ESSENTIAL TRIGONOMETRIC IDENTITIES FOR PHYSICS & CALCULUS θ
For each real x, , , and α
β
that are elements of the domain of the specified functions, the following identities hold:
8. Complementary angle and 90° rotation formulas:
1. Definitions of derived trigonometric functions:
tan θ ≡
sin θ cos θ 1 1 1 ; cot θ ≡ ≡ ; sec θ ≡ ; csc θ ≡ cos θ sin θ tan θ cos θ sin θ
2. Even/odd properties of trigonometric functions:
cos ( π2 − θ ) ≡ sin θ
cos (θ ± π2 ) ≡ ∓ sin θ
sin ( π2 − θ ) ≡ cos θ
sin (θ ± π2 ) ≡ ± cos θ
tan ( π2 − θ ) ≡ cot θ
tan (θ ± π2 ) ≡ − cot θ
cos ( −θ ) ≡ cos (θ ) ;
sin ( −θ ) ≡ − sin (θ ) ;
tan ( −θ ) ≡ − tan (θ )
cot ( π2 − θ ) ≡ tan θ
cot (θ ± π2 ) ≡ − tan θ
cot ( −θ ) ≡ − cot (θ ) ;
sec ( −θ ) ≡ sec (θ ) ;
csc ( −θ ) ≡ − csc (θ )
sec ( π2 − θ ) ≡ csc θ
sec (θ ± π2 ) ≡ ∓ csc θ
csc ( π2 − θ ) ≡ sec θ
csc (θ ± π2 ) ≡ ± sec θ
3. Identities obtained from sin2 + cos2 = 1: θ
tan 2 θ + 1 ≡ sec 2 θ
θ
cot 2 θ + 1 ≡ csc2 θ
9. Supplementary angle and 180° rotation formulas: cos (π − θ ) ≡ − cos θ
cos (θ ± π ) ≡ − cos θ
cos (α ± β ) ≡ cos α cos β ∓ sin α sin β
sin (π − θ ) ≡ sin θ
sin (θ ± π ) ≡ − sin θ
sin (α ± β ) ≡ sin α cos β ± sin β cos α
tan (π − θ ) ≡ − tan θ
tan (θ ± π ) ≡ tan θ
cot ( π − θ ) ≡ − cot θ
cot (θ ± π ) ≡ cot θ
sec ( π − θ ) ≡ − sec θ
sec (θ ± π ) ≡ − sec θ
csc (π − θ ) ≡ csc θ
csc (θ ± π ) ≡ − csc θ
4. Sums or differences of angles:
tan (α ± β ) ≡
tan α ± tan β 1 ∓ tan α tan β
cot (α ± β ) ≡
cot α cot β ∓ 1 cot β ± cot α
sec (α ± β ) ≡
sec α sec β 1 ∓ tan α tan β
csc (α ± β ) ≡
csc α csc β cot β ± cot α
10. Squares of trigonometric functions:
5. Double angle formulas: cos ( 2θ ) ≡ cos 2 θ − sin 2 θ ≡ 2 cos 2 θ − 1 ≡ 1 − 2sin 2 θ sin ( 2θ ) ≡ 2sin θ cos θ tan ( 2θ ) ≡
2 tan θ 1 − tan 2 θ
cot ( 2θ ) ≡
cot 2 θ − 1 2 cot θ
sec ( 2θ ) ≡
sec 2 θ 1 − tan 2 θ
csc ( 2θ ) ≡
csc2 θ 2 cot θ
6. Sum-to-product/difference-to-product formulas: cos α + cos β ≡ 2 cos 12 (α + β ) cos 12 (α − β ) cos α − cos β ≡ 2 sin 12 ( β − α ) sin 12 ( β + α ) sin α ± sin β ≡ 2 sin 12 (α ± β ) cos 12 (α ∓ β ) tan α ± tan β ≡ tan (α ± β )(1 ∓ tan α tan β )
cos 2 θ ≡ 12 + 12 cos 2θ
sin 2 θ ≡ 12 − 12 cos 2θ
tan 2 θ ≡
1 − cos 2θ 1 + cos 2θ
cot 2 θ ≡
1 + cos 2θ 1 − cos 2θ
sec 2 θ ≡
2 1 + cos 2θ
csc 2 θ ≡
2 1 − cos 2θ
11. Half angle formulas:
cos tan
θ 2
θ 2
≡± ≡
1 2
(1 + cos θ )
sin
θ 2
1 2
≡±
(1 − cos θ )
sin θ 1 − cos θ 1 − cos θ ≡ ≡± 1 + cos θ sin θ 1 + cos θ
12. Compositions of trigonometric and inverse trigonometric functions (for −1 ≤ x ≤ 1 and 0 ≤ cos ( sin −1 x ) ≡ 1 − x 2
θ
≤ /2): π
1
cos ( tan −1 x ) ≡
1 + x2
7. Product-to-sum formulas: cos α cos β = 12 cos (α − β ) + cos (α + β ) sin α cos β = 12 sin (α + β ) + sin (α − β )
cos −1 ( sin θ ) ≡ sin ( tan −1 x ) ≡
sin α sin β = cos (α − β ) − cos (α + β ) 1 2
tan ( cos −1 x ) ≡
VC DEPARTMENT OF MATHEMATICS
π 2
sin ( cos −1 x ) ≡ 1 − x 2
−θ x
1+ x
2
1 − x2 x
sin −1 ( cos θ ) ≡ tan ( sin −1 x ) ≡
π 2
−θ x
1 − x2
REVISED SUMMER 2007