H2adv_polynomials & Expansion Of Algebraic Expressions Worksheet

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View H2adv_polynomials & Expansion Of Algebraic Expressions Worksheet as PDF for free.

More details

  • Words: 740
  • Pages: 4
High 2 Advanced Worksheet Polynomials and Expansion of Algebraic Expressions I. Polynomials: Definitions Fill-in the blanks. 1.) A polynomial is ________________________________________________________________________. 2.) A polynomial should NOT contain terms that have: a.) variables raised to a _________________________. ex) 3x !2 and 12b !2 + 3b !1 + 4 are NOT polynomials b.) variables in the _____________________. ex)

1 1 1 1 1 + 3 and 2 + + 2 are NOT polynomials x x a ab b

c.) variables under the ________________________. ex)

xy and are x + 2 xy + y are not polynomials

3.) The degree of a term is __________________________________________________________________. ex) Given the polynomial 9xy 2 z ! 4x 3 z + 9 : a.) the degree of the first term is ______; b.) the degree of the second term is ______; c.) the degree of the third term is _______. 4.) The degree of a polynomial is _____________________________________________________________. ex) Given the polynomial 9xy 2 z ! 4x 3 z + 9 , the degree of the polynomial is ______. 5.) A polynomial in x is a mathematical expression of the form

where n is a ________________________ and the coefficients a0, a1, …, an-1, an are ____________. 6.) The leading coefficient of a polynomial in one variable is _______________________________________ _________________________________________________________________________________________. ex) The leading coefficient of the polynomial 2 + 5x 2 ! 2x 3 +

1 4 x ! x is ________. 2

II. Classifying Polynomials A. Polynomials can be classified based on the ________________. 1. monomial - _____________________________________________________________. 2. binomial - ______________________________________________________________. 3. trinomial - ______________________________________________________________. B. Polynomials can be classified based on the ________________________________. 1. linear - ________________________________________________________________. 2. quadratic - _____________________________________________________________. 3. cubic - _________________________________________________________________. 4. quartic - ________________________________________________________________. 5. quintic - ________________________________________________________________. III. Expansion of Algebraic Expressions Expand each of the following. 1.) 7 ( !5h ! 7k )

2.) !8 ( 4 p ! 3q )

3.) 5x ( 2x + 3y )

4.) !6x ( y ! 4x )

5.) 8 ( 5a ! 4 ) + 3( 2 ! 4a )

6.) 7 (12 ! 5x ) ! 3( 9 ! 7x )

7.) 5x ( !2x ! 3y ) + 2x ( !x + 3y )

8.) 4 p ( !3p + q ) ! 2 p ( !5q + p )

IV. Multiplying Binomials Expand each of the following. 1.) ( x + 5 ) ( x + 7 )

2.) ( 7 ! 2x ) ( 4 + x )

3.) ( 4x ! 5 ) ( 3x + 4 )

1 %" 1 % " 4.) $ 4 p 2 ! q ' $ 3p + q ' # 2 &# 4 &

V. Special Products Square of a Binomial ( a + b )2 = _______________________

( a ! b )2 = _____________________ Multiplying Sums and Differences

( a + b ) ( a ! b ) = __________________ Expand each of the following. 1. ( x + 5 )

3. ( 2x ! 3y )

(

2. ( a + 7 ) ( a ! 7 )

2

(

5. xy 2 ! z 2 w

)(

4. 7x + 5y 2 7x ! 5y 2

2

)

2

3 % "1 6. $ x 2 ! y' #2 5 &

2

)

VI. General Polynomial Multiplication Expand each of the following.

(

1.) ( 3 ! a ) 9 + 3a + a 2

(

)

)(

(

2.) ( x + y ) x 2 ! xy + y 2

)

3.) ( x ! 1) x 2 + x + 1 x 2 + 1

)

4.) ( 2x + 3y + 4 ) ( 2x + 3y ! 4 )

VII. Cube of a Binomial and Binomial Expansion using Pascal’s Triangle Expand each of the following 1.) ( 2x + 1)

(

3.) 5m 2 ! 4n 3

5.) ( a + b )

2.) ( a ! 2 )

3

)

3

6

3

4.) ( m + n )

5

6.) ( 2 f + 3d )

4

VIII. Reflection Question A classmate from the regular class will have a quiz on Expansions of Algebraic Expressions (all types) and he comes to you for help. In your own words, come up with a strategy so that your classmate will be able to expand any type of algebraic expression with ease and speed. (You may attach additional sheets if necessary.)

Related Documents