Halaman 13.docx

  • Uploaded by: safrina rizkia nasution
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Halaman 13.docx as PDF for free.

More details

  • Words: 3,105
  • Pages: 10
Halaman 13 2.2 mean-semivariance project portofolio selection problem In this section we formally the MSVP problem. Consider n risky non-divisble investment project. Let r = (π‘Ÿ1 , … , π‘Ÿπ‘› )𝑇 ∈ ℝ𝑛 denote the uncertain NPVs of the n risky project, which are calculated over a time horizon of T Periods. Let x = (π‘₯1 , … , π‘₯𝑛 )𝑇 ∈ {0,1}𝑛 denote a portfolio on these project; that is, the binary variables π‘₯𝑖 take the value of 1 if the company invest in project i and 0 otherwise, for i = 1, ... , n. Thus, the portfolio’s NPV is given by 𝑛 𝑇

𝑇

π‘Ÿ π‘₯ = π‘₯ π‘Ÿ = βˆ‘ π‘₯𝑖 π‘Ÿπ‘– 𝑖=1

Halaman 14 Writen as the following optimization problem: min 𝔼 (min⁑{ 0, π‘₯ 𝑇 π‘Ÿ βˆ’ 𝔼(π‘₯ 𝑇 π‘Ÿ)}2 ) (2.1) 𝑇

𝑠. 𝑑.⁑⁑⁑⁑⁑𝔼(π‘₯ π‘Ÿ) β‰₯ πœ‡0 π‘₯ ∈ πœ’ ∩ {0,1}𝑛 . Halaman 15 π‘š

1 2 min βˆ‘ min{0, π‘₯ 𝑇 π‘Ÿ 𝑗 βˆ’ π‘₯ 𝑇 πœ‡) π‘š 𝑗=𝑖

(2.2) 𝑇

𝑠. 𝑑.⁑⁑⁑⁑⁑𝔼(π‘₯ π‘Ÿ) β‰₯ πœ‡0 π‘₯ ∈ πœ’ ∩ {0,1}𝑛 . Where the vektor Β΅ = (πœ‡1 , … , πœ‡π‘› )𝑇 ∈ ℝ𝑛 of mean project return estimates is obtained by letting π‘š

1 𝑗 πœ‡π‘– = βˆ‘ π‘Ÿπ‘– , π‘š 𝑗=1

(2.3) For i = 1, ... , n. Halaman 16 folio selection problem (2.2) is equivalent to: π‘š

1 𝑗 min βˆ‘ 𝒴𝑖 π‘š 𝑗=1

𝑇

𝑗

𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑⁑⁑𝒴𝑗 ≀ π‘₯ (π‘Ÿ βˆ’ πœ‡)⁑⁑⁑⁑⁑⁑𝑗 = 1, … , π‘š (2.4) 𝒴𝑗 ≀ 0 π‘₯ 𝑇 πœ‡ β‰₯ πœ‡0 π‘₯ ∈ πœ’ ∩ {0,1}𝑛 .

Halaman 18 To (2.2) 𝑛

𝑛

1 min βˆ‘ βˆ‘ πœŽΜƒπ‘–π‘˜ π‘₯𝑖 π‘₯π‘˜ π‘š 𝑖=1 π‘˜=1

(2.5) 𝑇

𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑π‘₯ πœ‡ β‰₯ πœ‡0 π‘₯ ∈ πœ’ ∩ {0,1}𝑛 , Where π‘š 𝑗

𝑗

πœŽΜƒπ‘–π‘˜ = βˆ‘ min{0, π‘Ÿπ‘– βˆ’ πœ‡π‘– } min{0, π‘Ÿπ‘˜ βˆ’ πœ‡π‘˜ } 𝑗=1

(2.6) To see that (2,5) provides a pessimistic approximation to (2,2), let 𝑒 ∈ ℝ be given, and define 𝐼 βˆ’ = {𝑖: 𝑒𝑖 < 0, 𝑖 = 1, … , 𝑛}, and 𝐼 + = {𝑖: 𝑒𝑖 β‰₯ 0, 𝑖 = 1, … , 𝑛}. Clearly. 𝑛

𝑛

0 β‰₯ min {0, βˆ‘ 𝑒𝑖 } = { 𝑖=1

βˆ‘ 𝑒𝑖 + βˆ‘ 𝑒𝑖 , 𝑖𝑓⁑ |βˆ‘ 𝑒𝑖 | β‰₯ |βˆ‘ 𝑒𝑖 | ; } βˆ’ βˆ’ + +

π‘–βˆˆπΌ

π‘–βˆˆπΌ

π‘–βˆˆπΌ

π‘–βˆˆπΌ

0,β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ (2.7)

Halaman 19 Also 𝑛

βˆ‘ min{0, 𝑒𝑖 } = 0 + βˆ‘ 𝑒𝑖 . 𝑖=1

π‘–βˆˆπΌ

(2.8) Using (2.7) and (2.8) in two cases |βˆ‘π‘–βˆˆπΌβˆ’ 𝑒𝑖 | β‰₯ |βˆ‘π‘–βˆˆπΌ+ 𝑒𝑖 | and |βˆ‘π‘–βˆˆπΌβˆ’ 𝑒𝑖 | ≀ |βˆ‘π‘–βˆˆπΌ+ 𝑒𝑖 | it follows that 𝑛

𝑛

𝑛

0 β‰₯ min {0, βˆ‘ 𝑒𝑖 } β‘π‘Žπ‘›π‘‘ min {0, βˆ‘ 𝑒𝑖 } β‰₯ βˆ‘ 𝑒𝑖 min{0, 𝑒𝑖 }, 𝑖=1

𝑖=1

𝑖=1

(2.9) And therefore: 𝑛

2

2

𝑛

(min {0, βˆ‘ 𝑒𝑖 }) ≀ (βˆ‘ 𝑒𝑖 min{0, 𝑒𝑖 }) . 𝑖=1

𝑖=1

(2.10) With (2.10), and letting π‘ŸΜƒ ≔ π‘Ÿ βˆ’ πœ‡, 𝑗 = 1, … , π‘š, we have that objective function of (2.2) can be bounded from abov as follows: 𝑗

π‘š

𝑛

𝑗=1

𝑖=1

2

𝑗

π‘š

𝑛

𝑗=1

𝑖=1

2

1 1 𝑗 𝑗 βˆ‘ min {0, βˆ‘ π‘₯𝑖 π‘ŸΜƒπ‘– } ≀ βˆ‘ (βˆ‘ min{0, π‘₯𝑖 π‘ŸΜƒπ‘– }) = π‘š π‘š

π‘š

𝑛

𝑛

1 𝑗 𝑗 βˆ‘ βˆ‘ βˆ‘ min{0, π‘₯𝑖 π‘ŸΜƒπ‘– } min{0, π‘₯𝑖 π‘ŸΜƒπ‘˜ } = π‘š 𝑗=1 𝑖=1 π‘˜=1

(2.11) π‘š

𝑛

𝑛

1 𝑗 𝑗 βˆ‘ βˆ‘ π‘₯𝑖 π‘₯π‘˜ (βˆ‘ min{0, π‘ŸΜƒπ‘– } min{0, π‘ŸΜƒπ‘˜ }) = π‘š 𝑖=1 π‘˜=1

𝑖=1 π‘š

𝑛

1 βˆ‘ βˆ‘ πœŽΜƒπ‘–π‘˜ π‘₯𝑖 π‘₯π‘˜ π‘š 𝑖=1 π‘˜=1

The first inqulity follows from (2.10), and the second to last equality follows from π‘₯𝑖 β‰₯ 0, 𝑖 = 1, … , 𝑛. Hence, (2,5) is a presmistic approximation to (2.2) because its objective overestimates the expected squared downside deviations: that is, the semivariance. Notice that (2.5) will be equivalent to (2.2) whenever the second inequlity in (2.9) holds with equlity when replacing 𝑒 = π‘₯ 𝑇 π‘ŸΜƒ 𝑗 , for all j = 1, ..., m. The second inequality in (2.9) holds with equlity when 𝐼 βˆ’ = {1, … , 𝑛}β‘π‘œπ‘Ÿβ‘πΌ + = {1, … , 𝑛}. That is, problem (2,5) and (2.5) will be 𝑗 𝑗 equivalent if 𝐼 𝑗+ ≔ {𝑖 ∈ {1, … , 𝑛} ∢ π‘₯𝑖 π‘ŸΜƒπ‘– β‰₯ 0, } = {1, … , 𝑛}β‘π‘œπ‘ŸπΌ π‘—βˆ’ ≔ {𝑖 ∈ {1, … , 𝑛} ∢ π‘₯𝑖 π‘ŸΜƒπ‘– β‰₯ 0, } = {1, … , 𝑛},⁑for all j = 1, ..., m.

Halaman 20 The objective funcion of (2.5) can be linearized by introducing approciate extra continuous variables. Let 𝐼𝜎+ ≔ {(𝑖, π‘˜) ∢ ⁑ πœŽΜƒπ‘–π‘˜ > 0, 𝑖 = 1, … , 𝑛, π‘˜ = 1, … , 𝑛}, and πΌπœŽβˆ’ ≔ {(𝑖, π‘˜) ∢ ⁑ πœŽΜƒπ‘–π‘˜ > 0, 𝑖 = 1, … , 𝑛, π‘˜ = 1, … , 𝑛}. Then problem (2.5) is equivalent to te following MILP problem: 1 min βˆ‘ πœŽΜƒπ‘–π‘˜ π‘¦π‘–π‘˜ π‘š + (𝑖,π‘˜)∈𝐼𝜎 𝑇

𝑠. 𝑑.⁑⁑⁑⁑⁑⁑π‘₯ πœ‡ β‰₯ πœ‡0 π‘¦π‘–π‘˜ β‰₯ π‘₯𝑖 + π‘₯π‘˜ βˆ’ 1β‘π‘“π‘œπ‘Ÿβ‘π‘Žπ‘™π‘™β‘(𝑖, π‘˜) ∈ 𝐼𝜎+ π‘¦π‘–π‘˜ β‰₯ 0β‘π‘“π‘œπ‘Ÿβ‘π‘Žπ‘™π‘™β‘(𝑖, π‘˜) ∈ 𝐼𝜎+ (2.12) {0,1}𝑛

π‘₯βˆˆπœ’βˆ© . The equivalence between (2.5) and (2.12) follows fom the next observatins. First, from (2.6) it follows that and πΌπœŽβˆ’ ≔ {(𝑖, π‘˜) ∢ ⁑ πœŽΜƒπ‘–π‘˜ > 0, 𝑖 = 1, … , 𝑛, π‘˜ = 1, … , 𝑛}. Secons, if (𝑖, π‘˜) ∈ 𝐼𝜎+ , then π‘¦π‘–π‘˜ β‰₯ π‘₯𝑖 + π‘₯π‘˜ βˆ’ 1 and π‘¦π‘–π‘˜ β‰₯ 0 imply that π‘¦π‘–π‘˜ β‰₯ π‘₯𝑖 π‘₯π‘˜ , but since πœŽΜƒπ‘–π‘˜ > 0, then at any optimal solution of (2.2), π‘¦π‘–π‘˜ would be at its lower bound π‘¦π‘–π‘˜ β‰₯ π‘₯𝑖 π‘₯π‘˜ . Halaman 21 Presentation more succint, we re-state (2.4) as follows: 1 min⁑⁑⁑⁑ 𝑦 𝑇⁑ (𝐼)𝑦 π‘š 𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑦 ≀ 𝑅̃ π‘₯ 𝑦≀0 (S) π‘₯βˆˆπœ’βˆ©

{0,1}𝑛

,

Where 𝑦 ≔ [𝑦𝑗 ]j = 1, ...., m, I is the mΓ—m identity matrix, 𝑅̃ is a mΓ—n matrix, whose row j is 𝑇 given by [𝑅̃ ⁑]𝑗 ≔ (π‘Ÿ 𝑗 βˆ’ πœ‡) , 𝑗 = 1, … , π‘š, π‘Žπ‘›π‘‘β‘πœ’ β€² ≔ πœ’ βˆͺ {π‘₯ ∈ ℝ𝑛 : π‘₯ 𝑇 πœ‡ β‰₯ πœ‡0 }.

Halaman 22 Obtain the problem: 1 𝑇⁑ 𝑦 (𝐼)𝑦 π‘š 𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑦 ≀ βˆ’π‘…Μƒ π‘₯⁑⁑⁑(𝑒) min⁑⁑⁑⁑

(2.13) 𝑦 ≀ 0⁑⁑⁑⁑⁑(𝑒0 ) Where 𝑒 ∈ ℝ are the dual variables associated to the return constraints and 𝑒0 ∈ β„π‘š are the dual variables associated to the nin-negativity constraints in (2.13). the (convex) quadratic program in (2.13) corresponds to the benders subproblem, whose Wolfe dual is given by (see, e.g., Nocedal and Wright (2006, Chapter 12)): 1 max β‘β‘β‘β‘β‘βˆ’π‘’π‘‡ 𝑅̃ π‘₯Μ‚ βˆ’ 𝑦 𝑇 (𝐼)𝑦 π‘š 2 𝑆. 𝑑.⁑⁑⁑⁑⁑ βˆ’ 𝑦 + 𝑒 + 𝑒0 = 0 π‘š (2.14) 𝑒, 𝑒0 β‰₯ 0, Problem (2.14) is equivalent to: π‘š max β‘β‘β‘β‘β‘βˆ’π‘’π‘‡ 𝑅̃ π‘₯Μ‚ βˆ’ (𝑒 + 𝑒0 )𝑇 (𝑒 + 𝑒0 ) 4 (2.15) 𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑒, 𝑒0 β‰₯ 0. In any optimal solution of (2.15) we have 𝑒0 = βƒ—0,⁑so (2.15) is equivalent to: π‘š

π‘š

max βˆ‘ (βˆ’(π‘₯Μ‚ 𝑇 π‘ŸΜƒ 𝑗 )𝑒𝑗 βˆ’ 𝑗=1

π‘š 2 𝑒 ) 4 𝑗 (2.16)

𝑠. 𝑑.⁑⁑⁑⁑⁑𝑒𝑗 β‰₯ 0, 𝑗 = 1, … , π‘š. Notice that problem (2.16) decomposes into m independent problems: π‘š max βˆ’( π‘₯Μ‚ 𝑇 π‘ŸΜƒ 𝑗 )⁑𝑒𝑗 βˆ’ 𝑒𝑗2 4 (2.17) 𝑠. 𝑑.⁑⁑⁑⁑⁑𝑒𝑗 β‰₯ 0, Halaman 23 For j = 1, ...., m; which can be solved by inspection: if (π‘₯Μ‚ 𝑇 π‘ŸΜƒ 𝑗 ) β‰₯ 0, then the optimal solution of (2.7) is π‘’π‘—βˆ— = 0. If (π‘₯Μ‚ 𝑇 π‘ŸΜƒ 𝑗 ) ⁑ < 0,then we get a concave quadratic objective in (2.17) π‘š |(π‘₯Μ‚ 𝑇 π‘ŸΜƒ 𝑗 )|𝑒𝑗 βˆ’ 𝑒𝑗2 4 2 βˆ— 𝑇 𝑗 That has a maximun at 𝑒𝑗 = π‘š |(π‘₯Μ‚ π‘ŸΜƒ )|. So the optimal solution π‘’βˆ— (π‘₯Μ‚) ∈ β„π‘š ⁑of the benders dual subproblem (2.14) can be obtained inclosed-from as follows:

0⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑖𝑓(π‘₯Μ‚ 𝑇 π‘ŸΜƒ 𝑗 ) β‰₯ 0 π‘’π‘—βˆ— (π‘₯Μ‚) = { 2 |(π‘₯Μ‚ 𝑇 π‘ŸΜƒ 𝑗 )|⁑⁑⁑⁑⁑⁑𝑖𝑓⁑(π‘₯Μ‚ 𝑇 π‘ŸΜƒ 𝑗 ) < 0 π‘š (2.18) For j = 1, ..., m. With the benders dua subproblem solution, the benders master problem is constructed as follows. Given a finite index set β„ͺ, and a set of feasible portfolios πœ’Μ‚ β„ͺβ€² = {π‘₯Μ‚π‘˜ ∈ πœ’ β€² ∩ {0,1}𝑛 ∢ π‘˜ ∈ β„ͺ}, consider the Benders master problem min π‘ž π‘š

𝑠. 𝑑.β‘β‘β‘β‘β‘β‘β‘π‘ž β‰₯ βˆ‘ βˆ’( π‘₯Μ‚ 𝑇 π‘ŸΜƒ 𝑗 )β‘π‘’π‘—βˆ— ⁑(π‘₯Μ‚π‘˜ ) βˆ’ ⁑ 𝑗=1

π‘š βˆ— 𝑒 (π‘₯Μ‚ )2 ;β‘βˆ€π‘₯Μ‚π‘˜ ∈ πœ’Μ‚ β„ͺβ€² ⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑(β„³(πœ’Μ‚ β„ͺβ€² )) 4 𝑗 π‘˜

π‘₯ ∈ πœ’ β€² ∩ {0,1}𝑛 Note that the right-hand side of the first set of constraints in (β„³(πœ’Μ‚ β„ͺβ€² )) is closely related to the objective function of the Benders dual subproblem (2.15). Halaman 24 Algorithm 1 Benders linear scheme for the MSVP problem 1: procedure MSVP _BENDERS (πœ– > 0) 2: β„ͺ ← βˆ…, π‘˜ = 1,⁑GAP= ∞ 3: while GAP> πœ– do 4: compute π‘₯Μ‚π‘˜ , π‘§π‘˜ , the optimal solution and objective of (β„³(πœ’Μ‚ β„ͺβ€² )) 5: compute π‘’βˆ— (π‘₯Μ‚π‘˜ ) using (2.18) 6: β„ͺ ← β„ͺ βˆͺ π‘˜, π‘˜ ←= π‘˜ + 1 π‘š 7: UPPBound← βˆ‘π‘š Μ‚ 𝑇 π‘ŸΜƒ 𝑗 )β‘π‘’π‘—βˆ— ⁑(π‘₯Μ‚π‘˜ ) βˆ’ ⁑ π‘’π‘—βˆ— (π‘₯Μ‚π‘˜ )2 LowBOUNDk ← π‘§π‘˜ 𝑗=1 βˆ’( π‘₯ 4 8: GAP←|UPPBOUNDβˆ’LOWBOUNDk|/|LOWBOUNDk| 9: end while 10: end procedure If we let π‘₯ βˆ— ≔ ⁑ π‘Žπ‘Ÿπ‘”π‘šπ‘–π‘›π‘₯ {𝑺} be the optimal mean-semivariance project portfolio, then 𝑆𝑉(π‘₯πœ–βˆ— ) βˆ’ 𝑆𝑉(π‘₯ βˆ— ) < πœ–, 𝑆𝑉(π‘₯ βˆ— ) (2.19) 𝑛 Where SV represent semivariance of any portfolio of projects π‘₯ ∈ {0,1} , given by π‘š

1 2 𝑆𝑉⁑(π‘₯) ≔ βˆ‘ min{0, π‘₯ 𝑇 π‘Ÿ 𝑗 βˆ’ π‘₯ 𝑇 πœ‡} . π‘šβ‘ 𝑗=1

Halaman 44 The Value-at-risk (VaR) of a potrfolio measures its exposure to hig losses. Specially, for given 𝛼 ∈ (0,1) (typically 0.01 ≀ 𝛼 ≀ 0.05), the VaR of a portfolio is defined as the 1 βˆ’ 𝛼 quantile of the portfolio’s losses or equivalently as the a quantile of the portfolio’s return. Here follow the letter definition. Following Gaivoroski and Pflug, given 𝛼 ∈ (0,1), the Ξ±-level Var of the Portfolio is defined as follows: π‘‰π‘Žπ‘…π›Ό (π‘₯ 𝑇 πœ‰) = β„šπ›Ό (π‘₯ 𝑇 πœ‰), (3.1)

Where β„šπ›Ό (π‘₯ 𝑇 πœ‰) is the Ξ± quantile of the portfolio’s return distribution; that is, β„šπ›Ό (π‘₯ 𝑇 πœ‰) = inf{𝑣 ∢ β‘β„™π‘Ÿ(π‘₯ 𝑇 πœ‰ ≀ 𝑣) > 𝛼}. Also, the expected portfolio return from t = 0 to to = T is given by 𝔼(π‘₯ 𝑇 πœ‰). Above, β„™π‘Ÿ(. )π‘Žπ‘›π‘‘β‘π”Ό(. ) respectively indicate probability and expectation. Halaman 45 Linear diversification contraints. Formally, the VaR portfolio problem is: min β‘β‘β‘β‘βˆ’π‘‰π‘Žπ‘…π›Ό (π‘₯ 𝑇 πœ‰) (3.2) 𝑇

𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑⁑⁑𝔼(π‘₯ πœ‰) β‰₯ πœ‡0 π‘₯𝑇 πŸ™ = 1 π‘₯πœ–πœ’ βŠ† ℝ𝑛+ Halaman 46 (2.1) leads to the VaR portfolio problem (3.2) being written as: π‘§π‘‰π‘Žπ‘… ≔ ⁑ min β‘β‘βˆ’π‘£ (3.3) βŒŠπ‘Žπ‘šβŒ‹+1

{π‘₯ 𝑇 1

𝑇 π‘š}

𝑠. 𝑑.⁑⁑⁑⁑⁑𝑣 = π‘šπ‘–π‘›β‘ πœ‰ ,…,π‘₯ πœ‰ 𝑇 π‘₯ πœ‡ β‰₯ πœ‡0 π‘₯𝑇 πŸ™ = 1 π‘₯ ∈ πœ’ βŠ† ℝ𝑛+ , 𝑣 ∈ ℝ, Where v represents the VaRΞ± (π‘₯ 𝑇 πœ‰), the vector of mean return estimates is, for simplicity, 𝑗 considered t be givwn by πœ‡ ≔ (1β„π‘š) βˆ‘π‘š 𝑗=1 πœ‰ . However, our result are indepnedent of this coice, and a variety of other estimation methods can be used (see, e.g., Black and Litterman 2001, Meucci 2007). Also, for π‘˜ ∈ {1, … , π‘š}, π‘Žπ‘›π‘‘β‘π‘’ 𝑗 ∈ ℝ, 𝑗 = 1, … , π‘š, the k-th smallest element in {𝑒1 , … , π‘’π‘š } is denoted by π‘šπ‘–π‘›π‘˜ ⁑{𝑒1 , … , π‘’π‘š } (i.e., π‘šπ‘–π‘›π‘˜ ⁑{𝑒1 , … , π‘’π‘š } is the k-th order statistic 𝑒(π‘˜) in {𝑒1 , … , π‘’π‘š }). Problem (3.3) is equivalent (see, e.g., Benati and Rizzi 2007, Feng et al. 2015) to the following mixed-integer linear program (MILP): π‘§π‘‰π‘Žπ‘… = max ⁑⁑⁑⁑⁑⁑𝑣 π‘š

𝑠. 𝑑.⁑⁑⁑⁑⁑ βˆ‘ 𝑦𝑗 = βŒŠπ›Όπ‘šβŒ‹ 𝑗=1 𝑇 𝑗

𝑀𝑦𝑗 β‰₯ 𝑣 βˆ’ π‘₯ πœ‰ ,⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑗 = 1, … , π‘š (3.4) 𝑇

π‘₯ πœ‡ β‰₯ πœ‡0 π‘₯𝑇 πŸ™ = 1 π‘₯ ∈ πœ’ βŠ† ℝ𝑛+ , 𝑣 ∈ ℝ, 𝑦𝑗 ∈ {0,1},⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑗 = 1, … , π‘š, Halaman 47 max ⁑⁑⁑⁑⁑⁑𝔼(π‘₯ 𝑇 πœ‰) 𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑⁑⁑ βˆ’ π‘‰π‘Žπ‘…π›Ό (π‘₯ 𝑇 πœ‰) ≀ 𝑣̃ (3.5) 𝑇

π‘₯ πŸ™=1

π‘₯ ∈ πœ’ βŠ† ℝ𝑛+ . Halaman 48 βˆ— π‘§π‘‰π‘Žπ‘… = max ⁑⁑⁑⁑⁑⁑⁑ π‘₯ 𝑇 πœ‡

𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑⁑ βˆ‘ 𝑦𝑗 ≀ βŒŠπ›Όπ‘šβŒ‹ π‘—βˆˆ1

𝑀𝑦𝑗 β‰₯ 𝑣̃ βˆ’ π‘₯ 𝑇 πœ‰π‘— ,⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑗 = 1, … , π‘š (3.6) 𝑇

π‘₯ πŸ™=1 π‘₯ ∈ πœ’ βŠ† ℝ𝑛+ , 𝑣 ∈ ℝ, 𝑦𝑗 ∈ {0,1},⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑗 = 1, … , π‘š, 𝛽(𝛼) = min β‘β‘β‘β‘β‘β‘πœ™(π‘₯) 𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑𝑅(π‘₯) β‰₯ π‘Ž π‘₯βˆˆπœ’ 𝛼(𝑏) = ⁑⁑ max ⁑⁑⁑⁑⁑𝑅(π‘₯) (3.8) 𝑠. 𝑑.β‘β‘β‘β‘β‘β‘πœ™(π‘₯) ≀ 𝑏 π‘₯βˆˆπœ’ Halaman 55 3.4.1 Lower bound for optimal VaR Let us denote [π‘š] ≔ {1, … , π‘š}. Now, given 𝐽 βŠ† [π‘š],⁑let 𝐽𝑐 ≔ [π‘š]\𝐽, and consider the following problem: 𝑧𝐽 ≔ max ⁑⁑⁑𝑣 𝑠. 𝑑.⁑⁑⁑⁑⁑⁑ βˆ‘ 𝑦𝑗 = βŒŠπ›Όπ‘šβŒ‹ π‘—βˆˆπ½ 𝑇 𝑗

𝑀𝑦𝑗 β‰₯ 𝑣 βˆ’ π‘₯ πœ‰ ,⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑗 ∈ 𝐽 0 β‰₯ 𝑣 βˆ’ π‘₯ 𝑇 πœ‰π‘— ,⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑗 ∈ 𝐽𝑐 (3.10) 𝑇

π‘₯ πœ‡ β‰₯ πœ‡0 π‘₯𝑇 πŸ™ = 1 π‘₯ ∈ πœ’ βŠ† ℝ𝑛+ , 𝑣 ∈ ℝ, 𝑦𝑗 ∈ {0,1},⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑗 = 𝐽. Note that (3.10) is the optimazation problem obtained from (3.4) by setting 𝑦𝑗 = 0 for al⁑𝑗 ∈ 𝐽𝑐 . Hence 𝑧𝑗 ≀ π‘§π‘‰π‘Žπ‘… for all 𝐽 βŠ† [π‘š].⁑ In Algorithm A below, the formulation (3.10), together with an appropriate update of the set J, is used iterativily to obtain near-optimal feasible solution to (3.4). specifically, after setting an initial set 𝐽 = 𝐽0 βŠ‚ [π‘š] problem (3.10) is solved. Let 𝑦 𝐽 ∈ {0,1}|𝐽| ⁑be optimal value of the binary variables of (3.10). these values are used to construct the linear program below obtained by fixing the binary variables 𝑦 ∈ {0,1}π‘š in (3.4) such that 𝑦𝐽 = 𝑦 𝐽 ,

Halaman 56 And 𝑦𝑗 = 0, for all 𝑗 ∈ 𝐽𝑐 𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑⁑𝑀𝑦𝑗𝐽

max ⁑⁑⁑⁑⁑𝑣 β‰₯ 𝑣 βˆ’ π‘₯ 𝑇 πœ‰π‘— ,⁑⁑⁑⁑⁑⁑⁑𝑗 = 1, … , π‘š (3.11) 𝑇

π‘₯ πœ‡ β‰₯ πœ‡0 π‘₯𝑇 πŸ™ = 1 π‘₯ ∈ πœ’ βŠ† ℝ𝑛+ , 𝑣 ∈ ℝ, Halaman 57 3.4.2 Upper bound for optimal return In this section, the aim is to obtain a measure of the closeness to optimally of the feasibl solution π‘₯Μƒ, 𝑣̃, for the VaR portfolio problem obtained by Algorithm A. For this purpose, we first apply proposition 2 to the alternative formulations of the VaR Portfolio problem (3.4) and (3.6). specifically, let 𝛿 > 0 be a specified tolerance, and π‘₯Μƒ ∈ ℝ𝑛+ be a feasible portfolio for (3.4), with associated VaR 𝑣̃; that is 𝑣̃ = π‘šπ‘–π‘›βŒŠπ›Όπ‘šβŒ‹+1 {π‘₯Μƒ 𝑇 πœ‰1 , … , π‘₯Μƒ 𝑇 πœ‰ π‘š }. Then from proposion 2, it follows that if the optimal value of (3.6) statisfics βˆ— π‘§π‘‰π‘Žπ‘… < πœ‡0 β‡’ 𝑣̃ βˆ’ 𝛿 ≀ π‘§π‘‰π‘Žπ‘… ≀ 𝑣̃ (3.12) 𝑛 That is, the near-optimally of the feasible portfolio π‘₯Μƒ ∈ ℝ+ to the optimal portfolio corresponding to the VaR portfolio problem (3.4), can be measured in terms of 𝛿 ∈ ℝ++ . βˆ— Clearly, directly solving (3.6) to check whether condition π‘§π‘‰π‘Žπ‘… < πœ‡0 in (3.12) holds for a 𝑛 feasible portfolio π‘₯Μƒ ∈ ℝ+ ⁑ of (3.4) is as computationally inefficient as dirctly solving (3.4). therefore, w present an appropriate upper bound for the alternative formulation of the VaR portfolio problem (3.6) that allows to efficiently guarantee the near-optimally of the feasible solutios of the VaR problem obtained after using Algorithm A. Specifically, given 𝐼 βŠ† [π‘š] with |𝐼| β‰₯ βŒŠπ›Όπ‘šβŒ‹β‘π‘Žπ‘›π‘‘β‘π‘£Μƒ, a lower bound (3.4) Halaman 58 (i.e, 𝑣̃ ≀ π‘§π‘‰π‘Žπ‘… ), cosider the problem. πœ‡Μ…πΌ ≔ ⁑⁑ max ⁑⁑⁑⁑⁑π‘₯ 𝑇 πœ‡ 𝑠. 𝑑.⁑⁑⁑⁑⁑ βˆ‘ 𝑦𝑗 = βŒŠπ›Όπ‘šβŒ‹ π‘—βˆˆπΌ

𝑀𝑦𝑗 β‰₯ 𝑣 βˆ’ π‘₯ 𝑇 πœ‰π‘— ,⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑗 ∈ 𝐼 (3.13) 𝑇

π‘₯ πŸ™=1 π‘₯ ∈ πœ’ βŠ† ℝ𝑛+ , 𝑦𝑗 ∈ {0,1},⁑⁑⁑⁑⁑⁑⁑⁑⁑𝑗 = 𝐼. Halaman 114 1 Μ‚ 𝑀 βˆ’ 𝑀 𝑇 πœ‡Μ‚ min ⁑⁑𝑀 𝑇 βˆ‘ 𝑦

(5.1) 𝑇

𝑠. 𝑑.⁑⁑⁑⁑⁑⁑⁑⁑𝑀 𝑒 = 1 𝑀β‰₯0 𝑁 Where 𝑀 ∈ ℝ+ is the vektor of portfolio weights, 𝑀 𝑇 πœ‡Μ‚ is the sample mean of the portfolio Μ‚ 𝑀 is the sample variance of the portfolio returns, with βˆ‘ Μ‚ denoting the returns, and 𝑀 𝑇 βˆ‘ sample covariance matrix of the asset returns. The constaint ⁑𝑀 𝑇 𝑒 = 1, where 𝑒 ∈ ℝ𝑛 is the vector of all ones, ensures that the portfolio weights sum to one, and the constraint 𝑀 β‰₯ 0 ensures that there is no short-selling. ̂𝑀 min ⁑⁑ 𝑀 𝑇 βˆ‘ (5.2) 𝑇 𝑀 𝑒=1 𝑀β‰₯0 Halaman 118 5.2.7 Mean-Variance Portfolio Optimization with a Bench-March return constraint Mean-variance models can be formuated in multiple ways (Braga 2016). We provided the one with the risk aversion parameter in model (5.1). to tes wether mean-variance formulation could return the lower risk whil achieving the same portfolio return achieved by HRP strategy, we reformulate the model (5.1) with a benchmark return constraint and define the brenchmark return value as the HRP portfolio return given by the following equation. 𝑇 πœ‡(𝐻𝑅𝑃) = 𝑀(𝐻𝑅𝑃) πœ‡ Where 𝑀𝐻𝑅𝑃 are the weight obtained by HR allocation and Β΅ is the sample average of the asset returns. The mean-variance model with the benchmark return constraint then can be formulated by following model (5.3) ̂𝑀 min ⁑⁑ 𝑀 𝑇 βˆ‘ (5.3) 𝑇 𝑠. 𝑑.⁑⁑⁑⁑⁑⁑𝑀 πœ‡ = πœ‡π»π‘…π‘ƒ 𝑀𝑇𝑒 = 1 𝑀β‰₯0 Halaman 121 Sharpe ratio Out-of-sample Sharpe ratio of strategy k, defined as the sample mean of out-of-sample excess returns (over the risk-free asset) πœ‡Μ‚ π‘˜ , devided by their sample standard deviation, πœŽΜ‚π‘˜ . To test whethe the sharpe ratios of two strategies are statistically distinguishable, we also compute the p-value of the difference, using the approach introduced by (Jobson and Korkie 1981) and referenced in (DeMidguel et al. 2009). Specifically, given two portfolio i and j, with πœ‡Μ‚ 𝑖 , πœ‡Μ‚ 𝑗 , πœŽΜ‚π‘– , πœŽΜ‚π‘— , πœŽΜ‚π‘–π‘—β‘ as their estimated means, variances, and covariances over a sample of size π‘‡βˆ’π‘€ 𝑅

Μ‚ πœ‡

Μ‚ πœ‡

, the test of the hypothesis 𝐻0 = πœŽΜ‚π‘– βˆ’ πœŽΜ‚π‘— = 0 is obtained via the test statistic 𝑖

𝑧̂𝐽𝐾 : Where

𝑖

πœ‡Μ‚ 𝑖 βˆ— πœŽΜ‚π‘— βˆ’ πœ‡Μ‚ 𝑗 βˆ— πœŽΜ‚π‘– βˆšπ‘£Μ‚

𝑣̂:

1 Μ‚πœ‡ Μ‚ πœ‡ (2πœŽΜ‚π‘–2 πœŽΜ‚π‘—2 βˆ’ 2πœŽΜ‚π‘– πœŽΜ‚π‘— , πœŽΜ‚π‘–π‘— + 0,5πœ‡π‘–2 πœŽπ‘—2 + 0,5πœ‡π‘—2 πœŽπ‘–2 βˆ’ πœŽΜ‚π‘– πœŽΜ‚π‘— πœŽΜ‚π‘–π‘—β‘ 2 ) 𝑖 𝑗 (𝑇 βˆ’ 𝑀)⁄𝑅

Turnover 𝑁

π‘‡π‘‚π‘˜π‘‘ = βˆ‘(|𝑀 Μ‚ π‘˜,𝑗,𝑑+𝑅 βˆ’ 𝑀 Μ‚ π‘˜,𝑗,𝑑+ |) 𝑗=1

Related Documents


More Documents from ""