x(4) (2)
[ 1
-
[ 1
2 (5)
(x)
1 1
Z@)(x)
219 414 530 137 204
[c-y1
970
PROBABILITY
Table 26.1
NORMAL
FUNCTIONS
PROBABILITY
FUNCTION
AND DERIVATIVES
2.00 2.02 2.04 2.06 2.08
P(x) 0.97724 98680 51821 0.97830 83062 32353 0.97932 48371 33930 0.98030 07295 90623 019812372335 65062
Z(x) 0.05399 09665 13188 0.05186 35766 82821 0.04980 00877 35071 0.04779 95748 82077 0.04586 10762 71055
-0.10798 -0.10476 -0.10159 -0.09846 -0.09539
Z(1)(2) 19330 26376 44248 99298 21789 79544 71242 57079 10386 43794
2.10 2.12 2.14 2.16 2.18
0.98213 55794 37184 0.98299 69773 52367 0.98382 26166 27834 0.98461 36652 16075 0.98537 12692 24011
0.04398 35959 80427 0.04216 61069 61770 0.04040 75539 22860 0.03870 68561 47456 0.03706 29102 47806
-0.09236 -0.08939 -0.08647 -0.08360 -0.08079
55515 58897 21467 58953 21653 94921 68092 78504 71443 40218
2.20 2.22 2.24 2.26 2.28
0.98609 65524 86502 0.98679 06161 92744 0.98745 45385 64054 0.98808 93745 81453 0.98869 61557 61447
0.03547 45928 46231 0.03394 07631 82449 0.03246 02656 43697 0.03103 19322 15008 0.02965 45848 47341
-0.07804 -0.07534 -0.07271 -0.07013 -0.06761
41042 61709 84942 65037 09950 41882 21668 05919 24534 51938
2.30 2.32 2.34 2.36 2.38
0.98927 58899 78324 0.98982 95613 31281 0.99035 81300 54642 0.99086 25324 69428 0.99134 36809 74484
0.02832 70377 41601 0.02704 80995 46882 0.02581 65754 71588 0.02463 12693 06382 0.02349 09853 58201
-0.06515 -0.06275 -0.06041 -0.05812 -0.05590
21868 05683 15909 48766 07866 03515 97955 63063 85451 52519
2.40 2.42 2.44 2.46 2.48
0.99180 24640 75404 0.99223 97464 49447 0.99265 63690 44652 0.99305 31492 11376 0.99343 08808 64453
0.02239 45302 94843 0.02134 07148 99923 0.02032 83557 38226 0.01935 62767 31737 0.01842 33106 46862
-0.05374 -0.05164 -0.04960 -0.04761 -0.04568
68727 07623 45300 57813 11880 01271 64407 60073 98104 04218
2.50 2.52 2.54 2.56 2.58
0.99379 03346 74224 0.99413 22582 84668 0.99445 73765 56918 0.99476 63918 36444 Oi99505 99842 42230
0.01752 83004 93569 0.01667 01008 37381 0.01584 75790 25361 0.01505 96163 27377 0.01430 51089 94150
-0.04382 -0.04200 -0.04025 -0.03855 -0.03690
07512 33921 86541 10200 28507 24416 26177 98086 71812 04906
2.60 2.62 2.64 2.66 2.68
0.99533 88119 76281 0.99560 35116 51879 0.99585 46986 38964 0.99609 29674 25147 0.99631 88919 90825
0.01358 29692 33686 0.01289 21261 07895 0.01223 15263 51278 0.01160 01351 13703 0.01099 69366 29406
-0.03531 -0.03377 -0.03229 -0.03085 -0.02947
57200 07583 73704 02686 12295 67374 63594 02449 17901 66807
2.70 2.72 2.74 2.76 2.78
0.99653 30261 96960 0.99673 59041 84109 0.99692 80407 81350 0.99710 99319 23774 0.99728 20550 77299
0.01042 09348 14423 0.00987 11537 94751 0.00934 66383 67612 0.00884 64543 98237 0.00836 96891 54653
-0.02813 -0.02684 -0.02560 -0.02441 -0.02326
65239 98941 95383 21723 97891 27258 62141 39135 77358 49935
2.80 2.82 2.84 2.86 2.88
0.99744 48696 69572 0.99759 88175 25811 0.99774 43233 08458 0.99788 17949 59596 0.99801 16241 45106
0.00791 54515 82980 0.00748 28725 25781 0.00707 11048 86019 0.00667 93237 39203 0.00630 67263 96266
-0.02216 -0.02110 -0.02008 -0.01910 -0.01816
32644 32344 17005 22701 19378 76295 28658 94119 33720 21246
2.90 2.92 2.94 2.96 2.98
0.99813 41866 99616 0.99824 98430 71324 0.99835 89387 65843 0.99846 18047 88262 0.99855 87580 82660
0.00595 25324 19776 0.00561 59835 95991 0.00529 63438 65311 0.00499 28992 13612 0.00470 49575 26934
-0.01726 -0.01639 -0.01557 -0.01477 -0.01402
23440 17350 86721 00294 12509 64014 89816 72293 07734 30263
3.00
0.99865 01019 68370 (;i)5
0.00443 18484 11938
-0.01329 55452 35814 (y'7
x
[ 1
Z(x) =&e-w
P(x) =JI mZ(W
[ 1
Z(d(2) =g Z(x)
Hen(z)=(-l)"Z@'(r)/Z(z)
PROBABILITY
SORMAL X
PROBABILITY
Z(Z) (2)
971
FUNCTIONS
FUNCTION Z(3)(x)
AND
Table
DERIVATIVES
Z(4)(x)
26.1
Z@)(x)
Z(5)(x)
2.00 2.02 2.04 2.06 2.08
0.16197 0.15976 0.15744 0.15504 0.15255
28995 05616 79574 27011 22841
-0.10798 -0.11318 -0.11800 -0.12245 -0.12652
193 748 948 372 667
-0.26995 483 -0.25064 297 -0.23160 454 -0.21287 345 -0.19448 137
0.97183 0.95904 0.94451 0.92833 0.91062
740 873 117 417 795
-0.59390 063 -0.68406 360 -0.76878 007 -0.84800 114 -0.92169 927
2.10 2.12 2.14 2.16 2.18
0.14998 0.14734 0.14464 0.14188 0.13907
40623 52442 28800 38519 48644
-0.13023 -0.13358 -0.13659 -0.13925 -0.14158
543 762 143 550 892
-0.17645 779 -0.15882 997 -0.14162 297 -0.12485 967 -0.10856 076
0.89150 0.87107 0.84943 0.82671 0.80301
307 003 890 890 811
-0.98986 750 -1.05251 862 -1.10968 436 -1.16141 446 -1.20777 570
2.20 2.22 2.24 2.26 2.28
0.13622 0.13333 0.13041 0.12746 0.12450
24365 28941 23633 67648 18090
-0.14360 115 -0.14530 204 -0.14670 170 -0.14781 055 -0.14863 922
-0.09274 -0.07742 -0.06262 -0.04834 -0.03460
478 816 527 844 801
0.77844 0.75309 0.72708 0.70050 0.67346
311 866 743 969 314
-1.24885 097 -1.28473 823 -1.31554 947 -1.34140 971 -1.36245 589
2.30 2.32 2.34 2.36 2.38
0.12152 0.11853 0.11554 0.11255 0.10957
29919 55915 46652 50482 13521
-0.14919 851 -0.14949 939 -0.14955 294 -0.14937 032 -0.14896 273
-0.02141 -0.00876 +0.00331 0.01484 0.02581
241 819 989 882 724
0.64604 0.61833 0.59044 0.56243 0.53440
257 976 323 808 589
-1.37883 -1.39070 -1.39823 -1.40159 -1.40097
587 730 661 796 220
2.40 2.42 2.44 2.46 2.48
0.10659 0.10363 0.10069 0.09778 0.09488
79642 90478 85430 01675 74192
-0.14834 137 -0.14751 744 -0.14650 207 -0.14530 633 -0.14394 118
0.03622 0.04607 0.05536 0.06411 0.07231
539 505 942 307 187
0.50642 0.47856 0.45090 0.42350 0.39643
453 812 689 717 129
-1.39654 -1.38851 -1.37705 -1.36239 -1.34470
584 010 991 299 892
2.50 2.52 2.54 2.56 2.58
0.09202 0.08919 0.08639 0.08363 0.08091
35776 17075 46618 50852 54185
-0.14241 -0.14074 -0.13893 -0.13700 -0.13494
744 579 674 058 742
0.07997 0.08710 0.09371 0.09981 0.10541
287 428 533 624 808
0.36973 0.34348 0.31771 0.29247 0.26781
759 039 001 277 102
-1.32420 -1.30109 -1.27556 -1.24781 -1.21804
833 199 010 146 284
2.60 2.62 2.64 2.66 2.68
0.07823 0.07560 0.07301 0.07047 0.06798
79028 45843 73197 77809 74610
-0.13278 711 -0.13052 927 -0.12818 326 -0.12575 818 -0.12326 282
0.11053 0.11517 0.11935 0.12308 0.12638
277 293 186 341 196
0.24376 0.22036 0.19764 0.17563 0.15434
323 399 415 084 760
-1.18644 -1.15321 -1.11853 -1.08259 -1.04556
824 833 985 509 139
2.70 2.72 2.74 2.76 2.78
0.06554 0.06315 0.06082 0.05854 0.05631
76800 95904 41838 22966 46165
-0.12070 569 -0.11809 501 -0.11543 869 -0.11274 431 -0.11001 916
0.12926 0.13173 0.13382 0.13554 0.13690
232 965 945 741 942
0.13381 0.11404 0.09506 0.07686 0.05946
449 817 206 640 846
-1.00761 -0.96890 -0.92961 -0.88988 -0.84986
072 932 727 829 942
2.80 2.82 2.84 2.86 2.88
0.05414 0.05202 0.04996 0.04795 0.04600
16888 39229 15987 48727 37850
-0.10727 020 -0.10450 406 -0.10172 706 -0.09894 520 -0.09616 416
0.13793 0.13862 0.13902 0.13911 0.13894
149 969 007 867 142
0.04287 0.02708 +0.01209 -0.00209 -0.01549
262 053 127 857 465
-0.80970 -0.76951 -0.72943 -0.68959 -0.65008
080 553 954 143 248
2.90 2.92 2.94 2.96 2.98
0.04410 0.04226 0.04048 0.03875 0.03707
82652 81389 31340 28865 69473
-0.09338 928 -0.09062 562 -0.08787 791 -0.08515 058 -0.08244 776
0.13850 0.13782 0.13691 0.13578 0.13446
412 240 166 706 347
-0.02810 -0.03993 -0.05100 -0.06132 -0.07091
482 892 863 737 012
-0.61101 -0.57249 -0.53459 -0.49740 -0.46100
661 036 292 627 520
3.00
0.03545 47873
-0.07977 327 (-65)5
0.13295 545 (-;)7
[(-[)l1
P(-x)=1-P(z)
[ 1
-0.07977 327 (-4)~ 6 z(d(-2)=(-l)nZ@)(x)
[ 1
2-q-2) =2(x)
[ 1
-0.42545 745 (-;)7
[ 1
972
PROBABILITY Table 26.1
NORMAL
PROBABILITY
FUNCTIONS FUNCTION
AND DERIVATIVES
p (4
.J’
3.00 3.05 3.10 3.15 3.20
0.9986501020 0.9988557932 0.9990323968 0.9991836477 0.9993128621
3.25 3.30 3.35 3.40 3.45
0.9994229750 0.9995165759 0.9995959422 0.9996630707 0.9997197067
3.50 3.55 3.60 3.65 3.70
0.9997673709 0.9998073844 0.9998408914 0.9998688798 0.9998922003
3.75 3.80 3.85 3.90 3.95
0.9999115827 0.9999276520 0.9999409411 0.9999519037 0.9999609244
4.00 4.05 4.10 4.15 4.20
0.9999683288 0.9999743912 0.9999793425 0.9999833762 0.9999866543
4.25 4.30 4.35 4.40 4.45
0.9999893115 0.9999914601 0.9999931931 0.9999945875 0.9999957065
4.50 4.55 4.60 4.65 4.70
0.9999966023 0.9999973177 0.9999978875 0.9999983403 0.9999986992
4.75 4.80 4.85 4.90 4.95
0.9999989829 0.9999992067 0.9999993827 0.9999995208 0.9999996289
5.00
0.9999997133 (73
II
-3 -5.68447 -3.58207 75 -4.88674 -6.59440 -4.18954 82 05 52 62
(-6)1.48671 9515
(-6)-7.43359 76
[ 1
Table 26.2 NORMAL
PROBABlLITY
FUNCTION
FOR LARGE
ARGUMENTS
5
6.54265
15
-log Q (.I,) 50.43522
I56
-log Q(x) 137.51475
7"
11.89285 9.00586
16 17
64.38658 57.19458
27
160.13139 148.60624
9"
18.94746 15.20614
:9"
80.06919 72.01140
:i
184.48283 172.09024
10
23.11805
11 12 ::
:72%E 38:21345 44.10827
20 88.56010 I21 106.84167 97.48422
.,
-log Q (4
.I’
5
.7
126.85686 116.63253
From E. S. Pearsonand H. 0. Hartley (editors), Biometrika tablesfor statisticians, ~01. I. CambridgeUniv. Press,Cambridge,England, 1954(with permission).Known error has beencorrected.
PROBABILITY
NORMAL
5.00
(-5)3.56812 NORMAL 3
40 :: 43 44
68
PROBABILITY
(-4)-1.63539
PROBABILITY
-log Q(.c)
349.43701 367.03664 385.07032 403.53804 422.43983
973
FUNCTIONS
FUNCTION
15
(-4)7.10651
FUNCTION
z
20" 70 a0 90
AND
93
FOR LARGE
Table
DERIVATIVES
-3)-4.19931 -3)-3.49521
11 92
(-3)-2.89910
31
ARGUMENTS
-log Q(T)
544.96634 783.90743 1066.26576 1392.04459 1761.24604
.r
(-2)
26.1
1.09422 Table
-log Q(x)
100 150 200 250 300
2173.87154 4aaa.3aalz 8688.58977 13574.49960 19546.12790
350 400 450 500
26603.48018 34746.55970 43975.36860 54289.90830
r(+wi
L 9 J
Hc!.(z)=(-l)nZ(n)(1)/Z(.e)
P(-2)=1-P(s)
Z(-,)=2(c)
Z(~,(-~)=(-l)“Z(~)(r)
56
26.2
974 Table
PROBABILITY
26.3
.I’
HIGHER Z(T) (,I,)
DERIVATIVES
FUNCTIONS
OF THE
Z(W (x)
NORMAL
Z(S) (I)
PROBABILITY ZU~)(J~)
2w
ml)(a)
( 2)-3.77000 46 ( 2)-3.56488 94 (2 ( 2)-2.97583 41 (2 2)-2.07783 39 (3 l)-9.83608 69 (3
1.30711 60 ( 1) 1.58584 37
FUNCTION (.I’)
0.00000 00 4.05782 44 7.59641 48 1.01729 46 1.14847 09 (2)+6.22581 20
0.5 ( 1i 1.40908 65 ( 0)+4.46820 41 ( 2)-1.14961 02 0.6 ( 1 1.39704 30 ( 0I -6.75565 29 0.7 ( 1 1.27812 14 ( 1 -1.67416 58 E 1.0 I.1 1.2 1.3 1.4
0) 1) 7.94982 1.06929 69 72
1 -2.46111 -2.97666 11 59
2) 3.01027 69 (
( 0) 4.83941 45 l)-3.19401 36 ( 0)+1.65937 85 ( O)-1.31434 07 ( ( (
1.5 ( 01-7.05769 71 ( O)-9.09001 03 1.6 ( 0 -7.62276 66 ( O)-2.30231 44 1.7 ( O)-7.54545 38 ( 0)+3.67230 07 0) 8.41240 26 1) 1.16856 49 2.0 ( O)-4.64322 31 2.1 ( O)-3.27029 67 2.4 (-1)+3.13162 82
1) 1) 1 1 0)
2.94236 40 (2)-2.26484 60 2.57621 24 (2)-4.93791 72 2 1.98269 77 2 1.25293 01 i 1I +4.84200 76 ( ( ( ( (
1 1 1) 1 1
7.00965 92 6.46658 36 5.41207 19 4.02950 39 2.50938 72
I 21-6.65963 73 2 -5.14267 14 (2 I -3.28612 11 2 -1.36113 54 1)+3.94747 58
1.34437 51 1.37966 95 1.29729 67 1.12731 97 9.02423 01 ( l)-2.41634 55
(2) 2.97376 42
I 31 3 (3) (3) (3)
1.25562 83 1.73301 70 1.93425 58 1.87567 40 1.60633 92
( 0) 6.53922 01 ( ( 0) 4.08745 39 ( 0) 1.87558 77 4.58182 18 (l)-1.67928 3.0 3.1 3.2 3.3 3.4
( 0 ( 0 ( 0 (-1 (-1
1.75501 20 ( 0)-2.28683 38 ( 1.49720 05 ( O)-2.80440 64 1.20591 21 O)-2.96904 52 9.12450 33 O)-2.86200 69 6.39748 51 O)-2.56761 03
1I 1 1 1 ( 1)
25 (2)-4.55301 20
4.21202 87 3.54198 84 2.71897 33 1.86794 96 1.08280 77
79 Oj-1.71642 80 O)-2.16386 ( O)-1.27559 98 ( 0) 4.24743 76
1)+1.13637 65
(-1) 1.88517 13 (-1 1.63368 76 (-1 1.36227 87
-l)-2.70626
5.0 (-2)-3.73166 60 (-1) 1.09987 51 (-l)-2.51404
Z(.,) &-$2
Z(n) (.I.)=g
Z(.t*)
44
-l)-1.86696 14 -1)+1.00018 72 (0) 2.21617 27
27 (-1) 2.67133 76 (0) 1.17837 39 (O)-8.83034 08
~~~~,,(.,~)=(-l)“Z(~~)(.,~)/Z(.,~)
Z(d (-.I-) = (-1) ‘LZ(n) (J)
PROBABILITY
NORMAL
(,,(.r)
0.000
pR()RARILITY
0.001
FUNCTION-VALI:ES
0.002
0.003
OF Z(z)
0.004
975
FUNCTIONS
0.005
IN TERMS
0.006
OF
0.007
P(x)
AND
0.008
o(x)
0.009
Table
26.1
0.010
0.03 0.01 0.02 0.03 0.04
0.00000 0.02665 0.04842 0.06804 0.08617
0.00337 0.02896 0.05046 0.06992 0.08792
0.00634 0.03123 0.05249 0.07177 0.08965
0.00915 0.03348 0.05449 0.07362 0.09137
0.01185 0.03569 0.05648 0.07545 0.09309
0.01446 0.03787 0.05845 0.07727 0.09479
0.01700 0.04003 0.06040 0.07908 0.09648
0.01949 0.04216 0.06233 0.08087 0.09816
0.02192 0.04427 0.06425 0.08265 0.09983
0.02431 0.04635 0.06615 0.08442 0.10149
0.02665 0.04842 0.06804 0.08617 0.10314
0.99 0.98 0.97 0.96 0.95
0.05 0.06 0.07 0.08 0.09
0.10314 0.11912 0.13427 0.14867 0.16239
0.10478 0.12067 0.13574 0.15007 0.16373
0.10641 0.12222 0.13720 0.15146 0.16506
0.10803 0.12375 0.13866 0.15285 0.16639
0.10964 0.12528 0.14011 0.15423 0.16770
0.11124 0.12679 0.14156 0.15561 0.16902
0.11284 0.12830 0.14299 0.15699 0.17033
0.11442 0.12981 0.14442 0.15834 0.17163
0.11603 0.13133 0.14584 0.15970 0.17292
0.11756 0.13279 0.14726 0.16105 0.17421
0.11912 0.13427 0.14867 0.16239 0.17550
0.94 0.93 0.92 0.91 0.90
0.10 0.11 0.12 0.13 0.14
0.17550 0.18804 0.20004 0.21155 0.22258
0.17678 0.18926 0.20121 0.21267 0.22365
0.17805 0.19048 0.20238 0.21379 0.22473
0.17932 0.19169 0.20354 0.21490 0.22580
0.18057 0.19293 0.20470 0.21601 0.22686
0.18184 0.19410 0.20585 0.21712 0.22792
0.18309 0.19530 0.20700 0.21822 0.22898
0.18433 0.19649 0.20814 0.21932 0.23003
0.18557 0.19765 0.20928 0.22041 0.23108
0.18681 0.19886 0.21042 0.22149 0.23212
0.18804 0.20004 0.21155 0.22258 0.23316
0.89 0.88 0.87 0.86 0.85
0.15 0.16 0.17 0.18 0.19
0.23316 0.24331 0.25305 0.26240 0.27137
0.23419 0.24430 0.25401 0.26331 0.27224
0.23522 0.24529 0.25495 0.26422 0.27311
0.23625 0.24628 0.25590 0.26513 0.27398
0.23727 0.24726 0.25684 0.26603 0.27485
0.23829 0.24823 0.25778 0.26693 0.27571
0.23930 0.24921 0.25871 0.26782 0.27657
0.24031 0.25017 0.25964 0.26871 0.27742
0.24131 0.25114 0.26056 0.26960 0.27827
0.24232 0.25210 0.26148 0.27049 0.27912
0.24331 0.25305 0.26240 0.27137 0.27996
0.84 0.83 0.82 0.81 0.80
0.20 0.21 0.22 0.23 0.24
0.27996 0.28820 0.29609 0.30365 0.31087
0.28080 0.28901 0.29686 0.30439 0.31158
0.28164 0.28981 0.29763 0.30512 0.31228
0.28247 0.29060 0.29840 0.30585 0.31298
0.28330 0.29140 0.29916 0.30658 0.31367
0.28413 0.29219 0.29991 0.30730 0.31436
0.28495 0.29299 0.30067 0.30802 0.31505
0.28577 0.29376 0.30142 0.30874 0.31574
0.28658 0.29454 0.30216 0.30945 0.31642
0.28739 0.29532 0.30291 0.31016 0.31710
0.28820 0.29609 0.30365 0.31087 0.31778
0.79 0.78 0.77 0.76 0.75
i*f: 0:27 0.28 0.29
0 31778 0'32437 0:33065 0.33662 0.34230
0 31845 0'32501 0:33126 0.33720 0.34286
0 31912 0'32565 0:33187 0.33778 0.34341
0 31979 0'32628 0:33247 0.33836 0.34395
0 32045 0'32691 0:33307 0.33893 0.34449
0 32111 0'32754 0:33367 0.33950 0.34503
0 32177 0'32817 0:33427 0.34007 0.34557
0 32242 0'32879 0:33486 0.34063 0.34611
0 32307 0'32941 0:33545 0.34119 0.34664
0 32372 0'33003 0:33604 0.34175 0.34717
0 32437 0'33065 0:33662 0.34230 0.34769
0 74 0'73 0:72 0.71 0.70
0.30 0.31 0.32 0.33 0.34
0.34769 0.35279 0.35761 0.36215 0.36641
0.34822 0.35329 0.35808 0.36259 0.36682
0.34874 0.35378 0.35854 0.36302 0.36723
0.34925 0.35427 0.35900 0.36346 0.36764
0.34977 0.35475 0.35946 0.36389 0.36804
0.35028 0.35524 0.35991 0.36431 0.36844
0.35079 0.35572 0.36037 0.36474 0.36884
0.35129 0.35620 0.36082 0.36516 0.36923
0.35180 0.35667 0.36126 0.36558 0.36962
0.35230 0.35714 0.36171 0.36600 0.37001
0.35279 0.35761 0.36215 0.36641 0.37040
0.69 0.68 0.67 0.66 0.65
0.35 0.36 0.37 0.38 0.39
0.37040 0.37412 0.37757 0.38076 0.38368
0.37078 0.37447 0.37790 0.38106 0.38396
'0.37116 0.37483 0.37823 0.38136 0.38423
0.37154 0.37518 0.37855 0.38166 0.38451
0.37192 0.37553 0.37883 0.38196 0.38478
0.37229 0.37583 0.37920 0.38225 0.38504
0.37266 0.37622 0.37951 0.38254 0.38531
0.37303 0.37656 0.37983 0.38283 0.38557
0.37340 0.37693 0.38014 0.38312 0.38583
0.37376 0.37724 0.38045 0.38340 0.38609
0.37412 0.37757 0.38076 0.38365 0.38634
0.64 0.63 0.62 0.61 0.60
0.40 0.41 0.42 0.43 0.44
0.38634 0.38875 0.39089 0.39279 0.39442
0.38659 0.38897 0.39109 0.39296 0.39457
0.38684 0.38920 0.39129 0.39313 0.39472
0.38709 0.38942 0.39149 0.39330 0.39486
0.38734 0.38964 0.39168 0.39347 0.39501
0.38758 0.38985 0.39187 0.39364 0.39514
0.38782 0.39007 0.39206 0.39380 0.39528
0.38305 0.39028 0.39224 0.39396 0.39542
0.38829 0.39049 0.39243 0.39411 0.39555
0.38852 0.39069 0.39261 0.39427 0.39568
0.38875 0.39089 0.39279 0.39442 0.39580
0.59 0.58 0.57 0.56 0.55
0.45 0.46 0.47 0.4P 0.49
0.39580 0.39694 0.39781 0.39844 0.39882
0.39593 0.39703 0.39789 0.39849 0.39884
0.39605 0.39713 0.39796 0.39854 0.39886
0.39617 0.39723 0.39803 0.3985'3 0.39883
0.39629 0.39732 0.39809 0.39862 0.39890
0.39640 0.39741 0.39816 0.39866 0.39891
0.39651 0.39749 0.39822 0.39870 0.39892
0.39662 0.39758 0.39828 0.39873 0.39893
0.39673 0.39766 0.39834 0.39876 0.39894
0.39683 0.39774 0.39839 0.39879 0.39894
0.39694 0.39781 0.39844 0.39882 0.39894
0.54 0.53 0.52 0.51 0.50
0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 Linear interpolation yields an error no greater than 5 units in the fifth decimal place.
0.000
Compiled from T. L. Kelley, The Kelley Statistical Tables. Harvard Univ. Press, Cambridge, Mass., 1948 (with permission).
I’(.,~)
976
PROBABILITY
Table 26.5 Q(r)
0.00 0.01
0.000
NORMAL
0.001
3.09023 2.32m635 2.29037
PRORARILITY
0.002
0.003
FUNCTIONS
FUNCTION-VALUES
0.004
0.005
0.006
2.65207 2.19729
2.57583 2.17009 1.95996 1.81191 1.69540
2.51214 2.14441
1.91104
1.89570
1.77438
1.76241
1.68494
1.67466
1.66456
1.65463
1.58927 1.50626
1.58047 1.49851
1.43953
1.43250
1.42554
1.36581 1.30469
1.35946 1.29884
1.57179 1.49085 1.41865 1.35317 1.29303
1.56322 1.48328 1.41183 1.34694 1.28727
1.55477 1.47579 1.40507 1.34076 1.28155
0.94 0.93 0.92 0.91 0.90
1.24808 1.19522 1.14551 1.09847 1.05374
1.24264 1.19012 1.14069 1.09390 1.04939
1.23723 1.18504 1.13590 1.08935 1.04505
1.23186 1.18000 1.13113 1.08482 1.04073
1.22653
0.89
1.06252
1.25357 1.20036 1.15035 1.10306 1.05812
1.01943 0.97815 0.93848 0.90023 0.86325
1.01522 0.97411 0.93458 0.89647 0.85962
1.01103 0.97009 0.93072 0.89273 0.85600
1.00686 0.96609 0.92686
0.99446 0.95416 0.91537
0.84 0.83 0.82
0.87055
1.02365 0.98220 0.94238 0.90399 0.86689
0.83450 0.79950 0.76546 0.73228 0.69988
0.83095 0.79606 0.76210 0.72900 0.69668
0.82742 0.79262 0.75875 0.72574 0.69349
0.82390 0.78919 0.75542 0.72248 0.69031
0.66821
0.66508
0.66196
2.01409
1.99539
1.97737
1.85218
1.83842
1.82501
0.04
1.73920
1.72793
1.71689
1.70604
0.05 0.06 0.07 0.08 0.09
1.64485
1.63523
1.55477 1.47579 1.40507 1.34076
1.54643 1.39838
1.62576 1.53820 1.46106 1.39174 1.32854
1.61644 1.53007 1.45381 1.38517 1.32251
1.37866 1.31652
1.37220 1.31058
0.10 0.11 0.12 0.13
1.28155 1.22653 1.17499 1.12639
1.27587 1.22123 1.17000 1.12168
1.27024 1.21596 1.16505
1.26464 1.21072 1.16012
1.25908 1.20553 1.15522
1.08032
1.07584
1.11699 1.07138
1.11232 1.06694
1.10768
0.14
0.15 0.16 0.17 0.18
1.03643 0.99446 0.95416 0.91537
1.03215 0.99036 0.95022 0.91156
1.02789 0.98627 0.94629 0.90777
0.19
0.87790
0.87422
0.20 0.21 0.22 0.23 0.24
0.84162 0.80642 0.77219 0.73885 0.70630
0.83805 0.80296 0.76882 0.73556 0.70309
0.26 0.27
0.25
0.67449 0.64335 0.61281
0.64027 0.60979
0.63719 0.60678
0.60376
0.6310b 0.60076
0.28
0.58284
0.57987
0.57691
0.57395
0.57100
0.29
0.55338
0.55047
0.54755
0.54464
0.30 0.31
0.52440 0.49585
0.52153 0.49302
0.51866 0.49019
0.32 0.33 0.34
0.46770 0.43991 0.41246
0.46490 0.43715 0.40974
0.35 0.36 0.37 0.38
0.38532 0.35846 0.33185 0.30548
0.38262
0.39
0.27932
0.40 0.41 0.42 0.43 0.44
0.25335 0.22754 0.20189 0.17637 0.15097
0.45
0.12566 0.10043 0.07527 0.05015 0.02507 0.010
0.46
0.47 0.48 0.49
0.25076
0.22497 0.19934 0.17383 0.14843 0.12314 0.09791 0.07276 0.04764
0.02256 0.009
1.60725
1.52204 1.44663
1.59819 1.51410
1.94313
2.45726 2.12007
2.40892 2.09693
2.36562 2.07485
0.010
1.92684
2.03352
1.86630
0.35579 0.32921 0.30286 0.27671
0.009
1.78661
2.05375
1.88079 1.75069
0.67135
0.008
1.79912
2.74778 2.22621
0.02
1.33462
0.007
OF P(x) AND Q(x) 2.32635 2.05375 1.88079 1.75069, 1.64485
2.87816 2.25713
0.03
1.46838
OF z IN TERMS
1.17499 1.12639 1.08032 1.03643
0.99 0.98 0.97 0.96 0.95
0.88 0.87 0.86 0.85
1.00271
0.99858 0.95812
0.88901
0.96210 0.92301 0.88529
0.88159
0.84520
0.87790 0.84162
0.81 0.80
0.82038 0.78577 0.75208 0.71923 0.68713
0.81687 0.78237 0.74876 0.71599 0.68396
0.81338 0.77897 0.74545 0.71275 0.68080
0.80990 0.77557 0.74214 0.70952 0.67764
0.80642 0.77219 0.73885 0.70630 0.67449
0.79 0.78 0.77 0.76 0.75
0.65884
0.65573
0.62801
0.62496
0.59477
0.54174
0.59776 0.56805 0.53884
0.65262 0.62191 0.59178 0.56217 0.53305
0.64952 0.61887 0.58879 0.55924
0.64643 0.61584 0.58581 0.55631
0.64335 0.61281 0.58284 0.55338
0.74 0.73 0.72 0.71
0.53016
0.52728
0.52440
0.70
0.51579 0.48736
0.51293 0.48454
0.51007 0.48173
0.50722 0.47891
0.50437
0.50153
0.46211 0.43440 0.40701
0.45933 0.43164 0.40429
0.45654 0.42889 0.40157
0.45376 0.42615 0.39886
0.45099 0.42340 0.39614
0.47610 0.44821 0.42066 0.39343
0.47330 0.44544 0.41793 0.39073
0.49869 0.47050 0.44268 0.41519 0.38802
0.49585 0.46770 0.43991 0.41246 0.38532
0.69 0.68 0.67 0.66 0.65
0.37993 0.35312 0.32656 0.30023
0.37723 0.35045 0.32392
0.37454 0.34779 0.32128
0.37186 0.34513 0.31864
0.29761 0.27151
0.29499 0.26891
0.29237 0.26631
0.36649 0.33981 0.31337 0.28715
0.36381 0.33716 0.31074 0.28454
0.36113 0.33450 0.30811 0.28193
0.35846 0.33185 0.30548 0.27932
0.27411
0.36917 0.34247 0.31600 0.28976 0.26371
0.26112
0.25853
0.25594
0.25335
0.64 0.63 0.62 0.61 0.60
0.24817 0.22240 0.19678 0.17128 0.14590
0.24559 0.21983 0.19422 0.16874 0.14337
0.24301 0.21727 0.19167 0.16620 0.14084
0.24043 0.21470 0.18912 0.16366 0.13830
0.23785 0.21214 0.18657 O.lb112 0.13577
0.23527 0.20957 0.18402 0.15858 0.13324
0.20701 0.18147
0.23269
0.23012 0.20445 0.17892
0.22754 0.20189 0.17637
0.59 0.58 0.57
0.15604
0.15351
0.15097
0.56
0.12061 0.09540 0.07024 0.04513 0.02005
0.11809 0.09288 0.06773
0.11556
0.11304
0.09036
0.08784
0.06522 0.04012 0.01504
0.06271 0.03761 0.01253
0.11052 0.08533 0.06020
0.10799 0.08281 0.05768
0.03510 0.01003
0.03259 0.00752
0.63412
0.04263
0.01755
0.56511
0.53594
0.85239
0.84879
0.13072
0.91918
0.12819
0.12566
0.10547
0.08030 0.05517 0.03008 0.00501
0.008 0.007 0.006 0.005 0.004 0.003 0.002 For Q(~)>O.007,linear interpolation yields an error of one unit in the thil.d decimal interpolation is necessaryto obtain full accuracy. P(z)=l-Q(7.)=J:_
Z(W
Compiledfrom T. L. Kelley, The Kelley Statistical Tables. Harvard Univ. Press,Cambridge, Mass., 1948(with permission).
0.55
0.54 0.53 0.52 0.51 0.50 w
PROBABILITY NORMAL
PROBABILITY
r,Jh) 0.0000 o.o;o 3.0;23
FUNCTION-VALUES
OF z FOR
EXTREME
VALUES
OF P(x)
AND
Q(z)
Table
26.0
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009
0.0010
2.87816 2.74778 2.65207
3 71902 3:06181 2.86274 2.73701 2.64372
3.54008 3.03567 2.84796 2.72655 2.63555
3.43161 3.01145 2.83379 2.71638 2.62756
3.35279 2.98888 2.82016 2.70648 2.61973
3.29053 2.96774 2.80703 2.69684 2.61205
3.23888 2.94784 2.79433 2.68745 2.60453
3.19465 2.92905 2.78215 2.67829 2.59715
3.15591 2.91124 2.77033 2.66934 2.58991
3.12139 2.89430 2.75888 2.66061 2.58281
3.09023 2.87816 2.74778 2.65207 2.57583
0.999 0.998 0.997 0.996 0.995
0.005 0.006 0.007 3.008 0.009
2.57533 2.51214 2.45726 2.40891 2.36562
2.56897 2.50631 2.45216 2.40437 2.36152
2.56224 2.50055 2.44713 2.39989 2.35747
2.55562 2.49485 2.44215 2.39545 2.35345
2.54910 2.48929 2.43724 2.39106 2.34947
2.54270 2.48377 2.43238 2.38671 2.34553
2.53640 2.47333 2.42758 2.38240 2.34162
2.53019 2.47296 2.42283 2.37814 2.33775
2.52408 2.46765 2.41814 2.37392 2.33392
2.51807 2.46243 2.41350 2.36975 2.33012
2.51214 2.45726 2.40891 2.36562 2.32635
0.994 0.993 0.992 0.991 0.990
0.010 0.011 0.012 0.013 0.014
2.32635 2.29037 2.25713 2.22621 2.19729
2.32261 2.28693 2.25394 2.22323 2.19449
2.31891 2.28352 2.25077 2.22028 2.19172
2.31524 2.28013 2.24763 2.21734 2.18896
2.31160 2.27677 2.24450 2.21442 2.18621
2.30798 2.27343 2.24140 2.21152 2.18349
2.30440 2.27013 2.23832 2.20864 2.18078
2.30085 2.26684 2.23526 2.20577 2.17808
2.29733 2.26358 2.23223 2.20293 2.17540
2.29383 2.26034 2.22921 2.20010 2.17274
2.29037 2.25713 2.22621 2.19729 2.17009
0.989 0.988 0.987 0.986 0.935
0.015 0.016 0.017 0.018 0.019
2.17009 2.14441 2.12007 2.09693 2.07485
2.16746 2.14192 2.11771 2.09467 2.07270
2.16484 2.13944 2.11535 2.09243 2.07056
2.16224 2.13698 2.11301 2.09020 2.06843
2.15965 2.13452 2.11068 2.08798 2.06630
2.15707 2.13208 2.10836 2.08576 2.06419
2.15451 2.12966 2.10605 2.08356 2.06208
2.15197 2.12724 2.10375 2.08137 2.05998
2.14943 2.12484 2.10147 2.07919 2.05790
2.14692 2.12245 2.09919 2.07702 2.05582
2.14441 2.12007 2.09693 2.07485 2.05375
0.984 0.983 0.982 0.981 0.980
0.020 !I;021 0.022 0.023 0.024
2.05375 2;1j3352 2.01409 1.99539 ii97737
2.05169 2;03154 2.01219 1.99356 1;97560
2.04964 2.02957 2.01029 1.99174 1.97384
2.04759 2;02761 2.00841 1.98992 i97208
2.04556 2.02566 2.00653 1.98811 1.97033
2.04353 2.02371 2.00465 1.98630 1.96859
2.04151 2.02177 2.00279 1.98450 1.96685
2.03950 2.01984 2.00093 1.98271 1.96512
2.03750 2.01792 1.99908 1.98092 1.96340
2.03551 2.01600 1.99723 1.97914 1.96168
2.03352 2.01409 1.99539 1.97737 1.95996
0.979 0.978 0.977 0.976 0.975
0.001 0.002 0.003 0.004
0.0001
977
FUNCTIONS
0.0006 0.0005 0.0004 0.0003 0.0002 0.0001 0.0000 0.0010 0.0009 0.0008 0.0007 For Q(1.)\0.0007, linear interpolation yields an error of one unit in the third decimal place; five-point interpolation is necessary to obtain full accuracy.
f)(r)
q (.I.)
.I’
(-4)l.O
3.71902
(-
(-5)l.O
4.26489
(-1O)l.
(-6)l.O
4.75342
(-11)l.
(-7)l.O
5.19934
(-12)l.
(-8)l.O
5.61200
(-13)l.O
.!’
9)l.O
1) (.I.)
5.99781
(-14)l.O
0
6.36134
(-15)l.
0
6.70602
( -1b)l.
0
7.03448 7.34880
P(,r)=l-f)(+JJ
,
(,) (,I.)
.!’
7.65063
(-19)l.
0
9.01327
0
7.94135
(-2O)l.O
9.26234
0
8.22208
(-21)l.O
9.50502
(-17)l.
0
8.49379
(-22)l.O
9.74179
( -18)l.
0
3.75729
(-23)l.O
9.97305
m2(/)111
Compiled from T. L. Kelley, The Kelley Statistical Tables. 1948 (with permission) for Q(X) >(-9)l.
Harvard Univ. Press, Cambridge, Mass.,
I’(V)
978
PROBABILITY
Table
26.7
PROBABILITY
INTEGRAL CUMULATIVE
FUNCTIONS
OF x3-DISTRIBUTION, INCOMPLETE GAMMA SUMS OF THE POISSON DISTRIBUTION
w*=O.OOl
0.002
0.003
0.004
0.005
0.006
0.007
m=O.O005 0.97477 0.99950 0.99999
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
x2=0.01 m=0.005 0.92034 0.99501 0.99973 0.99999
0.96433 0.95632 0.94957 0.94363 0.93826 0.93332 0.99900 0.99850 0.99800 0.99750 0.99700 0.99651 0.99998 0.99996 0.99993 0.99991 0.99988 0.99984 0.99999 0.02 0.03 0.04 0.05 0.06 0.07 0.010 0.015 0.020 0.025 0.030 0.035 0.88754 0.86249 0.84148 0.82306 0.80650 0.79134 0.99005 0.98511 0.98020 0.97531 0.97045 0.96561 0.99925 0.99863 0.99790 0.99707 0.99616 0.99518 0.99995 0.99989 0.99980 0.99969 0.99956 0.99940 0.99999 0.99998 0.99997 0.99995 0.99993
6
0.75183 0.95123 0.99184 0.99879 0.99984
98 10
; 9 10 11 :: 14 15
0.010 0.0050 0.92034 0.99501 0.99973 0.99999
0.10 0.050 0.75183 0.95123 0.99184 0.99879 0.99984
0.9
KO 0.6;472 0.90484 0.97759 0.99532 0.99911
ii-;5 0.58388 0.86071 0.96003 0.98981 0.99764
EO 0.5;709 0.81873 0.94024 0.98248 0.99533
0.99998 0.99985 0.99950 0.99885 0.99997 0.99990 0.99974 0.99998 0.99994 0.99999
E5 0.4;950 0.77880 0.91889 0.97350 0.99212
Eo 0.43858 0.74082 0.89643 0.96306 0.98800
K5 0.40278 0.70469 0.87320 0.95133 0.98297
0.37109 0.67032 0.84947 0.93845 0.97703
0.45 0.34278 0.63763 0.82543 0.92456 0.97022
0.60653 0.80125 0.90980 0.96257
0.99784 0.99945 0.99987 0.99997 0.99999
0.99640 0.99899 0.99973 0.99993 0.99998
0.99449 0.99834 0.99953 0.99987 0.99997
0.99207 0.99744 0.99922 0.99978 0.99994
0.98912 0.99628 0.99880 0.99964 0.99989
0.98561 0.99483 0.99825 0.99944 0.99983
GO 0.31731
x2= 1.1 m=0.55 0.29427 0.57695 0.77707 0.89427 0.95410
1.2
1.3
1.4
1.5
1.6
0.60 0.27332 0.54881 0.75300 0.87810 0.94488
0.65 0.25421 0.52205 0.72913 0.86138 0.93493
0.70 0.23672 0.49659 0.70553 0.84420 0.92431
0.75 0.22067 0.47237 0.68227 0.82664 0.91307
0.80 0.20590 0.44933 0.65939 O-80879 0.90125
0.99999 0.99998 0.99997 0.99995 0.99999 0.99999 1.7 1.8 1.9 2.0 0.85 0.90 0.95 1.00 0.19229 0.17971 0.16808 0.15730 0.42741 0.40657 0.38674 0.36788 0.63693 0.61493 0.59342 0.57241 0.79072 0.77248 0.75414 0.73576 0.88890 0.87607 0.86280 0.84915
0.98154 0.99305 0.99753 0.99917 0.99973
0.97689 0.99093 0.99664 0.99882 0.99961
0.97166 0.98844 0.99555 0.99838 0.99944
0.96586 0.98557 0.99425 0.99782 0.99921
0.95949 0.98231 0.99271 0.99715 0.99894
0.95258 0.97864 0.99092 0.99633 0.99859
0.94512 0.97457 0.98887 0.99537 0.99817
0.93714 0.97008 0.98654 0.99425 0.99766
0.92866 0.96517 0.98393 0.99295 0.99705
0.91970 0.95984 0.98101 0.99147 0.99634
0.99992 0.99987 0.99981 0.99973 0.99998 0.99996 0.99994 0.99991 0.99999 0.99999 0.99998 0.99997 0.99999 0.99999
0.99962 0.99987 0.99996 0.99999
0.99948 0.99982 0.99994 0.99998 0.99999
0.99930 0.99975 0.99991 0.99997 0.99999
0.99908 0.99966 0.99988 0.99996 0.99999
0.99882 0.99954 0.99983 0.99994 0.99998
0.99850 0.99941 0.99977 0.99992 0.99997
::
6
0.009 0.0045 0.92442 0.99551 0.99977 0.99999 0.09 0.045 0.76418 0.95600 0.99301 0.99902 0.99987
0.99999 0.99999 0.99999 0.99998
x2=0.1 m=0.05
6 7
0.008 0.0040 0.92873 0.99601 0.99981 0.99999 0.08 0.040 0.77730 0.96079 0.99412 0.99922 0.99991
FUNCTION
16
Compiled from E. S. Pearson and H. 0. Hartley (editors), Biometrika Cambridge Univ. Press, Cambridge, England, 1954 (with permission).
0.99999 0.99999
tables for statisticians,
vol. I.
PROBABILITY PROBABILITY
INTEGRAL CUMULATIVE
x2=2.2 m=l.l
2.4 1.2
979
FUNCTIONS
OF x~-L)ISTRIBUTION, INCOMPLETE GAMMA SUMS OF THE POISSON DISTRIBUTION
FI’NCTION
2.6 1.3
3.6 1.8
2.8 1.4
3.0 1.5
3.2 1.6
3.4 1.7
Table 26.7
3.8 1.9
4.0 2.0
0.13801 0.33287 0.53195 0.69903 0.82084
0.12134 0.30119 0.49363 0.66263 0.79147
0.10686 0.27253 0.45749 0.62682 0.76137
0.09426 0.24660 0.42350 0.59183 0.73079
0.08327 0.22313 0.39163 0.55783 0.69999
0.07364 0.20190 0.36181 0.52493 0.66918
0.06520 0.18268 0.33397 0.49325 0.63857
0.05778 0.16530 0.30802 0.46284 0.60831
0.05125 0.14957 0.28389 0.43375 0.57856
0.04550 0.13534 0.26146 0.40601 0.54942
0.90042 0.94795 0.97426 0.98790 0.99457
0.87949 0.93444 0.96623 0.98345 0.99225
0.85711 0.91938 0.95691 0.97807 0.98934
0.83350 0.90287 0.94628 0.97170 0.98575
0.80885 0.88500 0.93436 0.96430 0.98142
0.78336 0.86590 0.92119 0.95583 0.97632
0.75722 0.84570 0.90681 0.94631 0.97039
0.73062 0.82452 0.89129 0.93572 0.96359
0.70372 0.80250 0.87470 0.92408 0.95592
0.67668 0.77978 0.85712 0.91141 0.94735
0.99766 0.99903 0.99961 0.99985 0.99994
0.99652 0.99850 0.99938 0.99975 0.99990
0.99503 0.99777 0.99903 0.99960 O-99984
0.99311 0.99680 0.99856 0.99938 0.99974
0.99073 0.99554 0.99793 0.99907 0.99960
0.98781 0.99396 0.99711 0.99866 0.99940
0.98431 0.99200 0.99606 0.99813 0.99913
0.98019 0.98962 0.99475 0.99743 0.99878
0.97541 0.98678 0.99314 0.99655 0.99832
0.96992 0.98344 0.99119 0.99547 0.99774
0.99998 0.99999
0.99996 0.99999
0.99994 0.99998 0.99999
0.99989 0.99996 0.99998 0.99999
0.99983 0.99993 0.99997 il.99999
0.99974 0.99989 0.99995 0.99998 0.99999
0.99961 0.99983 0.99993 0.99997 0.99999
0.99944 0.99975 0.99989 0.99995 0.99998
0.99921 0.99964 0.99984 0.99993 0.99997
0.99890 0.99948 0.99976 0.99989 0.99995
0.99999
0.99999
0.99998 0.99999
x2= 4.2 ne==2.1
4.4 2.2
4.6 2.3
4.8 2.4
5.0 2.5
5.2 2.6
5.4 2.7
5.6 2.8
5.8 2.9
6.0 3.0
0.04042 0.12246 0.24066 0.37962 0.52099
0.03594 0.11080 0.22139 0.35457 0.49337
0.03197 0.10026 0.20354 0.33085 0.46662
0.02846 0.09072 0.18704 0.30844 0.44077
0.02535 0.08209 0.17180 0.28730 0.41588
0.02259 0.07427 0.15772 0.26739 0.39196
0.02014 0.06721 0.14474 0.24866 0.36904
0.01796 0.06081 0.13278 0.23108 0.34711
0.01603 0.05502 0.12176 0.21459 0.32617
0.01431 0.04979 0.11161 0.19915 0.30622
0.64963 0.75647 0.83864 0.89776 0.93787
0.62271 0.73272 0.81935 0.88317 0.92750
0.59604 0.70864 0.79935 0.86769 0.91625
0.56971 0.68435 0.77872 0.85138 0.90413
0.54381 0.65996 0.75758 0.83431 0.89118
0.51843 0.63557 0.73600 0.81654 0.87742
0.49363 0.61127 0.71409 0.79814 0.86291
0.46945 0.58715 0.69194 0.77919 0.84768
0.44596 0.56329 0.66962 0.75976 0.83178
0.42319 0.53975 0.64723 0.73992 0.81526
0.96370 0.97955 0.98887 0.99414 0.99701
0.95672 0.97509 0.98614 0.99254 0.99610
0.94898 0.97002 0.98298 0.99064 0.99501
0.94046 0.96433 0.97934 0.98841 0.99369
0.93117 0.95798 0.97519 0.98581 0.99213
0.92109 0.95096 0.97052 0.98283 0.99029
0.91026 0.94327 0.96530 0.97943 0.98816
0.89868 0.93489 0.95951 0.97559 0.98571
0.88637 0.92583 0.95313 0.97128 0.98291
0.87337 0.91608 0.94615 0.96649 0.97975
0.99851 0.99928 0.99966 0.99985 0.99993
0.99802 0.99902 0.99953 0.99978 0.99990
0.99741 0.99869 0.99936 0.99969 0.99986
0.99666 0.99828 0.99914 0.99958 0.99980
0.99575 0.99777 0.99886 0.99943 0.99972
0.99467 0.99715 0.99851 0.99924 0.99962
0.99338 0.99639 0.99809 0.99901 0.99950
0.99187 0.99550 0.99757 0.99872 0.99934
0.99012 0.99443 0.99694 0.99836 0.99914
0.98810 0.99319 0.99620 0.99793 0.99890
0.99997 0.99999 0.99999
0.99995 0.99998 0.99999
0.99993 0.99997 0.99999 0.99999
0.99991 0.99996 0.99998 0.99999
0.99987 0.99994 0.99997 0.99999 0.99999
0.99982 0.99991 0.99996 0.99998 0.99999
0.99975 0.99988 0.99994 0.99997 0.99999
0.99967 0.99984 0.99992 0.99996 0.99998
0.99956 0.99978 0.99989 0.99995 0.99998
0.99943 0.99971 0.99986 0.99993 0.99997
0.99999
0.99999 0.99999
0.99998 0.99999
+;
Interpolation on x2
px;)
/u="--vo>o
Double Entry Interpolation Q (x2iv)=Q (x;iv0-4)[;
+Q
(x&-2)~-m2-W]+Q
+Q (x;~~~)[l-w~-~+;~~+w#j+Q
-
(x&+l)[;
(x:,1+)[; w2++-w4]
W’-;,u+W+]
980
PROBABILITY
Table 26.7 PROBABILITY
6 ii 9 10 11 12 :i 15 16 :ii 19 20
26 27 28
.2 = 6.2
6.4
m=3.1
3.2
FUNCTIONS
INTEGRAL OF X2-DISTRIBUTION, INCOMPLETE GAMMA FUNCTION CUMULATIVE SUMS OF THE POISSON DISTRIBITTION 6.6 3.3
6.8 3.4
7.0 3.5
7.2 3.6
7.4 3.7
7.6 3.8
7.8 3.9
8.0 4.0
0.01278 0.04505 0.10228 0.18470 0.28724
0.01141 0.04076 0;09369 0.17120 0.26922
0.01020 0.03688 0.08580 0.15860 0.25213
0.00912 0.03337 0.07855 0.14684 0.23595
0.00815 0.03020 0.07190 0.13589 0.22064
0.00729 0.02732 0.06579 0.12569 0.20619
0.00652 0.02472 0.06018 0.11620 0.19255
0.00584 0.02237 0.05504 0.10738 0.17970
0.00522 0.02024 0.05033 0.09919 0.16761
0.00468 0.01832 0.04601 0.09158 0.15624
0.40116 0.51660 0.62484 0.71975 0.79819
0.37990 0.49390 0.60252 0.69931 0.78061
0.35943 0.47168 0.58034 0.67869 0.76259
0.33974 0.45000 0.55836 0.65793 0.74418
0.32085 0.42888 0.53663 0.63712 0.72544
0.30275 0.40836 0.51522 0.61631 0.70644
0.28543 0.38845 0.49415 0.59555 0.68722
0.26890 0.36918 0.47349 0.57490 ,0.66784
0.25313 0.35056 0.45325 0.55442 0.64837
0.23810 0.33259 0.43347 0.53415 0.62884
0.85969 0.90567 0.93857 0.96120 0.97619
0.84539 0.89459 0.93038 0.95538 0.97222
0.83049 0.88288 0.92157 0.94903 0.96782
0.81504 0.87054 0.91216 0.94215 0.96296
0.79908 0.85761 0.90215 0.93471 0.95765
0.78266 0.84412 0.89155 0.92673 0.95186
0.76583 0.83009 0.88038 0.91819 0.94559
0.74862 0.81556 0.86865 0.90911 0.93882
0.73110 0.80056 0.85638 0.89948 0.93155
0.71330 0.78513 0.84360 0.88933 0.92378
0.98579 0.99174 0.99532 0.99741 0.99860
0.98317 0.99007 0.99429 0.99679 0.99824
0.98022 0.98816 0.99309 0.99606 0.99781
0.97693 0.98599 0.99171 0.99521 0.99729
0.97326 0.98355 0.99013 0.99421 0.99669
0.96921 0.98081 0.98833 0.99307 0.99598
0.96476 0.97775 0.98630 0.99176 0.99515
0.95989 0.97437 0.98402 0.99026 0.99420
0.95460 0.97064 0.98147 0.98857 0.99311
0.94887 0.96655 0.97864 0.98667 0.99187
0.99926 0.99962 0.99981 0.99990 0.99995
0.99905 0.99950 0.99974 0.99987 0.99994
0.99880 0.99936 0.99967 0.99983 0.99991
0.99850 0.99919 0.99957 0.99978 0.99989
0.99814 0.99898 0.99945 0.99971 0.99985
0.99771 0.99873 0.99931 0.99963 0.99981
0.99721 0.99843 0.99913 0.99953 0.99975
0.99662 0.99807 0.99892 0.99941 0.99968
0.99594 0.99765 0.99867 0.99926 0.99960
0.99514 0.99716 0.99837 0.99908 0.99949
0.99998 0.99999
0.99997 0.99999 0.99999
0.99996 0.99998 0.99999
0.99994 0.99997 0.99999 0.99999
0.99992 0.99996 0.99998 0.99999
0.99990 0.99995 0.99998 0.99999 0.99999
0.99987 0.99993 0.99997 0.99998 0.99999
0.99983 0.99991 0.99996 0.99998 0.99999
0.99978 0.99989 0.99994 0.99997 0.99999
0.99973 0.99985 0.99992 0.99996 0.99998
:;
x2= 8.2 m -4.1
8.4 4.2
8.6 4.3
8.8 4.4
9.0 4.5
9.2 4.6
9.4 4.7
9.6 4.8
9.8 4.9
10.0 5.0
0.00419 0.01657 0.04205 0.08452 0.14555
0.00375 0.01500 0.03843 0.07798 0.13553
0.00336 0.01357 0.03511 0.07191 0.12612
0.00301 0.01228 0.03207 0.06630 0.11731
0.00270 0.01111 0.02929 0.06110 0.10906
0.00242 0.01005 0.02675 0.05629 0.10135
0.00217 0.00910 0.02442 0.05184 0.09413
0.00195 0.00823 0.02229 0.04773 0.08740
0.00175 0.00745 0.02034 0.04394 0.08110
0.00157 0.00674 0.01857 0.04043 0.07524
0.22381 0.31529 0.41418 0.51412 0.60931
0.21024 0.29865 0.39540 0.49439 0.58983
0.19736 0.28266 0.37715 0.47499 0.57044
0.18514 0.26734 0.35945 0.45594 0.55118
0.17358 0.25266 0.34230 0.43727 0.53210
0.16264 0.23861 0.32571 0.41902 0.51323
0.15230 0.22520 0.30968 0.40120 0.49461
0.14254 0.21240 0.29423 0.38383 0.47626
0.13333 0.20019 0.27935 0.36692 0.45821
O.lJ465 0.18857 0.26503 0.35049 0.44049
1'2
0.69528 0.76931 0.83033 0.87865 0.91551
0.67709 0.75314 0.81660 0.86746 0.90675
0.65876 0.73666 0.80244 0.85579 0.89749
0.64035 0.71991 oi78788 0.84365 0.88774
0.62189 0.70293 0;7729i 0.83105 0.87752
0.60344 0.68576 0.75768 0.81803 0.86683
0.58502 0.66844 0.74211 0.80461 0.85569
0.56669 0.65101 0.72627 0.79081 0.84412
0.54846 0.63350 0.71020 0.77666 0.83213
0.53039 0.61596 0.69393 0.76218 0.81974
:"7 18 19 20
0.94269 0.96208 0.97551 0.98454 0.99046
0.93606 0.95723 0.97207 0.98217 0.98887
0.92897 0.95198 0.96830 0.97955 0.98709
0.92142 0.94633 0.96420 0.97666 0.98511
0.91341 0.94026 0.95974 0.97348 0.98291
0.90495 0.93378 0.95493 0.97001 0.98047
0.89603
0.94974 0:96623 0.97779
0.88667 0.91954 0.94418 0.96213 0.97486
0.87686 0.91179 0.93824 0.95771 0.97166
0.86663 0.90361 0.93191 0.95295 0.96817
0.99424 0.99659 0.99802 0.99888 0.99937
0.99320 0.99593 0.99761 0.99863 0.99922
0.99203 0.99518 0.99714 0.99833 0.99905
0.99070 0.99431 0.99659 0.99799 0.99884
0.98921 0.99333 0.99596 0.99760 0.99860
0.98755 0.99222 0.99524 0.99714 0.99831
0.98570 0.99098 0.99442 0.99661 0.99798
0.98365 0.98958 0.99349 0.99601 0.99760
0.98139 0.98803 0.99245 0.99532 0.99716
0.97891 0.98630 0.99128 0.99455 0.99665
0.99966 0.99981 0.99990 0.99995 0.99997
0.99957 0.99977 0.99987 0.99993 0.99997
0.99947 0.99971 0.99984 0.99991 0.99996
0.99934 0.99963 0.99980 0.99989 0.99994
0.99919 0.99955 0.99975 0.99986 0.99993
0.99902 0.99944 0.99969 0.99983 0.99991
0.99882 0.99932 0.99962 0.99979 0.99988
0.99858 0.99917 0.99953 0.99973 0.99985
0.99830 0.99900 0.99942 0.99967 0.99982
0.99798 0.99880 0.99930 0.99960 0.99977
:: 13
21 22 $43 25
0; 92687
PROBABILITY
FUNCTIONS
Table PROBABILITY
Vm
INTEGRAL CUMULATIVE
x2=10.5 ,= 5.25
11.0 5.5
OF x2-DISTRIBUTION, INCOMPLETE GAMMA SUMS OF THE POISSON DISTRIBUTION
11.5 5.75
12.0 6.0
12.5 6.25
13.0 6.5
13.5 6.75
0.00119 0.00525 0.01476 0.03280 0.06225
0.00091 0.00409 0.01173 0.02656 0.05138
0.00070 0.00318 0.00931 0.02148 0.04232
0.00053 0.00248 0.00738 0.01735 0.03479
0.00041 0.00193 0.00585 0.01400 0.02854
0.00031 0.00150 0.00464 0. 01128 0.02338
0.00024 0.00117 0.00367 0.00907 0.01912
0.10511 0.16196 0.23167 0.31154 0.39777
0.08838 0.13862 0.20170 0.27571 0.35752
0.07410 0.11825 0.17495 0.24299 0.31991
0.06197 0.10056 0.15120 0.21331 0.28506
0.05170 0.08527 0.13025 0.18657 0.25299
0.04304 0.07211 0.11185 0.16261 0.22367
0.48605 0.57218 0.65263 0.72479 0.78717
0.44326 0.52892 0.61082 0.68604 0.75259
0.40237 0.48662 0.56901 0.64639 0.71641
0.36364 0.44568 0.52764 0.60630 0.67903
0.32726 0.40640 0.48713 0.56622 0.64086
0.83925 0.88135 0.91436 0.93952 0.95817
0.80949 0.85656 0.89436 0.92384 0.94622
0.77762 0.82942 0.87195 0.90587 0.93221
0.74398 0.80014 0.84724 0.88562 0.91608
0.97166 0.98118 0.98773 0.99216 0.99507
0.96279 0.97475 0.98319 0.98901 0.99295
0.95214 0.96686 0.97748 0.98498 0.99015
0.99696 0.99815 0.99890 0.99935 0.99963
0.99555 0.99724 0.99831 0.99899 0.99940
x2=15.5
16.0
: 3 4 5 6 8' 1'0 :: :: 15 16 17 :; 20 :: 2 25 26 :; 29 30
m
=o. GE
FUNCTION
14.0 14.5 7.0 7.25 0.000180.00014
15.0 7.5
0.00091 0.00291 0.00730 0.01561
0.00071 0.00230 0.00586 0.01273
0.00011 0.00055 0.00182 0.00470 0.01036
0.03575 0.06082 0.09577 0.14126 0.19704
0.02964 0.05118 0.08177 0.12233 0.17299
0.02452 0.04297 0.06963 0.10562 0.15138
0.02026 0.03600 0.05915 0.09094 0.13206
0.29333 0.36904 0.44781 0.52652 0.60230
0.26190 0.33377 0.40997 0.48759 0.56374
0.23299 0.30071 0.37384 0.44971 0.52553
0.20655 0.26992 0.33960 0.41316 0.48800
0.18250 0.24144 0.30735 0.37815 0.45142
0.70890 0.76896 0.82038 0.86316 0.89779
0.67276 0.73619 0.79157 0.83857 0.87738
0.63591 0.70212 0.76106 0.81202 0.85492
0.59871 0.66710 0.72909 0.78369 0.83050
0.56152 0.63145 0.69596 0.75380 0.80427
0.52464 0.59548 0.66197 0.72260 0.77641
0.93962 0.95738 0.97047 0.97991 0.98657
0.92513 0.94618 0.96201 0.97367 0.98206
0.90862 0.93316 0.95199 0.96612 0.97650
0.89010 0.91827 0.94030 0.95715 0.96976
0.86960 0.90148 0.92687 0.94665 0.96173
0.84718 0.88279 0.91165 0.93454 0.95230
0.82295 0.86224 0.89463 0.92076 0.94138
0.99366 0.99598 0.997 9 0.998 ! 6 0.99907
0.99117 0.99429 0.99637 0.99773 0.99860
0.98798 0.99208 0.99487 0.99672 0.99794
0.98397 0.98925 0.99290 0.99538 0.99704
0.97902 0.98567 0.99037 0.99363 0.99585
0.97300 0.98125 0.98719 0.99138 0.99428
0.96581 0.97588 0.98324 0.98854 0.99227
0.95733 0.96943 0.97844 0.98502 0.98974
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0 10.0
9.25
0 i%%?
0.00043 0.00144 0.00377 0.00843
i0:
0.00002 0.00010 0.00035 0.00099 0.00238
0. 0.
0:00026 0.00090 0.00242 0.00555
0 kE
0:00006 0.00022 0.00063 0.00155
0.00001 0.00005 0.00017 0.00050 0.00125
0.00557 0.01034 0.01791 0.02925
;
0.03010 0.01670
9" 10
0.07809 0.05012 0.11487
0.01375 0.02512 0.04238 0.06688 0.09963
0.01131 0.02092 0.03576 0.05715 0.08619
0.00928 0.01740 0.03011 0.04872 0.07436
0.00761 0.01444 0.02530 0.04144 0.06401
0.00623 0.01197 0.02123 0.03517 0.05496
0.00510 0.00991 0.01777 0.02980 0.04709
0.00416 0.00819 0.01486 0.02519 0.04026
0.00340 0.00676 0.01240 0.02126 0.03435
12 11 13
0.21522 0.16073 0.27719
0.19124 0.14113 0.24913
0.16939 0.12356 0.22318
0.10788 0.14960 0.19930
:z
0.41604 0.34485
0.31337 0.38205
0.28380 0.34962
0.25618 0.31886
0.09393 0.13174 0.17744 0.23051 0.28986
0.08158 0.11569 0.15752 0.20678 0.26267
0.07068 0.10133 0.13944 0.18495 0.23729
0.06109 0.08853 0.12310 0.16495 0.21373
0.05269 0.07716 0.10840 0.14671 0.19196
16 :i
0.48837 0.55951 0.62740 0.69033 0.74712
0.45296 0.52383 0.59255 0.65728 0.71662
0.41864 0.48871 0.55770 0.62370 0.68516
0.38560 0.45437 0.52311 0.58987 0.65297
0.35398 0.42102 0.48902 0.55603 0.62031
0.32390 0.38884 0.45565 0.52244 0.58741
0.29544 0.35797 0.42320 0.48931 0.55451
0.26866 0.32853
0.30060 0.24359
0.27423 0.22022
0.39182 0.45684 0.52183
0.42521 0.36166 0.48957
0.33282 0.39458 0.45793
0.79705 0.83990 0.87582 0.92891 0.90527
0.76965 0.81589 0.85527 0.91483 0.88808
0.74093 0.79032 0.83304 0.89912 0.86919
0.71111 0.76336 0.80925 0.84866 0.88179
0.68039 0.73519 0.78402 0.82657 0.86287
0.64900 0.70599 0.75749 0.80301 0.84239
0.61718 0.67597 0.72983 0.77810 0.82044
0.58514
0.55310
0.52126
:4' 25
0.64533 0.70122 0.75199 0.79712
0.61428 0.67185 0.72483 0.77254
0.64191 0.58304 0.69678 0.74683
26 2287 29 30
0.94749 0.97266 0.96182 0.98071 0.98659
0.93620 0.95295 0.97554 0.96582 0.98274
0.92341 0.94274 0.95782 0.96939 0.97810
0.90908 0.93112 0.94859 0.96218 0.97258 +f (X-g>
0.89320 0.91806 0.93805 0.95383 0.96608
0.87577 0.90352 0.92615 0.94427 0.95853 w=v-vo>o
0.85683 0.88750 0.91285 0.93344 0.94986
0.87000 0.83643 0.89814 0.92129 0.94001
0.85107 0.81464 0.88200 0.90779 0.92891
0.83076 0.79156 0.86446 0.89293 0.91654
:i ::
26.7
0.00277
0.04534 0.06709 0.13014 0.09521 0.17193
Interpolation on x2 Q(x~~Y)=Q(~~~~O-4)[~~2]+Q(~~~~-2)[~-$]+Q~~~~~~)[1-~t~~2] Double Entry Interpolation Q(xz~~)=Q~~~~~-4)[~$l+Q(x~~~,1~2)[~-~z-w~]+Q(~~Yn-1)[~~2-~~+~~ +Q(x#o)[l-w2-~+;d+w~+Q(+,+1)[;w2+;w~~~
PROBABILITY
982 Table 26.7
PROBABILITY
y”E21
22 11.0
FUNCTIONS
INTEGRAL OF x2-DISTRIBUTION, INCOMPLETE GAMMA FUNCTION CUMULATIVE SUMS OF THE POISSON DISTRIBUTION 27 30 24 26 28 29 23 25 13.5 15.0 12.5 13.0 14.0 14.5 11.5 12.0
n, = 10.5 0.00001 0.00003 0.00011 0.00032 0.00081
0.00002 0.00007 0.00020 0.00052
0.00001 0.00004 0.00013 0.00034
0.00001 0.00003 0.00008 0.00022
0.00002 0.00005 0.00014
0.00001 0.00003 0.00009
0.00001 0.00002 0.00006
0.00001 0.00004
0.00001 0.00002
0.00001 0..00002
0.00184 0.00377 0.00715 0.01265 0.02109
0.00121 0.00254 0.00492 0.00888 0.01511
0.00080 0.00171 0.00336 0.00620 0.01075
0.00052 0.00114 0.00229 0.00430 0.00760
0.00034 0.00076 0.00155 0.00297 0.00535
0.00022 0.00050 0.00105 0.00204 0.00374
0.00015 0.00033 0.00071 0.00140 0.00260
0.00009 0.00022 0.00047 0.00095 0.00181
0.00006 0.00015 0.00032 0.00065 0.00125
0.00004 0.00010 0.00021 0.00044 0.00086
0.03337 0.05038 0.07293 0.10163 0.13683
0.02437 0.03752 0.05536 0.07861 0.10780
0.01768 0.02773 0.04168 0.06027 0.08414
0.01273 0.02034 0.03113 0.04582 0.06509
0.00912 0.01482 0.02308 0.03457 0.04994
0.00649 0.01073 0.01700 0.02589 0.03802
0.00159 0.00279 0.00471 0.00763 0.01192
0.17851 0.22629 0.27941 0.33680 0.39713
0.14319 0.18472 0.23199 0.28426 0.34051
0.11374 0.14925 0.19059 0.23734 0.28880
0.08950 0.11944 0.15503 0.19615 0.24239
0.06982 0.09471 0.12492 0.16054 0.20143
0.45894 0.52074 0.58109 0.63873 0.69261
0.39951 0.45989 0.52025 0.57927 0.63574
0.34398 0.40173 0.46077 0.51980 0.57756
0.29306 0.34723 0.40381 0.46160 0.51937
0.74196 0.78629 0.82535 0.85915 0.88789
0.68870 0.73738 0.78129 0.82019 0.85404
0.63295 0.68501 0.73304 0.77654 0.81526
,2=31 m = 15.5 0.00001 0.00003 0.00006 0.00014 0.00030
32 16.0 0.00001 0.00002 0.00004 0.00009 0.00020
33 16.5
0.00059 0.00110 0.00197 0.00337 0.00554
0.00460
0.00324
0.00773
0.00553
0.01244 0.01925 0.02874
0.00905 0.01423 0.02157
0.00227 0.00394 0.00655 0.01045 0.01609
0.05403 0.07446 0.09976 0.13019 0.16581
0.04148 0.05807 0.07900 0.10465 0.13526
0.03162 0.04494 0.06206 0.08343 0.10940
0.02394 0.03453 0.04838 0.06599 0.08776
0.01800 0.02635 0.03745 0.05180 0.06985
0.24716 0.29707 0.35029 0.40576 0.46237
0.20645 0.25168 0.30087 0.35317 0.40760
0.17085 0.21123 0.25597 0.30445 0.35588
0.14015 0.17568 0.21578 0.26004 0.30785
0.11400 0.14486 0.18031 0.22013 0.26392
0.09199 0.11846 0.14940 0.18475 0.22429
0.57597 0.63032 0.68154 0.72893 0.77203
0.51898 0.57446 0.62784 0.67825 0.72503
0.46311 0.51860 0.57305 0.62549 0.67513
0.40933 0.46379 0.51825 0.57171 0.62327
0.35846 0.41097 0;46445 0.51791 0.57044
0.31108 0.36090 0.41253 0.46507 0.51760
0.26761 0.31415 0.36322 0.41400 0.46565
34 17.0
35 17.5
36 18.0
37 18.5
38 19.0
39 19.5
40 20.0
0.00001 0.00003 0.00006 0.00013
0.00001 0.00002 0.00004 0.00009
0.00001 0.00003 0.00006
0.00001 0.00002 0.00004
0.00001 0.00003
0.00001 0.00002
0.00001
0.00001
0.00040 0.00076 0.00138 0.00240 0.00401
0.00027 0.00053 0.00097 0.00170 0.00288
0.00019 0.00036 0.00068 0.00120 0.00206
0.00012 0.00025 0.00047 0.00085 0.00147
0.00008 0.00017 0.00032 0.00059 0.00104
0.00006 0.00012 0.00022 0.00041 0.00074
0.00004 0.00008 0.00015 0.00029 0.00052
0.00003 0.00005 0.00011 0.00020 0.00036
0.00002 0.00004 0.00007 0.00014 0.00026
0.00878 0.01346 0.01997 0.02879 0.04037
0.00644 0.01000 0.01505 0.02199 0.03125
0.00469 0.00739 0.01127 0.01669 0.02404
0.00341 0.00543 0.00840 0.01260 0.01838
0.00246 0.00397 0.00622 0.00945 0.01397
0.00177 0.00289 0.00459 0.00706 0.01056
0.00127 0.00210 0.00337 0.00524 0.00793
0.00090 0.00151 0.00246 0.00387 0.00593
0.00064 0.00109 0.00179 0.00285 0.00442
0.00045 0.00078 0.00129 0.00209 0.00327
0.05519 0.07366 0.09612 0.12279 0.15378
0.04330 0.05855 0;07740 0.10014 0.12699
0.03374 iiO462i 0.06187 0.08107 0.10407
0.02613 0.03624 0.04912 0.06516 0.08467
0.02010 0.02824 0.03875 0.05202 0.06840
0.01538 0.02187 0.03037 0.04125 0.05489
0.01170 0.01683 0.02366 0.03251 0.04376
0.00886 0.01289 0.01832 0.02547 0.03467
0.00667 ii00981 0.01411 0.01984 0.02731
0.00500 0.00744 0.01081 0.01537 0.02139
0.18902 0.22827 0.27114 0.31708 0.36542
0.15801 0.19312 0.23208 0.27451 0.31987
0.13107 0.16210 0.19707 0.23574 0.27774
0.10791 0.13502 0.16605 0.20087 0.23926
0.08820 0.11165 0.13887 0.16987 0.20454
0.07160 0.09167 0.11530 0.14260 0.17356
0.05774 0.07475 0.09507 0.11886 0.14622
0.04626 0.06056 0.07786 0.09840 0.12234
0.03684 0.04875 0.06336 0.08092 0.10166
0.02916 0.03901 0.05124 0.06613 0.08394
0.41541
0.36753
0.32254
0.28083
0.24264
0.20808
0.17714
0.14975
0.12573
0.10486
PROBABILITY
PROBABILITY
V
10
INTEGRAL CUMULATIVE
x2=42 m=21
44 22
983
FUNCTIONS
QF xZ-DISTRIBUTION, INCOMPLETE GAMMA SUMS OF THE POISSON DISTRIBUTION
46 23
48 24
2
E
FUNCTION
54 27
56 28
0.00001 0.00002 0.00003 0.00006 0.00012
0.00001 0.00002 0.00003 0.00006
0.00001 0.00001 0.00003
0.00001 0.00001
0.00001
0.00023 0.00040 0.00067 0.00111 0.00177
0.00011 0.00020 0.00034 0.00058 0.00094
0.00005 0.00010 0.00017 0.00030 0.00050
0.00003 0.00005 0.00009 0.00015 0.00026
0.00001 0.00002 0.00004 0.00008 0.00013
0.00001 0.00001 0.00002 0.00004 0.00007
0.00001 0.00001 0.00002 0.00003
0.00001 0.00001 0.00002
0.00001
0.00277 0.00421 0.00625 0.00908 0.01291
0.00151 0.00234 0.00355 0.00526 0.00763
0.00081 0.00128 0.00198 0.00299 0.00443
0.00043 0.00069 0.00109 0.00167 0.00252
0.00022 0.00036 0.00059 0.00092 0.00142
0.00011 0.00019 0.00031 0.00050 0.00078
0.00006 0.00010 0.00016 0.00027 0.00043
0.00003 0.00005 0.00009 0.00014 0.00023
0.00001 0.00003 0.00004 0.00007 0.00012
0.00001 0.00001 0.00002 0.00004 0.00006
s"7 28 29
0.01797 0.02455 0.03292 0.04336 0.05616
0.01085 0.01512 0.02068 0.02779 0.03670
0.00642 0.00912 0.01272 0.01743 0.02346
0.00373 0.00540 0.00768 0.01072 0.01470
0.00213 0.00314 0.00455 0.00647 0.00903
0.00120 0.00180 0.00265 0.00384 0.00545
0.00066 0.00102 0.00152 0.00224 0.00324
0.00036 0.00056 0.00086 0.00129 0.00189
0.00020 0.00031 0.00048 0.00073 0.00109
0.00011 0.00017 0.00026 0.00041 0.00062
30
0.07157
0.04769
0.03107
0.01983
0.01240
0.00762
0.00460
0.00273
0.00160
0.00092
68 34
70 35
:: 13 14
15 16 17 :: 20 21 22 s: 25
V
21 22
x2=62 m=31
64 32
66 33
22; 25
0.00001 0.00001 0.00002 0.00003 0.00006
0.00001 0.00001 0.00002 0.00003
0.00001 0.00001 0.00002
0.00001
26 27 28 29 30
0.00009 0.00014 0.00023 0.00035 0.00052
0.00005 0.00008 0.00012 0.00019 0.00029
0.00003 0.00004 0.00007 0.00011 0.00016
0.00001 0.00002 0.00004 0.00006 0.00009
Interpolation
0.00001 0.00001 0.00002 0.00003 0.00005
74 37
72 36
0.00001 0.00001 0.00002 0.00003
0.00001 0.00001 0.00001
76 38
0.00001
on x3 Q(x2~~)=Q(x~~~0-4)[~~2]+Q(X~/YO-2)[~-~2]+Q(x~~’(1)[1-~+~~2]
Double Entry
Interpolation
Q (+)=Q
(~;~v~-4)[;+~]+Q
(~;~~,-2)[+~~-w~]+4?
(xi1 ~&w~-;~L’+w~]
tQ (x~~~o)[l-w2-@J+~ &u@J]+Q (X;iYO+1)[+2+;
-
Table 26.7
-
w-w9-j
984
PROBABILITY
Table
.\Q
PERCENTAGE
26.8
0.995
0.99
POINTS
OF THE x2 IN TERMS
0.975
FUNCTIONS x2-DISTRIBUTION-VALUES OF Q AND Y 0.95
0.9
OF
0.5 0.75 0.101531 0.454937 0.575364 1.38629 1.212534 2.36597 1.92255 3.35670 2.67460 4.35146
0.25 1.32330 2.77259 4.10835 5.38527 6.62568
0.411740
0.554300
0.831211
0.351846 0.584375 0.710721 1.06362? 1.145476 1.61031
0.675727 0.989265 1.344419 1.734926 2.15585
0.872085 1.239043 1.646482 2.087912 2.55821
1.237347 1.68987 2.17973 2.70039 3.24697
1.63539 2.16735 2.73264 3.32511 3.94030
2.20413 2.83311 3.48954 4.16816 4.86518
3.45460 4.25485 5.07064 5.89883 6.73720
:;
2.60321 3.07382 3.56503 4.07468 4.60094
3.05347 3.57056 4.10691 4.66043 5.22935
3.81575 4.40379 5.00874 5.62872 6.26214
4.57481 5.22603 5.89186 6.57063 7.26094
5.57779 6.30380 7.04150 7.78953 8.54675
7.58412 8.43842 9.29906 10.1653 11.0365
10.3410 11.3403 12.3398 13.3393 14.3389
13.7007 14.8454 15.9839 17.1170 18.2451
16 17 18 19 20
5.14224 5.69724 6.26481 6.84398 7.43386
5.81221 6.40776 7.01491 7.63273 8.26040
6.90766 7.56418 8.23075 8.90655 9.59083
7.96164 9.31223 8.67176 10.0852 9.39046 10.8649 10.1170 11.6509 10.8508 12.4426
11.9122 12.7919 13.6753 14.5620 15.4518
15.3385 16.3381 17.3379 18.3376 19.3374
19.3688 20.4887 21.6049 22.7178 23.8277
21
8.03366 8.64272 9.26042 9.88623 10.5197
8.89720 9.54249 10.19567 10.8564 11.5240
10.28293 10.9823 11.6885 12.4011 13.1197
11.5913 12.3380 13.0905 13.8484 14.6114
13.2396 14.0415 14.8479 15.6587 16.4734
16.3444 17.2396 18.1373 19.0372 19.9393
20.3372 21.3370 22.3369 23.3367 24.3366
24.9348 26.0393 27.1413 28.2412 29.3389
11.1603 11.8076 12.4613 13.1211 13.7867
12.1981 12.8786 13.5648 14.2565 14.9535
13.8439 14.5733 15.3079 16.0471 16.7908
15.3791 16.1513 16.9279 17.7083 18.4926
17.2919 18.1138 18.9392 19.7677 20.5992
20.8434 21.7494 22.6572 23.5666 24.4776
25.3364 26.3363 27.3363 28.3362 29.3360
30.4345 31.5284 32.6205 33.7109 34.7998
40 50 60 70 80
20.7065 27.9907 35.5346 43.2752 51.1720
22.1643 29.7067 37.4848 45.4418 53.5400
24.4331 32.3574 40.4817 48.7576 57.1532
26.5093 34.7642 43.1879 51.7393 60.3915
29.0505 37.6886 46.4589 55.3290 64.2778
33.6603 42.9421 52.2938 61.6983 71.1445
39.3354 49.3349 59.3347 69.3344 79.3343
45.6160 56.3336 66.9814 77.5766 88.1303
190:
59.1963 67.3276
61.7541 70.0648
65.6466 74.2219
69.1260 77.9295
73.2912 82.3581
80.6247 90.1332
89.3342 99.3341
98.6499 109.141
X
-2.5758
-2.3263
-1.9600
-1.6449
-1.2816
-0.6745
0.0000
0.6745
11 113
z3 24 25
From E. S. Pearson and H. 0. Hartley (editors), Biometrika tables for statisticians, Univ. Press, Cambridge, England, 1954 (with permission) for & > 0.0005.
5.34812 7.84080 6.34581 9.03715 7.34412 10.2188 8.34283 11.3887 9.34182 12.5489
vol. I.
Cambridge
PROBABILITY
PERCENTAGE
"\Q
POINTS OF THE x2 IN TERMS
+DISTRIBUTION-VALUES OF Q AND Y
OF
Table
26.8
0.05 3.84146 5.99147 7.81473 9.48773 11.0705
0.025 5.02389 7.37776 9.34840 11.1433 12.8325
0.01 6.63490 9.21034 11.3449 13.2767 15.0863
0.005 7.87944 10.5966 12.8381 14.8602 16.7496
O.001 10.828 13.816 16.266 18.467 20.515
0.0005 12.116 15.202 17.730 19.997 22.105
0.0001 15.137 18.421 21.108 23.513 25.745
8' 9 10
10.6446 12.0170 13.3616 14.6837 15.9871
12.5916 14.0671 15.5073 16.9190 18.3070
14.4494 16.0128 17.5346 19.0228 20.4831
16.8119 18.4753 20.0902 21.6660 23.2093
18.5476 20.2777 21.9550 23.5893 25.1882
22.458 24.322 26.125 27.877 29.588
24.103 26.018 27.868 29.666 31.420
27.856 29.877 31.828 33.720 35.564
;: 13 14 15
17.2750 18.5494 19.8119 21.0642 22.3072
19.6751 21.0261 22.3621 23.6848 24.9958
21.9200 23.3367 24.7356 26.1190 27.4884
24.7250 26.2170 27.6883 29.1413 30.5779
26.7569 28.2995 29.8194 31.3193 32.8013
31.264 32.909 34.528 36.123 37.697
33.137 34.821 36.478 38.109 39.719
37.367 39.134 40.871 42.579 44.263
23.5418 24.7690 25.9894 27.2036 28.4120
26.2962 27.5871 28.8693 30.1435 31.4104
28.8454 30.1910 31.5264 32.8523 34.1696
31.9999 33.4087 34.8053 36.1908 37.5662
34.2672 35.7185 37.1564 38.5822 39.9968
39.252 40.790 42.312 43.820 45.315
41.308 42.879 44.434 45.973 47.498
45.925 47.566 49.189 50.796 52.386
29.6151 30.8133 32.0069 33.1963 34.3816
32.6705 33.9244 35.1725 36.4151 37.6525
35.4789 36.7807 38.0757 39.3641 40.6465
38.9321 40.2894 41.6384 42.9798 44.3141
41.4010 42.7956 44.1813 45.5585 46.9278
46.797 48.268 49.728 51.179 52.620
49.011 50.511 52.000 53.479 54.947
53.962 55.525 57.075 58.613 60.140
35.5631 36.7412 37.9159 39.0875 40.2560
38.8852 40.1133 41.3372 42.5569 43.7729
41.9232 43.1944 44.4607 45.7222 46.9792
45.6417 46.9630 48.2782 49.5879 50.8922
48.2899 49.6449 50.9933 52.3356 53.6720
54.052 55.476 56.892 58.302 59.703
56.407 57.858 59.300 60.735 62.162
61.657 63.164 64.662 66.152 67.633
51.8050 63.1671 74.3970 85.5271 96.5782
55.7585 67.5048 79.0819 90.5312 101.879
59.3417 71.4202 83.2976 95.0231 106.629
63.6907 76.1539 88.3794 100.425 112.329
66.7659 79.4900 91.9517 104.215 116.321
73.402 86.661 99.607 112.317 124.839
76.095 89.560 102.695 115.578 128.261
82.062 95.969 109.503 122.755 135.783
118.136 129.561
124.116 135.807
128.299 140.169
137.208 149.449
140.782 153.167
148.627 161.319
: 43 5 6
40 50 60 ;o" 90 100 X
0.1 2.70554 4.60517 6.25139 7.77944 9.23635
985
FUNCTIONS
107.565 118.498 1.2816
113.145 124.342 1.6449
i
1.9600
2.3263
2.5758
3.0902
3.2905
3.7190
986
PROBABILITY
Table
26.9
PERCENTAGE
FUNCTIONS
POINTS
OF THE
OF F IN TERMS
F-DISTRIBUTION
-VALUES
OF Q, 5, u,
Q(Fjq,vz)=0.5 myl
6 i 9 10 :: :: 15
:: :: 25
1
2
3
4
5
6
8
20
30
1.00 0.667 0.585 0.549 0.528
1.50 1.00 0.881 0.828 0.799
1.71 1.13 1.00 0.941 0.907
1.82 1.21 1.06 1.00 0.965
1.89 1.25 1.10 1.04 1.00
1.94 1.28 1.13 1.06 1.02
2.00 1.32 1.16 1.09 1.05
2.07 1.36 1.20 1.13 1.09
2.09 1.38 1.21 1.14 1.10
2.12 1.39 1.23 1.15 1.11
2.15 1.41 1.24 1.16 1.12
2.17 1.43 1.25 1.18 1.14
2.20 1.44 1.27 1.19 1.15
0.515 0.506 0.499 0.494 0.490
0.780 0.767 0.757 0.749 0.743
0.886 0.871 0.860 0.852 0.845
0.942 0.926 0.915 0.906 0.899
0.977 0.960 0.948 0.939 0.932
1.00 0.983 0.971 0.962 0.954
1.03 1.01 1.00 0.990 0.983
1.06 1.04 1.03 1.02 1.01
1.07 1.05 1.04 1.03 1.02
1.08 1.07 1.05 1.04 1.03
1.10 1.08 1.07 1.05 1.05
1.11 1.09 1.08 1.07 1.06
1.12 1.10 1.09 1.08 1.07
0.486 0.484 0.481 0.479 0.478
0.739 0.735 0.731 0.729 0.726
0.840 0.835 0.832 0.828 0.826
0.893 0.888 0.885 0.881 0.878
0.926 0.921 0.917 0.914 0.911
0.948 0.943 0.939 0.936 0.933
0.977 0.972 0.967 0.964 0.960
1.01 1.00 0.996 0.992 0.989
1.02 1.01 1.01 1.00 1.00
1.03 1.02 1.02 1.01 1.01
1.04 1.03 1.03 1.03 1.02
1.05 1.05 1.04 1.04 1.03
1.06 1.06 1.05 1.05 1.05
0.476 0.475 0.474 0.473 0.472
0.724 0.722 0.721 0.719 0.718
0.823 0.821 0.819 0.818 0.816
0.876 0.874 0.872 0.870 0.868
0.908 0.906 0.904 0.902 0.900
0.930 0.928 0.926 0.924 0.922
0.958 0.955 0.953 0.951 0.950
0.986 0.983 0.981 0.979 0.977
0.997 0.995 0.992 0.990 0.989
1.01 1.01 1.00 1.00 1.00
1.02 1.02 1.02 1.01 1.01
1.03 1.03 1.03 1.02 1.02
1.04 1.04 1.04 1.04 1.03
0.471 0.470 0.470 0.469 0.468
0.716 0.715 0.714 0.714 0.713
0.815 0.814 0.813 0.812 0.811
0.867 0.866 0.864 0.863 0.862
0.899 0.898 0.896 0.895 0.894
0.921 0.919 0.918 0.917 0.916
0.948 0.947 0.945 0.944 0.943
0.976 0.974 0.973 0.972 0.971
0.987 0.986 0.984 0.983 0.982
0.998 0.997 0.996 0.994 0.993
1.01 1.01 1.01 1.01 1.00
1.02 1.02 1.02 1.02 1.02
1.03 1.03 1.03 1.03 1.03
0.468 0.467 0.467 0.466 0.466
0.712 0.711 0.711 0.710 0.709
0.810 0.809 0.808 0.808 0.807
0.861 0.861 0.860 0.859 0.858
0.893 0.892 0.892 0.891 0.890
0.915 0.914 0.913 0.912 0.912
0.942 0.941 0.940 0.940 0.939
0.970 0.969 0.968 0.967 0.966
0.981 0.980 0.979 0.978 0.978
0.992 0.991 0.990 0.990 0.989
1.00 1.00 1.00 1.00 1.00
1.01 1.01 1.01 1.01 1.01
1.03 1.03 1.02 1.02 1.02
0.463 0.461 0.458 0.455
0.705 0.701 0.697 0.693
0.802 0.798 0.793 0.789
0.854 0.849 0.844 0.839
0.885 0.880 0.875 0.870
0.907 0.901 0.896 0.891
0.934 0.928 0.923 0.918
0.961 0.956 0.950 0.945
0.972 0.967 0.961 0.956
0.983 0.978 0.972 0.967
0.994 0.989 0.983 0.978
1.01 1.00 0.994 0.989
1.02 1.01 1.01 1.00
Q(Fly,&)=0.25 5 6 8 12
15
2
3
4
5.83 2.57 2.02 1.81 1.69
7.50 3.00 2.28 2.00 1.85
8.20 3.15 Et
8.82 3.28 2.41 2.07 1.89
8.98 3.31 2.42 2.08 1.89
9.19 3.35 2.44 2.08 1.89
9.41 3.39 2.45 2.08 1.89
9.49 3.41 2.46 2.08 1.89
9.58 S-E
1:se
8.58 3.23 2.39 2.06 1.89
: 10
1.62 1.57 1.54 1.51 1.49
1.76 1.70 1.66 1.62 1.60
1.78 1.72 1.67 1.63 1.60
1.79 1.72 1.66 1.63 1.59
1.79 1.71 1.66 1.62 1.59
1.78 1.71 1.65 1.61 1.58
1.78 1.70 1.64 1.60 1.56
1.77 1.68 1.62 1.58 1.54
1.76 1.68 1.62 1.57 1.53
1.76 1.67 1.61
:: 13 14 15
1.47 1.46 1.45 1.44 1.43
1.58 1.56 1.55 1.53 1.52
1.58 1.56 :-::
1.56 1.54 1.52 1.51 1.49
1.55 1.53 1.51 1.50 1.48
1.53 1.51 1.49 1.48 1.46
1.51 1.49 1.47 1.45 1.44
1.50 1.48 1.46 1.44 1.43
i-:;
1:52
1.57 1.55 1.53 1.52 1.51
1.42 1.42 1.41
1.51 1.51 1.50
1.51 1.50 1.49
1.50 1.49 1.48
1.48 1.47 1.46
1.47 1.46 1.45
1.45 1.44 1.43
1.43 1.41 1.40
1.41 1.40
1.49
1.49 1.48
1.47
1.46 1.45
1.44
1.42
1.40 1.40 1.39 1.39 1.39
1.48 1.48 1.47 1.47 1.47
1.48 1.47 1.47 1.46 1.46
1.46 1.45 :-El 1:44
1.44 1.44 1.43 1.43 1.42
1.43 1.42 1.42 1.41 1.41
:'o
1.38 1.38 1.38 1.38 1.38
1.46 1.46 1.46 1.45 1.45
1.45 1.45 1.45 1.45 1.44
1.44 1.43 1.43 1.43 1.42
1.42 1.42 1.41 1.41 1.41
40 60 120 m
1.36 1.35 1.34 1.32
1.44 1.42 1.40 1.39
1.42 1.41 1.39 1.37
1.40 1.38 1.37 1.35
1.39 1.37 1.35 1.33
v2‘"l
6 7
16 17 :9" 20 :: :: 25 26 :ll
1
12
15
20
60
30
60
-
m
9.67 3-44 2.47 2.08 1.88
9.76 3.46 2.47 2.08 1.87
9.85 3.48 2.47 2.08 1.87
1.75 1.66 1.60 1.55 1.51
z 1:59 1.54 1.50
1.74 1.65 1.58 1.53 1.48
1:45 1.43 1.41
i.48 1.45 1.43 1.41 1.40
1.47 1.44 1.42 1.40 1.38
1.45 1.42 1.40 1.38 1.36
1.41 1.40 1.39
1.40 1.39 1.38
1.38 1.37 1.36
1.36 1.35 :*:;
1.34 1.33 1.32
1.40 1.39
1.38 1.37
1.37 1.36
1.34 1.35
1:32
:-:9" .
1.41 1.40 1.40 1.39 1.39
1.38 1.37 1.37 1.36 1.36
1.37 :-:; 1:35 1.34
1.35 1.34 1.34 1.33 1.33
1.33 1.32 1.32 1.31 1.31
1.31 1.30 1.30 1.29 1.28
1.28 1.28 1.27 1.26 1.25
1.41 1.40 1.40 1.40 1.39
1.38 1.38 1.38 1.37 1.37
1.35 1.35 1.34 1.34 1.34
1.34 1.33 1.33 1.32 1.32
1.32 1.32 1.31 1.31 1.30
:-:: 1:29 1.29 1.28
1.28 1.27 1.27 1.26 1.26
1.25 1.24 1.24 1.23 1.23
1.37 1.35 1.33 1.31
1.35 1.32 1.30 1.28
1.31 1.29 1.26 1.24
1.30 1.27 1.24 1.22
1.28 1.25 1.22 1.19
1.25 1.22 1.19 1.16
1.22 1.19 1.16 1.12
1.19 1.15 1.10 1.00
iO8 1.88
i-2.
Compiled from E. S. Pearsonand H. 0. Hartley (editors), Biometrika tables for statisticians, vol. I. Cambridge Univ. Press, Cambridge, England, 1954(with permission).
PROBABILITY
PERCENTAGE
POINTS
OF THE
OF F IN TERMS
987
FUNCTIONS
F-DISTRIBUTION
-VALUES
Table
26.9
OF Q, u,, v,
vz\vl 1 1 39.86 8.53 : 5.54 4 4.54 5 4.06
2
3
5
6
8
12
15
20
53.59 9.16 5.39 4.19 3.62
30
60
co
49.50 9.00 5.46 4.32 3.78
55.83 9.24 5.34 4.11 3.52
57.24 9.29 5.31 4.05 3.45
58.20 9.33 5.28 4.01 3.40
59.44 9.37 5.25 3.95 3.34
60.71 9.41 5.22 3.90 3.27
61.22 9.42 5.20 3.87 3.24
61.74 9.44 5.18 3.84 3.21
62.26 9.46 5.17 3.82 3.17
62.79 9.47 5.15 3.79 3.14
63.33 9.49 5.13. 3.76 3.10
9" 10
3.78 3.59 3.46 3.36 3.29
3.46 3.26 3.11 3.01 2.92
3.29 3.07 2.92 2.81 2.73
3.18 2.96 2.81 2.69 2.61
3.11 2.88 2.73 2.61 2.52
3.05 2.83 2.67 2.55 2.46
2.98 2.75 2.59 2.47 2.38
2.90 2.67 2.50 2.38 2.28
2.87 2.63 2.46 2.34 2.24
2.84 2.59 2.42 2.30 2.20
2.80 2.56 2.38 2.25 2.16
2.76 2.51 2.34 2.21 2.11
2.72 2.47 2.29 2.16 2.06
:: 13 14 15
3.23 3.18 3.14 3.10 3.07
2.86 2.81 2.76 2.73 2.70
2.66 2.61 2.56 2.52 2.49
2.54 2.48 2.43 2.39 2.36
2.45 2.39 2.35 2.31 2.27
2.39 2.33 2.28 2.24 2.21
2.30 2.24 2.20 2.15 2.12
2.21 2.15 2.10 2.05 2.02
2.17 2.10 2.05 2.01 1.97
2.12 2.06 2.01 1.96 1.92
2.08 2.01 1.96 1.91 1.87
2.03 1.96 1.90 1.86 1.82
1.97 1.90 1.85 1.80 1.76
3.05 3.03 3.01 2.99 2.97
2.67 2.64 2.62 2.61 2.59
2.46 2.44 2.42 2.40 2.38
2.33 2.31 2.29 2.27 2.25
2.24 2.22 2.20 2.18 2.16
2.18 2.15 2.13 2.11 2.09
2.09 2.06 2.04 2.02 2.00
1.99 1.96 1.93 1.91 1.89
1.94 1.91 1.89 1.86 1.84
1.89 1.86 1.84 1.81 1.79
1.84 1.81 1.78 1.76 1.74
1.78 1.75 1.72 1.70 1.68
1.72 1.69 1.66 1.63 1.61
::
2.96 2.95 2.94 2.93 2.92
2.57 2.56 2.55 2.54 2.53
2.36 2.35 2.34 2.33 2.32
2.23 2.22 2.21 2.19 2.18
2.14 2.13 2.11 2.10 2.09
2.08 2.06 2.05 2.04 2.02
1.98 1.97 1.95 1.94 1.93
1.87 1.86 1.84 1.83 1.82
1.83 1.81 1.80 1.78 1.77
1.78 1.76 1.74 1.73 1.72
1.72 1.70 1.69 1.67 1.66
1.66 1.64 1.62 1.61 1.59
1.59 1.57 1.55 1.53 1.52
E 28 29 30
2.91 2.90 2.89 2.89 2.88
2.52 2.51 2.50 2.50 2.49
2.31 2.30 2.29 2.28 2.28
2.17 2.17 2.16 2.15 2.14
2.08 2.07 2.06 2.06 2.05
2.01 2.00 2.00 1.99 1.98
1.92 1.91 1.90 1.89 1.88
1.81 1.80 1.79 1.78 1.77
1.76 1.75 1.74 1.73 1.72
1.71 1.70 1.69 1.68 1.67
1.65 1.64 1.63 1.62 1.61
1.58 1.57 1.56 1.55 1.54
1.50 1.49 1.48 1.47 1.46
40 60 120 m
2.84 2.79 2.75 2.71
2.44 2.39 2.35 2.30
2.23 2.18 2.13 2.08
2.09 2.04 1.99 1.94
2.00 1.95 1.90 1.85
1.93 1.87 1.82 1.77
1.83 1.77 1.72 1.67
1.71 1.66 1.60 1.55
1.66 1.60 1.55 1.49
1.61 1.54 1.48 1.42
1.54 1.48 1.41 1.34
1.47 1.40 1.32 1.24
1.38 1.29 1.19 1.00
;
:7" :9" 20 :: 23
1
2
3
4
6
12
15
20
30
60
161.4 18.51 10.13 7.71 6.61
199.5 19.00 9.55 6.94 5.79
215.7 19.16 9.28 6.59 5.41
4 224.6 19.25 9.12 6.39 5.19
5
1 2 3 4 5
230.2 19.30 9.01 6.26 5.05
234.0 19.33 8.94 6.16 4.95
238.9 19.37 8.85 6.04 4.82
z43.9 19.41 8.74 5.91 4.68
245.9 19.43 8.70 5.86 4.62
248.0 19.45 8.66 5.80 4.56
250.1 19.46 8.62 5.75 4.50
252.2 19.48 8.57 5;i9 4.43
6
5.99 5.59 5.32 5.12 4.96
5.14 4.74 4.46 4.26 4.10
4.76 4.35 4.07 3.86 3.71
4.53 4.12 3.84 3.63 3.48
4.39 3.97 3.69 3.48 3.33
4.28 3.87 3.58
4.00 3.57 3.28 3.07 2.91
3.94 3.51 3.22 3.01 2.85
3.87 3.44
::::
4.15 3.73 3.44 3.23 3.07
:-;: 2177
3.81 3.38 3.08 2.86 2.73
3.74
i 9 10
:*'o: 2179 2.62
3.67 3.23 2.93 2.71 2.54
:: 13 14 15
4.84 4.75 4.67 4.60 4.54
3.98 3.89 3.81 3.74 3.68
3.59 3.49 3.41 3.34 3.29
3.36 3.26 3.18 3.11 3.06
3.20 3.11 3.03 2.96 2.90
3.09 3.00 2.92 2.85 2.79
2.95 2.85 2.77 2.70 2.64
2.79 2.69 2.60 2.53 2.48
2.72 2.62 2.53 2.46 2.40
2.65 2.54 2.46 2.39 2.33
2.57 2.47 2.38 2.31 2.25
2.49 2.38 2.30 2.22 2.16
2.40 2.30 2.21 2.13 2.07
4.49 4.45 4.41 4.38 4.35
3.63 3.59 3.55 3.52 3.49
3.24 3.20 3.16 3.13 3.10
3.01 2.96 2.93 2.90 2.87
2.85 2.81 2.77 2.74 2.71
2.74 2.70 2.66 2.63 2.60
2.59 2.55 2.51 2.48 2.45
2.42 2.38 2.34 2.31 2.28
2.35 2.31 2.27 2.23 2.20
2.28 2.23 2.19 2.16 2.12
2.19 2.15 2.11 2.07 2.04
2.11 2.06 2.02 1.98 1.95
2.01 1.96 1.92 1.88 1.84
4.32 4.30 4.28 4.26 4.24
3.47 3.44 3.42 3.40 3.39
3.07 3.05 3.03 3.01 2.99
2.84 2.82 2.80 2.78 2.76
2.68 2.66 2.64 2.62 2.60
2.57 2.55 2.53 2.51 2.49
2.42 2.40 2.37 2.36 2.34
2.25 2.23 2.20 2.18 2.16
2.18 2.15 2.13 2.11 2.09
2.10 2.07 2.05 2.03 2.01
2.01 1.98 1.96 1.94 1.92
1.92 1.89 1.86 1.84 1.82
1.81 1.78 1.76 1.73 1.71
4.23 4.21 4.20 4.18 4.17
3.37 3.35 3.34 3.33 3.32
2.98 2.96 2.95 2.93 2.92
2.74 2.73 2.71 2.70 2.69
2.59 2.57 2.56 2.55 2.53
2.47 2.46 2.45 2.43 2.42
2.32 2.31 2.29 2.28 2.27
2.15 2.13 2.12 2.10 2.09
2.07 2.06 2.04 2.03 2.01
1.99 1.97 1.96 1.94 1.93
1.90 1.88 1.87 1.85 1.84
1.80 1.79 1.77 1.75 1.74
1.69 1.67 1.65 1.64 1.62
4.08 4.00 3.92 3.84
3.23 3.15 3.07 3.013
2.84 2.76 2.68 2.60
2.61 2.53 2.45 2.37
2.45 2.37 2.29 2.21
2.34 2.25 2.17 2.10
2.18 2.10 2.02 1.94
2.00 1.92 1.83 1.75
1.92 1.84 1.75 1.67
1.84 1.75 1.66 1.57
1.74 1.65 1.55 1.46
1.64 1.53 1.43 1.32
1.51 1.39 1.25 1.00
%\“l
16 17 :9" 20 :: 2 25 26 2 29 30 40 1;: co
8
co 254.3 19.50 8.53 5.63 4.36
988
PROBABILITY
Table
"‘gl
26.9
PERCENTAGE
2
3
1 647.8 38.51 17.44 12.22 10.01
799.5 39.00 16.04 10.65 a.43
864.2 39.17 15.44 9.98
8.81 8.07 7.57 7.21 6.94
7.26 6.54 6.06 5.71 5.46
6.60 5.89 5.42 5.08 4.83
6.72 6.55 6.41 6.30 6.20
5.26 5.10 4.97 4.86 4.77
6.12 6.04 5.98 5.92 5.87
POINTS
FUNCTIONS
OF THE
F-DISTRIBUTION
OF F IN TERMS OF Q, v,, v, Q(F(Y.q)=0.025 4 5 8 12 6 899.6 39.25 15.10 9.60 7.39
921.8 39.30 14.88 9.36 7.15
937.1 39.33 14.73 9.20 6.98
956.7 39.37 14.54 a.98
6.23
5.52 5.05 4.72 4.47
5.99 5.29 4.82 4.48 4.24
5.82 5.12 4.65 4.32 4.07
4.63 4.47 4.35 4.24 4.15
4.28 4.12 4.00 3.89 3.80
4.04 3.89 3.77 3.66 3.58
4.69 4.62 4.56 4.51 4.46
4.08 4.01 3.95 3.90 3.86
3.73 3.66 3.61
3.50 3.44
3.51
::
5.83 5.19 5.75 5.72 5.69
4.42 4.38 4.35 4.32 4.29
3.82 3.78 3.75 3.72 3.69
26 27 28 29 30
5.66 5.63 5.61 5.59 5.51
4.27 4.24 4.22 4.20 4.18
3.67 3.65
40 60 120 m
5.42 5.29 5.15 5.02
6 1 9” 10
11 :: :;
21 22 23
1 2 3 : 6 7 9" 10 11 :: 14 15
21 22 :: 25
40 126: (D
7.16
15
b.76
976.7 39.41 14.34 a.75 6.52
984.9 39.43 14.25 8.66 6.43
5.60
5.37
5.27 4.57 4.10
4.90 4.43 4.10 3.85 3.66 3.51 z 3:20
-VALUES
20
6.33
5.07 4.36 3.89 3.56 3.31 3.12 2.96
39.45 14.17 8.56
4.20 3.87 3.62
3.17
3.52
5.17 4.47 4.00 3.67 3.42
3.43 3.28 3.15 3.05 2.96
3.33 3.18 3.05 2.95 2.86
3.23 3.07 2.95 2.84 2.76 2.62 2.56 2.51 2.46
4.67
30 1001 39.46 14.08 8.46 6.23
993.1
3.48 3.44 3.41 3.38 3.35
3.25 3.22 3.18 3.15 3.13
3.09 3.05 3.02 2.99 2.91
2.07 2.84 2.81 2.78 2.15
2.64 2.60 2.57 2.54 2.51
2.53 2.50 2.47 2.44 2.41
2.42 2.39
3.10 3.08 3.06 3.04 3.03
2.94 2.92 2.90 2.88 2.87
2.73 2.71
3.63 3.61 3.59
3.33 3.31 3.29 3.27 3.25
2.67 2.65
2.49 2.47 2.45 2.43 2.41
2.39 2.36 2.34 2.32 2.31
2.28 2.25 2.23 2.21 2.20
2.09 2.07
4.05 3.93 3.80 3.69
3.46 3.34 3.23 3.12
3.13 3.01 2.89 2.79
2.90 2.79 2.67 2.57
2.52 2.41
2.53 2.41 2.30 2.19
2.29 2.17 2.05 1.94
2.18 2.06 1.94 1.83
2.07 1.94 1.82 1.71
1.82 1.69 1.57
2
3
4
5
4052 98.50 34.12 21.20 16.26
4999.5 99.00 30.82 18.00 13.27
5403 99.17 29.46 16.69 12.06
13.75 12.25 11.26 10.56 10.04
10.92 9.55 8.65 8.02 7.56
9.78 a.45
6.55
9.15 7.85 7.01 6.42 5.99
9.65 9.33 9.07 8.86 a.68
7.21 6.93 6.70 6.51 6.36
6.22 5.95 5.74 5.56 5.42
5.67 5.41 5.21 5.04 4.89
a.53 8.4Q a.29 8.18 8.10
6.23 6.11 6.01 5.93 5.85
5.29 5.18 5.09 5.01 4.94
a.02 7.95 7.88 7.82 7.77
5.66 5.61
4.16 4.72
5.51
4.68
7.72 7.68 7.64 7.60 7.56
5.53 5.49 5.45 5.42 5.39
4.64
7.31 7.08 6.85 6.63
5.18 4.98 4.79 4.61
5.78 5.12
7.59 6.99
5625 99.25 28.71 15.98 11.39
4.77 4.67
4.58 4.50 4.43
4.07
4.31
4.82
4.31 4.26 4.22 4.18
2.74 2.63
Q(Fivl,vz)=O.Ol 6 8
15
20
4.85 4.14
3.78
3.08
3.00
2.88
2.45 2.38
30
2:: 2:40 2.32 2.25 2.19 2.13 2.09 2.04 2.00 1.97 1.94 1.91
2.03 2.00
1.88 1.85 I.83 1.81 1.79
1.98 1.96 1.94
1.94
2.72
2.18 2.14 2.11 2.08
2.05
2.16 2.13 2.11
3.67 3.33
3.45 3.20 2.85
2.31 2.27 2.24 2.21 2.18
6.02
1.80
1.61 1.53 1.39
60
1.00
m 6366 99.50
5859 99.33 27.91 15.21 10.67
5982 99.37 27.49 14.80 10.29
6106 99.42 27.05 14.37 9.89
6157 99.43 26.87 14.20 9.72
6209 99.45 26;69 14.02 9.55
6261 99.47 26;50 13.84 9.38
13.65 9.20
26;13 13.46 9.02
a.75
a.47 7.19
a.10 6.84 b.03
7.40 6.16 5.36
5.06
7.56 6.31 5.52 4.96 4.56
7.23 5.99
6.31
1.72 6.47 5.67 5.11 4.71
4.81 4.41
E 4:25
7.06 5.82 5.03 4.48 4.08
6.88 5.65 4.86 4.31 3.91
4.40 4.16 3.96 3.80 3.67
4.25 4.01 3.82
4.10 3.86 3.66
3.94 3.70 3.51 3.35 3.21
3.78 3.54 3.34 3.18 3.05
3.60 3.36 3.17 3.00 2.87
3.26 3.16
3.10 3.00 2.92
2.93 2.83 2.75 2.67 2.61
2.75 2.65 2.51 2.49 2.42 2.36 2.31 2.26 2.21 2.17
7.46
6313
1.64 1.48 1.31
5764 99.30 28.24 15.52 10.97
99.48 26;32
6.63 6.06 5.64
5.80 5.39
5.32 5.06 4.86
4.69
5.07 4.82 4.62 4.46
4.56
4.32
4.74 4.50 4.30 4.14 4.00
4.44 4.34 4.25 4.17 4.10
4.20 4.10 4.01 3.94 3.87
3.89 3.79 3.71 3.63 3.56
3.55 3.46 3.37 :::t
3.41 3.31 3.23 3.15 3.09
4.04 3.99 3.94 3.90 3.85
3.81 3.76 3.71 3.67 3.63
3.51 3.45 3.41 3.36 3.32
3.17 3.12 3.07 3.03 2.99
3.03 2.98 2.93 2.89 2.85
2.74 2.70
2.54
2.55 2.50 2.45 2.40 2.36
3.82
3.59
3.29
2.96
2.93 2.90 2.87 2.84
2.81 2.78 2.15 2.73 2.70
2.66 2.63 2.60 2.51 2.55
2.50 2.47 2.44 2.41 2.39
2.33 2.29 2.26 2.23 2.21
2.13 2.10 2.06 2.03 2.01
2.50 2.34 2.18
2.66
2.52 2.35 2.19 2.04
2.37 2.20 2.03
2.20 2.03 1.86 1.70
2.02 I.84 1.66 1.47
1.80 1.60 1.38
5.47
4.57 4.54 4.51
4.14 4.11 4.07 4.04 4.02
3.75 3.73 3.70
2:; 3:50 3.41
3.23 3.20 3.17
4.31 4.13 3.95 3.78
3.83 3.65 3.48 3.32
3.51 3.34 3.17 3.02
3.29 3.12 2.96 2.80
2.99 2.82 2.66 2.51
4.60
12
4.96 4.25
2.32 2.27 2.22
:*z 3:29
2.69
8.26
2.57 2.50 2.44 2.39 2.35
2.79 2.72 2.67 2.62 2.57
~0 1018 39.50 13.90
8.36 6.12
2.72 2.61 2.52
2.89 2.82 2.77 2.72 2.68
:% 2:30
13.99
2.84
3.12 3.06 3.01 2.96 2.91
3.56
39.48
2.13 2.64
3.34 3.28 3.22 3.17 3.13
2.68
60 1010
3.18
3.26
3.66
3.52
3.51 3.31
3.08
3.00 2.94 2.88 2.83 2.78
1.88
2.84 2.78
2.12 2.67 2.62 2.58
1.00
PROBABILITY
PEKCEKTAGE
POISTS
OF THE
OF F tS TERW
yz y1 1 2 3 4 5
11 12 13 :;
26 27 28 :; 40 12 m
1
2
3
4
16211 198.5 55.55 11.33 22.78
20000 199.0 49.80 26.28 18.31
21615 199.2 47.47 24.26 16.53
22500 199.2 46.19 23.15 15.56
23056 199.3 45.35 22.46 14.94
la.63 16.24 14.69 13.61 12.83
14.54 12.40 11.04 10.11 9.43
12 ii lo:88 9.60 8.72 8.08
12.03 10.05 8.81 7.96 7.34
11.46 9.52 a.30 7.47 6.87
12.23 11.75 11.37 11.06 10.80
8.91 8.51 a.19 7.92 7.70
7.60 7.23 6.93 6.68 6.48
6.88 6.52 6.23 6.00 5.80
10.58 10.38 10.22 10.07 9.94
7.51 7.35 7.21 7.09 6.99
6.30 6.16 6.03 5.92 5.82
9.83 9.73 9.63 9.55 9.48
6.89 6.81 6.73 6.66 6.60
9.41 9.34 9.28 9.23 9.18 8.83 8.49 8.18 7.88
FUNCTIONS
F-DISTHIBLTIO\
OF Q, y,, Y> Q(Flv,,v,)=0.005
8
12
15
20
30
60
m
23925 199.4 44.13 21.35 13.96
24426 199.4 43.39 20.70 13.38
24630 199.4 43.08 20.44 13.15
24836 199.4 42.78 20.17 12.90
25044 199.5 42.47 19.89 12.66
25253 199.5 42.15 19.61 12.40
25465 199.5 41.83 19.32 12.14
11.07 9.16 7.95 7.13 6.54
10.57 8.68 7.50 6.69 6.12
10.03 8.18 7.01 6.23 5.66
9.81 7.97 6.81 6.03 5.47
9.59 7.75 6.61 5.83 5.27
9.36 7.53 6.40 5.62 5.07
9.12 7.31 6.18 5.41 4.86
a.aa 7.08 5.95 5.19 4.64
6.42 6.07 5.79 5.56 5.37
6.10 5.76 5.48 5.26 5.07
5.68 5.35 5.08 4.86 4.67
5.24 4.91 4.64 4.43 4.25
5.05 4.72 4.46 4.25 4.07
4.86 4.53 4.27 4.06 3.88
4.65 4.33 4.07 3.86 3.69
4.44 4.12 3.87 3.66 3.48
4.23 3.90 3.65 3.44 3.26
5.64 5.5c 5.37 5.27 5.17
5.21 5.07 4.96 4.85 4.76
4.91 4.78 4.66 4.56 4.47
4.52 4.39 4.28 4.18 4.09
4.10 3.97 3.86 3.76 3.68
3.92 3.79 3.68 3.59 3.50
3.73 3.61 3.50 3.40 3.32
3.54 3.41 3.30 3.21 3.12
3.33 3.21 3.10 3.00 2.92
3.11 2.98 2.87 2.78 2.69
5.73 5.65 5.58 5.52 5.46
5.09 5.02 4.95 4.89 4.84
4.68 4.61 4.54 4.49 4.43
4.39 4.32 4.26 4.2( 4.15
4.01 3.94 3.88 3.83 3.78
3.60 3.54 3.47 3.42 3.37
3.43 3.36 3.30 3.25 3.20
3.24 3.18 3.12 3.06 3.01
3.05 2.98 2.92 2.87 2.82
2.84 2.77 2.71 2.66 2.61
2.61 2.55 2.48 2.43 2.38
6.54 6.49 6.44 6.40 6.35
5.41 5.36 5.32 5.28 5.24
4.79 4.74 4.70 4.66 4.62
4.38 4.34 4.30 4.26 4.23
4.10 4.06 4.02 3.98 3.95
3.73 3.69 3.65 3.61 3.58
3.33 3.28 3.25 3.21 3.18
3.15 3.11 3.07 3.04 5.01
2.97 2.93 2.89 2.86 2.82
2.77 2.73 2.69 2.66 2.63
2.56 2.52 2.48 2.45 2.42
2.33 2.29 2.25 2.21 2.18
6.07 5.79 5.54 5.30
4.98 4.73 4.50 4.28
4.37 4.14 3.92 3.72
3.99 3.76 3.55 3.35
3.71 3.49 3.28 3.09
3.35 3.13 2.93 2.74
2.95 2.74 2.54 2.36
2.78 2.57 2.37 2.19
2.60 2.39 2.19 2.00
2.40 2.19 1.98 1.79
xl8 1.96 1.75 1.55
1.93 1.69 1.43 1.00
5
6
23437 199.3 44.84 21.97 14.51
QVI VI, v,) =o *
vpv, 1 2 3 4 5
--\ALUES
1
4 (;;;.;25
Wf53
5 Pi;.;64
6 ';$;.;59
,001
12 8 (5$.9481';$t;o7
15 ';$$.;58
20 W$O9
30 ‘;9;:6’
60 ';$$;13
m ';$2:66
167:0 74.14 47.18
14815 61.25 37.12
141.1 56.18 33.20
13711 53.44 31.09
134.6 51.71 29.75
132:s 50.53 28.84
130:6 49.00 27.64
128:s 47.41 26.42
127:4 46;76 25.91
126:4 46.10 25.39
125:4 45.43 24.87
12415 44.75 24.33
35.51 29.25 25.42 22.86 21.04
27.00 21.69 18.49 16.39 14.91
23.70 la.77 15.83 13.90 12.55
21.92 17.19 14.39 12.56 11.28
20.81 16.21 13.49 11.71 10.48
20.03 15.52 12.86 11.13 9.92
19.03 14.63 12.04 10.37 9.20
17.99 13.71 11.19 9.57 a.45
17.56 13.32 10.84 9.24 8.13
17.12 12.93 10.48 8.90 7.80
16.67 12.53 10.11 a.55 7.47
16.21 12.12 9.73 a.19 7.12
15.75 11.70 9.33 7.81 6.76
19.69 18.64 17.81 17.14 16.59
13.81 12.97 12.31 11.78 11.34
11.56 10.80 10.21 9.73 9.34
10.35 9.63 9.07 8.62 8.25
9.58 8.89 8.35 7.92 7.57
9.05 a.38 7.86 7.43 7.09
8.35 7.71 7.21 6.80 6.47
7.63 7.00 6.52 6.13 5.81
7.32 6.71 6.23 5.85 5.54
7.01 6.40 5.93 5.56 5.25
6.68 6.09 5.63 5.25 4.95
6.35 5.76 5.30 4.94 4.64
6.00 5.42 4.97 4.60 4.31
16.12 15.72 15.38 15.08 14.82
10.97 10.66 10.39 10.16 9.95
9.00 8.73 a.49 8.28 a.10
7.94 7.68 7.46 7.26 7.10
7.27 7.02 6.81 6.62 6.46
6.81 6.56 6.35 6.18 6.02
6.19 5.96 5.76 5.59 5.44
5.55 5.32 5.13 4.97 4.82
5.27 5.05 4.87 4.70 4.56
4.99 4.78 4.59 4.43 4.29
4.70 4.48 4.30 4.14 4.00
4.39 4.18 4.00 3.84 3.70
4.06 3.85 3.67 3.51 3.38
9.77 9.61 9.47 9.34 9.22
7.94 7.80 7.67 7.55 7.45
6.95 6.81 6.69 6.59 6.49
6.32 6.19 6.08 5.98 5.88
5.88 5.76 5.65 5.55 5.46
5.31 5.19 5.09 4.99 4.91
4.70 4.58 4.48 4.39 4.31
4.44 4.33 4.23 4.14 4.06
4.17 4.06 3.96 3.87 3.79
3.88 3.78
:: 25
14.59 14.38 14.19 14.03 13.88
2: 3:52
3.58 3.48 3.38 3.29 3.22
3.26 3.15 3.05 2.97 2.89
:7" 28 29 30
13.74 13.61 13.50 13.39 13.29
9.12 9.02 8.93 8.85 a.77
7.36 7.27 7.19 7.12 7.05
6.41 6.33 6.25 6.19 6.12
5.80 5.73 :z 5:53
5.38 5.31 5.24 5.18 5.12
4.83 4.76 4.69 4.64 4.58
4.24 4.17 4.11 4.05 4.00
3.99 3.92 3.86 3.80 3.75
3.72 3.66 3.60 3.54 3.49
3.44 3.38 3.32 3.27 3.22
3.15 3.08 3.02 2.97 2.92
2.82 2.75 2.69 2.64 2.59
12.61 11.97 11.38 10.83
8.25 7.76 7.32 6.91
6.60 6.17 5.79 5.42
5.70 5.31 4.95 4.62
5.13 4.76 4.42 4.10
4.73 4.37 4.04 3.74
4.21 3.87 3.55 3.27
3.64 3.31 3.02 2.74
3.40 3.08 2.78 2.51
3.15 2.83 2.53 2.27
2.87 2.55 2.26 1.99
2.57 2.25 1.95 1.66
2.23 1.89 1.54 1.00
11 1; :: 15
21 22
40 1;: m
123:5 44.05 23.79
;i’ fi ‘r
990
/
VROBABILITY
FUNCTIONS
IN ‘l’I’I~\lS
0.8
0.9
0.95 0.98
3.078 li886 1.638 1.533 1.476
6.314
12.706
31.821
2.920 2.353 2.132 2.015
4.303
6.965
1.943, 1.895
1.860 1.833 1.812
2.447 2.365 2.306 2.262 2.228
1.796
2.201
1.782
2.179
1
0.325
1.000
2 3
0.289 0.211
0.816 0.765
4
0.271
0.741
5
0.267
0.727
6 7 8 9
0.265 0.263 0.262
0.711
1.415
0.706
10
0.261 0.260
0.703 0.700
1.397 1.383 1.372
11 12 13 14 15
0.260 0.259 0.259 0.258 0.258
0.697 0.695 0.694 0.692
1.363 1.356 1.350 1;345 1.341
16 17 18 19 20
0.258 0,257 0.257 0.257 0.257
0.690 0.689 0.688 0.688 0.687
21 22 23 24 25
0.257 0.256 0.256 0.25.6 0.256
26 27 28 29 30 40 60 120 m
0.718
0.691
1.440
1.771 1.761 1.753
0.99 63.657 9.925
3.182
4.541
2.716 2.571
3.747 3.365
5.841 4.604 4.032
3.143 2.821
3.701 3.499 3.355 3.250
2.764
3.169
2,718 2.681
3.106
2.998 2.896
Ok’ A AND v
0.995
0.998
0.999
0.9999
0.99999
0.999999
127.321 14.089 7.453 5.598 4.713
318.309 22.327 10.214 7.173 5.893
636.619 31.598 12.924 8.610 6.869
6366.198 99.992 28.000 15.544 11.178
63661.977 316.225 60.397 27.771 17.897
636619.772 999.999 130;155 49.459 28.477
4.317 4.029 3.833 3.690 3.581
5.208 4.785 4.501 4.297 4.144
5.959 5.408 5.041 4.781 4.587
9,082 7.885 7.120 6.594 6.211
13.555 11.215 9.782 8.627 8.150
20.047 15.764 13.257 11.637 10.516
4.025 3.930 3.852 3.787 3.733
4.437 4.318 4.221 4.140 4.073
5.921 5.694 5,513 5.363 5.239
7.648 7.261 6.955 6.706 6.502
9.702 9.085 8.604 8.218 7.903
2.160 2.145 2.131
2.650 2.624 2.602
3.012 2.977 2.947
3.497 3.428 3.372 3.326 3.286
2.120 2.110 2.101
2.921 2.898 2.878 2.861 2.845
3.252 3.223 3.197 3.174 3.153
3.686 3.646 3.610 3.579 3.552
4.015 3.965 3.922 3.883 3.850
5.134 5.044 4.966 4.697 4.837
6.330
7.642
%G 51949 5.854
7.421 7.232 7.069 6.927
2.518
3.055
1.325
1.740 1.734 1.729 1.725
2,093 2.086
2.583 2.567 2.552 2.539 2.528
0.686 0.686 0.685 0.685 0.684
1.323 1.321 1.319 1.318 1.316
1.721 1.717 1.714 1.711 1.708
2.080 2.074 2.069 2.064 2.060
2.508 2.500 2,492 2.485
2.831 2.819 2.807 2.797 2.787
3.135 3.119 3.104 3.090 3.078
3.527 3.505 3.485 3.467 3.450
3.819 3.792 3.768 3.745 3.725
4.784 4.736 4.693 4.654 4.619
5.769 5.694 5.627 5.566 5.511
6.802
0.256 0.256 0.256 0.256 0.256
0.684 0.684 0.683 0.683 0.683
1.315 1.314 1.313 1.311
1.706
1.310
1.697
2.056 2.052 2.048 2.045 2.042
2.479 2.473 2.467 2.462 2.457
2.779 2.771 2.163 2.756 2.750
3.067 3.057 3.047 3.038 3.030
3.435 3.421 3.408 3.396 3.385
3.707 3.690 3.674 3.659 3.646
4.587 4.558 4.530 4.506 4.482
5.461 5.415 5.373 5.335 5.299
6.352 6.286 6.225 6.170 6.119
0.255 0.254 0.254 0.253
0.681
1.303
1.684
2.021
2.423
0.679 0.677 0.674
1.296
1.671 1.658 1.645
2.000
1.980 1.960
2.390 2.358 2.326
2.704 2.660 2.617 2.576
2.971 2.915 2.860 2.807
3.307 3.232 3.160 3.090
3.551 3.460 3.373 3.291
4.321 4.169 4.025 3.891
5.053 4.825 4.613 4.417
5.168 5.449 5.158 4.892
1.337 1.333
1.330 1.328
1.289 1.282
1.746
1.703
1.701 1,699
*
*
From E. S. Pearson and H. 0. Hartley (editors), Biometrika tables for statisticians, vol. I. Cambridge Univ. Press, Cambridge, England, 1954 for n 0.999, from E. T. Federighi, Extended tables of the percentage points of Student’s t-distribution, J. Amer. Statist. Assoc. 54, 683-688 (1959) for ,I 0.999 (with permission). *See pageII.
-
6.692
6.593 6.504 6.424
*
PROBABILITY
FIVE
991
FUNCTIONS
DIGIT
R ANDOM
NUMBERS
Table
26.11
53479 97344 66023 99776 30176
81115 70328 38277 75723 48979
98036 58116 74523 03172 92153
12217 91964 71118 43112 38416
59526 26240 84892 83086 42436
40238 44643 13956 81982 26636
40577 83287 98899 14538 83903
39351 97391 92315 26162 44722
43211 92823 65783 24899 69210
69255 77578 59640 20551 69117
81874 19839 09337 31151 67619
83339 90630 33435 58295 52515
14988 71863 53869 40823 03037
99937 95053 52769 41330 81699
13213 55532 18801 21093 17106
30177 60908 25820 93882 64982
47967 84108 96198 49192 60834
93793 55342 66518 44876 85319
86693 48479 78314 47185 47814
98854 63799 97013 81425 08075
61946 04811 05763 73260 54909
48790 64892 39601 56877 09976
11602 96346 56140 40794 76580
83043 79065 25513 13948 02645
22257 26999 86151 96289 35795
11832 43967 78657 90185 44537
04344 63485 02184 47111 64428
95541 93572 29715 66807 35441
20366 80753 04334 61849 28318
55937 96582 15678 44686 99001
42583 27266 49843 29316 30463
36335 27403 11442 40460 27856
60068 97520 66682 27076 67798
04044 23334 36055 69232 16837
29678 36453 32002 51423 74273
16342 33699 78600 58515 05793
48592 23672 36924 49920 02900
25547 45884 59962 03901 63498
63177 41515 68191 26597 00782
75225 04756 62580 33068 35097
28708 13183 60796 13486 34914
84088 50652 76639 46918 94502
65535 94872 30157 64683 39374
44258 28257 40295 07411 34185
33869 78547 99476 77842 57500
82530 55286 28334 01908 22514
98399 33591 15368 47796 04060
26387 61965 42481 65796 94511
02836 51723 60312 44230 44612
36838 14211 42770 77230 10485
28105 59231 87437 29046 62035
04814 45028 82758 01301 71886
85170 01173 71093 55343 94506
86490 08848 36833 65732 15263
35695 81925 53582 78714 61435
03483 71494 25986 43644 10369
57315 95401 46005 46248 42054
63174 34049 42840 53205 68257
71902 04851 81683 94868 14385
71182 65914 21459 48711 79436
38856 40666 40588 78237 98247
80048 43328 90087 86556 67474
59973 87379 37729 50276 71455
73368 86418 08667 20431 69540
52876 95841 37256 00243 01169
47673 25590 20317 02303 03320
41020 54137 53316 71029 67017
82295 94182 50982 49932 92543
26430 42308 32900 23245 97977
87377 07361 32097 00862 52728
69977 39843 62880 56138 90804
78558 23074 87277 64927 56026
65430 40814 99895 29454 48994
32627 03713 99965 52967 64569
28312 21891 34374 86624 67465
61815 96353 42556 62422 60180
14598 96806 11679 30163 12972
79728 24595 99605 76181 03848
55699 26203 98011 95317 62582
91348 26009 48867 39264 93855
09665 34756 12157 69384 93358
44672 50403 73327 07734 64565
74762 76634 74196 94451 43766
33357 12767 26668 76428 45041
67301 32220 78087 16121 44930
80546 34545 53636 09300 69970
97659 18100 52304 67417 16964
11348 53513 00007 68587 08277
78771 14521 05708 87932 67752
45011 72120 63538 38840 60292
38879 58314 83568 28067 05730
35544 60298 10227 91152 75557
99563 72394 99471 40568 93161
85404 69668 74729 33705 80921
04913 12474 22075 64510 55873
62547 93059 10233 07067 54103
78406 02053 21575 64374 34801
01017 29807 20325 26336 83157
86187 63645 21317 79652 04534
22072 12792 57124 31140 81368
Compiled from Rand Corporation, 1955 (with permission).
A million
random
digit s with
100,000 normal deviates.
The Free Press, Glencoe,
Ill.,
992
PROBABILITY Table
26.11
2500
FIVE
DIGIT
FUNCTIONS RANDOM
NUMBERS
26687 60675 45418 69872 03765
74223 75169 98635 48026 86366
43546 24510 83123 89755 99539
45699 15100 98558 28470 44183
94469 02011 09953 44130 23886
82125 14375 60255 59979 89977
37370 65187 42071 91063 11964
23966 10630 40930 28766 51581
68926 64421 97992 85962 18033
37664 66745 93085 77173 56239
a4686 91512 10737 54870 48967
57636 49670 49307 19676 49579
32326 32556 18307 58367 65369
19867 85189 22246 20905 74305
71345 28023 22461 38324 62085
42002 88151 10003 00026 39297
96997 62896 93157 98440 10309
84379 95498 66984 37427 23173
27991 29423 44919 22896 74212
21459 38138 30467 37637 32272
91430 92564 41734 25251 91657
79112 29567 12199 78110 11563
03685 47476 77441 54178 66036
05411 62804 92415 78241 28523
23027 73428 63542 09226 83705
54735 04535 42115 87529 09956
91550 86395 84972 35376 76610
06250 12162 12454 90690 88116
18705 59647 33133 54178 78351
18909 97726 48467 08561 50877
00149 53250 25587 01176 83531
a4745 73200 17481 12182 15544
63222 84066 56716 06882 40834
50533 59620 49749 27562 20296
50159 61009 70733 75456 88576
60433 38542 32733 54261 47815
04822 05758 60365 38564 96540
49577 06178 14108 89054 79462
89049 80193 52573 96911 78666
16162 26466 39391 88906 25353
19902 96516 99417 77699 32245
98866 78705 56171 57853 83794
32805 25556 19848 93213 99528
61091 35181 24352 27342 05150
91587 29064 51844 28906 27246
30340 49005 03791 31052 48263
84909 29843 72127 65815 62156
64047 68949 57958 21637 62469
67750 50506 08366 49385 97048
87638 45862 43190 75406 16511
12874 63899 16255 75553 41772
72753 41910 43271 30207 18441
66469 45484 26540 41814 34685
13782 55461 41298 74985 13892
64330 66518 35095 40223 38843
00056 82486 32170 91223 69007
73324 74694 70625 64238 10362
03920 07865 66407 73012 84125
13193 09724 01050 83100 08814
19466 76490 44225 92041 66785
09270 85058 80222 83901 36303
01245 17815 8'572 88028 57833
81765 71551 62758 56743 77622
06809 36356 14858 25598 02238
10561 97519 36350 79349 53285
10080 54144 23304 47880 77316
17482 51132 70453 77912 40106
05471 83169 21065 52020 38456
82273 27373 63812 84305 92214
06902 68609 29860 02897 54278
91543 14415 82465 27306 91960
63886 33816 07781 39843 82766
60539 78231 09938 05634 02331
96334 87674 66874 96368 08797
20804 96473 72128 72022 33858
72692 44451 99685 01278 21847
08944 25098 84329 92830 17391
02870 29296 14530 40094 53755
74892 50679 08410 31776 58079
22598 07798 45953 41822 48498
59284 10428 65527 59688 44452
96108 96003 41039 43078 10188
91610 71223 79574 93275 43565
07483 21352 05105 31978 46531
37943 78685 59588 08768 93023
96832 55964 02115 84805 07618
15444 35510 33446 50661 12910
12091 94805 56780 18523 60934
36690 23422 18402 83235 53403
58317 04492 36279 50602 18401
87275 94155 26488 37073 83835
82013 93110 76394 34547 89575
59804 49964 91282 88296 55956
78595 27753 03419 68638 93957
60553 85090 68758 12976 30361
14038 77677 89575 50896 47679
12096 69303 66469 10023 83001
95472 66323 97835 27220 35056
42736 77811 66681 05785 07103
08573 22791 03171 77538 63072
PROBABILITY 2500
FIVE
DIGIT
993
FUNCTIONS
RANDOM
Table
NUMBERS
26.11
55034 25521 85421 61219 20230
81217 99536 72744 48390 03147
90564 43233 97242 47344 58854
81943 48786 66383 30413 11650
11241 49221 00132 39392 28415
84512 06960 05661 91365 12821
12288 31564 96442 56203 58931
89862 21458 37388 79204 30508
00760 88199 57671 05330 65989
76159 06312 27916 31196 26675
95776 07603 00645 62950 79350
83206 17344 17459 83162 10276
56144 01148 78742 61504 81933
55953 83300 39005 31557 26347
89787 96955 36027 80590 08068
64426 65027 98807 47893 67816
08448 31713 72666 72360 06659
45707 89013 54484 72720 87917
80364 79557 68262 08396 74166
60262 49755 38827 33674 85519
48339 05842 25855 25272 73003
69834 08439 02209 16152 29058
59047 79836 07307 82323 17605
82175 50957 59942 70718 49298
92010 32059 71389 98081 47675
58446 32910 76159 38631 90445
69591 15842 11263 91956 68919
56205 13918 38787 49909 05676
95700 41365 61541 76253 23823
86211 80115 22606 33970 84892
81310 10024 84671 29296 51771
94430 44713 52806 58162 94074
22663 59832 89124 21858 70630
06584 80721 37691 33732 41286
38142 63711 20897 94056 90583
00146 67882 82339 88806 87680
17496 25100 22627 54603 13961
51115 45345 06142 00384 55627
61458 55743 05773 66340 23670
65790 67618 03547 69232 35109
42166 78355 09552 15771 13231
56251 67041 51347 63127 99058
60770 22492 33864 34847 93754
51672 51522 89018 05660 36730
36031 31164 73418 06156 44286
77273 30450 81538 48970 44326
85218 27600 77399 55699 15729
14812 44428 30448 61818 37500
90758 96380 97740 91763 47269
23677 26772 18158 20821 13333
50583 99485 54676 99343 35492
03570 57330 39524 71549 40231
38472 i0634 73785 10248 34868
73236 74905 48864 76036 55356
67613 90671 69835 31702 12847
72780 19643 62798 76868 68093
78174 69903 65205 88909 52643
18718 60950 69187 69574 32732
99092 17968 05572 27642 67016
64114 37217 74741 00336 46784
98170 25384 02670 86155 36934 42879 56851 12778 05464 28892
03841 56860 81637 24309 14271
23920 02592 79952 73660 23778
47954 01646 07066 84264 88599
10359 42200 41625 24668 17081
70114 79950 96804 16686 33884
11177 37764 92388 02239 88783
63298 82341 88860 66022 39015
99903 71952 68580 64133 57118
15025
20237 08030 905982 40378 81431 99955 21431 59335
63386 81469 05731 52462 58627
71122 91066 55128 67667 94822
06620 88857 74298 97322 65484
07415 56583 49196 69808 09641
94982 01224 31669 21240 41018
32324 28097 42605 65921 85100
79427 19726 30368 12629 16110
70387 71465 96424 92896 32077
95832 99813 77210 13268 44285
76145 44631 31148 02609 71735
11636 43746 50543 79833 26620
80284 99790 11603 66058 54691
17787 86823 50934 80277 14909
97934 12114 02498 08533 52132
12822 31706 09184 28676 81110
73890 05024 95875 37532 74548
66009 28156 85840 70535 78853
27521 04202 71954 82356 31996
70526 88386 83161 50214 97689
45953 11222 73994 71721 29341
79637 25080 17209 33851 67747
57374 71462 79441 45144 80643
05053 09818 64091 05696 13620
31965 46001 49790 29935 23943
33376 19065 11936 12823 49396
13232 68981 44864 01594 83686
85666 18310 86978 08453 37302
86615 74178 34538 52825 95350
994
PROBABILITY Table
26.11
2500 FIVE
DIGIT
FUNCTIONS
RANDOM
NUMBERS
12367 38890 80788 02395 73720
23891 30239 55410 77585 70184
31506 34237 39770 08854 69112
90721 22578 93317 23562 71887
18710 74420 18270 33544 80140
89140 22734 21141 45796 72876
58595 26930 52085 10976 38984
99425 40604 78093 44721 23409
22840 10782 85638 24781 63957
08267 80128 81140 09690 44751
61383 39161 80907 09052 33425
17222 44282 74484 65670 24226
55234 14975 39884 63660 32043
18963 97498 19885 34035 60082
39006 25973 37311 06578 20418
93504 33605 04209 87837 85047
18273 60141 49675 28125 53570
49815 30030 39596 48883 32554
52802 77677 01052 50482 64099
69675 49294 43999 55735 52326
72651 04142 85226 54888 33258
69474 32092 14193 03579 51516
73648 83586 52213 91674 82032
71530 61825 60746 59502 45233
55454 35482 24414 08619‘ 39351
19576 32736 57858 33790 33229
15552 63403 31884 29011 59464
20577 91499 51266 85193 65545
12124 37196 82293 62262 76809
50038 02762 73553 28684 16982
75973 90638 65061 64420 27175
15957 75314 15498 07427 17389
32405 35381 93348 82233 76963
82081 34451 33566 97812 75117
02214 49246 19427 39572 45580
57143 11465 66826 07766 99904
33526 25102 03044 65844 47160
47194 71489 97361 29980 55364
94526 89883 08159 15533 25666
73253 99708 47485 90114 25405
32215 54209 59286 83872 83310
30094 58043 66964 58167 57080
87276 72350 84843 01221 03366
56896 89828 71549 95558 80017
15625 02706 67553 22196 39601
32594 16815 33867 65905 40698
80663 89985 83011 38785 56434
08082 37380 66213 01355 64055
19422 44032 69372 47489 02495
80717 59366 23903 28170 50880
64545 39269 29763 06310 97541
29500 00076 05675 02998 47607
13351 55489 28193 01463 57655
78647 01524 65514 27738 59102
92628 76568 11954 90288 21851
19354 22571 78599 17697 44446
60479 20328 63902 64511 07976
57338 84623 21346 39552 54295
52133 30188 19219 34694 84671
07114 43904 90286 03211 78755
82968 76878 87394 74040 47896
85717 34727 78884 12731 41413
11619 12524 87237 59616 66431
97721 90642 92086 33697 70046
53513 16921 95633 12592 50793
53781 13669 66841 44891 45920
98941 17420 22906 67982 96564
38401 84483 64989 72972 67958
70939 68309 86952 89795 56369
11319 85241 54700 10587 44725
87778 96977 43820 57203 49065
71697 63143 13285 83960 72171
64148 72219 77811 40096 80939
54363 80040 81697 39234 06017
92114 11990 29937 65953 90323
34037 47698 70750 59911 63687
59061 95621 02029 91411 07932
62051 72990 32377 55573 99587
62049 29047 00556 88427 49014
33526 85893 86687 45573 26452
94250 68148 12208 88317 56728
84270 81382 97809 89705 80359
95798 82383 33619 26119 29613
13477 18674 28868 12416 63052
80139 40453 41646 19438 15251
26335 92828 16734 65665 44684
55169 30042 88860 60989 64681
73417 37412 32636 59766 42354
40766 43423 41985 11418 51029
45170 45138 84615 18250 77680
07138 21188 02154 90953 80103
12320 64554 12250 85238 91308
01073 55618 88738 32771 12858
19304 36088 43917 07305 41293
87042 24331 03655 36181 00325
58920 84390 21099 47420 15013
28454 16022 60805 19681 19579
81069 12200 63246 33184 91132
93978 77559 26842 41386 12720
66659 75661 35816 03249 92603
PROBABILITY 2500
FIVE
DIGIT
995
FUNCTIONS RANDOM
NUMB
LERS
Table
26.11
92630 79445 59654 31524 06348
78240 78735 71966 49587 76938
19267 71549 27386 76612 90379
95457 44843 50004 39789 51392
53497 26104 05358 13537 55887
23894 67318 94031 48086 71015
37708 00701 29281 59483 09209
79862 34986 18544 60680 79157
76471 66751 52429 84675 24440
66418 99723 06080 53014 30244
28703 68108 99938 91543 42103
51709 89266 90704 73196 02781
94456 94730 93621 34449 73920
48396 95761 66330 63513 56297
73780 75023 33393 83834 72678
06436 48464 95261 99411 12249
86641 65544 95349 58826 25270
69239 96583 51769 40456 36678
57662 18911 91616 69268 21313
80181 16391 33238 48562 75767
17138 28297 09331 31295 36146
27584 14280 56712 04204 15560
25296 54524 51333 93712 27592
28387 21618 06289 51287 42089
51350 95320 75345 05754 99281
61664 38174 08811 79396 59640
37893 60579 82711 87399 15221
05363 08089 57392 51773 96079
44143 94999 25252 33075 09961
42677 78460 30333 97061 05371
29553 23501 57888 55336 10087
18432 22642 85846 71264 10072
13630 63081 67967 88472 55980
05529 08191 07835 04334 64688
02791 89420 11314 63919 68239
81017 67800 01545 36394 20461
49027 55137 48535 11196 89381
79031 54707 17142 92470 93809
50912 32945 08552 70543 00796
09399 64522 67457 29776 95945
34101 53362 82975 54827 25464
81277 44940 66158 84673 59098
66090 60430 84731 22898 27436
88872 22834 19436 08094 89421
37818 14130 55790 14326 80754
72142 96593 69229 87038 89924
67140 23298 28661 42892 19097
50785 56203 13675 21127 67737
21380 92671 99318 30712 80368
16703 15925 76873 48489 08795
67609 44921 33170 84687 71886
60214 70924 30972 85445 56450
41475 61295 98130 06208 36567
84950 51137 95628 17654 09395
40133 47596 49786 51333 96951
02546 86735 13301 02878 35507
09570 35561 36081 35010 17555
45682 76649 80761 67578 35212
50165 18217 33985 61574 69106
15609 63446 68621 20749 01679
00475 25993 92882 25138 84631
02224 38881 53178 26810 71882
74722 68361 99195 07093 12991
14721 59560 93803 15677 83028
40215 41274 56985 60688 82484
21351 69742 53089 04410 90339
08596 40703 15305 24505 91950
45625 37993 50522 37890 74579
83981 03435 55900 67186 03539
63748 18873 43026 62829 90122
34003 53775 59316 20479 86180
92326 45749 97885 66557 84931
12793 05734 72807 50705 25455
61453 86169 54966 26999 26044
48121 42762 60859 09854 02227
74271 70175 11932 52591 52015
28363 97310 35265 14063 21820
66561 73894 71601 30214 50599
75220 88606 55577 19890 51671
35908 19994 67715 19292 65411
21451 98062 01788 62465 94324
68001 68375 64429 04841 31089
72710 80089 14430 43272 84159
40261 24135 94575 68702 92933
61281 72355 75153 01274 99989
13172 95428 94576 05437 89500
63819 11808 61393 22953 91586
48970 29740 96192 18946 02802
51732 81644 03227 99053 69471
54113 86610 32258 41690 68274
05797 10395 35177 25633 16464
43984 14289 56986 89619 48280
21575 52185 25549 75882 94254
09908 09721 59730 98256 45777
70221 25789 64718 02126 45150
19791 38562 52630 72099 68865
51578 54794 31100 57183 11382
36432 04897 62384 55887 11782
33494 59012 49483 09320 22695
79888 89251 11409 73463 41988
27. Miscellaneous
Functions
IRENE A. STEGUN l Contents 27.1. Debye
= t”dt o -cl-l.
S
Functions
n=1(1)4,
. , . . . . . . . . . . . . . .
z=0(.1)1.4(.2)5(.5)10,
27.2. Planck’s
Radiation
Function
6D
z-s(el’z-
1) -I . . . . . . . . . .
x=.o5(.oos).l(.ol).2(.o2).4(.o5).9(.1)1.5(.5)3.5, Gum, [email protected]>, 27.3. Einstein x2e2
999
3D
9-10s
Functions
. . . . . . . . . . . . . . . . . . . .
X -’e”-1
(e”-1)2’
Page 998
z=O(.O5)1.5(.1)3(.2)6,
27.4. Sievert Integral
&-In
In (l-e-“),
999
(l-e-“)
5D 8
S
e-zsec%
. . . . . . . . . . . . . . . .
1000
0
z=O(.1)1(.2)3(.5)10,
~=10°(100)600(150)900,
. . . . . . . . .
1001
. . . . . . . . . . . . . . . . . . . . .
1003
tme-c2-f dt and Related
27.5. jm(x> =s,-
fm(x) 9
m=l,
f3 (,+,
z=O(.2)8(.5)15(1)20,
27.6. j(x)=S,f(4 f(4
dt
x=0(.05)1 +ln x, x=1(.1)3(.5)8, 9
27.7. Dilogarithm
Integrals 4D
.l(.l)l, 4-5D
4D
(Spence’s Integral)
2=0(.01).5,
j(z)=-1
2
dt . . . . . .
1004
. . . . . . . . .
1005
. . . . . . . .
1006
9D
27.8. Clausen’s
Integral
f@>+eIn 8, f(e),
2, 3; s=0(.01).05,
2;
6D
and Related
Summations
e=o”(10)150
e=15°(10)300(20)900(50)1800,
6D
27.9. Vector-Addition Coefficients (jljzmlm21 j,j,jm) Algebraic Expressions for j,=1/2, 1, 312, 2 Decimal Values for j2=1/2, 1, 3/2, 5D 1 National Bureau of Standards.
997
--
27. Miscellaneous 27.1.
Debye
Series
s
Functions
1
Representations
Functions Relation
27.1.3 [27.1]
o= g=f&&)+g
(z~~~;~~)!l
s
[27.2]
Function
E.
Die Abhilngigkeit reiner Metalle (5) 16, 530-540
20 r=
42
x=0(.01)24,
27.1
Debye
Functions
--1 = t&i 2 I- eel-1
2 = Pdt 2? s- 0 et-l
3 = Pdt 2 s- 0 et-1
4 = t’dt 2 s- 0 et-1
1.000000 0.975278 0.951111 0. 927498 0.904437
1.000000 0.967083 0.934999 0.903746 0. 873322
1.000000 0. 963000
1.000000 0.960555 0.922221 0.884994 0.848871
0. 881927 0. 859964 0. 838545 0.817665 0.797320
0.843721 0.814940 0.786973 0. 759813 0. 733451
0. 824963 0. 792924
0.777505 0.758213 0.739438 0. 721173 0. 703412
;
0. 669366 0.637235 0. 606947 0.578427 0. 551596
0.570431 0. 530404 0. 493083 0.458343 0.426057
0. 524275 0. 481103 0. 441129
0. 626375 0. 502682 0.480435 0.459555 0.439962
0.396095
0. 338793 0. 309995 0.283580
0. 421580 0. 404332 it %%i 0: 358696
0. 276565 0. 257835 0. 240554 0.224615 0.209916
0. 0. 0. 0. 0.
0. 196361 0. 183860 0. 172329 0.147243 0. 126669
345301 332713 320876 294240 271260
0. 251331 0. 233948 0. 218698 0.205239 0. 193294
y8;;
;: memo” 0: 613281
it Ez 0: 318834 0.296859
x: E%:: 0.084039 0.074269 0.066036
0. 182633 0. 173068 0. 164443 [ y5] 998
[ ‘-;I”]
: EEt 0: 857985
it %E 0: 702615 0.674416 0.647148 0.620798 0. 595351 0. 570793
8: %%4
x: %E
it %E 0: 181737 0. 166396 0.152424 0. 139704 0. 128129 0.117597
i:XE x:Ei:
0. 813846 0. 779911 0.747057 0.715275 0.684551 0.654874 0. 626228 it FEZ; 0: 546317 0. 497882 0. 453131
x:%Zi: I:pf$ 0. 186075 t :%z 0: 137169 0. 123913 0.111957 0. 101180 0.091471
:: 8%
0.043655 0.036560 0.030840
0.043730 0.034541 0.027453 0.021968 0.017702
0.026290 0. 022411 0.019296
0.014368 0.011747 0.009674
[ 5961
[ (-;I61
6s.
des elektrischen von der Temperatur, (1933).
z=0(.1)13(.2)18(1)20(2)52(4)80.
Table
23)
of the Debye energy J. Math. Phys. 6,
L2 [l”e$-e&], zJ
Griineisen, Widerstandes Ann. Physik. t’dt
(see chapter
o- g=n!‘(n+l).
3 z-~ 28s 0 eu-1
numbers B,,, see chapter 23.)
27.1.2
Zeta
J. A. Beattie, Six-place tables and specific heat functions, l-32 (1926).
(I4<2~Pfi2.1)
(For Bernoulli
to Riemann
49.
MISCELLANEOUS
Planck’s
2 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0. 100
) f(z) )I
=
0.007 0.025 0.074 0. 179 0.372
0. 0. 0. 0. 0.
10 11 12 13 14
0. 682 :* E
0. 0. 0. 0. 0. 0.
15 16 17 18 19 20
I II 2: 531 3.466 4.540
II
[27.3]
.20140
Miscellaneous functions Government 1941).
2
4 540 6.998 9.662 12.296 14 710 16.780 18.446 19.692 20. 539 21.025 21. 199
[ (-j)2] 2 m.x=
Radiation f(z) =ci+(eYs-
f(z) 0. 0. 0. 0. 0.
999
FUNC’l’IONS
Function
f(z)
20 22 24 26 28
Table
II
2
21. 199 20.819 19. 777 18.372 16. 809 15. 224 13.696 12.270 10.965
EX 0: 34 0. 36 0. 38 0. 40
1
f(z)
2
f(z)
0. 0. 0. 0. 0.
40 45 50 55 60
8.733 6. 586 5.009 3.850 2.995
0. 9
::;
0.831 0. 582 0.419 0.309 0.233
0. 0. 0. 0. 0. 0.
65 70 75 80 85 90
2.356 1.875 1.508 1. 225 1.005 0.831
::it 2: 28
0. 178 0. 139 0. 048 0.021 0.010 0.006
:::
[ (-52’51 52353
and
[(-y]
f&,.x)=21.20143
58.
Physical Tables, Planck’s electronic functions, MT Printing Office, Washington,
radiation 17 (U.S. D.C.,
Table
NA=2rcX-4(ee*fAT-
R&h= 1)-i,
Rx&
s0
No+=
for
0. 0. 0. 0. 0.
x6e* (es- 1)’
00 05 10 15 20
0. 25 0. 30 0. 35 x: 2
1
x: E%3’
In (l-t?) --In
es-l (1-e-m)
--oD
- 3.02063 -2.35217 -1.97118 - 1.70777
: 99584 3. 30300 2.89806 2. 61110 2. 38888 2. 20771. 2. 05491 1.92293 1.80690
: %Z 0: 98677 0.98329
: EE $ ;E
- 1: 21972 -1. 10963 - 1.01508.
0.77075
-0.93275
1.70350 1.61035 1. 52569 1.44820 1.37684
-0.63935
1.31079 1.24939 1. 19209 1. 13844 1.08809
it %%28 0: 70996 0.69050
8: z
it E 0: 93515 0.92807 0.92067
0.67144
1. 25 :: k%i:
El%E 0: 84178 0.83185 [ (-35)5]
‘2
1.04065 0.99592 0.95363 0.91358 0.87560
: Eg” 0: 89671 0.88817 -0.33758 -0.31818 1; ggy; -0: 26732 -0.25248
- NO-X N o--co
NA m.x
it %io2 0: 77253 0.74139 0.71168 0.68331
for K”.
No-1
(T=
1000° microns.
Table
1; pg;
0.95441
:*2 1: 56
2
e*-
-3 NA
ZZZ: NX for X=[.25(.05)1.6(.2)3(1)10] T=[1000°(5000)35000 K and 6000’
0.88020
0. 75
:: ii
&,
0.99481
EG 0: 70
:~~ 1: 10 1. 15 1. 20
RA A m.x
Functions
1.00000 0.97521 0.95083
0. 50 0. 55
X2
R
Table ZZ: RA, R&k, NA, X=[.5(.01)1(.05)4(.1)6(.2)10(.5)20]
Tabb microns,
A Nxdx s6
Einstein x
I:
R o-m XT=[.05(.001).1(.005).4(.01).6(.02)1(.05)2]cm
A RI=c,X-6(eC’IAT-1)-1,
27.2
1)-i
K)
K].
27.3
1000
MISCELLANEOUS
Table
FUNCTIONS
Einstein
27.3
1. 6
2
2
zaea (es- l)s
5
Functions
In (l-e-5)
e=-1
0.81143
lj.po;; 0: 74657 0. 72406 0.70127 t EE 0: 63200 0. 60889
es-l --In (1-e-l)
: %i 0: 35646 0.33416 0. 31304
-0.22552 -0.20173 -0. 18068 -0. 16201 -0. 14541
0.63027 0. 58171 0.53714 0.49617 0.45845
0. 29304 0.27414 0.25629 0.23945 0.22356
-0. 13063 -0.11744 -0. 10565 -0.09510 -0.08565
0.42367 0.39158 0.36194 0. 33465 0.30921
0. 20861 0. 19453 0. 18129
0. 58589
ii: :E 0.45363 it 8%: 0: 33799 0.30409 0. 27264 0.24363 0: 17074
Et %ii: 0: 05681 0.04809 0.04968
0.08968
0.03438 0.02903 0.02449 0.02065 0.01739
t %::
[ (-44)3] (27.41
H.
L. Johnston, butions
to
L. Savedoff the
oscillator
NAVEXOS
search,
p.
Department
in 646,
of the
D.C.
(1949).
Values
--In
(1-e-z)
and
x=0(.001)3(.01)
J. Belzer,
thermodynamic
Planck-Einstein dom,
and
one Office
degree
of free
Naval
Navy,
x(e*--l)-I-ln 5D
a Re-
Washington,
first
in Terms
27.4.2 e e-z mc $)q s0
27.4.1
Function
see chapter 5.)
to the
27.4.3 c ’ e-za*o+&=K&
S 0
(For Ki,(z),
o<e<;)
1.3.5...(2&-1) 2.4.6...(2k)
CG=l’ak=
deCKi,
(For erf, see chapter 7.)
(se) (520,
Integral
Error
~>~+‘&+a
diierencee.
Relation
to the
Integrals
for
(For Ean+&),
Relation
of Exponential
e-z !3ec4(j+
-~&OS
x(e=-1)-i, (1-e-s)
with
Represent&on
by
of
[ ‘-;I”]
[ (-;)“I
Contri-
functions
of zae*(e=--1)-z,
14.99,
27.4. Sievert
[ (-:)“I
Integral
of the
Bessel
Function
m
(z) =
S z
- (+T)+
{
K,(t)&
where
l-tz+$f$
301035 -- 2655 1024&%i%?4see chapter 11.)
--
Ko@)
***
MISCELLANEOUS [27.5]
National integral, Printing
[27.6]
Bureau of Standards, Table of the Sievert Applied Math. Series(U.S. Government Office, Washington, D.C. In press).
z=0(.01)2(.02)5(.05)10,
e=0”(1”)90”,
1001
FUNCTIONS
9D.
R.
M. Sievert, Die v-Strahlungsintensitiit an der Oberfliiche und in der niichsten Umgebung von Radiumnadeln, Acta Radiologica 11, 239-301 (1930).
s
’ 0-r 0
Sievert
Integral
0 S
,-zssc*
#*a *d+, ~=30°(lo)900,
A=O(.01).5,
3D.
Table
&J
27.4
0
x\e
2o”
4o”
5o”
60”
174533 157843 142749 129099 116754
0.349066 0.315187 0. 284598 0.256978 0.232040
0.424515 0.382255 0.344209
0. 698132 0.625886 0.561159 0.503165 0.451198
0.872665 0.777323 0. 692565 0. 617194 0.550154
1.047198 0.923778 0.815477 0.720366 0. 636769
1.308997 1. 123611 0. 968414 x: EE::
1. 570796 1.228632 1.023680 0.868832 0. 745203
0. 105589 0.095492 0.086361 0.078103 0.070634
0.209522 0. 189191 0. 170833 0. 154256 0. 139289
0.309957 0.279118 0.251353 0. 226354 0.203845
t 0: 0. 0.
0.490508 0.437428 0.390178 0.348109 0.310642
0.563236 0.498504 0.441478 0.391204 0.346851
,O. 632830 0.552287 0.483134 0.423535 0.371996
0.643694 0.558890 0.487198 0.426062 0.373579
0.063880 0.052247 0.042733 0.034951 0.028587
0. 125775 0. 102553
0. 183579 0. 148899 0. 120780 0.097979 0.079488
0.234956 0. 189138 z Et; 0: 098829
0.277267 0.221027 0. 176336 0. 140792 0. 112497
0.307694 0.242523 0.191533 0. 151541 0. 120105
0.327288 0.254485 0. 198885 0. 156087 0. 122932
0.328286 0.254889 0. 199051 0. 156156 0. 122961
0.023381 0.019123 0. 015641 0.012793 0. 010463
0.045335
t o”Ei 0: 024582 0.020045
0. 064492 0.052329 0. 042463 0.034460 0.027968
0.079644 0. 064201 0.051766 0.041750 0.033680
0.089954 0.071979 0.057635 0.046179 0. 037024
t X%? 0: 060342 0.048100 0.038387
0.097108 0.076905 0.061040 0.048541 0.038667
0.097121 0.0769 11 0.061043 0.048542 0.038668
0.016347 0.009817 0.005896 0.003542 0.002127
0.022700 0.013477 0.008005 0.004756 0. 002828
0.027177 0.015912 0.009330 0.005478 0.003221
t EEz 0: 009951 0.005787 0.003374
0.030670 0.017576 0.010128 0.005862 0.003407
0.030848 0.017634 0. 010147 0.005869 0.003409
0.030848 0.017634 0.010147 0.005869 0.003409
0: 000461 0.000277 0.000167
0.001682 0.001001 0.000596 0. 000355 0.000211
0.001896 0.001117 0. 000659 0. 000389 0.000230
0.001972 0.001155 0.060678 0.000399 0. 000235
0.001986 0. 001162 0.000681 0.000400 0.000235
0.001987 0.001162 0.000681 0.000400 0.000235
0.001987 0.001162 0.000681 0.000400 0.000235
0.000100 0.000060 0.000036 0.000022 0.000013
0.000126 0.000075 0.000045 0.000027 0.000016
0.000136 0.000081 0.000048 0.000028 0.000017
0.000139 0. 000082 0.000048 0.000029 0.000017
0.000139 0.000082 0.000048 0.000029 0.000017
0.000139 0.000082 0.000048 0.000029 0.000017
0.000139 0. 000082 0.000048 0.000029 0.000017
[ (-;I51
[(-y]
[‘-y]
[(-f”]
[ Ff’“]
[ (-;)“I
[(1?2]
loo 0. 0. 0. 0. 0.
:: i Ki 0:9 1. 0 1. 2 i-t 1: 8 Ei 2: 4 i:t
i EE d. 055597
0.008558 E 4: 0 4. 5 5. 0 5. 5 E P:X 8. 0 :X 9: 5 10. 0
t xxz
0.000694 0.000420 0. 000254 0.000154 0.000093 0.000056 _..__ 0.000034 0.000021 0.000012 0.000008
-
[ 921
27.5. f,,,(z)=
S
OD t”‘e-‘*-$&
fi%i 325486 291957 261901
Power
and
Series
Representations
0
Related
m=o,
Integrals
1,2..
Differential
j;=
-j,,,ml
(m=l,
Recurrence
27.5.3
-2akea
‘“=k(k-1) %=a*=0
zjy+P-l,j~‘+2jm=0
27.5.1
27.5.2
.
Equations
2, . . .)
Relation
2j,,,= (m-l)jm-a+zjm-a
(m23)
--
I
(k-2)
b,=l
] (For y, see chapter 6.)
b ---2b,-,(3ka-6k+2)an ‘k(k-1) (k-2) e=-b, b,=-,G
bs=; (1-y)
1002
MISCELLANEOUS
FUNCTIONS Asymptotic
27.5.5
Representation
27.5.11 -.01968;cb+.00324x6+.000188x7
gI(x)=Gyz
. . .
-x2 ln x(1-.0833322+.001389ti-.00000835cs+.
. .)
i exp [ --i(iy’]
(A sin e+B
27.5.12 g2(x)=-~~2fexp[-~(~~3](A
27.5.6 2j2(x)=g-x+$
co9 0)
co8 &-Bsin
0)
x2-.3225~-.1477x*+.03195x’ +.00328x’-
.000491x’-
.0000235ti
+x3 ln x(+.01667;F2+.000198x4-
... . . .)
27.5.7 2j~(x)=l-q
x+;-.295421+.10142’+.02954x’ -.00578x8-
.00047x’+
.000064x” . . .
-x4 ln x(.0833-.00278~+.000025x*Asymptotic
. . .) uQ=l
Representation
aa=-.
27.5.8
fm(z)-di
3-;vy
em0(ao+:+$+
. . . +$+
. . .)
b-+-1 v=3
: ,2f3 02
[27.7] M. s
+3(m--2k)(2k+3--m)(2k+3+2m)u~
lw
(k=O, m(x) +ig,(x)
=~mt3e-ta+i
fdt
27.5.10 91(x> = 9i%(;z>
s2(4
13, l-57
a,==.148534
us=-.000762
Evaluation
of
the
integral
J. Math. Phys. 32,188-192
(1953).
in series of the integral Ark.
Mat., Astr., Fys.
(1921).
[27.9] J. E. Kilpatrick and M. F. Kilpatrick, Discrete energy levels associated with the LennardJones potential, J. Chem. Phys. 19, 7, 930-933 (1951). [27.10] U. E. Kruse and N. F. Ramsey, The integral
(3m2+3m-l)
12(k+2)uk+2=-(12k2+36k-3m2-3m+25)u~+I
27.5.9
Abramowitz, m e-u’-Judu,
[27.8] H. ‘Fax&r, Expansion (D exp [-z(tft-“)]tadt, s 1;,
c&)=1, a*=+2
a1 = .972222 al= .004594
= --J%(~l
1,2 . . .)
ya exp (-@+i
i)
dy, J. Math.
Phys. 30,
40 (1951). [27.11] 0. Laporte, Absorption coefficients for thermal neutrons, Phys. Rev. 52, 72-74 (1937). [27.12] H. C. Torrey, Notes on intensities of radio fre. quency spectra, Phya. Rev. 59, 293 (1941). (27.131 C. T. Zahn, Absorption coefficients for thermal neutrons, Phys. Rev. 52, 67-71 (1937). I- 0
m~~e-z-zl~dy
for n=O, 4, 1; z=O(.Ol).l(.l)l.
MISCELLANEOUS
x
fib)
fib)
A(z)
0. 0. 0. 0. 0. 0.
0. 5000 0.4956 0. 4912 0. 4869
1003
FUNCTIONS
--
f3W
---
I 0.
00
0. 01 0. 02 0.03 0. 04 0. 05
::
:Ei
0. 4832 0.4753 0. 4676 0. 4602
4431 4382 4333 4285 4238 4191
0. 4263 0. 3697 0. 3238 0.2855 0.2531
0. 0. 0. 0. 0.
0. 3970 8: E 0. 2923 0. 2654
4580 4204 3864 3557 3278
I
i: ES [‘-s5]
X
~f3(4
0.00000 0.08764 0. 16933 0. 24139 0. 30136
6
0: 8
::X :.t
-0. 2626 -0.2552 -0. 2441 -0. 2299 -0. 2132
0. 34805
1: 8
0.0430
0. 0. 0. 0.
iii! Et:
2; ;;y; -0: 0490
-0.0734
10: 0
-0.1374 -0. 1455
10. 11. 11. 12. 12.
5 0 5 0 5
0. 10288 +O. 03892
t E?::; 0: 40910 0.40592
1; :;g -0: 1536 -0.1322 -0. 1108
1: -0: -0. -0.
;;04;2 1221 1629 1966
it fE” 0: 3448 0. 3122 0.2759
-0.0896 -0.0691 -0.0493 -0.0307 -0.0132
1; :g -0: 1535 -0.1515 -0. 1476
:tx 14: 0 14. 5 15. 0
-0. -0. -0. -0.
2233 2432 2565 2639 2657
it % 0: 1569 0. 1173 0.0792
+; ye;
-0.
14211
0: 03061 0. 04220 0. 05224
1; -0: -0.
:;;g 11805 10830
16. 17. 18. 19. 20.
it0: ;%i 16972
2255 2015 1807 1626 1466
2415 2202 2011 1839 1685
:: ;%z 0. 2584 0.2392 0. 2215
[1(-s”]
[ (-;)4]
0.06078 0.07562 0.08221 0.08191 0.07626
-0.09808 -0.07131 -0.04496 -0.02082 -0.00010
it XE 0.06684
+;: 0.03707 ;;W$
8X
4f3W
-0. 50000 0. 49019 46229 0. 41950 0. 36543
0. 0. 0. 0. 0.
f&
fd4
fib)
-(-$61’
=
8:“z tt
Table 27.5
0 0 0 0 0
0: 02937 0.01727
: . 84;::
4-O. 00650 -0.00259 zoo. gg;
0.04109 0.03758 0.03268 0.02696
-0:
0.02089
01872
-0.02118 -0.01906 -0.01435 -0. 00879 -0.00360
+O. 00921 -0.00022 -0.00650 -0.00965 -0.01021
[ q1-J
[ (-;)7]
[ (q3P-j Compiled
[ ‘-921
[ (-$51
[ (--:)4]
from U. E. Kruse and N. F. Ramsey, The integral
du, J. Math.
Phys. 30,40 (1951) (with permission) Asymptotic
Power
27.6.1
f(z)=-e-z21n
Series
27.6.4
Representation
z+emz2[&
&
Representation
k,Gyil)
-2
kg&l
27.6.2 z-e
-9 In ,&+i .& 2
(For y and the digamma ter 6.) Relation
to the
(--lMk+lwk
k=O
function
Exponential
k!
yS(x)),see chap-
[27.14]
A. ErdBlyi, Note on the paper gral” by R. H. Ritchie, Comp. 4, 31, 179 (1950).
“On Math.
a definite Tables
[27.15]
E. T. Goodwin
Table
of
Quart. J. Mech. x=0(.02)2(.05)3(.1)10. z=O(.Ol)l.
Integral
emz2Ei (2”) +&ems JO’ e12dt z (For Ei (CC)see chapter 5; emz2 ef2 dt, see chapter s0 78
and J. Staton,
27.6.3 f(x) =-5
[27.16]
R. H. Ritchie, Aids Comp.
Appl.
Math. Auxiliary
On a definite integral, 4, 30, 75 (1950).
inteAids
0m $ du, s 1, 319 (1948). function for
Math.
Tables
1004 Table
MISCELLANEOUS
FUNCTIONS
27.6
= x
f(z)
+ In z
--
II---
0. 00
0. 0. 0. 0.
05 10 15 20
0. 0. 0. 0. 0.
25 30 35 40 45
-0. 2886 -0. 2081 -0. 1375 - 0.0735 -0.0146 ‘Z:
0. 50
x
f(z) + In z
x
II
----I
= --
0. 0. 0. 0. 0.
50 55 60 65 70
0. 2704 0.3100 0.3479 0.3842 0. 4192
E 0. 1398 0. 1856 0.2290
0. 0. 0. 0. 0.
75 80 85 90 95
0.4529 0. 4854 0.5168 0. 5472 0.5766
0.2704
1. 00
1. 0
::i ::;: 1. 9
0.6051
2. 0
from
[(-$2-j
E. T . Goodwin
and J. St&on,
27.7.
27.7.1
Integral
f(x)=-1
f(x) =kg
2: 2 2. 3 2. 4
0.4460 0.4239 0.4040 0.3860 0.3695
2. 5
0.2944
4: F 2. 8 2. 9
0. 2848 2758 0. 2673 0.2594
t:: 7. 5
0.3543
3. 0
0.2519
8. 0
Functional
for
of
s
0
ag c u+z
du, Quart.
J. Me&.
+f(l+x)
27.7.5 f(x>+f
Math.
1,319
(1948)
to
[ (-yJ]
(with
permission).
Debye
Functions
(l-z)+;
[27.18]
K. Mitchell,
[27.19]
E. 0. Powell, integrals,
(12x20)
(12
=;f(l-x?>
(In s)*
mew
functions
of the function
An integral Phil. Mag.
related 7, 34,
x=0(.01)2(.02)6,
to the 600-607
radiation (1943).
7D.
A. van Wijngaarden, Polylogarithms, by the Staff of the Computation Department, Report R24, Mathematisch Centrum, Amsterdam, Holland (1954).
5 In (x+1) -g-;j(x*)
and associated England, 1958).
* --log Il-Yl dy s0 Y ’ with an account of some properties of this and related functions, Phil. Mag. 40, 351-368 (1949). z=-l(.Ol)l; 2=0(.001).5, 9D. Tables
:zdy,
[27.20]
-!&
Lewin, Dilogarithms (Macdonald, London,
s
x>O)
(O_
f(~-‘)=-f(e’)-;=So’ L.
(21x10)
27.7.6 f(s+l)-f(z)=-In
Appl.
[27.17]
Relationships
(k)=-k
1468 1356 1259 1175 1102
0. 1037
[‘-y-j
27.7.7
dt
27.7.4 f(l-4
0. 0. 0. 0. 0.
fl = 2)
@$
2 In
2 i 4. 5 5. 0
-
27.7.3 f(z)+f(l--2)=-ln
0.2519 0. 2203 0. 1958 0. 1762 0. 1602
:: Fi
[ (-i)7]
Expansion
(-1)’
.-
0.3543 0.3404 0.3276 0.3157 0.3046
Relation
gl
Series
27.7.2
Table
f(z)
X
3. 0
;:
Dilogaritbm
@pence’s
f(z)
-
[(-y] Compiled
x
f(z) 0.6051 0.5644 0.5291 0.4980 0.4705
:. 4 1: 3 1. 4
-
=
z=ti, 10D.
P,,(z)=~& for
z=O(.Ol)l;
h- nzh for
z=z=
z=eira/*
for
- l(.Ol)l; a=0(.01)2,
MISCELLANEOUS
1005
FUNCTIONS
Table
Dilogarithm
27.7
f(x)=-S,y+it I
x
f(z)
2
x
f(z)
x
f(z)
_-
Fixi 0: 34
40 41 42 43 44
0. 0. 0. 0. 0.
72758 71239 69736 68247 66774
6308 5042 1058 9725 6644
9393 6675 7798 0654 4053
0. 0. 0. 0. 0.
0.80608 0.79002 0. 77415 0. 75846 0.74293
2689 6024 3992 0483 9737
0. 0. 0. 0. 0.
45 46 47 48 49
0.65315 0. 63870 0. 62439 0. 61021 0.59616
7631 8705 6071 6108 5361
7624
0. 40
0.72758
6308
0. 50
0. 58224
0526
20 21 22 23 24
1. 07479 1.05485 1. 03527 1. 01603 0.99709
4600 9830 7934 0062 9088
0. 30 0. 31
0. 15 0. 16 0. 17 0.18 0. 19
1. 18058 1. 15851 1. 13693 1.11580 1.09510
1124 6487 6560 8451 3088
0. 0. 0. 0. 0.
25 26 27 28 29
0.97846 0.96012 0. 94205 0.92425 0.90669
0.20
1.07479
4600
0.30
0.88937
4067 5448 9712 9041 5860
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
05 06 07 08 09
1.44063 1.40992 1.38068 1. 35267 1. 32572
3797 8300 5041 5161 8728
0. 10
1. 29971
4723
10 11 12 13 14
1. 1. 1. 1. 1.
-0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
1.64493 1.58862 1. 54579 1.50789 1.47312
35 36 37 38 39
-
[l--3)2] K. Mitchell,
From (with
[ (-!)5]
[(-4’11 Tables
dy, with
of the function
f(z)
X
7624 1733 7404 6261 0471
4723 9160 7584 0101 7961
01 02 03 04
f(x) 0. 88937 0.87229 0. 85542 0.83877 0. 82233
29971 27452 25008 22632 20316
0. 0. 0. 0.
0. 00
II
an account
[‘-p-j
[ (-;)“I
of Some properties
of this and related
functions,
Phil.
Meg. 40,351~363
(1949)
permi.?a1on).
27.8.
Clausen’s
Integral Summations
and
Summahle
Related
27.8.6
27.8.1
c
cos
c n=l
Series
cn4
(w
on-l Cw
‘%+’
&(2=-l)
2k(2k+l)
!
bdKe<4 Functional
to Spence’s
where g(z)=
-
~08
(o<e<27r)
(osel27)
no r4 a282 n4 =iG-12+12--G
s!322!=~ n
c n=~
s3-7r;
c n=1
!!Epg!T+g-go
[27.21]
(o<e
[27.22]
[27.23]
S
,“$lnJl+i!l
[27.24]
84
71+
(T-e)
A. Ashour
(o_<esar)
0w<w
77;2
I g
n3
c&9 =ng
27.8.5
ij(e)=&P)+~
e 2 sin 2
cz!+f-$+f
m c n=~
Relationship
27.8.4 f&--e)=f(e)--$(28) Relation
‘rJ
Representation
27.8.2
f(?r-e>=e ln 2-g
no ( >
-=--In
n=l
Series
(o<e<2r) (o<e52n)
and y
A. Sabri, t Math.
Tabulation Tables
of the function Aids
Comp.
10,
54, 57-65 (1956). T. Clausen, uber die Zerlegung reeller gebrochener Funktionen, J. Reine Angew. Math. 8, 298-300 (1832). z=O”(10)1800, 16D. L. B. W. Jolley, Summation of series (Chapman Publishing Co., London, England, 1925). A. D. Wheelon, A short table of summable series, Report No. SM-14642, Douglas Aircraft Co., Inc., Santa Monica, Calif. (1953).
1006
MISCELLANEOUS
Table 27.8
FUNCTIONS
Clausen’s f(0)
= -I”
Integral In (2 sin f) dt
-P
f@)+e In 0 0.000000 0. 017453 0. 034908 0. 052362 0.069818 0.087276
0.612906 0.635781 0. 657571 0. 678341 0. 698149 0.717047
0. 104735 0. 122199 0. 139664 0.157133 0. 174607
0.735080 0.752292 0. 768719 0.784398 0. 799360
0. 192084 0. 209567 0. 227055 0. 244549 0.262049
0.813635 0.827249 0.840230 0.852599 0.864379
80
f@)
80
f@)
80
f(e)
f(e)
--
0.864379 0. 886253 0.906001 0.923755 0.939633 0.953741
1.014942 1.014421 1.012886 1. 010376 1.006928 1. 002576
1;: 105 110 115
0.915966 0.883872 0.848287 0.809505 0. 767800 0.723427
2 50
0.966174 0.977020 0.986357 0.994258 1.000791
0.997355 0.991294 0.984425 0. 976776 0. 968375
120 125 130 135 140
: 0: 0. 0.
x2 56 58 60
1.006016 1. 009992 1. 012773 1.014407 1. 014942
0.959247 0.949419 0.938914 0.927755 0.915966
145 150 160 170 180
0.413831 0.356908 0. 240176 0. 120755 0.000000
3x xi 38 40 2
90
W%E 576647 523889 469554
[ 7’83 Compiled
from A. Ashour
[t-y]
and A. Sabri,
[(-y]
[t-213]
Tabulation
of the function
sin +(0) = c d, n.9 ?&=I
27.9. Vector-Addition
(Wigner
Math.
Tables
Aida
Comp.
[ q4]
10. bl. 67435 (19561 (with
permission).
Coefficients
coefficients or Clebsch-Gordan
coefficients)
Definition
27.9.1 (j,j2m,m*lj1j2jm)=~(m,
m1+m2)
*
<j,+j,-~~!0’+j*-j,>!(j+j,-j,,!(aj+l> J
o’+jl+j2+1>!
(-1>“JO;+~l>~(jl-~l>~(j2+~2>~(j2-m2>!O’+m>~(j-m>! * T
k!(j,+j,-j-~>!(j,-m,-k>!(j,+m~--k)!(j-jz+m,+k)!0’-j1-m~+~)!
Conditions
27.9.2 27.9.3
jl, j2, j=+n
or+:
27.9.8
(n=integer)
27.9.9
ImlIj1,
Imzlljz,
(jlj2mlm21j~j2jm)=0
14 Ij mli-m,Zm
jl+j2+j=n Special
Values
27.9.4 27.9.5
27.9.10
(jlOmlOIjlOjm)=~(jl, j)s(m,, m)
27.9.11
(jlj2001j&jO) =0
27.9.12
(j,jlmlmlIj,jljm)=O
27.9.6 27.9.7
j,+j,+j=Sn+l 2jI+j=2n+l
MISCELLANEOUS Symmetry
27.9.17
Relations
27.9.13 (j,j2mmlihjm>
27.9.18
=(-1)11+‘~-‘(j,jz-m,-m2~jIj2j-m) 27.9.14
=t.hjl-ma-mlIj&j-m)
27.9.15
=(-1)1~+t~-f(j2jlm,m21
1007
FUNCTIONS
= gE$ (-l)ll-~l+l-~(jjam-ma J Ijjkh) =
J
E
(-l)l-"+ll-"l(jljma-m
lj2jj~--md
27.9.19
j2jljm)
zz
$J+
(-l)Jl-“ll(jljml-m
J Ijljh-m2>
27.9.16
27.9.20 =
J
g
(-l)jp+%(jj,-mm,
=
E
(-l)jl-“l(
jj,m-m,
J
Ijj2jl -4
I j&h>
(jl% ml ma IA %j ml
j=
m=H
I
Table 27.9.1
<
ma=-%
Table 27.9.2 m=-1
h+ 1
~r+m)~l-t-m+l) J
(2ji+ 1)(2j1+2)
(j,-m+1)0'l+m+l)
J
(2jl+l)l.,h+l)
(j,-m)($-m+l) -\I (2jl+l)@j1+2)
1008
MISCELLANEOUS
Table 27.9.3
(A % ml maIA 74j 4
j=
A--%
ma=%
ma=% (j,+m-f/2)Cj~+mf~/z)(jl+m+~) (2jt+1)(2j1+2)(2j1+3)
A+%
jl+!h
FUNCTIONS
_ J
3(j,+m-M)(j1+m+%)(j~--m+%) 2jr(2jl+ 1)(%+3)
J
a(j,+m+~)(j,+m+h)(j,-m+S/2) (2jl+l)(2j1+2)(2j1+3)
-lir3m+4~;
30'lf
(2j,-1fi,~~,';2j1+2)
(2j,-1)(2jl+l)(2jl+2)
J
O',-m-~)(j,-m+Yz)(jl-m+3/1) 2ji(2jl-11)(2jl+l)
j,-#
30'1+m-~)O'I-m--Im,~,-m+Yz) 2j,(2jl-1)(2jl+l) J
ms=-$4
J
30'l+m+~)(j,-m+y,)O'I-m+~) (2jl+1)(2jr+2)(2ji+3)
(jl+3m+K)Jii) -(jl-3m-%) -
J
j,+m+% (2j,-1)(2jl+l)(2j1+2)
30'l+m-~)(j,+m+~)Cil-m-~) 2j1(2jl-11)(2jl+l)
ma=-%
J
(j,-m-%)(j,-m+~)(jl-m+~) (2jl+l)(2jt+2)(2j1+3)
J
30',+m+~)(j,-m-y,)O'l-m+~) 2j1(2jl+ 1) C&+3) 30',+m+~)(j,+m+K)O'l-m-Yz) (2jl-l)(2jl+1)(2j1+2) O',+rn-~)(j,+m+M)O'l+m+3/2) 2j,(2j,- 1) (2jl+ 1)
-
-
Table
27.9.4
(5 2 ml ma IA 2 j ml
-
m9=2
j=
iI+2
(j,+m-l)(j,+m)(j,+m+l)O',+m+2) (2jl+1)(2j,+2)(2j,+3)(2j,+4
J _
A+1
J
A
J
J
jl-2
J
j,+l
5
O',+m-l!O'1-m)O',-m+1)0'1-m+2) 2(~,-1)~10',+1)(2j,+l)
J
J
0',+2m-1) 1)
-
J
(j,-m+ 1) i&-m) ($-l)j,(2jl+1)(2j,+2)
,-m+l)O',-m)O',-m-1)0'l+m-l) (jl-1)(2j,-l)jt(2j,+l)
J
J
(j,-m-l)(j,+m+l)(j,+m)O',+m-l) 6,-l) (2j,- l)j,@j,+
(2j,+3)
J
(j,-m-l)(j,+m)(j,+m+l)O',+m+2) (j,-l)j,(2j,+l)(2j,+2) ~,+m-l)~,+m)~,+m+l)(jl+m+2)
1)
J
(2j,+4)
(j,-m-l)(j,-m)(j,-m+l)O',+m+2) jl(2jl+ 1) O'I+ 1) (%+4 (j,-m-l)(j,-m)(j,+m+l)O'l+m+2) (2j,-l)j,(2j,+2)(2j,+3)
1)
(j,+m+l)O'l+m) (.j,-l)j,(2jl+1)(2j,+2) -
(2j,+ 1) (2j,+2)
(2j,-2)(2j,-1)2j,(2j,+l)
(j,-m+l)(j,+m+l) j1(2jl+l)C.j~+l)o'1+2) 3m*-jlC$+l) 11j16'1+ 1) (%+3) 3Cj,-m)ti,+m) ,--l)j,(Zj,+l)&+l) 3(j,-m)(j,-m-l)(j,+m)ti,+m-1) (2jl-2)(2jrl)j,(2j,+
~,-m-i)~,-m)~,-m+l)(jl-m+2) J
(j,-m+l)O',-m) J j,(2jl+ 1) C&+2)&+2)
3($-m) ti,+m+ (2m+1)-/(2j,-l)j,(2j,+2)(2j,+3)
3(j,-m+2)(j,-m+l)(j,+m+2)0',+m+l) (2j,+1)(2j,+2)(2j,+3)0',+2)
d(2jl-
mz=-2
(j,-m+2)(j,-m+l)(j,-m)ti,+m+2) (2j,+l)(j,+l)@j,+3)0',+2)
t.j1+2m+2)
J
3(j,-m+l)til+m) (2j,-l)j,@j,+2)(2j,+3)
ma=-1
j,-1 h-2
O',-m+2)O',+m+2)O't+m+l)O'l+m) (2j,+l)(j,+l)@j,+3)0',+2)
(l--m)
(.j,-m-l)($-m)(j,-m+l)(j,-m+2) (2jl-2) (2jl- 1)2j,(2j,+
ml=0
-0.,-2m+2)J2j,(~~~~~~~~~2~
O',+m-1)O',+m)O',+m+1)0'1-m+2) Zj,(j,+1)0',+2)(2j,+l)
j=
5+2
J
3~,+m-l)~l+m)~~-m+1)O'~-m+2) (2j,-l)2jl(j,+l)(2j,+3)
_
ji-1
m=l
1)
1010
MISCELLANEOUS
FUNCTIONS
27.9.5 [By use of symmetry relations, coefficients may be put in standard form j,<j,< j and m>O]
Table
m2 1 m 1 A 1 j
1
(jlj2mmzl
j, j2jm)
j2=!4
-E H
$2
81
it1: 00000 E::
-
46
-1
-5E -2
0.70711 0.00000 -t y;;; -0:0.81650 70711
x4-i
0. 57735 1.00000
5#
0.81650 0.40825
5; 4
0.40825 0.70711 0.70711 1.00000
*
-
h=K
0.73030 -0.25820 -0. 63246 0. 63246 -0. 77460 0. 70711 0.70711 0.86603 0.50000 1.00000 0.50000 0.50000 -0.50000 - 0.50000 0. 70711 0.00000 -0.70711 0. 70711 -0.70711 0.54772 0.77460 0.31623 0. 77460 0. 63246 1.00000
Compiled cients, Oak @54) (with
from A. Simon, Ridge National permission).
Numerical Laboratory
tables of the Clebsch-Oordan Report 1718, Oak Ridge,
co&lTerm.
[27.25] E. U. Condon and 0. A. Shortley, Theor atomic s ectra (Cambridge Univ. Press, Sal2 bridge, 2 ngland, 1935). 127.26) M. E. Rose, Elementary theory of an ular momemtum (John Wiley & Sons, Inc., If ew York, N.Y., 1955). 127.271 A. Simon, Numerical tables of the Clebsch-Gordan coefficients, Oak Ridge National Laboratory Report 1718, Oak Ridge, Tenn. (1954). ~o~j~p3; mimzm) for all angu%r moments <#,
*see
page
n.
28. Scales of Notation A. SCHOPF~
S. PEAVP,’
Contents Page Representation
. . . . . . . . . . . . . . . . . .
1012
. . . . . . . . . . . . . . . . . . . . . .
1013
References.
. . . . . . . . . . . . . . . . . . . . . . . . . .
1015
Table 28.1.
2f” in Decimal,
n=0(1)50,
. . . . . . . . . . .
1016
Table 28.2.
2” in Decimal,
zc=.001(.001) .01(.01).1(.1).9,
15D . . .
1017
Table 28.3.
lo*” in Octal,
Exact or 20D . . . . . . .
1017
Table 28.4.
n log,, 2, n log, 10 in Decimal,
10D . . . .
1017
Table 28.5.
Addition and Multiplication Tables, Binary and Octal Scales. . . . . . . . . . . . . . . . . . , . .
1017
Mathematical
1017
Numerical
Table28.6.
of Numbers.
Methods
The authors acknowledge checking of the tables.
n=0(1)18,
Constants
Exact
n=l(l)lO,
in Octal
Scale . . . . . . . .
the assistance of David S. Liepman
1 National Bureau of Standards. * Guest worker, National Bureau (deceased).
of Standards,
from
The
in the preparation
American
and
University 1011
28. Scales of Notation Representation Any positive real number x can be uniquely represented in the scale of some integer b>l as x=(A,
. . . AIA,,.a-la-2
. . .)(b),
of Numbers Integers
X=(A,
. . .
(I) b-scale arithmetic. and define
AlAo)
Convert ?; to the b-scale
where every A, and am5 is one of the integers 0, 1 not all Ai, aWj are zero, and * *, b-l, Am)0 if z 11. There is a one-to-one correspondence between the number and the sequence x=A,b”+
. . . SAlb+%+~
a- jb-5
where the infinite series converges. The integer b is called the base or radix of the scale. The sequence for x in the scale of b may terminate, i.e., a-.-l=a-n-2= . . . =0 for some n>l so that x=(A,,,
. . . A1Ao.a-la-2
where 2, xi, . . ., xi are the remainders and Xl, x2, * . ., X; the quotients (in the b-scale) where X, X1, . . ., X;.+ respectively are divided by z in the b-scale. Then convert the remainders to the z-scale,
. . . a-,Jca,;
then x is said to be a finite b-adic number. A sequence which does not terminate may have the property that the infinite sequence aml, a-,, . . . becomes periodic from a certain digit a-,(n>l) on; according as n=l or n>l the sequence is then said to be pure or mixed recurring. A sequence which neither terminates nor recurs represents an irrational number.
(z&,=&
(z-4&;)=&
. . ., (Ti&;)=Ji;
and obtain x=
(24; . . . ZJ&).
(II) &scale arithmetic. Convert b and Ao, A,, . . ., A,,, to the g-scale and define, using arithmetic operations in the J-scale, Xm_1=A,b+A,-1, X,-2=X,-1b+A,-,,
Names of Scales
X,=-&b+A,, Base
Scale
2 3 4
Binary Ternary Qu?ternary
2 7
2eiEiy Septenary
I
Base 8 9 10 11 12 16
I
Scale
X=X,b+A,. Octal Nonary Decimal Undenary Duodenary Hexadecimal
General Conversion Methods
Any number can be converted from the scale of b to the scale of some integer z# b, z>l, by using arithmetic operations in either the b-scale or the $-scale. Accordingly, there are four methods of conversion, depending on whether the number to be converted is an integer or a proper fraction. 1012
then
Proper
fractions
2=
(0.~3~la-,
. . . )(a)
To convert a proper fraction x, given to n digits in the b-scale, to the scale of ii Z b such that inverse conversion from the J-scale may yield the same n rounded digits in the b-scale, the representation of x in the z-scale must be obtained to n rounded digits where n satisfies i?>b*. (III) b-scale arithmetic. Convert a to the b-scale and define
SCALES
OF
where &, SiL, . . ., ii-;; are the integral parts and Xl, 22, * - *, G the fractional parts $n the b-scale) of the products & z$, . . ., ~-lb, respectively. Then convert the integral parts to the kcale, (&)(B)=ii-l,
1013
NOTATION
Convert 6 and a-,, (IV) z-scale arithmetic. to the J-scale and define, using arithmetic operations in the &scale,
a-2, . . .) a-,
. . ., E&,=L,
(z.2)(;,=ii-2,
x+2=x-.+db+a-.+a x-1=xJbSa-1;
and obtain
then x= (OLIii-2
Numerical
Methods
The examples are restricted to the scales of 2, 8, 10 because of their importance to electronic computers. Note that the octal scale is a power of the binary scale. In fact, an octal digit corresponds to a triplet of binary digits. Then, binary arithmetic may be used whenever a number either is to be converted to the octal scale or is given in the octal scale and is to be converted to some other scale. Decimal
1 2 3
4
5
6
7
8
9
10
Octal
123
4
5
6
7
10
11
12
Binary
1 10 11 100 101 110 111 1000 1001 1010
Convert X= (1369)c10j to the octal scale. By (I) we have b=lO, z=8c0, and so, using decimal arithmetic, Example
x=xsel/b.
. . . &J(6).
1.
Convert X=-(2531) (*) to the decimal scale. By (I) we have b= lO= (12) (*) and hence, using octal arithmetic, Example
2.
2531/12=210+11/12 210/12=15+6/12 15/12=1+3/12 l/12=0$1/12
Thus, converting &=
(11)(B)=9,
to the decimal &=6ce,=6,
scale,
x2=3(*)=3,
&
1,
and so X= (1369)(10,. By (II) we have b= 10, and the octal digits of X are unchanged in the decimal scale. Hence, using decimal arithmetic,
1369/8=171+1/8, 171/8=21+3/8,
21/8=2+5/8, 2/a=o+218;
Using binary arithmetic we have, by b=8=(lOOO)o, and A,=l,A1=(11)(2),A2=(101)(2), Aa= (10)c2,. Then,
then X=
(2531),,.
By (II) we have b= (12)(*, and As= lc8), A2 =3(*), A1=6(,=,), Ao=(ll)(g,. Hence, using octal arithmetic, x,=1-12+3=
(15)(*),
X~=10~1000+101=(10
x,=10 x=10
(II),
lOl),,,
101~1000+11=(10
101 Oil)@,,
101 011*1000+1=(10
101 011 001)(2),
xr=15~12+6=(210)~8,, x=210-
12+11=
(2531)(*,.
Using binary arithmetic we have, by (II), ~=(1010)~2~ and &=l~, A2=(ll)~2,, A=(l10)c2j, AO(lOO1)o,. Thus x,=1*1010+11=(1101)(2,, x,=1101*1010+110=(10
x=10
001 OOO)@,,
001 ooo.lolo+lool=(lo
whence, on converting
101011 OOl),,,
to the octal scale,
X=(2531)(8,.
whence, on converting x=
to the decimal scale, (1369)clo,.
Observe that in both examples above, octal arithmetic is used as an intermediate step to convert. according to (II), the given number to the binary scale. If, instead, the given number is first converted to the binary scale, then binary arithmetic may be applied directly to convert, according to (I), the given number from the binary scale to the scale desired.
1014
SCALES
OF
For example, in converting X= (2531),8, to the decimal scale, we find fbst X=(10101011001)~~, and then obtain, using (I) with g=lO=(lO1O)ca,, 10 101 011 001/1010=10
NOTATION
Alternatively, we can apply (III) using binary arithmetic: (0.010 110 11).1010=11+(0.100
(0.100 011 1).1010=101+(0.100
001 ooo+lool~lolo,
(0.100 011)*1010=101+(0.011
10 001 000/1010=1101+110/1010,
(0.011 11) ~1010=100+(0.101
1101/1010=1+11/1010, 1/1010=0+1/1010.
Thus, on converting Ao=(1001)ca,=9,
to the decimal scale,
Al=
(110)cs,=6,
Aa=l,
~&=(11)~~,=3,
whence Convert
3.
z= (0.355)c10j to the bi-
(0.355) .8=2+0.840,
(0.080) .8=0+0.640
(0.840) .8=6+0.720,
(0.640) .8=5+0.120
(0.720) .8=5+0.760,
(0.120) .8=0+0.960
(0.760) .8=6+0.080,
(0.960) -8=7+0.680
whence x=(0.26560507 . . .)ca,. Thus, verting to the binary scale,
on con-
In order that inverse conversion of x from the binary to the decimal scale yield again x to the given number n of decimal digits, we must round x in the binary scale to at least Z digits where 5 is chosen such that 2g>10n. As a working rule, we n.
Hence, to obtain x= (0.355) clgj
by inverse conversion, binary scale to Z 2:
x must be rounded
in the
3= 10 digits.
Thus, 2=(0.010
with
b=8,
and k are to be chosen so as to satisfy d-k
2y.
15
=50.
From Table 28.1 we find
Thus, we must take k=29 and, consequently, choose n>21. The conversion on a desk calculator thus proceeds as follows. First, we obtain by use of Table 28.1
Then, for convenience’s sake, we convert this number to the octal scale, using the method of Example 3 and rounding as required, to at least 7 octal (=2l binary) digits. We find
using decimal
27?z= (1.537 4337)@,.
Hence
x-,=6/8+6=6.75,
x= (1.537 433 7)(8) * 2 -2s
and, consequently,
x-1=6.75/8$2=2.84375, x=2.84375/8=0.355
. . . a-,),a,*2-k
2mx= (1.686 629 899) tloj
x= (0.266)(s),
(IV)
1).
where n and k are such that inverse conversion from the binary scale to the decimal scale will produce x to the same given 15 decimal digits. Accordingly, by the rule stated in Example 3, n
110 110 O),,.
TO carry out the inverse conversion we can first convert to the octal scale,
and then apply arithmetic:
ll),
Note that the fractional part in any step is the unconverted remainder. Thus, to round at any step, it is only necessary to ascertain whether the unconverted portion to be neglected is greater or less than 4; i.e., whether, in the binary scale, the first neglected digit is 1 or 0. Example 4. Convert z= (3.141593)c10j~ 10m9 to the binary scale. The desired representation is x=(l.u-la-a
110 101 110 000 101 000 111 . . .)@,.
may take ?i >$
Oil),
x= (0.3554)ClO,
nary scale. We first convert to the octal scale, using decimal arithmetic. By (III), we find with b=8
2=(0.010
011 l),
Converting the integral parts to the decimal scale, we find z-,=(11),,=3, ^a-a=Z-3=(101)(2,=5, &=(100),=4, and thus
X= (.1369) (10). Example
with g= (1010) (aj,
46875.
x=(1.
101 011 111 100 011 011 111)@,*2-“.
SCALES
To convert x back to the decimal scale we only need to obtain from Table 28.1 the various powers of 2 which appear in the above representation and sum them. However, since 2-ln=2-m+1-2-m for any real constant m, it is more convenient to reduce first the binary representation of x to the form x,2-24 ,2-31_2-33_2-39+2-42_2-46_2-w
and then sum these powers of 2. (Note that the number of summands is thereby decreased from 16 to 7.) From Table 28.1 we have +2-“=+3.725 -2-31=-2-33=-2-3Q=+2-“=-I-2-4(1=-2-W=x=
.465 .116
290 661 415
298 287 322
*lo-* .lO+’ .lO+’
.OOl
818
989
000 227 :OOO 028 .ooo 000
374 422 888
.lO+’ -10-Q .lO+’ -10-Q
764
.lO+
3.141
592
Nine decimal digits are used for sufficient accuracy reserve. Hence, rounding to seven significant figures, we find x= (3.141593)(1lJ,*lo
-9
1015
OF NOTATION
We first compute, using 4.1.19 and Table 4.1, .05764 log,, x 83.44295 log, x=-= .30103 =277+mt kl0 2 and find from Hence log, x=277+
Table
4.1, .05764=loglo
log,, 1.1419 log10
=277+1og,
Conversion back to the decimal as follows, we write log,, x=log,, 2 log2 x =log,,2{265+logz
To convert a number such as
=log,,
2
265+lOg,o
=265 log,, 2 +lO&,
10
scale proceeds
(11105)
,3,}
(11105)(8) log10
log, x=&==k++2
1.1419
2
and so x=(1.1419)(10, *2 277. , Now we apply the methods of Example 3 to obtain (1.1419)~,o,=(1.110516),8, where octal notation is used for the sake of convenience. To round such that inverse conversion will yield the same decimal digits of x, observe that the last non-zero decimal digit of x is 3. 1080. Table 28.4 shows tha’t 2286<10*<2266. Hence, in the binary scale, x must be a binary integer times 22aa; i.e., (1.110516)(8, must be rounded to 4 octal (= 12 binary) digits. As a result, x=(1.1105)~g~~2277=(11105)~g~~2286 =(l 001 001 000 lOl)n22@
.
to the binary scale, where k is a positive integer so large that Table 28.1 cannot be used, apply the following device: Compute
1.1419.
2
(11105),8,.
Hence, converting (11105)(8J to the decimal scale by any of the methods of Example 2, we obtain log,, x=265 log,, 2+logl,, 4677
10
which yields, using Table 4.1 where k is the quotient and xl the remainder, the division being carried out in the decimal scale. Then find r]=lO’l, i.e., xl=loglo 7, so that . log, x=k+B=k+log,
rl
1
log,0 x=83.44292 Thus, by Table 4.1, we find, rounded significant figures, x= (2.773)cIo,. lOa.
to four
whence x=
h)
References
(10,2’.
Now convert (I),~~, to the binary scale by any of the methods described above. A similar device may be used to convert to the decimal scale a binary number that is outside the range of Table 28.1. Example 5. Convert x= (2.773)(ro,.1083 to the binary scale.
J. Malengreau, fitude dea Bcritures bin&es, Bibliothhque Sci. 32 Mathkmatique. Edition Griffon, NeuchBtel, Suisse (1958). [28.2] D. D. McCracken, Digital computer programming (John Wiley & Sons, Inc., New York, N.Y., 1957). [28.3] R. K. Richards, Arithmetic operation in digital computers (D. Van Nostrand Co., Inc., New York, N.Y., 1955). [2&l]
SCALES OF NOTATION
1016 Table 28.1
2*”
2n
IN DECIMAL
n
I
2 4 1: 32
i
2 3 4 5
0.125
64 128 256 512 1024 2048
1;: 11
4096 8192 16384
12
32768 65536 1 31072
15 16 17
2 62144 5 24288 10 48576
18 19 20
46 97265 625 73 48632 8125 36 74316 40625
20 97152 41 94304 83 88608
21 22 23
68 37158 20312 5 84 18579 10156 25 92 09289 55078 125
167 77216 335 54432 671 08864
zz 26
96 04644 77539 0625 98 02322 38769 53125 49 01161 19384 76562 5
:i
0.000s952587 89062 5 0.00000,76293 94531 25
1342 17728 2684 35456 5368 70912
27 St
50580 59692 38281 25 25290 29846 19140 625 62645 14923 09570 3125
10737 41824 21474 83648 42949 67296
30 31 32
31322 57461 54785 15625 65661 28730 77392 57812 5 32830 64365 38696 28906 25
85899 34592 1 71798 69184 3 43597 38368
33
6 87194 76736 13 74389 53472 27 48779 06944
36
32182 69348 14453 125 66091 34674 07226 5625 83045 67337 03613 28125
;z
;i
0.00000 00000 0.00000 00000
51 91522 83668 51806 64062 5 75 95761 41834 25903 32031 25 37 97880 70917 12951 66015 625
54 97558 13888 109 95116 27776 219 90232 55552
39 40 41
0.00000 00000 0.00000 00000
18 98940 35458 56475 83007 8125 09 49470 17729 28237 91503 90625 54 74735 08864 64118 95751 95312 5
439 80465 11104 879 60930 22208 1759 21860 44416
42
0.00000 00000 00%27 37367 54432 32059 47875 97656 25 0.00000 00000 00 3 68683 77216 16029 73937 98828 125 0.00000 00000 000 6 84341 88608 08014 86968 99414 0625
3518 43720 88832 7036 87441 77664 14073 74883 55328 28147 49767 10656 56294 99534 21312 112589 99068 42624
ti
0.00000
00000
0.00000 00000 000 0.00000 00000 000 0.00000 00000 000
42170 94304 04007 43484 49707 03125 21085 47152 02003 71742 24853 51562 5 10542 73576 01001 85871 12426 75781 25
00000 000 t 55271 36788 00500 92935 56213 37890 625 0.00000 00000 000 77635 68394 00250 46467 78106 68945 3125 0.00000 00000 00000 8817 84197 00125 23233 89053 34472 65625 0.00000
SCALES
1017
OF NOTATION
2” IN DECIMAL x
2”
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
1.00069 1.00138 1.00208 1.00277 1.00347 1.00416 1.00486 1.00556 1.00625
33874 72557 16050 64359 17485 75432 38204 05803 78234
x 62581 11335 79633 01078 09503 38973 23785 96468 97782
1.00695 1.01395 1.02101 1.02811 1.03526 1.04246 1.04971 1.05701 1.06437
0. 01 0. 02 0.03 0.04 0. 05 0.06 0.07 0. 08 0. 09
lo*11
lo”
3 46 575 1 346
0 :
1.000 0.063 0.005
000 000 000 146 314 075 341 631 217
000 270 463
1 750 23 420
3 4
0.000 0.000
406 111 032 155
570 530
303 641 113 360 545
240 100 200 400 000
564 613
:
00'000 000
000 476 002 206 157 132
364 610
055 706
37 64
0.000 000 001 0:OOO 015 327 257
143 745
561 152
06 75
9
0.000
560
276
41
104
1 16 221 2 657 34 434 5 432 67 405
n log10
n loml 2
n
0. 6 o"G 0: 9
327 157 127 553
n
n log* 10
:
0.60205 0.30102
99913 99957
3.32192 6.64385
61898 80949
:
1.20411 0.90308
99827 99870
13.28771 9.96576
23795 42847
5
1.50514
99763
16.60964
04744
ADDITION
28.3
10 I1
762 564 210 520 440
000 000 000 000 000
10 11 12 13 14
0.000 0.000 0.000 0.000 0.000
000 000 000 000 000 000 000 000 000 000
006 000 000 000 000
676 537 043 003 000
337 657 136 411 264
66 77 32 35 11
724 461 500 115 760 200 413 542 400 164 731 000
000 000 000 000
15 16 17 18
0.000 0.000 0.000 0.000
000 000 000 000
000 000 000 000
000 000 000 000
022 001 000 000
01 63 14 01
112 351 432 411 142
402 035 451 634 036
n log2 10 IN DECIMAL
2,
Talh!
34625 83549 44133 79107 35623 65665 47927 11265 59830
IN OCTAL
000 00 146 31 243 66 651 77 704 15
ll
000 000
1.07177 1.14869 1.23114 1.31950 1.41421 1.51571 1.62450 1.74110 1.86606
10”
1::
28.2
2”
56719 90029 07193 56067 41377 41121 23067 613.90 53360
lo-”
n 1
2”
55500 94797 21257 38266 49238 57608 66836 80405 01824
‘I’alde
n
Ta,lr
; i 10
-4ND MULTIPLICATION
99740 99696 99653 99610 99566
19.93156 23.25349 26.57542 29.89735 33.21928
TABLES
Addition
28.-l
72log2 10
72log,0 2 1.80617 2.10720 2.40823 2.70926 3.01029
000 000 000 000
85693 66642 47591 28540 09489
TaI)lc 28.5
Multiplication Binary Scale
O+l=l+O=
o+o=
0
1
0x1=1x0=0
l+l=lO
0x0=0 1x1=1
Octal Scale 01
02
03
04
05
06
07
1
02
03
04
05
06
07
02
03
04
05
06
07
10
2
04
06
10
12
14
16
11
14
17
22
25
03
04
05
06
07
10
11
3
06
04
05
06
07
10
11
12
4
10
14
20
24
30
34
05
06
07
10
11
12
13
5
12
17
24
31
36
43
06
07
10
11
12
13
14
6
14
22
30
36
44
52
07
10
11
12
13
14
15
7
16
25
34
43
52
61
10
11
12
13
14
15
16
MATHEMATICAL *=
(3.11037
552421)c8j
* -l=
(0.24276
3O1556)c8j
ii=
(1.61337
611O67)c8)
CONSTANTS e= e-l= y'i=
IN OCTAL
211.6
521335)cB)
(0.27426
53O661)c8j
hl
I=
-(0.43127
2336O2)c8)
(1.51411
23O7O4)c8)
lo&r2
.,=
do.62573
O3O645)c8)
T= (1.11206
404435)(*)
log10
e=
(0.33626
754251)cB)
lo@
T= (1.51544
163223)(,)
log2
e=
(1.34252
166245)c8)
(3.12305
407267)(*)
1(-j=
(3.24464
741136)(*)
logi
Table
(2.55760
h
dlo=
SCALE Y=
(0.44742
~‘2= (1.32404
hl
1477O7)cB,
74632O)c8j
In 2=
(0.54271
027760)c81
lo=
(2.23273
O67355)c8)
29. Laplace
Transforms
Contents 29.1. Definition
of the Laplace
29.2. Operations
for the Laplace
29.3. Table of Laplace
..........................
.............
Transform
Transforms
29.4. Table of Laplace-Stieltjes References
Transform
............
................
Transforms
Page 1020 1020 1021
............
1029 1030
29. Laplace 29.1.
Definition
of the
One-dimensional
29.1.1
f(s)=.Y{F(t)]
Laplace
Transforms function of s in the half-plane B?s>s,.
Transform
Laplace
Transform
=lrn
e-““F(t)dt
Two-dimensional
j(u, v)=Y{F(z,
B-t-
for
the
Laplace
Function
(t=O) u(t) (t
Transform’ Image
m
F(t)
S
e-“‘F(t)dt
&W
+&Cd
Function j(s)
0
Formula
S
c_‘im c Irn
Linearity
Step
y)dm!y
In the following tables the factor is to be understood as multiplying the original function F(t).
Function F(t)
Inversion
Unit
+ 1 1
AB e--ElotF(t)dt
29.2.1
29.2.3
u(t)=
29.1.3
29.2. Operations
-2’,,
of the
e-uz-ouF(x,
0
exists, then it converges for all s with %?s>sO,and the image function is a single valued analytic
29.2.2
y) 1=lmS,-
Definition
S
Original
Transform
29.1.2
F(t) is a function of the real variable t and s is a F(t) is called the original funccomplex variable. If the tion andf(s) is called the image function. integral in 29.1.1 converges for a real s=so, i.e., l&
Laplaee
e'"j(s)ds
Property
AF(t)+BG(t) Differentiation
29.2.4
F’(t)
29.2.5
F’“‘(t)
V(S)---F(+O)
s”f(s)-s”-1F(+0)-s”-2F’(+O)-
. . . --F'"-l'(+O)
Integration
29.2.6
S Ir
’ F(T)ds
ff(4
0
29.2.7
;A4
F(X)dAdr ss 0 0 Convolution
29.2.8
(Faltung)
S
’ F,(t--)Fz(7)dr=Fl*Fz
fib) j*(s)
0
29.2.9 29.2.10
Theorem
Differentiation
f’(s)
-tF(t) (-l)vF(t)
1Adapted by permission from IL V. Churchill, York, N.Y., 1958. 1020
P’ (8) Operational
mathelhatics,
2d ed., McGraw-Hill
Book Co., Inc., New
LAPLACE Original
Function
1021
TRANSFORMS
F(t)
Zmage
Function
f(s)
Integration
29.2.11
f F(t)
29.2.12
e”‘F‘(t)
29.2.13
;F
0
f
Transformation
fc-4
fbs)
(c>O)
1 (Slc)tF i ce 0
29.2.14
S
8m f(x)dx
Linear
f (cs- b)
(c>O)
Translation
29.2.15
F(t-b)u(t-6) Periodic
29.2.16
e-""j(s)
(bX-0
a S a S
Functions
e-“‘F(t)dt
F(t+a)=F(t)
0
l-e-as
29.2.17
F(t+a)
e-“F(t)dt
= - 6’(t)
0
l+e+
Half-Wave
29.2.18 Full-Wave
Rectification
of F(t)
in
29.2.17
f(s) 1-e-s
F(t) .$ (-l)%(t--na) 9 Rectification
29.2.19
of
F(t)
in 29.2.17
j(s) coth 2 2
IF(t) I Heaviside
Expansion
Theorem
PW n(s>’ q(s)=(s-a,)(s-az)
. . . (s-a,,)
p(s) a polynomial of degree<m 29.2.21
r per-n,(u) eatz
(r-n)!
p-1 (n-l)! p(s)
a polynomial of degree
29.3. Table of Laplace Transforms*, 3 For a comprehensive table of Laplace a.nd other integral t8ransforms SW [29.9]. dimensional Laplace transforms see [29.11]. f(s)
F(t)
29.3.1
1 s
1
29.3.2
1 3
t
For a tnblc of tn-o-
2 The numbers in bold type in the f(s) and F(t) columns indicate the chapters in which the propcrtics of tlw rcq(xtivc: higher mathematical functions are given. 3 Adapted by permission from R. V. Churchill, Operational mathematics, 2d. ed., McGraw-Hill Book Co., IIIC., SW York, N. Y., 1958.
1022
LAF’LACE
TRANSFORMS
f(s) 29.3.3
1 F
F(t)
(n=l,
tn-I
2,3, . . .)
(n-l)!
kt
29.3.4
$i 29.3.5 29.3.6
s-3/2
&,- (n+))
(?a=1,2,3,.
r(k) ts
29.3.7
24F
. .)
(k>o)
terna
(SL2
1
(n=l,
(sfd”
29.3.11
(a#b)
(s+utb+b) s @+a)
29.3.16
29.3.17
29.3.18
29.3.19
29.3.20
29.3.21
(n-l)!
e
ae
(s+b)
1 (s+d(s+b)
(s+c)
-at-be-b1
a-b ~(b-c)e-a’+(c--a)e-b’+(a-b)e-c’ (u-b) (b-c) (c-a)
constants)
1 s2+a2 S
-al-e-“’
b-a
b#b)
(a, b, c distinct 29.3.15
. . .)
tk-l,-at
(k>o)
29.3.12
29.3.14
p-le-ar
2,3,
I- (k) (s+aY
29.3.13
. (2n-l)&
e-“l
29.3.9 29.3.10
1.3.5.. ik-1
I sfa
29.3.8
yy”-,
1 ; sin at
s2+a2
cos at
1 s2-a2
a
S
s2-a2
1
1
sinh at
cash at
s(s2+a2)
$ (I-cos
1 s”(s’+a’)
f (at-sin
(s2+&
&
at)
at)
(sin at---at cos at)
LAPLACE
TRANSFORMS
1023
f(8)
F(t)
29.3.22 29.3.23 29.3.24
4 sin at 2a $ (sin at+&
(s&)2
t co9 at
s2-a2 Cs2+a2)2
29.3.25
s (~“+a”) (s2+b2)
29.3.26
1 b+4’+b2
1 - em” sin bt b
29.3.27
s+a (S+d2+b2
e-ar cos bt
29.3.28
3a2 s3+a3
29.3.29
4a3 s4+4a4
29.3.30 29.3.31
S
s4+4a4 1 s4--a4
co9 at)
(a2# b2)
cos at-cos bt b2- a2
e-at -eW sin at cash at-cos - 1 sin at sinh at 2a2 ,$ (sinh at-sin
29.3.32
&
29.3.33
(1+a2t2) sin at-at
co8 at
22
29.3.35 29.3.36
L(e-b’-e-~‘) 2 J*t”
d&a
29.3.38
fi s-a2
29.3.39
G s+a2
29.3.4Q
at)
(cash at-cos at)
29.3.34
29.3.37
at sinh at
1 &qs-d)
1024
LAPLACE
TRANSFORMS
f(s)
F(t)
-2 f-G
1
29.3.41
fib+&
29.3.42
(s-a”)
b2-a2 @+&I
s0
1
erfc buG
b2--a2 &s-4
(6+
29.3.46
(l-s)* p-+-t
29.3.47
(1 -sjn an+:
Js+2a -6
ea% z erf (u&)-l]+ebzf [
b)
($&t
1
7 7
-at erf (46-u&)
(s+h’s+b
29.3.48
7
eaZi erfc a&
&+d
29.3.45
eA2dX
eaQ[b--a erf afl--bbebQ
29.3.43
29.3.44
4
e-a2t
Hzn+~
ue-“‘[II
+lo(ut)]
7
erfc bJi
22
HPn(~)
n! (2n+l)!&
7
(4)
22
9
29.3.49
9
r (k) (s+a)k(s+b>k
29.3.50
(k>O) 6
10
29.3.51
9 Js+zaJP&&
29.3.52
29.3.53
29.3.54
(JiG+
(a-b)” Jsfby
c&G+ ma” dWG
29.3.55
29.3.56
29.3.57
JS
(k>o)
9
k e-#(a+b):I k t
9
(v>-l)
9
J&2 WV-g &q2
1 t e’“‘I,(ut)
(y>-
1)
Jo@4
9
u”J,(ut)
9
--fi I’(k)
t ‘-‘J&t) 0 2a
6,lO
LAPLACE
f(s) 29.3.58
29.3.59
29.3.60
F(t)
( Jzw-s)k
(k>o)
(s-&=a” JF2
(v>-l)
(k>o)
(s&k
kGJ,(at)
9
U”l&)
9
J;; 4 k-fI&*(ut)
1 s e-ks
u(t-k)
29.3.62
1 2 emks
(t-k)u(t-k)
1 -g em’”
1 -e-kd
29.3.64
29.3.65
(t-k)r-’ r(p)
WO)
1
l+coth
s(l-emk8)=
G--k)
I I
2s
$ks
1
L-L-
u(t)--u(t-k)
S
6,lO
r(k) 0 2a
29.3.61
29.3.63
1025
TRANSFORMS
go u(t--nk)
1
:
L+
29.3.66
1 s(eka-u)
g
an-‘u(t--nk)
29.3.67
i tanh ks
u(t)+2
29.3.68
1 s(l+emk”)
go(--l)“u(t--nk) km--2131
29.3.69
-$ tanh ks
h(t)+2
gl (-l)%(t-2nk) z
5
(-l)n(t-22nk)u(t-22nk)
It=1
29.3.70
1 s sinh ks
29.3.71
1 s cash ks
2 go u[t-(2n+l)kl
1026
LAPLACE
TRANSFORMS
F(t)
f(s) 1
29.3.72
i
coth ks
Lx!5
u(t) +2 5 u(t-2nk) lb=1
2
2
0
2k . 41 -
k
29.3.73
coth c s2+k2 2k
Isinkt’ IzmL0 IL
(s’+l)(Le-“)
29.3.74
2
(-l)“u(t-nlr)
sin
kwl 0
n-0
29.3.75
2” L t I
277 3r
9
Joh’~)
29.3.76
-L
cos 24z
’ Jz
cash 24%
- ’ a
sinh 2m
fi
29.3.77
*
-
29.3.78 29.3.79 29.3.80
$ es1
(p>O)
t’-’ 0E
29.3.81
1 5 sre’
(PX)
0
2i.3.82
em”&
(k>O)
29.3.83
’ -‘& se
(k>O)
,g9.3.84
1
-k&
6”
29.3.85 29.3.86 29.3.87
1 ae
1 pie n-l
~‘3 e
-k&
-k&
-k&
;
2 J,+&&d ‘+ 1#-1(2~>
7
erfc k 24
(k20)
(k>
k erfc -&=24
0)
(n=O, 1,2, . . .; k>O)
(4t))”
i erfc k 24
7
7
i” erfc k 24
22
(n=O, 1,2, . . .; k>O)
1
G *Bee page xx. .
exp
k2 ( .-Ft
>
-aeaea2’ erfc (a&+-$)
7
LAF’LACE
1027
TRANSFORMS
29.3.89 (k> 0)
-eakeaQ erfc (ay%+-$)+erfc
(k>O)
eakeaZterfc (aJz+-$)
29.3.90
7
-&
7
29.3.91 29.3.92
9 e--k~r+al Js2+a2
(k20)
9
(kko)
9
29.3.93 29.3.94
,-k(w-8)
(k20)
J,(u@i?%i)
9
.-A&-
J1 (a#=i@u(t-k)
9
-!+Jt2_k2
I (a+2-k2)u(t-k)
9
“Jv(a,@?>u(t-k)
9
Jiq2
29.3.95 29.3.96
e -ka-
e
-km
e-n&a
(k>o)
-e-ka
(k>O)
Js7F
l
awe --tJll+at
.
29*3*97
-Js2+a2( Js2+a2+s)’
29.3.98 29.3.99 29.3.100
b>-l,k20)
--r-ln
fins $ln
s
In s s-a
t(r=.57721
(k>o)
s
@>O>
ea’[ln a+E,(at)]
In 8 &?a+1
co9 t Si (i!)-sin
29.3.102
s In s s2+1
-sin
f In (l+ks)
29.3.104
In -s+a s+b
29.3.105
f In (1 +k2s2)
29.3.106
i In (s2+a2)
(k>o)
G
0
t Si (t)-cos
constant)
6
W(k)-In tl
29.3.101
29.3.103
56649 . . . Euler’s
5 t Ci (t) t Ci (t)
5 5 5
;
f (e-“‘-e-“~) (k>O)
(G-0)
;
5
2 In a-2 Ci (at)
5
-2Ci
0
~
1028
LAPLACE
TRANSFORMS
F(t)
f(8) 29.3.107
$ln
(s2+a2)
29.3.108
s*+d hgp
29.3.109
‘“7
29.3.110
arctan ks
29.3.111
f arctan ;
29.3.112 29.3.113
29.3.114
29.3.115
29.3.116
s [at In a+sin at-m!
~~>o)
; (1 -cm
s2-a2
; (l-cash
1 se
kW
erfc ks
ekr erfc fi erfc &
$
at)
f sin kt k
ek2r2erfc ks
at)
Si (kt) (k>o) (k>O) (k>O)
(k 20)
e” erfc &
7
&
7
erf 2
7
JE d(t+lc)
7
t2
exp
(
t
-!-
u(t-k)
sin 2kG
Jz
(k10)
29.3.117
7
i
29.3.118
7
T w
(k>o)
9
&2N”-k)
(kX-0
9
& exp
(k>O)
9
@G-m
(k>o)
9
EexP
9
-?- Ko(2JEt) Jz
29.3.119 29.3.120 29.3.121 29.3.122 29.3.123
Ko (W Ko W) f e%
(ks)
$ & (M) II k - es K O0 s G
>
-43
@X-N
29.3.124
ne-“Io(ks)
@X0
29.3.125
e+ll(ks>
(k>O)
1 e-2k&
(
(
-g
-t
>
k2 >
[u(t)---u(t-2k)]
Ci (at)]
LAPLACE
F(t)
f(8)
29.3.126
e"E,
29.3.127
+m,(as)
(as)
1029
TRANSFORMS
5
(a>@
5-
(a>@
29.3.128
a'-"emdEn
b>O;n=O,
29.3.129
b-Si(B)]
cos s+Ci(s) sin s
1,2,. . J
29.4. Table
-!t+a (t-ta)’
5
ft:a)n
5
&
of Laplace-Stieltjes
Transforms w
ds) m
29.4.1
4
S
e-*[d@(t)
emb
(k>o)
w>
0
29.4.2
1
29.4.3
u(t-k)
l-e-”
(k>o)
go dt-nk)
29.4.4
1 1+e-k”
(k>O)
go (-l)‘W--nk)
29.4.5
1 sinh
(k>O)
2 go
cash ks
(k>o)
2 F. (-l)“u[t-(2n+l)k]
tanh ks
(k>o)
u(t)+2
1
29.4.6 29.4.1
1
29.4.8 29.4.9 29.4.10
e+ sinh (ks+a) sinh (hs+b) sinh (ks+a)
RX,
%cI (-l)“u(t-2nk)
2 5 e-‘2n+1%[t-(2n+l)k] n-o
(k>o)
sinh (ks +a)
4t-@n+l)kl
2 2 e-(2n+1%[t-h-(2n+l)k] n=O
h>O)
(o
n%e-
t2n+1’o{ebu[t+h-(2n+l)k] -eebu[t-h-(2n+
29.4.11
2 a,emkns 7k=O
@
. . .>
OkI 1
nTow(t--k,)
For the definition of the Laplace-Stieltjes transform see[29.7]. In practice, Laplace-Stieltjes transforms are often written as ordinary Laplace transforms involving Dirac’s delta function This “function” may formally be considered as
the derivative of the unit step function, du(t) =6(t) dt, so t,hstJ’
6(t).
du(t)=J’
6(t)dt={
F fz’>ii.
29.22, for instance, then m e-“16(t-k)dt. assumesthe form eVks= The correspo;dence
S 0
4 Adapted by permission from P. M. Morse and H. Feshbach, Hill Book Co., Inc., New York, N.Y., 1953.
Methods
of theoretical
physics, ~01s. 1, 2, McGraw-
1030
LAPLACE
TRANSFORMS
References Texts
[29.1] H. S. Carslaw and J. C. Jaeger, Operational methods in applied mathematics, 2d ed. (Oxford Univ. Press, London, England, 1948). [29.2] R. V. Churchill, Operational mathematics, 2d ed. (McGraw-Hill Book CO., Inc., New York, N.Y., Toronto, Canada, London, England, 1958). [29.3] G. Doetsch, Handbuch der Laplace-Transformation, ~01s. I-III (Birkhauser, Basel, Switzerland, 1950; Basel, Switzerland, Stuttgart, Germany, 1955, 1956). [29.4] G. Doetsch, Einfiihrung in Theorie und Anwendung der Laplace-Transformation (Birkhauser, Base& Switzerland, Stuttgart, Germany, 1958). [29.5] P. M. Morse and H. Feshbach, Methods of theoretical physics, ~01s. I, II (McGraw-Hill Book Co., Inc., New York, N.Y., Toronto, Canada, London, England, 1953). [29.6] B. van der Pol and H. Bremmer, Operational
calculus, 2d ed. (Cambridge Univ. Press, Cambridge, England, 1955). [29.7] D. V. Widder, The Laplace transform (Princeton Univ. Press, Princeton, N.J., 1941). Tables
[29.8] G. Doetsch, Guide to the applications of Laplace transforms (D. Van Nostrand, London, England; Toronto, Canada; New York, N.Y.; Princeton, N.J., 1961). [29.9] A. Erdelyi et al., Tables of integral transforms, ~01s. I, II (McGraw-Hill Book Co., Inc., New York, N.Y., Toronto, Canada, London, England, 1954). [29.10] W. Magnus and F. Oberhettinger, Formulas and theorems for the special functions of mathematical physics (Chelsea Publishing Co., New York, N.Y., 1949). [29.11] D. Voelker and G. Doetsch, Die zweidimensionale Laplace-Transformation (Birkhauser, Base& Switzerland, 1950).
Subject A Page Adam’s formulas- _______ __ __ __ _- ______ - _______ 896 Airy functions-- ________-_______ 367,446,510,540, 689 ascending series for-- _____________ - ______ -_-_ 446 ascending series for integrals of---- _ _ - _- __ __ _ - _ 447 asymptotic expansions of ______ - .___ _--___-_ __ 448 asymptotic expansions of modulus and phase--449 asymptotic forms of integrals of-- _ ____ _- ____ _449 asymptotic forms of related functions---------450 complex zeros and associated values of Bi(r) and Bil(z)_-_-______________________________-478 computation of--- _________ - ____ - ____________ 454 computation of zeros of- _ _ _ _-_ __ _ _ ___-_ _-___ _ 454 definitions---___________________ -_- ____ -___ 446 differential equations- __ __ ___ __ ______ ______ 446,448 graphsof_~~~_--~~~~~_-------_-------_---~~~~~~ 446 integral representations of ____________________ 447 integrals involving ____ -_ __ ___ __ __ _-__ _ ___ __.__ 448 modulus and phase __________ - ______ - ____ -___ 449 related functions- _ ___ _ _ __ ______ _______ _ ___-_ 448 relations between--- __ _-_ ____ __ __ -_ __ _ __ _____ 446 representations in terms of Bessel functions-- _ _ _ 447 tables of _____________ - ______ - _______________ 475 tablesofintegralsof--______ - ____ - ______ -_-_ 478 Wronskian for products of ______________ -_ _-_ 448 Wronskian relations- _ _ _ __ __ __ ___ __ _ __ __ ___ __ 446 zeros and their asymptotic expansions-------..-450 Airy functions and their derivatives- _ _ __ _-_- _____ 446 zeros and associated values of _ _ _ _____________ 478 Airy integrals-__-_-_-_-_-_______-___________-447 Aitken’s@-process ___________ - ____ -__-_-___-___ 18 Aitken’s iteration method- _ _ __ _ __ ____ _ _-_-___ __ 879 Anger’s function. _ _ _-_ __ __ __ _ _ __ _-_ _-___ __ __ 498 relation to Weber’s function- _- - _ _ _ __ _ - _ _ _ _ _ 498 Antilogarithm _______ - ____ -__-_- ____ - ______ -___ 89 Approximate values- ____ __ _ __ _-___ ________ -_ __ _ 14 Approximation methods _____ ___-___ ___ __ _- ____ 18 Aitken’s @-process _____L___ -_ .__- ____ - _______ 18 Newton’s method _____ ____ -__ ___ ____ ___ _ __-_ _ 18 regula falsi- _ _ _ _____ _ __ _____ -_ __ _ __ ___ ____ __ 18 successive substitution___ __ ___ ____ ____ - _____ 18 Argument---_____-___-___________________---16 Arithmeticfunctions _________ - ____ -_-__-___-_-_ 826 tableof~~~~_-_~~_~__-_~~_~_-___~_~___-_~___ 840 Arithmetic-geometric mean- _ _ 571, 577, 578, 580, 598, 601 Arithmetic mean- _________________ - ______ -__-_ 10 Arithmetic progression- _ _ _ _ _ _ _- - _ - _ _ _ _ _ _ __ - _ _ _ _ 10 Associated Legendre functions- _ _ ___ _-_ __ __ _-_ __ 331 (see Legendre functions) Asymptotic expansions- ____ - _____________ -__-_ 15
Index PtW3 B Basic numbers- ___________ - _____________ ______ 822 Bateman function- _ ____ _-_- ______ _____________ 510 Bernoulli numbers-- ____ __ _-__ _______-_________ 804 table of- _ _____ -- ___________________________ 810 Bernoulli polynomials ____ __ __ __ __ ____ __ __ ___ ___ 803 as sums of powers- ________________-_-_______ 804 coefficients of _ ___ _ __ ____ __ __ ____ __ -___ ______ 809 derivativesof-_________ - ______________ - ____ 804 differences of ______ ____ _________ - ______ ______ 804 expansionsof___-----------------------,---804 Fourier expansions of _ _ _ - - _ _ _ _ _ _ _ __ - _ _ _ _ _ _ _ _ _ 805 generating function for _______________________ 804 inequalities for---- _ _-_-_- _____ __ __ __ ____ ___ _ 805 integrals involving _________________-_-_ ----805 multiplication theorem for __________.._-_______ 804 relations with Euler polynomials- _ _ ___________ 806 special values of ___________________-_________ 805 symbolic operations ____ _-_ _______ __-_____ _ __ _ 806 symmetry relations-- __ _______ __ ________ _____ 804 Bessel functions as parabolic cylinder functions- _____________ 692,697 definite integrals- _ _ _ ___ _____ ____ -_ __________ 485 modified _______________ - __________________ 374, 509 notation for ______ _ __ ____ _____ _-_ ____ __ ______ 358 of fractional order _________________-_________ 437 of the first kind ___________ -__-__- ______ --_ 358,509 of the second kind- ________________________ 358,509 of the third kind ______ - ______ -__- ______ -__ 358,510 orthogonality properties of _____ _ __-_ ________ __ 485 representations in terms of Airy functions _ _ _ __ _ 447 spherical- _ _ ____ __ _ _ __ __ _- _ ___ _______ _____ 437,309 Bessel functions of half-integer order--- _ _ _ _ _ _ _ _ 437,497 zeros and associated values- __________________ 467 zeros of the derivative and associated values---468 Bessel functions, integrals- _ _ __ _-__ _- _____ _-__ 479,485 asymptotic expansions- _ _ _ __ __-_ _-___ _-__ _ _ 480,482 computation of __________ - ______ - _______ - ____ 488 convolution type---------------------------485 Hankel-Nicholson type--- ___ _ -_ _- _____ _-_ _ __ _ 488 involving products of- _ _ _ ___ _ _ __ _ ___ __ __ _-_ __ 484 polynominal approximations_______________ 481,482 recurrence relations ________________________ 480,483 reduction formulas- _ _ _ _ _ _ _ _ __ __ - - _ _ _ _ _ _ _ _ _ _ _ 483 repeated_-__--_---_______---_--__-----_-_--482 simple- _ _ _ ____ -_ __ __ _ __ ____ _ __ __ -_ __ _ ______ 480 tables of _______________________________ -_-__ 492 Weber-Schafheitlin type ______________________ 487 Bessel functions Jl(z),Y.(z)--________ 358, 379, 381, 385 addition theorems for--- ____________ - ________ 363 1031
1032
INDEX
Page Bessel functions JP(Z), Yv(z)-Continued analytic continuation of- ___ _ ___ _ ____ _-__ _ _ _- _ 361 ascending series for- ___ ____________ __________ 360 asymptotic expansion for large arguments- _ ____ 364 asymptotic expansions for large orders- _ _ __ _ _ _ _ 365 asymptotic expansions for zeros- ______________ 371 asymptotic expansions in the transition region for large orders---- ____ -_- _________________ 367 asymptotic expansions of modulus and phase for large arguments-________-_-_______________ 365 connection with Legendre functions ____ ____ -_ _ _ 362 continued fractions for- -_-_ ___ __ _ _ _ __ _ __ _ __ __ 363 derivatives with respect to order- _ _ _ _ __ _-_ _-_ _ 362 differential equation- _ _ ______________________ 358 differential equations for products- _ ___________ 362 formulas for derivatives ______________________ 361 generating function and associated series- - _ _ _ __ 361 graphs of_-_-_-_-___________-_-_-_-_-_-_-_ 359,373 in terms of hypergeometric functions-. ________ 362 integral representations of- _ _ _ __ __ _ ___ _ ___ __ __ 360 limiting forms for small arguments ____ -_ _ __ _-__ 360 modulus and phase- _ __ __ _ __ __ __ _ __ __ _ _ __-__ _ 365 multiplication theorem for--- _____ _ ____ __ _ ____ 363 Neumann’s expansion of an arbitrary function- _ 363 notation ____ _-_ ______ __ __ __ __ ____ ____ _______ 358 other differential equations- _ _ ________________ 362 polynomial approximations_ ___ ___________ ___ 369 recurrence relations ____ -_ ___ _ _-_-_-_ _________ 361 recurrence relations for cross-products---_ _ _ _ _ _ 361 relations between..-- __ __ __ _ __ ______ -_-_ ____ __ 358 tables of ______ _ __ __ _ __ ___ _________ ____ __ ____ 390 uniform asymptotic expansions for large orders..358 upperbounds-~~~~~~_-~-~__-________________ 362 Wronskian relations- _ _ _ _ _______ _____ ___ _-___ 360 zeros of ______ - _______________________ -_-_-_ 370 zeros, complex- _ _ _______________ _ __ __ _ _-_-__ 372 zeros, infinite products for ________ -_-_ -:- _-_-_ 370 zeros, McMahon’s expansions for-- __ __ -_-_ __ __ 371 zeros of cross products of ____________ _________ 374 zeros, tables of ________________________ 371,409,414 zeros, uniform expansions of- - _-_ __- _ _-_ _- ____ 371 Bessel’s interpolation formula- _ - - - _ - _ - _ - _ _ _ _ __ _ _ 881 betafunction_-_-L-__-___--------------------258 Biharmonic operator-----___ ___- __ __ __________ 885 Binaryscale-~~___~_~_~_~_____________________ 1017 Binomial coefficients- ____ _-_-_ ____ __ _____ _ 10,256,822 table of~~-~__~_~_~~~______________________ 10,828 Binomial distribution_ __ _ __ ___ __ _ ____ __ _-_ ____ 960 Binomialseries--________ -_- ____________ -_-___ 14 Binomial theorem- _ _ _ _______ ___ _-_-_ __ _______ _ 10 Bivariate normal probability function-----------936 computation of ________ - ________ - _______ -_-_ 955 graphs of-_______-_-______-_________________ 937 special values of--- _ __ _ __ __ __ ___ _-_ __ __ __ ____ 937 Bode’s rule-----_-_-_-_-_-_-_-----------------886 C Cartesian form-. ______________________________ Catalan’s constant __-__________________________ Cauchy-Riemann equation ________________ - ____ Cauchy’s inequality--___ _ ________ __ _-_-_-_ __ _Characteristic function--- _ _ _ _ __ _____ __ __ __ __ _ __
16 807 17 11 928
%X0 Chebyshev integration- _ -____ ________________ __ 887 abscissas for- _ -_-___ _____ __ ___ ________ __ __ __ 920 Chebyshev polynomials- - -_______________ 486,561,774 (see orthogonal polynomials) coefficients for and zn in terms of _________ _ __ 795 graphs of-_-_-_-_------------------------778 values of_--_____----___-----------------795 Chebyshev’s inequality _________________________ 11 Chi-square distribution function computation of-------______________________ 958 940 C&i-square probability function- _ _ _-___ _ ______ __ 941 approximations to- ___________ __________-____ asymptotic expansion- _ _______________ _ ____ __ 941 941 continued fraction for--- __ ____ __ __-___ __ _____ cumulants for--- ____ ____ __ ____ ____ __ ___ _____ 940 942 non-central--------------------------------recurrence and differential properties of _ _ _ _ _ _ - _ 941 940 relation to the normal distribution _______ -_ ____ 941 relation to other functions ____________________ series expansions for. _ _________ ______ __ ____ __ 941 943 statistical properties of--- __ ______ __ ____ ______ 785 Christoffel-Darboux formula ___-________________ Circular functions _____________________________ 71,91 72 addition and subtraction of ________ _________ __ 72 addition formulas for- _ _ _______________ I _____ 76 Chebyshev approximations_ _ _ _____ -___ __ ____ 75 continued fractions for- ______________________ 78 definite integrals- _ _ ___ ________ - _______ ______ 74 DeMoivre’s formula- _ _ - _____ __-_ _________ ___ 77 differentiation formulas- - _ _________ -__ _ ____ __ 74 Euler’s formulas ____________________ _________ 75 expansion in partial fractions- _ _ _ ___ __ __ __ ____ 72 graphs of-___------------------------------72 half-angle formulas- _ _- ________________ ______ 77 indefinite integrals _____ ______ ________ __,______ 75 inequalities for _____ ____________ __ ___________ 75 infinite products __________ ____________ I__ __ __ 75 limiting values- __________ - _____ -_- ___, _______ 74 modulus and phase- _ __ ____ ___________ _-_ _ ___ 72 multiple angle formulas- _ _ _ _ ____ - ____ _ __ _ ___ _ 72 negative angle formulas- _____________________ 72 periodic properties of _ _ _ __ __ _ ___ __ __ __ __ _____ 76 polynomial approximations_ _ __ _ _ _ _ _ _ _ _ _ _ __ __ 72 products of_-------------------------------74 realandimaginaryparts _______ -_-___-_- _____ 73 reduction to first quadrant __--_________ _______ 72 relations between-_ _ __ __ _ _ _ _ _ __ _ _ _ _ - _ _ _ _ - _ - 74 relation to hyperbolic functions- _ _ _ ___. __ ___ -74 series expansions for _ _ __ __ _- _ _ _ _ _ __ _ _ ___ _ __ _ _ _ 73 signs of ______________ - _____________.._______ 142 tablesof _________ - ______ - ___________.___-___ Circular normal distribution_ _ _ _ _ _ _ _ __ _ _ __ _ _ _ _ _ 936 calculation over an offset circle-- _ _ _ __ _ __ _ __ _ _ _ 957 Clausen’s integral- _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ - _ - _ _ _ _ _ - - - - 1005 Clebsch-Gordan coefficients-- __ __ _ _ _ _ _ - _ _ _ _ _ - - - - 1006 89 Cologarithm------------..--------------------822 Combinatorial analysis- _ _ _ _ __ __ _ _ _ _ _ - _ _ _ _ _ __ _ 16 Complex numbers- _ ____ __- _________ ______ ____logarithm of- _____________________ __ ____---_ 67,90 16 multiplication and division of _ _ _ _ _ _ __ _._ _ _ - - - _ -
1033 powers of __________________ - ________________ 16 rootsof_________---______~~~~~~~~~~---~~~~~ 17 Confluent hypergeometric functions---_ __ _ __ _ _ _ - 262, 298,300,362,377,486,503,686,691,695,780 alternative notations for -------- ---- -- ------504 analytic continuation of- _- ____-- --___-----___ 504 asymptotic expansions and limiting forms- _ _ _ _ _ 508 Barnes-type contour integrals __---- - -__------_ 506 calculation of zeros and turning points of-- _ _ _ _ _ 513 computation of ____ _____-. ____--_ __ __________ 511 connections with Bessel functions -_______- _____ 506 differential properties of-- - _ _ _ _- - - - _ _ _ _ - - _ __ __ 506 expansions in series of Bessel functions- _ _ _ __ _ _ _ 506 general confluent equation_ __ - - _ __ __ _ _ _ __ _ _ _ 505 graphingof_~-~~~.__..~~-~~~~~--~~~~~~~~~~_~_ 513 graph of zeros of- _ _ ________ ______ __ __ __ _____ 513 graphsof___~-~~~~~~_~~----~~----~~~~---~~~~ 514 integral representations of _ __ ______ __ ____ __ ___ 505 Kummer’s equation-.. _- ______ __ ____ _________ 504 Kummer’s functions- ____ ______ _ ___________ __ 504 Kummer’s transformations_ _ _ _-_ ____-_ ____ __ 505 recurrence relations-- _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ _ __ _ _ _ _ 506 special cases of ______ ___-_____- __ ____c____ __ _ 509 tableof_____~~~~____~~~~~~~~--~~~~~_~~~~_~_ 516 table of zeros of __________ ___________________ 535 Whittaker’s equation- _ _ ______--__ ____ ____ ___ 505 Whittaker’s functions _______________ __ __ _____ 505 Wronskian relations- _ _ _ __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ 505 zeros and turning values--- __ ____ ________ ___- _ 510 Conformal mapping ______---______ ______ _______ 642 Conical functions- ______- __ ______ __ __ _L_______ 337 Constants mathematical- _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ __ _ __ _ _ _ _ _ _ 1 physical, miscellaneous-- __ _ _ _ _ _ _ __ __ __ _ __ __ _ _ 5 Continued fractions ______________________ 19,22,68,70, 75, 81, 85, 88, 229, 258, 263, 298,.363, 932, 941, 944 Conversion factors mathematical _ _ _ _ __ _ _ __ _ _ _ _ _ __ _ __ _ _ _ _ _ _ _ _ __ _ 1 physical-____------__-----------------------5 Cornish-Fisher asymptotic expansions--- _ _ _ _ __ __ _ 935 Correlation- _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ 936 Cosine integral ______________________________ 231,510 asymptotic expansions of--- __ _____ _ _ _ _ ___ _ _ _ _ 233 computation of--- _ _ _ _ _ __ __ __ _ _ _ _ _ _- _ _ __ __ _ __ 233 definitions- _ __ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ 231 graphsof-__,~~~~____~~--~~~~--~~~~~~~~~~~~~ 232 integral representation of _______ ______________ 232 integrals involving--__ __ ____ _- _ _ _ __ _ __ _ _ _ __ _ 232 rational approximations_ __ _ _ _ _ _ _ _ _ _ _ - __ __ _ - _ 233 relation to the exponential integral- _ _ _________ 232 series expansions for- _ _ _- - __ _ _ - _ + _ _ _ __ _ _ _ _ _ _ 232 symmetry relations- _________________________ 232 tables of _______ _____ __ __ __ _____ __ ___ __-_ __ 238,243 Coulomb wave functions- _ _ __________________ 509,537 asymptotic behavior of--- _____ ___________ -___ 542 asymptotic expansions of- _ _ _ _ _ __ _ __ _ __ __ _ _ __ _ 540 computationof ____ -___- ___________ - _____ -___ 543 differential equation- _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ __ __ __ 538 expansions in terms of Airy functions- _________ 540 expansions in terms of Bessel-Clifford functions539 expansions in terms of spherical Bessel functions540
general solution- _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ 538 graphs of_-_---_---__------_-------------_ 539,541 integral representations of _________ _________ __ 539 recurrence relations ______ __-_- ____ _______ ____ 539 series expansions for- _ - _ _ _ _ _ _ - _ _ _ _ _ __ _ __ _- __ _ 538 special values of----- ________________________ 542 tables of--- _ _ _- __ __ _ _ _ _ __ __ _ _ _ __- _ _ __ __ _ _ _ _ _ 546 Wronskian relations- _ _ _ - _ _ _ _ - _ _ __ __ _ _ _ _ _- _ _ _ 539 Cubic equation, solution of- _ ___ __ ______________ 17,20 Cumulants.. L _ _ _ _ __ _ _ ___ __ _ _ _ _ _ __ __ _ _ _ _ _ __ _ __ _ 928 Cumulative distribution function multivariate_ _ __ _ __ _ _ __ _ _- _ _ _ _ __ _ __ _ __ _ _ _ _ _ 927 univariate- _ _ _ _ __ _ __ _ __ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ 927 Cunningham function___ _____ _______ _______ _ 510 Cylinder functions-- _ __ _ _ _ __ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ 361 D Dawson’s integral- _ _________________ 262,298,305,692 graph of__________________-----------------297 tableof____-________---_-___---_---_------319 Debye functions ___-___ ___ _______ ___ __ _______ __ 998 DeMoivre’s theorem_- - _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 74,84 Derivatives- __ _ _ _ __ _ _ _ _ _ _ __ _ __ _ _ __ _ _ - _ _ _ _ _ _ _ _ _ 11 of algebraic functions- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- __ _ __ 11 of circular functions- _ _ _ _- _ __ _ _ __- _ __ _ _ _ _ _ __ _ 77 of hyperbolic functions ____ _ ____ _______ __ _____ 85 of inverse circular functions __________ _ ________ 82 of inverse hyperbolic functions- _ __ _ _ _ _ _ __ _ _ _ _ _ 88 of logarithmio functions ____ __________ _____ ___ 69 partial---_.._-----__------___-------_-----..883 Differences____-____-------------------------877 central__-___---_____-______--------------------877 divided______-______--_____-------------------877 forward_____---_____----------------------877 in terms of derivatives- _ __ _ ___ _ _ _ _-__- __ __ _ __ 883 mean---_---------_-----------------------877 reciprocal--- _ _ _ _ _ _ _ _ _ _ _ __ __ _- _ _ _ _ _ _ __ _ _ _ __ __ 878 Differential equations- _ ___ _ _ _ __ _ _ _ __ _ _ ___ _ -_ _ _ _ 896 of second order with turning points ____ _____ ___ 450 ordinary first order.. _____________________ ____ 896 solution by Adam’s formulas- _ _ _ _ _ _ _ _ _ _ _ _ __ _ __ 896 by Gill’s method- _ _ __ _ _ __ _ __ __ _ _- _ _ _ _ _ _ __ _ 896 by Mime’s method- _ _ __ _______ __________ __ 896 by point-slope formula- ___ __ _ _ __ _ _ __ __ _ _ _ _ _ 896 by predictor-corrector methods--- _ _ _ _ __ _ _ _ _ _ 896 by Runge-Kutta method- _ _______ __ _______ _ 896 solution by trapezoidal formula- _ _. _ __ _ _ _ __ __ 896 systemof-____-_________________________-__ 897 Differentiation_ _ _ _ _ _ _ _ _ _ _ __ _ __ _ __ _ _ _ _ _ _ _ _ __ __ 882 Everett’s formula ____-_______________________ 883 Lagrange’s formula- _ __ _ _- ____ _ ______ __ ______ 882 Markoff’s formula _____________________ - _____ 883 Differentiation coefficients--- ___ __________ ______ 882 tableof-_-___________________-_____________ 914 Digamma function- _________ __ __ ______________ 258 (see psi function) Dilogarithm function- _ _ _______________________ 1004 Distribution functions __________________________ 927 asymptotic expansions of-- _____ -_-___ _ ____ __ _ 935 characteristics of _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ __ _ __ _ __ _ _ _ _ 928 continuous-----____-_________________-_----927
,
INDEX
Distribution functions-Continued discrete- _ _ ___ __- __________ ---______--____-inequalities for ______________--_______ ______lattice ________ __-__ ___ _-____________________ one-dimensional continuous--_____ _- _____ -_-_ one-dimensional discrete --__ _ __ _ _ _ _ _ __ _ __ _ - _ __ Divisor functions--- _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ __ tableof______________----_-------_-----_----Double precision operations __-___ _ ____________ __
Page 927 931 927 930 929 827 840 21
E
Economization of series- _ ______________________ 791 Edgeworth asymptotic expansion ______ - _____ -_ 935, 955 Einstein functions _____________________________ 999 Elliptic functions Jacobian__--________-_-____--------------------567 (see Jacobian elliptic functions) Weierstrass- _ __ _ _ _ _ _ __ __ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ . 627 (see Weierstrass elliptic functions) Elliptic integrals- _ _ _ ____-_____ _-______________ 587 amplitude- ______ - _______________________ -__ 590 canonical forms- _ _ _________________L________ 589 characteristic_ _ _ ___ ___ _____ ___ ____ - ____ ___ __ 590 definition____________-_-____c___________---589 graphs of the complete __--____---____________ 592 graphs of the first kind ________-____________ 592,593 graphs of the incomplete- _ _ -__---____-_____ 593,594 graphs of the second kind- _ _ __-____________ 592,594 graphs of the third kind ______________________ 600 modular angle- _ _ _ _ __ ___ __ _-__ _ _ ___ __ ___ __ __ 590 modulus __________________________________ __ 590 of thefirst kind __________________________ -__ 589 of the second kind....-- __-_____-______________ 589 590,599 of the third kind -___________ c ---__________ parameter ___________________-____________ 590, 602 reduction formulas _________________________ 589, 597 reduction to canonical form -___ r _ _ _ _____ _ ___ _ _ 600 relation to Weierstrass elliptic functions-- __ _ _ _ _ 649 tables of complete- _____--___________________ 608 tables of the incomplete ______________________ 613 tables of the third kind _---___________________ 625 Elliptic integrals, complete- - - . __--_____________ 590 computation of ________ ___ ___ __ ___-__ ___ ____ _ 601 infinite series for-. _ _ ___-_____-______________ 591 Legendre’s relation- _ _ _ _____ ___ __ __- ______ __ _ 591 limiting values- _ __ _ ___ ___ __ ___ _______ ___ ____ 591 of the first kind -_____________________ -- _____ 590 ofthesecondkind___________________________ 590 of the third kind- _ ________________________ 599,605 polynomial approximations_ ___-_ __ __________ 591 q-series for- _ _ _ ___- __ ___ __-__ ___ ___ ___ __ ____ 591 relation to hypergeometric functions-----..-....-591 Elliptic integrals, incomplete ____________________ 592 amplitude of any magnitude- _________________ 592 amplitude near n/2- _ _____________________. _ _ 593 complex amplitude.. _ _ __-____________________ 592 computations involving- - _ _____________ 595,602,605 imaginary amplitude _________________________ 594 Jacobi’s imaginary transformation _____________ 592 negative amplitude- _________________________ 592 negative parameter- _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ _- _ _ _ _ _ 593 numerical evaluation of- _ ____________________ 595
Page
593 parameter greater than unity- _ _______________ special cases of-- _ _ __ __- _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ __ _ 594 752 Elliptical coordinates- _ _ _- ____ - ___ ______ ___.____ 652 Equianharmonic case- _ _ __ ______ __________ _-___ Error 14 absolute _______________--_--__ --- ----- - -.---_ percentage________-_-----------------------14 14 relative- _ _ _ _-_- ______________-______ _-_-___ Error function- _ ____________ 262,297,301,304,306,509 298 altitude chart in the complex plane ________-___ 298 asymptotic expansion of--- _ _ _ _ _ _ _ _ __ ___ _ _ _ _ _ 329 complex zerosof _____ -_- ______ - __________..___ 298 continued fraction for--- ____________ __ __ _.. ___ definite and indefinite integrals related to-- _ _ _ _ 302 298 derivatives of __ ______________ ___________.____ 297 graphs of_----__---------------------------inequalities for _________ -_-__--___-_____. __-_ 298 infinite series approximation for the complex function--- ______ --_- ______ - ______________ 299 297 integral representation of _____________ __ __ . _ __ 299 rational approximations--___________ ___ _.._ __ 298 relation to the confluent hypergeometric functionrepeatedintegralsof---____ -_- _____ - ____.. -_299 297 seriesexpansionsfor------______________.. -__ 297 symmetry relations- __ _____ ___ ____ __-_ ___ ..___ table for complex’arguments---__ __ _ _ __ __ ..-_ _ 325 table of repeated integrals of------___- ______-_ 317 tables of _____________________________ 310,312,316 value at infinity _____ - ____ - _____ -_-_- _________ 298 577 Eta functions----_-----_-----_-_-----_----..Euler function- _ _ ____________________ _____ _____ 826 840 table of ______________ - ____ - _____ - ______ _._-_ Euler-Maclaurinformulas ____ - _____ -_-_-_- __.___ 806 Euler-Maclaurin summation formula--- _ _ 16, 22, 806, 886 Euler numbers-- _____ -- _____________ -_- _______ 804 810 table of _____________ -- ____ -- ______ - _____.___ 803 Euler polynomials __________ --_- _-___ - ______.___ as sums of powers- _______________________ ___ 804 809 coefficientsof....- _____ - _____ -___- ____________ 804 derivativesof ______ - _____ -__-__- _________._ -_ 804 differences of- _______________________________ 804 expansions of- _ _______ - _____ - __________ _____ Fourier expansions of- _ ___-_- _______________ i 805 804 generating function for ________ -__ _______ __ ___ inequalities for ______ -_-___-_- _______________ 805 805 integrals involving---____________________ ___ 804 multiplication theorem for--- _____ -_-___ -__ ___ relations with Bernoulli polynomials- ____ -___ __ _ 806 special values of ______________ - ______ -__- ____ 805 806 symbolic operations _____________ -__- _________ 804 symmetry relations---____ - _____ - _____ -___-_ 806 Euler summation formula- _ _ _____________ -_-_ __ 826 Euler-Totient function- ___ _____ -__-__ __- _______ Euler’s constant_-------___-_____________-_-___ 255 Euler’s formula- _ _ ___________________________ 74,255 Euler’sintegral _____________ -_- _____ - __________ 255 Euler’s transformation of series- _ _ _ _____________ 16, 21 Everett interpolation coefficients- _ _-_ _-___ ______ 880 relation to Lagrange coefficients ____ - ____ -_ __ __ 880 Everett’s formula- _ _ _ _______________________ 880,883 Excess--------__________________________----928
INDEX Pam Expected value operator ______________________ __ 928 Exponential function ________ __-__ __ __-_-_ _ _ 69,90, 509 Chebyshev approximation__ __-__ _- ____ -_ __-_ 71 continued fractions for-- __ __ __ __-__ __ __ __-_-_ 70 differentiation formulas.. _ _ _.___ __ __ __ _____ -_-_ 71 Euler’s formula- _ _ __ __ __- ____ _____ __________ 74 graph of ____ - ___________________ - ___________ 70 identities__---____-___-_______________ ___-_ 70 indefinite integrals ___________________________ 71 inequalitiesfor ____ -_-___- ______________ - ____ 70 limiting values----________ ______ __ _________ 70 periodic property of _ - _ _ __ __ __ __ __ __-_ ____ -__ 70 polynomial approximations__________________ 71 series expansions for- _ __ ____ __ __ __ __ __ __ ____ 69 tables of ______________________________ 116,140,219 Exponential integral---_________________ 227,262, 510 asymptotic expansion of--- ___ _ __ __ __ __ ____ -__ 231 computation of ______ -_- ___________________ -_ 233 continued fraction for--- __ _ _ __ __ __ __ __ _. __ __229 definite integrals- _ _ _________________________ 230 derivatives of- __________________ -___-___-___ 230 graphs of_-___-________----_-_______________ 228 indefinite integrals----._____ __ _____ ___ .._____ 230 inequalities for- __ __ __ ____ ____ __ ______ __ _____ 229 interrelations_ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ 228 polynomial approximations_ ____ ___ __-_-_-_-_ 231 rational approximations_____ __ __ ____ ______ __ 231 recurrence relations--- __ ___ _ ___ __ __ __ __-_ ____ 229 relation to incomplete gamma function-- _ _ _ _ _ _ _ 230 relation to spherical Bessel functions-..--------230 series expansions for- ________________________ 229 tables of __________________ 238,243, 245, 248, 249,251 F F-distribution function-- __ ____ ______ ____ __ _____ 946 approximations to- _-___ __ __ __ ____ __ ___ _ __ _ 947,948 computation of ____ _ __-_ ____ ____________ _____ 961 limiting forms _____________________________ 947,948 non-central _ _ _ __ _ __ _ _ _ _ _ _ _ _ _ _ __ _ __ _ _ _ _ _ _ _ _ _ _ 947 reflexive 1elation _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ 946 relation to the x*-distribution____ _ _ ____ __ ____ 946 relation to Student’s &distribution-_______ _ ___ 947 series expansions for- ____________ .--_-_ ____ 946,948 statistical properties of-- ______ __ _______ ______ 946 Factorial function- _ _-_ _ __ __ ____ __ _ __ _____ __ ___ 255 (see gamma function) Factorization table of- _ __ ______________________ ____ ____ 844,864 Faltung theorem- _ ______ - _______ ._____________ 1020 Filon’s quadrature formula- _ _ ___ -_-_--_ ___ _ -_-_ 890 coefficients for- _ _ ___________________________ 924 Floquet’s theorem _____________________________ 727 Fresnel integrals ____________----___-_____ 262,300,440 asymptotic expansions of _____________________ 302 auxiliary functions---- _ _ _ _ _- - - _ - - - - - - -_ - _ _ _ 300,323 complex zeros of ___________________-_________ 329 definition_____.________________________----300 derivatives of _ _____ _ __-___ __________________ 301 graph of________________-__--------------,__ 301 integrals involving-_- _ __ ___ __________ _ __ __ ___ 303 interrelations _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ __ _ _ 300
1035 Pam
maxima and minima of ____ - _______ ____ _ _ _ __ _ 329 rational approximations____ __ ____ _-__ _-__ ___ 302 relation to spherical Bessel functions--- _ __ __ __ _ 301 relation to the confluent hypergeometric function301 relation to the error function __________________ 301 series expansion for----- _________________ -___ 301 symmetry relations-- __-_-_ __-_ __ ____ __ __ __ __ 301 table of--- _______ - ___________ - ___________ 321,323 value at infinity _____________________________ 301 Fundamental period parallelogram ________________ _ 629 G Gamma function- _ ____ - _____________________ 255,263 asymptotic formulas _________________________ 257 binomial coefficient- _- _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ __ __ _ 256 continued fraction for ________________________ 258 definite integrals ______ ___ __ _ __ __ __ _ _ _ _ __ __ __ _ 258 duplication formula-----_ _ _ _ _ __ __ ___ _ _ __ _ _ __ 256 Euler’s formula ______________________________ 255 Euler’s infinite product--- _ _ _ _ __ __ __ __ _ _ _ __ __ _ 255 Euler’s integral ____ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ __ __ __ _ __ 255 fractional values of- _ ___________ _____________ 255 Gauss’ multiplication formula-- __ _ _ _ __ ____ _ _ _ _ 256 graph of_-_____-_-_________-----------------255 Hankel’s contour integral _____________________ 255 in the complex plane _______ __________________ 256 integer values of ____ _ _ _- _ _ _ _ _ __ __ _ _ _ __ __ __ __ _ 255 PO&hammer’s symbol _____ _ _ _ _ - _ __ _ _ _ _ _ _ __ __ _ 256 polynomial approximations_ ________ ____ __ ___ 257 power series for _____ _- __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ 256 recurrence formulas _____________________ _____ 256 reflection formula ____________________________ 256 series expansion for l/r(z) _ ________________-__ 256 Stirling’s formula--- _ _-_ __ _ __ _ __ __ __ _ _ __ ____ _ 257 tables of __________________________ 267,272,274,276 triplication formulas- ____________________ ____ 256 Wallis’ formula--- _ _ _ _ _ _ _ __ __ _ __ _ _ _ _ _ ___ _ _ -il _ 258 Gauss series _____ _ ___ __ __ _ _ __ _ ___ _ _ _ _ _ _ _ _ _ __ _ _ _ 656 Gaussian integration-.. _ __ _ _ __ _ __ __ _ _ _ _ _ _ __ _ ___ _ 887 abscissas an.d weight factors for ________________ 916 for integrands with a logarithmic singularity- _ _ _ 920 of moments-- __ __ _ _ _ _ _ _ _- _ _ __ _ __ _ __ __ _ _ __ _ __ 921 Gaussian probability function-- __ _ _ _ _ _ _ _ _ _ _ ___ __ 931 Gauss’ transformation--_ _ _ _ _ __ __ __ __ __ _ _ ____ __ 573 Gegenbauer polynomials ____ _ _ _ _ _ _ _.._ _ _ _ _ _ __ __ _561 (see orthogonal polynomials) coefficients for and z’ in terms of ____________ 794 graphs of----------------------------.---776 Generalized hypergeometric function----_ _ 362,377,556 Generalized Laguerre polynomials- _ __ _ _ __ _ __ _ _ __ 771 (see orthogonal polynomials) Generalized mean _____ _ _ __ ___ __ __ _ _ _ _ _ _- - _ - -- -10 Geometric mean _______________________________ 10 Geometric progression--- __ __ _ _ __ _ _ _ _ _ _ ___ _ _ _ __ _ 10 Gill’s method- _ __ __ _ _ _ _ __ ___ _ _ _ _ _ _ _ - - - - - -- - - - 896 Gudermannian-_ __ _- _ _ __ __ __ __ __ _ _ _ _ __ _ _ _ _ _ _ _ 77 H Hankel functions ________________________ 358,379,510 Hankel’s contour integral _______________________ 255 Harmonic analysis ______ ____L_________ ___---_ 202,881
1036 page
Harmonic mean- _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _- _ _ _ _ _ _ _ _ __. 10 Haversine____~~~~~________~~_~~_______~~~~~~~ 78 Heaviside expansion theorem ____ _ _ __ _ _ _ _ _ _ - - _- _ _ 1021 Hermite functions ______________ _____________ 509,691 Hermite integration _________ __ _________________ 890 abscissas and weight factors for- _..____________ 924 Hermite polynomials--______________ 300,510, 691, 775 (see orthogonal polynomials) coefficients for and z” in terms of _________ ___ 801 graph of.-- _ _ _. _ _ _ _ __ _ __ _ _ __ _ _ _ _ _ _ _ __ ___ __ 780 values of______------_____________________ 802 Heuman’s lambda function_ _ __ __________ __ ____ 595 graph of~-~~_~_~~~~~~~~~~~__________________ 595 table of _.._ _ _ _ _ - - __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ 622 Hh function-___ __ _____________ ___________ 300, 691 Holder’s inequality for integrals- _ _ _ _ _ _ _ _ _ _ _ _ __ - 11 for surns-~--~-----~___-_--------~----------11 Horner’s scheme ________ ____ ___ __ __ ____________ 788 Hyperbolic functions_..-- __ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ 83 addition and subtraction of- _ _ _ _ _ _ _ __ __-__ _ _ - _ 84 addition formulas for- _ _ _ _ _ _ _ _ _ _ _ __ _ __ _ _ _ _ _ - 83 continued fraction for..-- _ _________________ -__ 85 84 DeMoivre’s theorem _______-___________-_____ differentiation formulas- _ _ ___________________ 85 graph of_____---____________________________ 83 83 half-angle formulas- _ ________________________ indefinite integrals--- _ _ _ _ _ __ __ _ _ _ _ __ _ _ __ __ __ _ 86 infinite products ____ _ _ _ _ _ _ _ _ __ __ __ __ __ __ __ ___ 85 modulus and phase- _ _ __ _ _ __ __ _ _ __ __ __ __ __ __ _ 84 multiple angle formulas- _ _ __ _ _ _ _ __ _ _ _ __ ___ __ _ 84 negative angle formulas- __________________ -_83 periodic properties of- _ _ _____________________ 83 productsof__--___________---_______________ 84 real and imaginary parts.. _ ___________________ 84 relations between--- __ __ __ _ _ _ _ _ __ _ _ _ __ _ _ _ __ _ _ 83 relation to circular functions- _ _ __ __ _ _ _ _ _ _ __ __ _ 83 series expansions for- _ __ _ _ _ __ _ _ _ __ __ __ __ __ __ _ 85 tables of __________________________________ 213,219 Hypergeometric differential equation ____ __ __ __ __ _ 562 solution of--_ __ _ _ __ _- _ _ _ __ __ __ _ _ __ _ _ _ __ __ __ _ 563 Hypergeometric functions- - - -_ __ __ _-_ _-_ __ _-__ _ 332, 335,336,362,377,487,555,779 as Legendre functions ________________________ 561 aspolynomials_~~~~~____-_______________-___ 561 as reductions of Riemann’s P-function_---_ _ _ _ _ 565 asymptotic expansions of _____________ - _______ 565 differentiation formulas_ _ _ _ _ __ _ - _ _ __ __ _ _ _ _ _ __ 557 Gauss series- _ _ _ _ _ _ _ _ __ _ __ __ _ _ _ _ _ _ _ __ _ _ _- __ _ 556 Gauss’ relations for contiguous functions- _ _ - _ _ _ 557 integral representations_ _ _ _ _ _- _ _ _ _ __ __ __ _ _ _ _ _ 558 special cases of _____________ i ____________ -___ 561 special elementary cases ____________________ __ 556 special values of the argument- _ _ _______ - _____ 556 transformation formulas ______________________ 559 I Incomplete beta function _____________________ 263,944 approximations to- - - _ __ __ _ _ _ _ _____ __ _ _ __ __ __ 945 asymptotic expansions of..- __ __ __ __ _-_ _ ____ _ __ 945 computation of _--_- - _ ____ __ _ __ __ __ __ _ ____ __ _ 959 continued fraction for--- __ __ __ __ __ _ _ __ __ _ __ __ 944
P8ITe
recurrence formulas ________-----_-_____---263,944 relation to other functions ______----__________ 945 relation to the binomial expansion_ ___ _ __.. __ _ 263 relation to the xz-distribution_ __ __ __ __ __ _ _ _ _ _ 944 relation to the hypergeometric function _ _ _ _ _ _ _ _ 263 series expansion for- _ _ _ _ _ __ _ __ __ _ _ _ _ __ _ ___ __ _ 944 symmetry relation-- _ _ __ _ __ _ _ _ _ _ _ _ _ _ _- _ _ _ _-__ 263 Incomplete gamma function- _ ____ ____ 230,260,486,509 as a confluent hypergeometric function-- _ _ _ _ _ _ _ 262 asymptotic expansions of-- _ _ _ _ _ _ __ _ _ __ _ _ _ _ _-_ 263 computation of ____ __ _ __ __ _ _ _ _ __ __ _ _ __ _ _ __ __ _ 959 continued fraction for ________________________ 263 definite integrals- _ _ _ _ _ _ _ _ __ _ _ __ __ __ _ _ _ _ ___ _ _ 263 derivatives and differential equations- _ _ _ _ _- _ _ _ 262 graph of-----------------------------------261 Pearson’s form of ____________________________ 262 recurrence formulas ____________-__ ___________ 262 series developments for _______________________ 262 special values of _____________________________ 262 table of-- ______________________________ -___ 978 Indeterminate forms (L’Hospital’s rule) _ _ _ _ _ _ _ _ _ _ 13 Inequality, Cauchy’s ___________________________ 11 Chebyshev’s_---_________________________--11 Holder’s for integrals- _ _ _ _ _ - _ - _ - _ __ _ __ _ - - - _ _ _ 11 Holder’s for sums __________-_---_____________ 11 11 Minkowski’s for integrals--- _ _ __ _ _ _ _ _ _ _ _ - _ _ _ __ Minkowski’s for sums-- _ _ _ _ - - - __ _ _ _ _ _ _ _ - - _ __ _ 11 Schwa&s _____- _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ __ __ _ 11 triangle- _ _ __ __ __ __ __ _ _ _ __ __ _ _ ___ _ _ _ _ ___ _ __ _ 11 Integral of a bivariate normal distribution over a polygon-~--~~~-----~~~~~~~~~_~~~~~~~_______ 956 Integrals of circular functions- _ _ _ __ _____________ - _____ 77 of exponential functions ______________________ 71 of hyperbolic functions _______________________ 86 of inverse circular functions ____ _ _ _ _ _ __ __ _-__ __ 82 of inverse hyperbolic functions_ _ _ _ _ ___ - _ _ - _ _ 88 of irrational algebraic functions- _ _ _ ________ -__ 12 of logarithmic functions- _____ - _______________ 69 of rational algebraic functions ____________ __ -__ 12 Integration~~~~~-~~~____________________~~~~~~ 885 Bode’srule-~~~---~~~~~_______~_______-_____ 886 byp~~-------------____________________--12 Chebyshev’s equal weight formula--- _ __ __ __ __ _ 887 Euler-Maclaurin summation formula ___________ 886 Filon’s formula ____________________ - _________ 890 five-point rule for analytic functions_ _ __ ___ _ _ _ _ 887 Gaussian type formulas- _ _ _ _ _ _ _ _ _ - :_ _ _ _ _ _ _ _ _ _ 887 iterated integrals--_ __ ___ __ __ __ _ _ __ __ __ __ __ _ 891 Lagrange formula- - _ _ __ __ __ __ __ _ __ __ __ _ __ __ _ 886 Lobatto’s integration formula _________________ 888 multidimensional _____ _ _ _ _ _ _ _ _ - _ _ __ _ _ _ _ _ _ ___- _ 891 Newton-Cotes formula- ______________________ 886 Radau’s integration formula- _ ________________ 888 Simpson’s rule- _ _ __ __ _ __ _ _ __ _ __-_ __ __ _ __ __ _ 886 trapezoidal rule _--_ __ ___ __ __ __ _ __ _ _ __ _- _____ _ 885 Interpolation_ _ _ _____ __ __ __ __ __ _ __ __-_ __ __ __ _ 878 Aitken’s iteration method-- __ __ __ __ _ _ _ _ _ _ ____ _ 879 Bessel’s formula-- _ ___ __ __ __ __ ____ _ _ _-_ __ __ _ _ 881 bivariate~~~~~~--~~~~~_____________-________ 882 Everett’s formula _____ _ __ _ _ __ _ __ __ __ _ __ _ __ __ _ 880
Page harmonic analysis- _ _ _ _ _ _____ _ __ _ _ _- __ -_ __ _ __ 881 inverse________~~_____________~~~~~~~~~~~~~~ 881 Lagrange formula- _ _ ________________________ 878 Newton’s divided difference formula- _ _- _ _ _ _ _ _ _ 880 Newton’s forward difference formula ___________ 880 Taylor’s expansion _____. __ _ _ __ __ _ _ __ __ _ _ __ _ _ _ 880 Thiele’s formula ___________ -.___-_-_--________ 881 throwback formulas __________________________ 880 trigonometric_ _ _ _ _ _ _ _ _ _ ___ - _ __ _ _ _ _ __ __ __ __881 Invariants~~~~__~~~~~~~~~______~~~~~__________ 629 tables of _____ _ _ _ _ __ __ __ __ _ _ __ __ __ __ __ _ _ _ _ _ _ _ 680 Inverse circular functions ____ _ _ _ _ _ __ _ ___ _ _ _ _ _ 22, 79, 92 addition and subtraction of-- ______ ___________ 80 Chebyshev approximations_ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ 82 continued fractions for- _ __ __________ ____ _____ 81 differentiation formulas- _ _ _ __________________ 82 graph of_____---____________________________ 79 indefinite integrals ____ _ _ _ _ _ __ _ __ __ _ _ _ __ _ _ _ _ _ _ 82 logarithmic representation ______________---____ 80 negative arguments __________________________ 80 polynomial approximations_ __ __ __ __ __ _ _ _ __ __ 81 real and imaginary parts- _ _ _ _ __-_ __ _ _ _ _ _ _ __ __ 80 relation to inverse hyperbolic functions- ___ _ _ - _ _ 80 series expansions for- _ ___ _ __ __ __ __ __ __ _-__ __ _ 81 table of- _ _ _ ___ __ __ __ __ __ __ __ __ __ __ _ ___ __ _ __ 203 Inverse hyperbolic functions- _ _ _ _ _ __ __ __ _ _ _ _ _ __- 86,93 addition and subtraction of-- __ _ _ _ __ __ __ _ _ _ _ _87 continued fractions for _______________________ 88 differentiation formulas- _ _ _ _ _ _ _ __ __ __- __ _ _ __ _ 88 graphsof~~~_~~~~~~~______~_________________ 86 indefinite integrals _____ _- ___ -_ __ __ _ _ __ ___-_ __ 88 logarithmic representations- - __-__ _ __ __ __ _ ___ _ 87 negative arguments--- _ _ __ __ __ __ __ _ _ __ __ __ __ _ 87 relation to inverse circular functions- _ __ _-_ _ _ _ _ 87 series expansions for- _ __ _ __ _ _ - _ _ __- __ _ _ __ __ __ 88 tables of--.. _ _ _ __ _ __ _ __ __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ __ __ 221 J Jacobian elliptic functions- _____ - ______________ _ 567 addition theorems for- _ _ _ _ _ _ _ __ _ _ _ _ _ __ __ _ __ __ 574 approximations in terms of circular functions- _ _ 573 approximations in terms of hyperbolic functions574 calculation by use of the arithmetic-geometric rnean__~~~~~~_~~~~~~~____________________ 571 calculation of _ _ __ _ _ _- _ _ _ _ _ _ _ ___ _ _ _ _ __ _ _ __ _ 579,581 change of argument_-- _- _- __ _ __ _ _ _ _ _ _ _ _ _ _- _ __ 572 change of parameter- ________ __-______ __ ____ _ 573 classification of __-_ __ __ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ A_ __ 570 complex arguments- __ _ _ _ _ _ _ _ _ __ __ ___ _ _ _ _ _ _ _ _ 575 definitions-------_______________________---569 derivatives of _ _ _ __ _ _ _ _ _ _ _ _ __ __ __ __ _ _ _ _ _ __ __ _ 574 double arguments- _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ __ _ _ _ _ __ 574 graphsof______---__________________________ 570 half-arguments ______________ -- _________ ----_ 574 integrals- _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ 575 integrals of the squares _____ - __ _ ______ - _______ 576 Jacobi’s imaginary transformation-___________ 574 Landen transformation______________________ 573 leading terms of series in powers of u- _ __ ____ ___ 575 p~arneter~~~~~----,~~~~~~~___~~~~~_________ 569 principal terms-- - -_ __ _ _ _ ___ __ __ __ _ _ _ _ __ __ ___ 572
Page quarter periods--- _ _ _ __ _ _ __ __ __ _ __ __ __ __ _ __ __ 569 reciprocal parameter-- __ _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ __ _ _ 573 relations between squares of the functions- _ _ _ _ _ 573 relation to the copolar trio ______________ ______ 570 relation with Weierstrass functions.. _ _ _ - - - - - - __ 649 series expansions in terms of the nome q-- ______ 575 special arguments- _ _ _____ ___-_______________ 571 Jacobi’s eta function ____________ ____ ___________ 577 Jacobi’s polynomials ___________-_-___________ 561,773 (see orthogonal polynomials) coefficients for- _ _ _ ____-_ -_-___-__ _________ 793 graphs of_-_________-____--------------773,776 Jacobi’s theta function (see theta functions) _ _ _ _ _ _ 576 Jacobi’s zeta function ________________________ 578, 595 addition theorem for-- _ _ _ __ ___ _ _ _ _ _ __ _ _ _ __ __ _ 595 calculation by use of the arithmetic-geometric rnean__-____-~~~--_______________________ 578 graph of__-____________---__________________ 595 Jacobi’s imaginary transformation____ ________ 595 q-seriesfor ______ -_--_-- _____________________ 595 relation to theta functions-- ________________ 578,595 special v~ues_~~____-_~~~~~~~~~~~~~~~~~_-___ 595 table of _______________-----___ ______ ____ ____ 619 K Kelvin functions- _ _ _ _ ____ _______________ 379,387,509 ascending series for- __ ___ _ _ _ _ _ ____ __ __ __ _ _-_ _ 379 ascending series for products of--- ___ _ __ _ _ __ _ _ _ 381 asymptotic expansions for large arguments- _ _ _ 381 asymptotie expansions for large zeros- _ ________ 383 asymptotic expansions of modulus and phase- - _ 383 asymptotic expansions of products--- _ _ _ __ __ _-_ 383 definitions__-------_____________________---379 differential equations ____ __ _ __ __ _-_ _ _ __ __ __ _ __ 379 expansions in series of Bessel functions _ _ _ - _ _ _ _ _ 381 graphs of___~~~~~_____~~~~~_________________ 382 indefinite integrals- _ _ __ __ __ _ __ __ __ __ __- __ __ _ 380 modulus and phase- _ _ _ _ __ __ __ __ __ _ _ ___ __ ____ 382 of negative argument- _ _ __ __ _ _ __ ___ _ __ _ ___ _ __ 380 polynomial approximations_ __ _ __ _ __ _ _ _ _ _ -_ __ 384 recurrence relations--- _ _ __ __ _ ___ _ _ _ _ _ __ _ _ __ __ 380 recurrence relations for products _____ __________ 380 relations between ____ _ _ __ -_ _ __ __ _ _ _ _ __ _ __ __ _ _ 379 tables of ____________________________________ 430 uniform asymptotic expansions for large orders-384 zeros of functions of order zero ________________ 381 Kroneckerdelta-__-____--_-___________________ 822 Kummer functions ____ _ _ _ ___ ____ __ __ _ _ _ _ _ __ __ __ 504 Kummer’s transformation of series ____ __ __ __ _ _ _ _16 L Lagrange differentiation formula ____ __ __ __ _ __ __ __ Lagrange integration coefficients ____ _ _ _ _ __ __ __ __ _ tableof____-~~~~~~~~~~~-~~~~~~~~~__________ Lagrange interpolation coefficients-- __ _ _ _ __ __ ____ table of _ _ ___ - -- - _ _ __ __ _ __ ___ ___ __ __ __ _ -L--Lagrange interpolation formula ____ _ __ _ _ __ __ __ _ _ _ Lagrange’s expansion- _ _ __ __ __ ____ __ __ __ __ __ __ _ Laguerre integration ______________ __ __ __ __ __ __ _ abscissae and weight factors for- _ _____________
882 886 915 878 900 878 14 890 923
1038
INDEX Page
PSiW
Laguerre polynomials.. ___________________ 509,510,773 (see orthogonal polynomials) coefficients for and x” in terms of __---------799 graph of___---___------------------------780 valuesof__------------------------------800 Lame’s equation----_ _ __ __ _ _ _ _ __ _- - _ _ _ __ ___ _ _ _ 641 Landen’s transformation ascending- - - _ _ _______________________ 573,598,604 descending- _ _ _ _ ____ __________________ 573,597,604 Laplace transforms- ___________________________ 1019 definition-_--_____-------------------------1020 operations-------_-------------------------1020 tables of----- _______________________________ 1021 Laplace-Stieltjes transforms ____ _ _ _ _ __ _ __ _ _ _ __ _ __ 1029 tables of__-__------~~-----~----------------1029 Laplace’s equation- ____________________________ 17 Laplacian _ _ _ _ _ _ _ _ __ _ __ _ _ _ _ _r _ _ _ _ _ _ _ __ _ _ _ _ - - - 885 in spherical coordinates- _ _ _____________ Y_-___ 752 Laurent series ____ ___-_ _______-______----__---635 Least square approximations _______ __ ___________ 790 Legendre functions_-- ___________ 332,362,377,561,774 asymptotic expansions of - _ _ _ _ __ - - _ _ _ _ __ _ _ _ _ _ _ 335 computation of ____ - ___________ ______________ 339 explicit expressions for- _ _- _ _ _ _ __ _ - _ _ _ _ _ _ _ __ __ 333 graphs of____-______-______--------------338,780 integral representations of ___________ _________ 335 integrals involving _______ __F_________________ 337 notation for- ______ - _________________________ 332 of negative argument- _ _ _ __ __________________ 333 of negative degree--- ___ __ _F__________ _______ 333 ofnegativeorder-__------_-----------------333 recurrence relations ______________ - ____ _______ 333 relation to elliptic integrals- _ ______ _________ __ 337 relations between _______ _____ _______________ _ 333 Rodrigues’ formula- ___ ___ ___ ____ __ __________ 334 special values of_- _ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ _- _ __ __ 334 summation formulas- _ __ _______ __ ____________ 335 tables of-.- __ _-_ ___ __ _. _____________________ 342 trigonometric expansions of-- _ _ __ _ _ _ _ _ - __ ___ __ 335 values on the cut-__-----_-----___----------333 Wronskian relation- _ ___ _____ ___ ____ _________ 333 Legendre polynomials ____________________ 332,486, 773 (see orthogonal polynomials) coefficients for and zn in terms of--- _ ________ 798 graph of___------_-----_---------------338,780 valuesof-_--_____-..-_..---.._-__-.._____.._-342 Legendre’s differential equation- _ _ ____ __ ____ __. _ 332 solutions of_~--~~~~_~~~~~__~~~~~~~~~~~~~~~~~ 332 Leibnia’ theorem for differentiation of a product- __________________ 12 differentiation of an integral- _ __ _ _ _ _ _ _ _ __ __ _ _ _ 11 Lemnisoate constant _____ ______ ________ - ______ 658 Lemniscatic case- _ _ ___ ___ ___ __ _____ __ ______ 658 L’Hospital’s rule- _ ____________________________ 13 Lobattointegration______________________-----888 abscissas and weight factors for- _ _ -__ ___ ___-__ 920 Logarithmic function __________________________ 67,89 chan~eofbase______________________________ 67,89 characteristic- _ _ _______ _ ___ __ _-__ ______ ____ _ 89 Chebyshev approximations_ _ _________________ 69 common__________________________________-68,89
continued fractions for- _ _ _ _ _ __ __ __- - -- -- - --- 68 definite integrals- _ _ _ ____________----------69 differentiation formula- ____________-_-___..--69 graph of__---------------------------------67 indefinite integrals ________________---------69 inequalities for ______________________________ 68 68 limiting values _ _ _______________------------89 mantissa---_______-___-______------------polynomial approximations_____________-.-___ 68 series expansions for- ___ ________________--_-_ 68 tables of __________ - ____________-----_-- .---95 Logarithmic integral _____________________ 228,231,510 231 graph of ____ -_- _________________L_-_________ M Markoff’s differentiation formula ____________-___ 883 Mathematical constants _____________--_____---1 in octal scale __________ - _____________________ 1017 Mathieu functions-- ______________________^ ____ 721 asymptotic representations of _________________ 740 comparative notation for-- _______ ________ _ ___ 744 expansions for small Q_____________-______---730 expansions in terms of parabolic cylinder functions------------------------------------742 graphs of___-----------------------------725,734 integral equations for- _______________________ 735 integral representations of ________________-___ 736 joining factors, table of ___________________ ____ 748 normalization of-- ___________ ____________ _ ___ 732 orthogonality properties of ____________________ 732 other properties of _______________________ __ 735,738 power series in q for periodic solutions ______ ____ 725 proportionality factors- ______________________ 735 recurrence relations among the coefficients-, __ __ 723 special cases of ______________________________ 728 special values of ________________________^ ____ 740 table of coefficients for _______________________ 760 table of critical values of- __________-_____ ____ 748 zeros of _ _ ______________ __ ______________ ____ 739 Mathieu’s equation ________________________ ____ 722 characteristic exponent _______________________ 727 generation of _______ _______________________ 727 graphs of--------------,------,------,-----728 characteristic values- _ ____________-______ __ 722,748 asymptotic expansions of ___________________ 726 determination of _ _ _ _ ___ ___________________ 722 graph of__------_--------------------,----724 power series for- __________________________ 724 Floquet solutions-- ______________________ __ __ 727 other solutions-,--------------_----________ 730 relation to spheroidal wave equation _______ ____ 722 solutions involving products of Bessel functions731 stability regions of ___________________________ 728 Mathieu’s modified equation- ____ -__ ___________ 722 radial solutions of- _ _________________________ 732 Maxima-_---_-----__-____________________~--14 Mean__-----_---_-_-_____________________---928 arithmetic _______ __ ___ _____ ___ __ ________ ____ 10 generalized- _ _ __ ___________ _- ___________ __ __ 10 geometric _______________ - _______________ ____ 10 harmonic _______________________________ ____ 10
Page Milne’s method- _ _ _ _____ -_- ____ __ ______ -- ____896 14 Minima_________-____--___--------------------Minkowski’s inequality for integrals- _ _ ______ ____ 11 for sums---- ________________ -_- -----_------11 Miscellaneous functions- _______________________ 997 Mobius function _______________________________ 826 Modified Bessel functions, L(z), K.(z) _ _______ -___ 374 analytic continuation of-- _____ __ __ __ __ _ _-__ __ 376 ascending series for- _ _____ __ __ __ ___ __ _ __ __ _-_ 375 asymptotic expansions for large arguments-..---377 connection with Legendre functions-_-- _ _ _- ____ 377 derivatives with respect to order- _ _ _ __________ 377 differential equation- _ _ _ _ _ _ _ _ _- - _ _ _ _ _ - _ _ _ - _ __ 374 formulas for derivatives- _____________________ 376 generating function and associated series- _ _ - _ - _ 376 graphs of-_________-____--_____-_____-_____374 in terms of hypergeometric functions ___________ 377 integral representations of- __-___ _ _ ___ _ _ ___ _-_ 376 limiting form5 for small arguments _____________ 375 multiplication theorem5 for- _ _ _ _ _ _ ___- ____ ___ _ 377 Neumann series for K,(z)-- _ .___ __ __ _ __-__ ____ _ 377 other differential equations- _ _ __ - ____ _________ 377 polynomial approximations_ __ _- _ __ __ _ __ _-_-_ 378 recurrence relations-- _-__ __ _ _ __ __ _ ___ _ __ _ __ __ 376 relations between- __________ --- ____ -___-_-_-_ 375 tables of ____- _________ -_-___- _______________ 416 uniform asymptotic expansions for large orders- _ 378 Wronskian relations- _ _ _ __ __ _ _ __ __ _ _ _ _-__ _-__ 375 zerosof ____ - ____ --___-_- ________________ -__ 377 Modified Mathieu functions- _ - _ __- _______ - _____ 722 graphs of____-_____-_____-_____--------__734 Modified spherical Bessel functions- _ _ _ __ _ _ 443, 45 3,498 addition theorems for- _______________________ 445 ascending series for- _________________________ 443 computation of ____ _ ____ _-__ __ __ _ _ __ __ __ __ ___ 453 definitions_______________-____--_____-__-___ 443 degenerate forms- _ _ _ __-_ ___ __ __ __ __ __ __ _-___ 445 derivatives with respect to order- ______________ 445 differential equation- _ -__- _____ - _____________ 443 differentiation formulas- _ _ _ ____ - _____ ________ 444 duplication formula---_____ _________________ 445 formulas of Rayleigh’s type--- _ _ _ _ __ _ _ _ __ __ ___ 445 generating function5 for- _______ -_- ___________ 445 graphs of________-_______-_________________444 recurrence relations---_ __ _ _ _ __ __ _ __ _ __ _ _ __-_ 444 representations by elementary functions-- _ _ - _ _ _ 443 tables of--- ___________________ -___- _________ 469 Wronskian relations- _ _ _ _______ _______ _______ 443 Modified Struve functions- _____________________ 498 asymptotic expansion for large 121____ _ __ _ _ _ _ _ _ _ 498 computation of_-- _____ - ____ --- ________ - _____ 499 graphof __________ - _________ -- ________ - _____ 498 integral representations of- _ __________________ 498 integrals--__________ - ____ -- _________ - _____ 498 power series expansion for- _____ - _________ -___ 498 recurrence relations __________________________ 498 relation to modified spherical Bessel functions- _ 498 tables of _________ - ____________________ - _____ 501 Modulus---____-_________________________---16 Moments--__-_--_________________________---928 Multidimensional integration- _ _ _ _____ __ ________ 891
Page
Multinomial coefficients---_ __ ___ _-_-__ ___ ____ _ table of __________ -___-_-___- _____ - _________
823 831
N
Neumann’s polynomial _________ - _________ ______ 363 Neville’snotation _________ -- _____ --- ______ -___ 578 Neville’s theta functions ____ - - _ - _ __ _ _- - _ _ _ _ _ _ _ _ _ 578 expression as infinite product5 _________________ 579 expression as infinite series- --__ _ _ _ _ _ - _ _ __ _ __ _ _ 579 graphs of___----------_--------------------578 tables of___--------------------------------582 Newton coefficients ____ -___---- _____ -- _________ 880 relation to Lagrange coefficient5 _______-_ __ --- 880 Newton interpolation formula....- _______._____ 880,883 Newton’s method of approximation _______ __ _ ____ 18 Newton-Cotes formula- -___- _____ - __ _- ___ __ _ ___ 886 Nome_------------------------------------591,602 tableof- ____ -- __F________ --- _________ 608,610,612 Normal probability density function derivativesof________ -___-_- ____________--_ 933 Normal probability function_ _- - _ - _ _ _ _ _ _ _ __ _ _ - _ _ 931 asymptotic expansion5 of _____ __ __ _ __ -- -___- - 932 bound5 for-_----_____________ -- ____________ 933 computation of ____-_____ ---- ________________ 953 continued fraction for--- ____ __ __ ____________ _ 932 error curves for _________ ---- ________________ 933 polynomial and rational approximations____- - 932 power series for _______ - _____ - ____________--932 relation to other functions- _- __ _____ -__ __ __ __ _ 934 values of z for extreme values of P(z) and Q(z) - 977 values of 2 in terms of P(z) and Q(z) ________--976 values of Z(z) in terms of P(z) and Q(z) ---__--975 Normal probability functions and derivatives - _ _ _ _ 933 tables of____--___---_-_--------------------966 Normal probability integral repeated integrals of _____ -__ _____ - _______ ____ 934 Number theoretic functions--- _ _ _ _ - _ - - - _ _ __ _ __ _ _ 826 0
Oblate spheroidal coordinates- - _ _ _ _ _ _ _ _ __ __ _; _ _ _ 752 Octal scale___--------------------------------1017 Octal tables_--~____-_--_----~~-~-------------1017 Operations with series--- __ __ __ __ _ _ _ _ _ __ _ _ _ __ __ _ 15 Orthogonal polynomials- ____ - _____ - ______ ______ 771 as confluent hypergeometric functions __________ 780 as hypergeometric functions.. _ _ _______ ________ 779 as Legendre functions_-- _ _ _ - - __ _ _ - _ - _ _ _ _ _ _ __ _ 780 as parabolic cylinder functions- _ __ - - _ _ _ _ _ _ _ _ _ _ 780 change of interval of orthogonrtlity.. _ _ _________ 790 coefficients for- _ _ ______ _____ - __________ _____ 793 definition_-______-_------------------------773 differential equations----- _ _ __ _ __ _ _ _ _ __ _ _ _ _ 773, 781 differential relations- _ _ _ _- - _ - _ _ - _- _ _ _ _ _ __ _ r _ _ 783 evaluation of ____ - __ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ ___ _ _ _ _ _ _ _ 788 explicit expressions for- _ ___ _-__-__-___ __ _____ 775 generating functions for--- __ -__- _- ___________ 783 graphs of-_--_-_--____--___-~~---~~-~--773,776-780 inequalities for __________ -- ____ -__- __________ 786 integral representation5 of_ _- _______ -_ ________ 784 integral5 involving ____ -_ __ __ _ ________ -__- ____ 785 interrelations_ _ _ __ __ __ _ -__- _ _ ____ - __ ____ ___ 777
-
INDEX
1040
Page Orthogonal polynomials-Continued limit relations ____ __ ____- __ __--____ _____ __-__ 787 of a discrete variable-_-_ _ _ _ - _ _ __ _- - _ _ _ _ _ _ __ _ _ 788 774 orthogonality relations- ____ - __ __ _- _ _________ _ powers of z in terms of-_. __ -__ ___--_ ___ 793,794-801 recurrence relations, miscellaneous-- _ _ - _ - _ __ - 773,782 782 recurrence relations with respect to degree n- _ _ _ Rodrigues’ formula- - __ ___ __ _ _ ___ _______. __ 773,785 special values of ____ -_-_ __ _-___ __ ___________ _ 777 sumformulas _____ -_-- __________ -- ______ -___ 785 tablesof-.--_____ -_-- _______.____ 795,796,800,802 787 zeros of- _ _ __ ___ _____ __- ___ __. _- __ _-_ __ __- --
P U(a, z), V(a, cc)- __ _ 300, 509,685, 780 asymptotic expansions of _____________________ 689 computation of ______________________________ 697 connection with Bessel functions-- _ _________ 692, 697 connection with confluent hypergeometric functions_________--____-______--___________-691 connection with Hermite polynomials and functions___-___________-_____--____________-691 connection with probability integrals and Dawson’s integral- _ _ ______________________ 691 689 Darwin’s expansions- __ ___ _ ___ __ _ _ _ __ _ ___ __ __ differential equation- _ _ _--____-______________ 686 expansions for a large, z moderate- ____________ 689 expansions for x large, a moderate- ________ ____ 689 689 expansions in terms of Airy functions __________ integral representations of- _________ __________ 687 modulus and phase- _ ___---______ ____________ 690 power series in x for-- _______________________ 686 recurrence relations _____-____________________ 688 standard solutions--- ____ ___________ _________ 687 table of- _ -_________________________________ 700 Wronskian and other relations- _ _ ____ ___ ___-_ _ 687 zeros of- _ _ __ ___ _ ___ ___ _ _ _ ___ __ _ _ __ __ _ __ __ __ 696 Parabolic cylinder functions W(a, x) ______ ________ 692 asymptotic expansions of _______________ ______ 693 complex solutions ____________________________ 693 computation of ______________________________ 699 connection with Bessel functions- _ _ _ __________ 695 connection with confluent hypergeometric functions.-_______________________________ 695 Darwin’s expansions--- ______________________ 694 differential equation- _ _ ____________________ 686,692 expansions for o large, x moderate- ____________ 694 expansions for x large, a moderate _____________ 693 expression in terms of Airy functions _____ __ ___ _ 693 integral representations of- __ _ _ ___ __ ___ _ ___ ___ 693 rnodulusandphase~~___-~~~~_~~__~~~~~~~~~~~ 695 power series in x for _____ ___ _ ___ __ ___ __ __ _ __ _692 standard solutions ___________________________ 692 table of- _ _ __ ___ ____ __ _ -__ ___ __ _ _ __ __ __ ___ __ 712 Wronskian and other relations- _ ____________ __ 693 zeros of ____--_________-________________ -___ 696 Parameter m ____________________ __ __________ 569,602 table of------------___---__________________ 612 Partitions- _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ _ 825 into distinct parts- _ ___ _-_ __ __ _ _ _ __-_ __ __-___ 825 tables of__________________________________ 831,836
Parabolic
cylinder
functions
Pago
825 unrestricted ________ ____ ___-__ ______ __ _____- 262 Pearson’s form of the incomplete gamma funct,ion-260 Pentagamma function __________________________ (see polygamma functions) Percentage points of the x*-distribution 984 values of ~2 in terms of & and Y____-_-__----Percentage points of the F-distribution 986 values of F in terms of Q, Y,, YS--- ___L_____--__ Percentage points of the t-distribution 990 values of t in terms of A and Y_________-_-_-_999 Planck’s radiation function- ____ ________________ Plane triangles, solution of ______ ________ _ _______ 78, 92 256 Pochhammer’s symbol- _ _______________________ 896 Point-slope formula __________ ______ _________-__ 509 Poisson-Charlier function ____________ ___________ 959 Poisson distribution ________________________ ____ 978 table of cumulative sums of ________________--16 Polar form ____________ - _______________________ 260 Polygamma functions __________________________ 260 asymptotic formulas- ________________________ fractional values of- _ ______ - _________________ 260 integer values of _________ ____________________ 260 260 multiplication formula for- _ ____ ______________ 260 recurrence formula ____ _ _ __ _ _ _ _ _ _ _ __ _ __ _ __ _ _ _& reflection formula ____________________________ 260 series expansions for- _ __ _ __ __ ___ __ _ _ __ __ _ __ __ 260 tables of _________________________ - ________ 267, 271 788 Polynomial evaluation- _ _ _ ___ __ ______ _ __ __ _ ____ Powers computation of ______________________________ 19,90 general_,,-----_-----_-----_---______-__---69 graphof__..----_c----_---_-----------___---_ 19 16 of complex numbers- _ _ ______________________ of two- - - - ---- -- -- -- -- - -- -- - --- -_ -- -_ __-- -- 1016 of Z”/?z!- - -----_---___--____________________ 818 24 tables of ____________________________________ Predictor-corrector method- ____________________ 896 231 Primes..-__-..----------_----__-----_---___-_-_ tableof__----__--_____-____________________ 870 Primitive roots ________________________________ 827 tableof____-_______________________________ 864 Probability density function- ___________________ 931 asymptotic expansion of ______ __ __ _____ _______ 935 Probability functions- _ _ _ _ __ _ _____ _-__ _________ 927 Probability integral __________________________ 262,691 of the ,+distribution, table of _________________ 978 Progressions arithmetic- __ ____ ___ _-_ ___ __ ___ ________ __ __ _ 10 geometric _____ __ __ __ __ _____ ________ __ _______ 10 Prolate spheroidal coordinates __________ __ __ _ _ ___ 752 Pseudo-lemniscatic case- _ _ _ ___ ___- ____ __ __ _ _ ___ 662 Psi function- - _ _ __ __ __ ___ __ _- ______ ____ __ _ _ _ 258,264 asymptotic formulas-- __ __ _ _ ___ __ ____ __-_ ____ 259 definite integrals- _ _ _ _ __ __ _ _ __ __ __ __ ___ __ __ __ 259 duplication formula--- __ __ _____ ____ __ ____ ____ 259 fractional values of- _____________________ ____ 258 graph of ___--_--_--_________ - _______________ 258 in the complex plane--- __ __-__ __ __ __ __ ___ ____ 259 integer values of __________ __ _- ____ __ __ ___ __ __ 258 recurrence formulas--- _ _ _ _ _ _ _- _ _ _ _ _ _ _ __ _ _ __ _ _ 258 reflection formula ______ __ ___ __ __ _-__ ___ _ _ ____ 259
INDEX series expansions for- _ __ __ __ __ __ ____ ___-_ ___ _ 259 t,ables of __________________________ 267,272,276,288 zeros of ______________ - _______ - _____________ 259
Q Quadratic equation, solution of ____ -__ _ __- _______ Quartic equation, resolution into quadratic factors--
17,19 17, 20
R Radau’s integration formula- ___________________ 888 Random deviates, generation of _____________ ____ 949 Random numbers- _ _ __________________________ 949 ‘methods of generation of- ____________________ 949 tableof______-___-_-____--_-_---___----___991 Repeated integrals of the error function __________ 299 as a single integral--________________________ 299 asymptotic expansion of ______________________ 300 definition___---___-------------------------299 derivatives of _____________________ __________ 300 differential equation- _ _ _ _-__ _ __________ _____ _ 299 graph of _____ _______________________________ 300 power series for- _ - __________________________ 299 recurrence relations--- _______________________ 299 relation to Hermite polynomials ___-_____-_____ 300 relation %o parabolic cylinder functions-- _ - _ _ _ _ _ 300 relation to the confluent hypergeometric function_-__-_-----_-------------------------300 relation to the Hh function ________ _____-_____ 300 table of____-_-___________---------------..-.. 317 value at zero ________________________________ 300 Representation of numbers- _ _--__-_---_-_-_---_ 1012 Reversion of series _________________-___________ 16, 882 Riccati-Bessel functions- __ __ ___ __ _ _ _ _ ___ _- _____ 445 definitions-_-------------------------------445 differential equation- _ ____--------_---- ----_ 445 Wronskian relations- _ _ _ ___ __ __ __ - _ _ __ _-_-___ 445 Riemann zeta function ___________________-___ 256,807 special values of _________________-_-______ ___ 807 Riemann’s differential equation- _ _ _ ______---_-__ 564 solutions of- ____ ___ __ _____ _____ __ _____ - _____ 564 Riemann’s P function ______ ________ ___ ___- -____ 564 transformation formulas _____ ____-_-_-__----__ 565 Ring functions..---_-_------------------------336 Rodrigues’ formula- _ __ ___ __ __ __ ____ _____ 334,773,785 Roots computation of ________ ______________________ 19,89 graph of____--_____------------------------19 of complex numbers- _ _ _ ________- __ ____----__ 17,20 tables of--_-- _- __ ____________________ _-____ 24,223 Runge-Kutta methods- _ __ ____ __ __ -_______-__ __ 896 S Scales of notation- _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ - - _ _ _ _ 1011 general conversion methods ____ __ __ __ __ ____ __ _ 1012 Schwarz’s inequality _______ - ___________________ 11 Sectoral harmonics--_ __ ____-_____-----_-----332 Series___--____-_-__~~----------~------------14 binomial ______________ -_--- ________________ 14 Euler-Maclaurin summation formula ___________ 16,22 Euler’s transformation of------______________ 16, 21 exponential_____-__-----~-------~----------69
Kummer’s transformation of-- __ _ _ _ _ _ - - -_ _ _ _ _ _ 16 Lagrange’s expansion- _ _ _ _ - _ _ __ _ _ - - _ _ __ _ __ _ _ _ 14 logarithmic_-------------------------------68 operations with _____________ ---- ____________ 15 reversionof- __________ - _________ -- _____ ---__ 16 Taylor’s_____-~~---~------------~---~-~~---14 trigonometric-----_________ --- ________ - ____ 74 Shifted Chebyshev polynomials- _ _ _ _______ __ ____ 774 (see orthogonal polynomials) Shifted Legendre polynomials- - - _ _ _ _ _ __ _ _ _ _ - _ _ _ _ 774 (see orthogonal polynomials) Sievertintegral_______------------------------1000 886 Simpson’srule ______ -__--- ____________ -- ______ Sine integral __________ -_-- __________________ 231,510 asymptotic expansions of-- - _ _ _ _ _ _ _ _ __ _ __ _ _ _ _ _ 233 computation of ___________________ ---- _______ 233 definitions_- __ _- ____ __ ______________ __ ______ 231 232 graphs of______-_-_------------------------232 integral representation of-- __________ ____ __ ___ integrals-_--__ _ _ _ _ _ _ _ - __ __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ 232 rational approximations_- __ __. __ __ __ __ ___ ___ 233 relation to exponential integral--- ___ __ __ __ ____ 232 series expansions for- _ _ __ _ _ _ _ _ _ _ __ __ - - _ _ _ _ _ _ _ 232 232 symmetry relations- ___ __-__ __ __ __ __ ______ ___ tablesof __________________ -__- ____________ 238,243 928 Skewness.-----------------------------------Spence’s integral- _ _ ______ ___________ _________ _ 1004 Spherical Bessel functions.. __ _________ 230, 301, 435, 540 addition theorems for- ________ _ __ __ ___- ______ 440 439 analytic continuation of ______ _______ ____ _ _ ___ ascending series for- _ _ _ _ _ _ _ _ _ _ _ __ _ __ _ _ _ _ _ _ _ __ 437 complex zeros of h’:‘(z), h:‘(z)-- _ _ _ __ _ _ _ _ _ _ _ __ 441 computation of _____ __ __ ____ __ __ _____ ______ __ 452 439 cross products of- ______ __ __ __ __ ____ __ __ _- --definitions___------------------------------437 degenerate forms- ______________ __ __ __ __ __ __ _ 440 440 derivatives with respect to order- _ _ _______---differential equation- _ __ __ __ __ __ -_ __ ____ __ __ _ 437 439. differentiation formulas- _ _ _ ____ ____ _ __ __ - -- -duplication formula ___________ ______ __ __ __ __ _ 440 Gegenbauer’s generalization for- _ _ _ ______ ____ _ 438 generating functions for- ________ ____________ _ 439 438 graphs of____------------------------------infinite series involving j:(z) _ _________________ 440 limiting values as z-0 ____ ______________ __ __ _ 437 439 modulus and phase- _______ ____________ ___ __Poisson’s integral for ____________ ____________ _ 438 Rayleigh’s formula for- _ __ _________ _____--_ -439 439 recurrence relations ____ _-_______________-..-relation to Fresnel integrals _____ __________ __ __ 440 representations by elementary functions- _ _ _ _ _ _ _ 437 457 tables of_____------------------------------Wronskian relations_ _ _ _ _ _ ____ __ -___ ____ ___ __ 437 440 zeros and their asymptotic expansions .____ -- --Spherical polynomials (Legendre) ____ _ _ - _ - - _ _ _ _ _ _ 332 (see orthogonal polynomials) Spherical triangles, solution of- _ _ ____-_____-____ 79 751 Spheroidal wave functions- __-__ ____- __ _______ - 756 asymptotic behavior of __________________----755 asymptotic expansions of- _ ____ _______ __ -- -- --
.
1042
INDEX
Page Spheroidal wave functionsContinued characteristic values for ____________________ 753,756 differential equations----_ _ _ _ _ - _ _ - _ _ _ __ __ __ _ _ 753 evaluation of coefficients for- _ ________________ 755 expansions for _____ ___ _- __ ___ __ _________ _ __ __ 755 joining factors for- _ _____-__-__-_-__-________ 757 normalisation of ____ - __ _ _ _ __ ______ __ _ ___-__ __ 755 tables of _____ _ ___ __ __ _ _- - - - -- - - - -- -- ------_ 766 table of eigenvalues of- _ _ _ _____-__-__________ 760 table of prolate joining factors- _ _ _____________ 769 Stirling numbers- _ _ - _ _-_ _ _ __ _ __ __ __ ____ -_ ____ _ 824 table of the first kind- ____________-__________ 833 table of the second kind-.. ___ __ __ __ __ __-_-___ _ 835 Stirling’s formula ________--_--_-_----__________ 257 Struve’s functions- _ ___________________________ 495 asymptotic expansions for large orders _ _ - _ _ __ _ _ 498 asymptotic expansions for large (z( ___________ 497,498 computation of ______________________________ 499 differential equation- _ - ______________________ 496 graphs of_____-________--_-_________________ 496 integral representations of- _______________ -_ 496,498 integrals----_ __ __ _ _ _ _ __ _-_ _ _ __ _ ___ ___ __ __ _ 497,498 modified ______ - _____________________________ 498 power series expansion for- _ _ __ _ ____ __ _ ____ - 496,498 recurrence relations ____ - _____________ - _____ 496,498 relation to Weber’s function- _ _ __ _- ____ __ __ __ _ 498 special properties of __________________________ 497 tables of _____ ___ __ _ _ _ __ __ __ __ _ ___ __ _____ _-__ 501 Student’s t-distribution _________________________ 948 approximations to ___________________________ 949 asymptotic expansion of ______________________ 949 limiting distribution_ _ _ _ ___ __ __-__ _ _ _-_ ___ __ 949 non-central---______________ - __________ -_-_ 949 series expansions for- __-_____________________ 948 statistical properties of-- _ _ __ __ __ _ __ __ _-__-__ _ 948 Subtabulation ____ __ __ __ ___ __ ___ _-_ - __ __ __ ____ _ 881 Summable series __________ - ________ -_ __________ 1005 Summation of rational series- _ - __ __ __ ____ _ __ ___ 264 Sums of positive powers-.. _ __ __ _ _ __ __ ___ _ _-__ __ _ 813 Sums of powers-__-____________________ - _____ 804 Sums of reciprocal powers- _ __ ____ _ ___-__ __ __ _ 807,811 Systems of differential equations of first order----897
T Taylor expansion________---___________________ 880 Taylor’s formula- _ _ ___________________________ 14 Tesseral harmonics- _ _ - __ __ _ __ _ _ _ __ ___ _ __ __ _ _ __ 332 Tetrachoric functions- ____________________ - ____ 934 Tetragamma function ___-_____ _________________ 260 (see polygamma functions) Theta functions- _ __ __-_ __ _ _ __ __ __ __ ___ _ _ _ __ __ _ 576 addition of quarter-periods_ _ _ __ __ __ _ __ __ _ _ __ 577 calculation by use of the arithmetic-geometric mean-_________________________________ 577,580 expansions in terms of the nome p _____________ 576 Jacobi’s notation for __________________ - ____ -_ 577 logarithmic derivatives of _____________________ 576 logarithms of sum and difference_ _ ____________ 577 Neville’s notation for- _ ____ - _______________ 578,582 relations between squares of the functions _ _ _ _ __ 576 relation to Jacobi’s zeta function-- ____________ 578 relation with Weierstrass elhptic functions-- _ __ _ 650
Page
Thiele’s interpolation formula-- _ _ _ __ _- _ __ _ _ _ ___ _ 881 Toroidal functions _____________________________ 336 Toronto function-_ _ _ ____ ___ ___- ____ _______ _ ___ 509 Trapezoidal rule ____ __-_ __ _____ -_ __ ____ ___ ___ __ 885 Triangle inequality _ _ _ _ _ _ _ _ _ _ __ - _ _ _ _ _ __ _ __ _ _ _ _ _ 11 Trigamma function ____________________________ 260 (see polygamma functions) Trigonometric functions ________________________ 71 (see circular functions) Truncated exponential function- _ __ ____________ 70,262 U Ultraspherical polynomials __________ ____ ________ (see orthogonal polynomials) coefficients for and P in terms of ____-___ ____ graphsof_____~-__-_--~--_-----..--~--..---Unit step function _____________________________
774 794 776 1020
V Variance- _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ _ __ _ _ 928 Variance-ratio distribution function ________ _ ___ _ _ 946 (see F-distribution function) Vector-addition coefficients- _ ___________________ 1006 W Wallis’ formula _____ - __________________________ 258 Wave equation in prolate and oblate spheroidal coordinates----752 Weber’s function ______________________________ 498 relation to Anger’s function-..- ________________ 498 relation to Struve’s function- _________________ 498 Weierstrass elliptic functions ______ _____ _ __ __ ____ 627 addition formulas for- _ _ - _-__ _ __ __ __ ___ __ __ __ 635 case A=O-_-------------_-------_-----------651 computation of_-..-- ___ __ _ __ __ __ _____ ________ 663 conformal mapping of--- _ _ __ __ __ _-_ __ __ 642,654,659 definitions______-______________________----629 derivatives of- ______________________________ 640 determination of periods from given invariants- 665 determination of values at half-periods, etc., from givenperiods ____________ - ___-_ -_- ________ 664 differential equation- _ _____________________ 629,640 discriminant____ __ _ _____ ___ _ _______ __-_ -___ 629 equianharmonic case _________________________ 652 expressing any elliptic function in terms of pand p’- _____________________________________ 651 fundamental period parallelogram------------629 fundamental rectangle- _ _ _- ____________ ______ 630 homogeneity relations-_-- _ __ __ __ _ __ _ _ _-___ __ _ 631 integrals- ___ __ _ _ _ _ _ _ _ _ _ _ _ __ _ __ _ _ _ _ _ _ _ - _ _ __ _ 641 invariants- _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ 629 Legendre’s relation- _ _ _____ - _________________ 634 lemniscatic case- _ __ _ _ _ ___ _ _ __ _ __-__ __ __ ___ __ 658 maps of- _ _ __ __ __ __ __ _ _ _ _ _ __ __ __ __ _ _ _ _ 642,654,659 multiplication formulas ______ _ _ _ ___ __ __ __ _ _ _ __ 635 other series involving 9, 8’, 5 __________ _ ____ 639 pseudo-lemniscatic case- _ _ _______ ____________ 662 reduction formulas _______ ____________________ 631 relation with complete elliptic integrals _________ 649 relations with Jacobi’s elliptic functions- __ _ _ _ _ _ 649 relations with theta functions _________________ 650
Page
reversedseriesforlarge 191, 19’1, 1(1--------reversed series for small (VI--. ______ ___-______ series expansions for- _ _______________________ special values and relations- ___- _______ _______ symbolism ______ -- ________ -- ______ -- ______ -_ tables of___---.. __ __ _ __ _ _ _ _ ___ _ __ _ _ _ __ __ __ __ _
638 640 635 633 629 673
Page
Whittaker functions-----_____ - _______ - _______ 505 Wigner coefficients ____ _- - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1006 z Zeta function Jacobi’s_-----__---------------------------578 Riemann’s ____________ - ___________ --- _____ 256,807
Index
of Notations Page
=p(a+n)/l”(a) (Pochhammer’s symbol) _ _ _ _ 256 a,(g) characteristic value of Mathieu’s equation- _ 722 = 2P(z) - 1 normal probability function- _ _ _ 931 A(4 Ai Airy function---- ________ --- ____________ 446 A.G.M. arithmetic-geometric mean-. _ _ _ _ _ _ _ __ _ _ 571 am z amplitude of the complex number z____--__ 16 antilog antilogarithm (log-r)-L- - - - _ _ __ _ _ _ _ _ _ __ _ 89 arcsin 2, arccos 2 inverse circular functions- ____ _ 79 arctan 2, arccot 2 arcsec 2, arccsc 2 arcsinh z, arccosh z inverse hyperbolic functions.86 arctanh z, arccoth z arcsech z, arccsch z arg z argument of z- - _ _ ___ __ _____- -_ __ __ ---__ 16 b,(p) characteristic value of Mathieu’s equation- 722 B, Bernoulli number.. _ _ -___-----_-----------804 B.(z) Bernoulli polynomial-- __ _ _ _ _ _ _ __ . _ _ _ _ _ __ 804 ber,.z, bei*, Kelvin functions- _________________ 379 Bi(z) Airy function ___________________________ 446 cd, sd, nd Jacobian elliptic functions ____________ 570 c.d.f. cumulative distribution function- _ _ __ _ ____ 927 ce,(z, g) Mathieu function- ____________________ 725 cn Jacobian elliptic function__ _ - - _ _ _ _ _ _ __ ___ _ 569 Cn, Dn, Sn integrals of the squares of Jacobian elliptic functions- _ _ _. __ __________________ _ 576 cs, ds, ns Jacobian elliptic functions.. _ __________ 570 C(z) Fresnel integral __________________________ 300 C,(z) Chebyshev polynomial of the second kind-774 C(z, a) generalized Fresnel integral _____ ________ 262 Ce,(z, 9) modified Mathieu function_ _ _________ _ 732 C,(z), Cz(z) Fresnel integrals _______-___________ 300 C,(“(z) ultraspherical (Gegenbauer) polynomialL_ 774 Chi(z) hyperbolic cosine integral- _ _ _ _ __ _ _ _ _ _ _ __ 231 Ci(z) cosine integral- _ _ _ _ _ __ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ __ 231 Gin(2) cosine integral----_--_____ -- __________ 231 Cinh(z) hyperbolic cosine integral------__-----231 colog cologarithm--_____ - ____ -_- ____ -- _____. 89 covers A, coversine A---_-------____ - _______ 78 dc, nc, SC Jacobian elliptic functions- _ _________. 570 dn = A( q) delta amplitude (Jacobian elliptic function)___--_____--___---~--~-----~--------569 D,(z) parabolic cylinder function (Whittaker’s forrn)__________-____--~~-~--------------687 er, el, c~ roots of a polynomial (Weierstrass form)-629 e* exponential function_--- - _ ___ _ - - _ _ _ __ - _ _ _ __ _ 69 e,(z) truncated exponential function ____ - _______ 262 E(~\or) elliptic integral of the second kind- _ _ _ - 589 E(a,z) parabolic cylinder function- _ _ - - _ __ __ - __ _ 693 E.(z) Weber’s function ____.__ --___-- _____ - ____ 498 E,(m)(z) Weber parabolic cylinder function---- _ _ _ 509 K(m) complete elliptic integral of the second kind---___-___-_---_____________________590 (4
I
1044
page
Ei(z) exponential integral ___________________-228 E,(z) exponential integral- _ _____ ____________-228 E[g(X)] expected value operator for the function s(x)_-___-____---------------------------928 Ein(z) modified exponential integral __________-_ 228 B, Euler number _____ _ _ _ _ _ _- _- _ _ __ __ __ _ _ _ _ _ _804 E,(z) Euler polynomial- _ _ _ _ - _ __ _ __ _ _ _ _ _ _ __ _ _ _ 804 E,(z) exponential integral- _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ 228 erf z error function ___________________________ 297 erfc 2 complementary error function __________-297 exp z=ez exponential function- ________ ________ 69 exsec A, exsecant A ____________________________ 78 f*,,, f.,, joining factors for Mathieu functions-- _ _ 735 F(a, b; c; z) hypergeometric function- _ _________ 556 F(p\a) elliptic integral of the first kind- ________ 589 F~(q,p) Coulomb wave function (regular)---_ _- 538 FPP fundamental period parallelogram_ _ ______ 629 hyper.,Fmh, . . ., a,; bl, . . ., b,; z) generalised geometric function _________________________ 556 g2, g3 invariants of Weierstrass elliptic functions- _ 629 740 Be.., B0.r joining factors for Mathieu functions--g(z, y, p) bivariate normal probability function--936 Gi(z) related Airy function- __________ _ ________ 448 GL(Q p) Coulomb wave functiou (irregular or logarithmic)----------------------..----------538 G,(p, q, z) Jacobi polynomial- _________________ 774 gd(z) Gudermannian ______ _ ___ __ ___ __ __ __ __ __ _ 77 Q(z) spherical Bessel function of the third kind437 hav A haversine A- ______________________ -___ 78 H,(z) Struve’s function- _ _ _ _ _ ___ __ _ _-_ __ __ __ __ 496 Hi(z) related Airy function _____-______________ 448 He,(z) Hermite polynomial ____ __ _ _ __ __ __ _ _-___ 775 H?(z) Bessel function of the third kind (Hankel) _ 358 HA,(z) Hh (probability) function ________-____ 300,691 H,(z) Hermite polynomial- _ _ _________________ 775 H(m, n, z) confluent hypergeometric function---695 Z.(z) modified Bessel function _____ __ _ _ _ _ _ _ - _ __ _ 374 modified spherical Bessel function dGmn+$&) of the first kind- _ ___-____________________ 443 modified spherical Bessel function dim--44 of the second kind _____ - _______ - ___________ 443 Z(rL, p) incomplete gamma function (Pearson’s form)_-----__----__---------------------262 Z,(a, b) incomplete beta function _______________ 263 92 imaginary part of z(=y)- ___________________ 16 in erfc z repeated integral of the error function--299 j,(z) spherical Bessel function of the first kind--437 J,(z) Anger’s function ____ ____________________ 498 J,(z) Bessel function of the first kind ___________ 358 k modulus of Jacobian elliptic functions-.. __ __ _ _ _ 590 k’ complementary modulus ____________________ 590 k,(z) Bateman’s function-- __ _ _ _ _ __ _ __ _ _ _ _ _ _ _ _ _ 510
INDEX
OF NOTATIONS Page
Page
483 repeated integrals of Z&J(Z)- _ _. -__------_ modified spherical Bessel funcKnfH(Z) 443 tion of the third kind- _ ______-______-._____ 374 modified Bessel function_. _. __ _- __ __ ___ K,(z) 590 K(m) complete elliptic integral of the first kind-ker,z, kei,z Kelvinfunctions----__._ -_-___---379 228 ii(z) logarithmic integral _____ ____ __. _ ___- -- -- -lim limit_..-____----_-_-.--------.----.----13 log,& common (Briggs) logarithm_ _ _ _ - -__- __ - __ 68 log,2 logarithm of z to base ~n_~--~~-----~-~~~-67 In 2 (=log,z) natural, Naperian or hyperbolic logarithrn_______-----..~~~---~-----------flF(t)]=f(s) Laplace transform._---____---___ 10:: L(h, k, p) cumulative hivariate normal probability function ____ _ _ ______________________ 936 L.(s) Laguerre polynomial- _ _ _ - - _ _ _ _ _ _ _ . _ _ __ - _ 775 L,(Q)(Z) generalized Laguerre polynomial-- __ . _ _ _ 775 modified Struve function-. . _. . _ _ -. _ _ _ __ 498 L(z) m=p,’ mean~~~~.~~-----~.~----.~.~-~-~~~---928 m parameter (elliptic functions) -- __ . . . _ _ _ _ _ . _ __ 569 _. _ 569 ml complementary parameter-. ._.-._______. M(o, b, z) Kummer’s confluent hypergeometric function--__-___.___--.-.-----.-.~-------504 733 Mc,“‘(z, qj modified Mathieu function_-_ __ ____ 733 itfsMs,(i)(z,q) modified Mathieu function __________ M,,,(z) Whittaker function- - - _ _ _ __ __ __ __ __ _ - 505 n characteristic of the elliptic integral of the third kind__~------.~~-~~-~.---~-~-.----~-----590 O(u,j =un, un is of the order of vn (U./U, is bounded) _ 15
Ki.(z) Am
lim %=O __________________ ____ ____ 259 o(v,) =% Ta+- vn O,,(z) Neumann’s polynomial----~-~---_--~---363 p(n) number of partitions _.______.-__.____._._ 825 q(z) Weierstrass elliptic function--- __ __ _______ 629 ph z phase of t.he complex number z----..------16 P(a,z) incomplete gamma function- _ - - _ - _ _ _ _ __ _ 260 P(x*]u) probability of the x2-distribution- - _ _ 262,940 P:(z) associated Legendre function of the first kind_______-_______-____________________332 P(z) normal probability function--- _ __ _ _ _- _ - - _ _ 931 P,(z) Legendre function (spherical polynomials) -333, 774 P:(z) shifted Legendre polynomial ____ _-_ __ __-_ 774 P,,(a*fl)(z) Jacobi polynomial- __ __ __ _ _ _ _ _ _ __ _ - _ _ _ 774 Pr(X<=s) probability of the event X
number of partitions into distinct integer summands ______________ -_--- _____ - __._.__ Q:(z) associated Legendre function of the second kind---_._.___---_..-~.~~~~-~.--.-~~-.-.$(z) Legendre function of the second kind_-- ._. z real part of z(=z) _____.__ -_- _._.._.______ P(c, -9 radial spheroidal wave function_ ___. __ _ ,!a) Stirling number of the first kind--- _ _-_ ___ _ s),(“+) Stirling number of the second kind _ _ _ - - - - se,(t, q) Mathieu function ____. _ _ _ __. _. . _ _ __ __ _ sn Jacobian elliptic function-- _- _ -_. __ __ _ _ _ _ _ __ S(z) Fresnel integral _____ - ________._._______._ S,(z), &(z) Fresnel integrals-_---_____________ Se,(z, q) modified Mathieu function. _ _ _________ S(z, a) generalized Fresnel integral _______ - _____ Shi(z) hyptrbolic sine integral- _ _ _ _ _ _ __. . ___ ___ Si(z) sine integral- _.___ -___-_--- _______ - _.___ S,(z) Chebyshev polynomial of the first kind- _ _ _ Sib(z) hyperbolic sine integral- _ _ _ _ - _ _ _ - - _ _ __ __ S$i (c, 7) angular spheroidal wave function- _. . __ si(r) sine integral ______. - __ _ _ _ _- _. . _. _ __ _ _ _ __ sin z, cos z, tan 2 circular functions ___. . . .______ cot z, set 2, csc 2 __________ --- _______ - _.___ sinh z, cash z, tanh z hyperbolic functions _______ coth z, sech z, csch z____ --- ______ - _______ -_ T(m, n,r) Toronto function ______________.____ T.(z) Chebyshev polynomial of the first kind-- - T:(z) shifted Chebyshev polynomial of the first kind_____~____---_-_-------~~-----------U(a, b, z) Kummer’s confluent hypergeometric function_______--------------------------U,(z) Chebyshev polynomial of the second kindV”(z) shifted Chebyshev polynomial of the second kind__________-___-_------------------.-U(a, z) Weber parabolic cylinder function--- - - - vers A, versine A _______ __ _________ __ __ _-- -__ V(a, z) Weber parabolic cylinder function _ _ _ - _ w(z) error function- _ ______ __ ____ - __ _ ________ W(a, z) Weber parabolic cylinder function _ _ _ _ _ _ Wr.a(z) Whittaker function ___________________ IV{ f(z), g(z) ) (=f(z)g’(z) -f’(z)g(z)) Wronskian reIation___-__________---------~--~-----.--divided difference _______ __ _- -- -ko, 211 * - . , zb] y,(z) spherical Bessel function of the second kindY,(z) Bessel function of the second kind- _ __---Y:(e, p) surface harmonic of the first kind _ _ __ _ _ Z(z) normal probability .density function- _ _ _ __ __ q(n)
825 332 334 16 753 824 824 725 569 300 300 733 262 231 231 774 231 753 232 71 72 83 83 509 774 774 504 774 774 687 78 687 297 692 505 505 877 437 358 332 931
Notation
-
Greek Letters
Page
.
a
modular
angle (elliptic
44
= lmtne-sldt s
B.(z)
=c
function) _ _ _ _ --___-___
___________
t*e-grdt_
-_-___--
- ____________
________
-_ ____ -- ____
590 228
228
Page
@(u]m) Jacobi’s theta function _________________ I,, nth curnulant--~---~~~~-__________________ ~$4 joining factor for spheroidal wave functions- _
577 928 757
X(n)&Sk+l)-.
807
----______-____
- ____________
k-0
/3(n)
=-&-1)h(2k+l)-”
_____________ -_- _____
807
B,(n, b) incomplete beta function- _ _ _ _ _ - - _ __ _ _ _ B(z, w) betafunction--______ -- ____ - _________ y Euler’s constant ______________ -- ____ -- ______ ~(a, 2) incomplete gamma function (normalired) _
263 258 255 260
?I=:
928
k=O
coefficient of skewness __________________
y~=&-3 coefficient of excess ______ - ___________ d p(z) gamma function- _ __ _- - _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ p(a, 2) incomplete gamma function _____________ 8ii Kronecker delta (=0 if i#k; =l if i=k)----e(L) central difference- _ _ _ __________________ _ A difference operator __________________________ A discriminant of Weierstrass’ canonical form--- _ difference- _ _ _ _ __ _ _ _ _ _ - _ _ _ _ _ __ __ A( f,,) forward AX absolute error _______________ -- _________ -__ r(s) Riemann zeta function ____ -__ __ __-_- _____ l(z) Weierstrass zeta function _______ __ _____ - __ _ Z(u]m) Jacobi’s zeta function __________________
928 255 260 822 877 822 629 877 14 807 629 578
s(n)
807
-2
(-l)r-%-”
_.__----______---_-------
Weierstrasselliptic function-------‘lo =r(Z.{ H(u), H,(u) Jacobi’s eta function- _ _ ___________ 9,(z) theta function __________________________ ti,(e\\a),aa(e\aQ, Nevilb’s notation _____________ for theta functions
631 577 576 578
Miscellaneous
x*II characteristic
value of the spheroidal wave equation-___--_________________________ A”(p\a) Heuman’s lambda function-- _ _ __ __.__-_ &fJ mean difference- _ _-_____________________ c(n) Mobius function ____________________. ____ fin nth central moment ____ __________________ -_ B’,, nth moment about the origin ___________ ____ r(Z) number of primes 5% ________ - ______. ____ T=(X) = (Z-20) (x-q) . . . (z-2,) ____---_---.---II@; ~\a) elliptic integral of the third kind- _ _ _ __ II(z) factorial function ____________________ _-__ p correlation coefficient- _______________ ___ ____ Pn(%~1, . . .,z.) reciprocal difference ________ ____ P”(v, z) Poisson-Charlier function- _____ __ _ __ __ __ * standard deviation ______________________ ____ 2 variance----____--______________________-u(z) Weierstrass sigma function _---____________ Q k(n) divisor function ___- __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ __ T,(Z) tetrachoric function- _ _ _ _________________ a=am p1, amplitude- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ --__-----a(n) Euler-Totient function- _ __--_____________ characteristic function of X- _ _ _ __ _ a(t) = E(e”*) *(a; b; z) confluent hypergeometric function-- _ __ $(z) logarithmic derivative of the gamma function__----------_---------------------*‘(a; c; z) confluent hypergeometric function___ W, period of Weierstrass elliptic functions- _ _ _ _ _ _ W.,,(Z) Cunningham function _____ _ _ __ __ ___ __ __ _
19 19 752 877
& partial
883
derivative _______________
- ________ -__
i (= V-l)- ___--______ - _----- - _______________ (;) binomial coefhcient __________ -_-___- _______ n! factorial function- _ _ _ _---__________________ (2n)!! =2*4.6 . . . (272) = 2%!-- _ _ _ __ __ _ _ _ _ _ _ _ _ (m,n) greatest common divisor--- _ _ _ _ _ _ _-_ __ _ _ _
70 10 255 258 822
(n,k) =wi+n+w krp(s+n-k)
437
(n; 781, nz; . . ., n,) [z]
largest integer 1046
(Hankel’s
symbol) _ _ _____
mu!tinomial coefficient-- _ _ _ _ Is-- ___- _______ _______ ___-_
823 66
268 SO4 629 510
Notations
PW0
[oia] determinant _____________________________ [ai] column matrix ______ ______________________ Vn Laplacian operator _ - _ __-___ _____--_-_ __ ___ AL forward difference operator __---__-----__-__
753 595 877 826 928 928 231 878 590 255 936 878 509 298 928 629 827 934 669 826 928 so4
<x> nearest integer to 5 _____________________ Z complex conjugate of 2 (=?:-iy)__________ -_ z=z+iy complex number (Cartesian form)-----= rei” (polar form) ____ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Izj absolute value or modulus of z __________ __ __ I: overall summation _____________________ I ____ Z’ restricted summation ______________________ I: II sum or product taken over all prime numbers p-
sD
PM3 222 16 16 16 16 822 75s 807
Z IId,” sum or product overall positRe divisors d of A-6,”
826
f Cauchy’s principal value of the integral _ _ - ___ = approximately equal _______________________ N asymptotically equal-- - _ _ _ _ _ _ _ _ _ _ _ - __ __ _- __ <, >, I L inequality, inclusion _ _ _ _ - _ _ ___ _ - - _ # unequal----____--_______________________-
228 14 1s 10 12
,
A CATALOGUE OF SELECTED DOVER IN ALL FIELDS OF INTEREST
BOOKS
A CATALOGUE OF SELECTED DOVER IN ALL FIELDS OF INTEREST
BOOKS
AMERICA’S OLD MASTERS, James T. Flexner. Four men emerged unexpectedly from provincial 18th century America to leadership in European art: Benjamin West, J. S. Copley, C. R. Peale, Gilbert Stuart. Brilliant coverage of lives and contributions. Revised, 1967 edition. 69 plates. 365~~. of text. 21806-6 Paperbound $3.00 FLOWERS OF OUR WILDERNESS: AMERICAN PAINTING, THE COLONIAL PERIOD, James T. Flexner. Painters, and regional painting traditions from earliest Colonial times up to the emergence of Copley, West and Peale Sr., Foster, Gustavus Hesselius, Feke, John Smibert and many anonymous painters in the primitive manner. Engaging presentation, with 162 illustrations. xxii + 368~~. 22180-6 Paperbound $3.50 FIRST
THE LIGHT OF DISTANT SKIES: AMERICAN PAINTING, .1760-1835, James T. Flexner. The great generation of early American painters goes to Europe to learn and to teach: West, Copley, Gilbert Stuart and others. Allston, Trumbull, Morse; also contemporary American painters-primitives, derivatives, academics-who remained in America. 102 illustrations. xiii + 306~~. 22179-2 Paperbound $3.00 A HISTORY OF THE RISE STATES, William Dunlap.
AND
PROGRESS
OF THE ARTS
OF DESIGN
IN THE UNITED
Much the richest mine of information on early American painters, sculptors, architects, engravers, miniaturists, etc. The only source of information for scores of artists, the major primary source for many others. Unabridged reprint of rare original 1834 edition, with new introduction by James T. Flexner, and 394 new illustrations. Edited by Rita Weiss. 65/a x 95/a. 21695-0, 21696-9, 21697-7 Three volumes, Paperbound $13.50 EPOCHS OF CHINESE AND JAPANESE ART, Ernest F. Fenollosa. From primitive Chinese art to the 20th century, thorough history, explanation of every important art period and form, including Japanese woodcuts ; main stress on China and Japan, but Tibet, Korea also included. Still unexcelled for its detailed, rich coverage of cultural background, aesthetic elements, diffusion studies, particularly of the historical period. 2nd, 1913 edition. 242 illustrations. lii + 439~~. of text. 20364-6, 20365-4 Two volumes, Paperbound $6.00
THE GENTLE ART OF MAKING ENEMIES, James A. M. Whistler. Greatest wit of his day deflates Oscar Wilde, Ruskin, Swinburne; strikes back at inane critics, exhibitions, art journalism; aesthetics of impressionist revolution in most striking form. Highly readable classic by great painter. Reproduction of edition designed by Whistler. Introduction by Alfred Werner. xxxvi + 334~~. 21875-9 Paperbound $2.50
CATALOGUE
OF DOVER
BOOKS
VISUAL ILLUSIONS: THEIR CAUSES, CHARACTERISTICS, AND APPLICATIONS, Matthew Luckiesh. Thorough description and discussion of optical illusion, geometric and perspective, particularly; size and shape distortions, illusions of color, of motion; natural illusions; use of illusion in art and magic, industry, etc. Most useful today with op art, also for classical art. Scores of effects illustrated. Introduction by William H. Ittleson. 100 illustrations. xxi + 252~~. 21530-X Paperbound $2.00 A HANDBOOK OF ANATOMY FOR ART STUDENTS, Arthur Thomson. Thorough, virtually exhaustive coverage of skeletal structure, musculature, etc. Full text, supplemented by anatomical diagrams and drawings and by photographs of undraped figures. Unique in its comparison of male and female forms, pointing out differences of contour, texture, form. 211 figures, 40 drawings, 86 photographs. xx f 459~~. 21163-O Paperbound $3.50 53/s x S$‘a. 150 MASTERPIECES OF DRAWING, Selected by Anthony Toney. Full page reproductions of drawings from the early 16th to the end of the 18th century, all beautifully reproduced: Rembrandt, Michelangelo, Diirer, Fragonard, Urs, Graf, Wouwerman, many others. First-rate browsing book, model book for artists. xviii + 150~~. 21032-4 Paperbound $2.50 83/8 X 111/4. THE LATER WORK OF AUBREY BEARDSLEY, Aubrey Beardsley. Exotic, erotic, ironic masterpieces in full maturity: Comedy Ballet, Venus and Tannhauser, Pierrot, Lysistrata, Rape of the Lock, Savoy material, Ali Baba, Volpone, etc. This material revolutionized the art world, and is still powerful, fresh, brilliant. With The Early Ii+‘ork, all Beardsley’s finest work. 174 plates, 2 in color. xiv + 176~~. 81/8 x 11. 21817-1 Paperbound $3.00 DRAWINGS OF REMBRANDT, Rembrandt van Rijn. Complete reproduction of fabulously rare edition by Lippmann and Hofstede de Groot, completely reedited, updated, improved by Prof. Seymour Slive, Fogg Museum. Portraits, Biblical sketches, landscapes, Oriental types, nudes, episodes from classical mythology-All Rembrandt’s fertile genius. Also selection of drawings by his pupils and followers. “Stunning volumes,” Satunz’u~ Review. 550 illustrations. lxxviii + 552~~. 21485-0, 21486-9 Two volumes, Paperbound $10.00 9?/a x 121/. THE DISASTERS OF WAR, Francisco Goya. One of lization-83 etchings that record Goya’s shattering, war that swept through Spain after the insurrection Reprint of the first edition, with three additional Fine Arts. All plates facsimile size. Introduction v + 97pp. 93/a x Sr/&
the masterpieces of Western civibitter reaction to the Napoleonic of 1808 and to war in general. plates from Boston’s Museum of by Philip Hofer, Fogg Museum. 21872-4 Paperbound $2.00
GRAPHIC WORKS OF ODILON REDON. Largest collection of Redon’s graphic works ever assembled: 172 lithographs, 28 etchings and engravings, 9 drawings. These include some of his most famous works. All the plates from Odilon Redon: oeuvre graphique romplet, plus additional plates. New introduction and caption translations by Alfred Werner. 209 illustrations. xxvii -1 209~~. 9$$ x 121/4. 21966-8 Paperbound $4.00
CATALOGUE
OF DOVER BOOKS
JOHANN SEBASTIAN BACH, Philipp Spitta. One of the great classics of musicology, this definitive analysis of Bach’s music (and life) has never been surpassed. Lucid, nontechnical analyses of hundreds of pieces (30 pages devoted to St. Matthew Passion, 26 to B Minor Mass). Also includes major analysis of 18th-century music. 450 musical examples. 40-page musical supplement. Total of xx + 1799~~. (EUK) 22278-0, 22279-9 Two volumes, Clothbound $15.00 MOZART AND HIS PIANO CONCERTOS, Cuthbert Girdlestone. The only full-length study of an important area of Mozart’s creativity. Provides detailed analyses of all 23 concertos, traces inspirational sources. 417 musical examples. Second edition. (USO) 21271-S Paperbound $3.50 509pp. THE
PERFEIZT
WAGNERITE:
A COMMENTARY
ON THE
NIBLUNG’S
RING,
George
Bernard Shaw. Brilliant and still relevant criticism in remarkable essays on Wagner’s Ring cycle, Shaw’s ideas on political and social ideology behind the plots, role of Leitmotifs, vocal requisites, etc. Prefaces. xxi + 136~~. 21707-S Paperbound $1.50 GIOVANNI, W. A. Mozart. Complete libretto, modern English translation; biographies of composer and librettist; accounts of early performances and critical reaction. Lavishly illustrated. All the material you need to understand and appreciate this great work. Dover Opera Guide and Libretto Series; translated and introduced by Ellen Bleiler. 92 illustrations. 209~~. 21134-7 Paperbound $1.50 DON
HIGH FIDELITY SYSTEMS: A LAYMAN’S GUIDE, Rof F. Allison. All the basic information you need for setting up your own audio system: high fidelity and stereo record players, tape records, F.M. Connections, adjusting tone arm, cartridge, checking needle alignment, positioning speakers, phasing speakers, adjusting hums, trouble-shooting, maintenance, and similar topics. Enlarged 1965 edition. More than 50 charts, diagrams, photos. iv + 9lpp. 21514-8 Paperbound $1.25 REPRODUCTION
high fidelity loudspeakers, technicalities iv f 92pp. HEAR MADE
OF SOUND, Edgar Villchur. Thorough coverage for laymen of systems, reproducing systems in general, needles, amplifiers, preamps, feedback, explaining physical background. “A rare talent for making vividly comprehensible,” R. Darrell, High Fidelity. 69 figures. 21515-6 Paperbound $1.00
ME TALKIN’ TO YA: THE STORY OF JAZZ AS TOLD BY THE MEN WHO IT, Nat Shapiro and Nat Hentoff. Louis Armstrong, Fats Wailer, Jo Jones,
Clarence Williams, Billy Holiday, Duke Ellington, Jelly Roll Morton and dozens of other jazz greats tell how it was in Chicago’s South Side, New Orleans, depression Harlem and the modern West Coast as jazz was born and grew. xvi + 429~~. 21726-4 Paperbound $2.50 OF AESOP, translated by Sir Roger LEstrange. A reproduction of the very rare 1931 Paris edition; a selection of the most interesting fables, together with 50 imaginative drawings by Alexander Calder. v + 128~~. 61/2x91/4. 21780-9 Paperbound $1.25 FAEILES
i --
.-
CATALOGUE
OF
DOVER
BOOKS
ALPHABETS AND ORNAMENTS, Ernst Lehner. Well-known pictorial source for decorative alphabets, script examples, cartouches, frames, decorative title pages, calligraphic initials, borders, similar material. 14th to 19th century, mostly European. Useful in almost any graphic arts designing, varied styles. 750 illustrations. 256~~. 7 x 10. 21905-4 Paperbound $4.00 PAINTING: A CREATIVE APPROACH, Norman Colquhoun. For the beginner simple guide provides an instructive approach to painting: major stumbling blocks for beginner; overcoming them, technical points; paints and pigments; oil painting; watercolor and other media and color. New section on “plastic” paints. Glossary. Formerly Painf Your Own Pictures. 221~~. 22000-1 Paperbound $1.75 THE ENJOYMENT AND USE OF COLO.R, Walter Sargent. Explanation of the relations between colors themselves and between colors in nature and art, including hundreds of little-known facts about color values, intensities, effects of high and low illumination, complementary colors. Many practical hints for painters, references to great masters. 7 color plates, 29 illustrations. x + 274~~. 20944-X Paperbound $2.75 THE NOTEBOOKS OF LEONARDO DA VINCI, compiled and edited by Jean Paul Richter. 1566 extracts from original manuscripts reveal the full range of Leonardo’s versatile genius: all his writings on painting, sculpture, architecture, anatomy, astronomy, peography, topography, physiology, mining, music, etc., in both Italian and English, with 186 plates of manuscript pages and more than 500 additional drawings. Includes studies for the Last Supper, the lost Sforza monument, and other works. Total of xlvii + 866~~. 7ya x 103,4. 22572-0, 22573-9 Two volumes, Paperbound $10.00 MONTGOMERY WARD CATALOGUE OF 1895. Tea gowns, yards of flannel and pillow-case lace, stereoscopes, books of gospel hymns, the New Improved Singer Sewing Machine, side saddles, milk skimmers, straight-edged razors, high-button shoes, spittoons, and on and on . . listing some 25,000 items, practically all illustrated. Essential to the shoppers of the 1890’s, it is our truest record of the spirit of the period. Unaltered reprint of Issue No. 57, Spring and Summer 1895. Introduction by Boris Emmet. Innumerable illustrations. xiii + 624~~. 81/2 x 115/8. 22377-9 Paperbound $6.95 THE CRYSTAL PALACE EXHIBITION ILLUSTRATED CATALOGUE (LONDON, 185 1). One of the wonders of the modern world-the Crystal Palace Exhibition in which all the nations of the civilized world exhibited their achievements in the arts and sciences-presented in an equally important illustrated catalogue. More than 1700 items pictured with accompanying text-ceramics, textiles, cast-iron work, carpets, pianos, sleds, razors, wall-papers, billiard tables, beehives, silverware and hundreds of other artifacts-represent the focal point of Victorian culture in the Western World. Probably the largest collection of Victorian decorative art ever assembledindispensable for antiquarians and designers. Unabridged republication of the Art-Journal Catalogue of the Great Exhibition of 1851, with all terminal essays. New introduction by John Gloag, F.S.A. xxxiv + 426~~. 9 x 12. 22503-8 Paperbound $4.50
:
CATALOGUE
OF DOVER
BOOKS
DESIGN BY ACCIDENT; A BOOK OF “ACCIDENTAL EFFECTS” FOR ARTISTS AND DESIGNERS, James F. O’Brien. Create your own unique, striking, imaginative effects by “controlled accident” interaction of materials: paints and lacquers, oil and water based paints, splatter, crackling materials, shatter, similar items. Everything you do will be different; first book on this limitless art, so useful to both fine artist and commercial artist. Full instructions. 192 plates showing “accidents,” 8 in color. viii + 215~~. 83/a x 111/q. 21942-9 Paperbound $3.50 THE BOOK OF SIGNS, Rudolf Koch. Famed German type designer draws 493 beautiful symbols: religious, mystical, alchemical, imperial, property marks, runes, etc. Remarkable fusion of traditional and modern. Good for suggestions of timelessness, smartness, modernity. Text. vi + 104~~. 61/s x 91/L. 20162-7 Paperbound $1.25 HISTORY OF INDIAN AND INDONESIAN ART, Ananda K. Coomaraswamy. An unabridged republication of one of the finest books by a great scholar in Eastern art. social backgrounds; Sunga reliefs, Rajput Rich in descriptive material, history, paintings, Gupta temples, Burmese frescoes, textiles, jewelry, sculpture, etc. 400 21436-2 Paperbound $4.00 photos. viii + 423~~. 63/ x 93/4. PRIMITIVE ART, Franz Boas. America’s foremost anthropologist surveys textiles, ceramics, woodcarving, basketry, metalwork, etc.; patterns, technology, creation of symbols, style origins. All areas of world, but very full on Northwest Coast Indians. More than 350 illustrations of baskets, boxes, totem poles, weapons, etc. 378 pp. 20025-6 Paperbound $3.00 THE GENTLEMAN AND CABINET reprint (third edition, 1762) of master cabinetmaker. 200 plates, plus 24 photographs of surviving stock. vi f 249~~. 97’ x 123/.
MAKER’S DIRECTOR, Thomas Chippendale. Full most influential furniture book of all time, by illustrating chairs, sofas, mirrors, tables, cabinets, pieces. Biographical introduction by N. Bienen21601-2 Paperbound $4.00
AMERICAN ANTIQUE FURNITURE, Edga*. G. Miller, Jr. The basic coverage of all American furniture before 1840. Individual chapters cover type of furnitureclocks, tables, sideboards, etc.-chronologically, with inexhaustible wealth of data. More than 2100 photographs, all identified, commented on. Essential to all early American collectors. Introduction by H. E. Keyes. vi + 1106~~. 778 x 103/4. 21599-7, 21600-4 Two volumes, Paperbound $11.00 PENNSYLVANIA DUTCH AMERICAN FOLK ART, Henry J. Kauffman. 279 photos, 28 drawings of tulipware, Fraktur script, painted tinware, toys, flowered furniture, quilts, samplers, hex signs, house interiors, etc. Full descriptive text. Excellent for tourist, rewarding for designer, collector. Map. 146~~. 77/8 x 103/. 21205-X Paperbound $2.50 EARLY NEW ENGLAND GRAVESTONE RUBBINGS, Edmund V. Gillon, Jr. 43 photographs, 226 carefully reproduced rubbings show heavily symbolic, sometimes macabre early gravestones, up to early 19th century. Remarkable early American primitive art, occasionally strikingly beautiful; always powerful. Text. xxvi + 207~~. 83/s x 111/,. 21380-3 Paperbound $3.50