H Essential Trig

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View H Essential Trig as PDF for free.

More details

  • Words: 956
  • Pages: 1
ESSENTIAL TRIGONOMETRIC IDENTITIES FOR PHYSICS & CALCULUS θ

For each real x, , , and α

β

that are elements of the domain of the specified functions, the following identities hold:

8. Complementary angle and 90° rotation formulas:

1. Definitions of derived trigonometric functions:

tan θ ≡

sin θ cos θ 1 1 1 ; cot θ ≡ ≡ ; sec θ ≡ ; csc θ ≡ cos θ sin θ tan θ cos θ sin θ

2. Even/odd properties of trigonometric functions:

cos ( π2 − θ ) ≡ sin θ

cos (θ ± π2 ) ≡ ∓ sin θ

sin ( π2 − θ ) ≡ cos θ

sin (θ ± π2 ) ≡ ± cos θ

tan ( π2 − θ ) ≡ cot θ

tan (θ ± π2 ) ≡ − cot θ

cos ( −θ ) ≡ cos (θ ) ;

sin ( −θ ) ≡ − sin (θ ) ;

tan ( −θ ) ≡ − tan (θ )

cot ( π2 − θ ) ≡ tan θ

cot (θ ± π2 ) ≡ − tan θ

cot ( −θ ) ≡ − cot (θ ) ;

sec ( −θ ) ≡ sec (θ ) ;

csc ( −θ ) ≡ − csc (θ )

sec ( π2 − θ ) ≡ csc θ

sec (θ ± π2 ) ≡ ∓ csc θ

csc ( π2 − θ ) ≡ sec θ

csc (θ ± π2 ) ≡ ± sec θ

3. Identities obtained from sin2 + cos2 = 1: θ

tan 2 θ + 1 ≡ sec 2 θ

θ

cot 2 θ + 1 ≡ csc2 θ

9. Supplementary angle and 180° rotation formulas: cos (π − θ ) ≡ − cos θ

cos (θ ± π ) ≡ − cos θ

cos (α ± β ) ≡ cos α cos β ∓ sin α sin β

sin (π − θ ) ≡ sin θ

sin (θ ± π ) ≡ − sin θ

sin (α ± β ) ≡ sin α cos β ± sin β cos α

tan (π − θ ) ≡ − tan θ

tan (θ ± π ) ≡ tan θ

cot ( π − θ ) ≡ − cot θ

cot (θ ± π ) ≡ cot θ

sec ( π − θ ) ≡ − sec θ

sec (θ ± π ) ≡ − sec θ

csc (π − θ ) ≡ csc θ

csc (θ ± π ) ≡ − csc θ

4. Sums or differences of angles:

tan (α ± β ) ≡

tan α ± tan β 1 ∓ tan α tan β

cot (α ± β ) ≡

cot α cot β ∓ 1 cot β ± cot α

sec (α ± β ) ≡

sec α sec β 1 ∓ tan α tan β

csc (α ± β ) ≡

csc α csc β cot β ± cot α

10. Squares of trigonometric functions:

5. Double angle formulas: cos ( 2θ ) ≡ cos 2 θ − sin 2 θ ≡ 2 cos 2 θ − 1 ≡ 1 − 2sin 2 θ sin ( 2θ ) ≡ 2sin θ cos θ tan ( 2θ ) ≡

2 tan θ 1 − tan 2 θ

cot ( 2θ ) ≡

cot 2 θ − 1 2 cot θ

sec ( 2θ ) ≡

sec 2 θ 1 − tan 2 θ

csc ( 2θ ) ≡

csc2 θ 2 cot θ

6. Sum-to-product/difference-to-product formulas: cos α + cos β ≡ 2 cos  12 (α + β )  cos  12 (α − β )  cos α − cos β ≡ 2 sin  12 ( β − α )  sin  12 ( β + α )  sin α ± sin β ≡ 2 sin  12 (α ± β )  cos  12 (α ∓ β )  tan α ± tan β ≡ tan (α ± β )(1 ∓ tan α tan β )

cos 2 θ ≡ 12 + 12 cos 2θ

sin 2 θ ≡ 12 − 12 cos 2θ

tan 2 θ ≡

1 − cos 2θ 1 + cos 2θ

cot 2 θ ≡

1 + cos 2θ 1 − cos 2θ

sec 2 θ ≡

2 1 + cos 2θ

csc 2 θ ≡

2 1 − cos 2θ

11. Half angle formulas:

cos tan

θ 2

θ 2

≡± ≡

1 2

(1 + cos θ )

sin

θ 2

1 2

≡±

(1 − cos θ )

sin θ 1 − cos θ 1 − cos θ ≡ ≡± 1 + cos θ sin θ 1 + cos θ

12. Compositions of trigonometric and inverse trigonometric functions (for −1 ≤ x ≤ 1 and 0 ≤ cos ( sin −1 x ) ≡ 1 − x 2

θ

≤ /2): π

1

cos ( tan −1 x ) ≡

1 + x2

7. Product-to-sum formulas: cos α cos β = 12 cos (α − β ) + cos (α + β )  sin α cos β = 12 sin (α + β ) + sin (α − β ) 

cos −1 ( sin θ ) ≡ sin ( tan −1 x ) ≡

sin α sin β = cos (α − β ) − cos (α + β )  1 2

tan ( cos −1 x ) ≡

VC DEPARTMENT OF MATHEMATICS

π 2

sin ( cos −1 x ) ≡ 1 − x 2

−θ x

1+ x

2

1 − x2 x

sin −1 ( cos θ ) ≡ tan ( sin −1 x ) ≡

π 2

−θ x

1 − x2

REVISED SUMMER 2007

Related Documents

H Essential Trig
June 2020 0
Trig. Identities
October 2019 25
Trig Identities
May 2020 7
Trig Review
June 2020 6
Trig Notes
June 2020 5
Trig Refresher
May 2020 11