Gspl203-73-1517 R-0

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Gspl203-73-1517 R-0 as PDF for free.

More details

  • Words: 9,319
  • Pages: 29
MAYTAS NAFTOGASBUD JV

CONTENTS 1.0 1.1 1.2 1.3 2.0

GSPL203-73-1517 Rev 0

PAGE NO

INTRODUCTION........................................................................................................................................................... 3 GENERAL ....................................................................................................................................................................... 3 DESIGN PHILOSOPHY ..................................................................................................................................................... 3 REFERENCES .................................................................................................................................................................. 3 DESIGN CALCULATION ............................................................................................................................................ 5

2.1 DESIGN OF PLINTH BEAM .............................................................................................................................................. 7 2.2 DESIGN OF GRADE BEAM .................................................................................................................................................... 7 2.3 DESIGN OF COLUMN ............................................................................................................................................................ 8 2.4 DESIGN OF RC WALL....................................................................................................................................................... 11 2.5 DESIGN OF FOOTING .................................................................................................................................................... 14 3..0 CONCLUSION .................................................................................................................................................................. 29

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 2 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

1.0 INTRODUCTION 1.1 General The objective of this document is to define the minimum requirements for the design and engineering of the BHARUCH JAMNAGAR PIPELINE PROJECT. The general scope of work is for engineering procurement and construction of the Bharuch Anand– GSPL pipeline system and related facilities including Despatch Station, SV Stations, Tap-off station and receiving station. This pipeline broadly consists of approximately 103.50 KMs of 30” line pipe from existing station (Receiving Station) at rajkot on GSPL 24” Anand Rajkot Pipe-line to village Pipli at chainage 89.67 Km (Receiving Station at Jamnagar) and subsequently to Reliance Receiving Station (at Reliance premises)

The purpose of this document is for providing the Design and Details of Boundary wall for SV4 Station in Chela at Chainage 79.12 Km which consists of Brick Masonry above and below the Ground Level . Beams are provided at Top of Footing Level, Plinth Level, and at Top of wall over which wire fencing is supported

1.2 Design Philosophy The RCC Wall below the GL is supported on Grade Beam and the Brick Masonry above the GL is supported by Plinth Beam respectively. The tie beam has been designed for wind load and fencing. The brick masonry has been checked for Compressive Stress and Shear Stress as per IS 1905-1987. The external loads are transferred through these beams to Columns and Foundations. The height of wall is 2.5m from FGL. The Column Foundations has been designed as Isolated Footing at a depth of 1.15m below NGL for SBC of 500 KN/ m2 as per Soil Report. Wind Pressure Calculation shall be based on basic wind speed of 50m/s. Seismic Shear has been calculated for Zone IV . Wind load is found to be critical and also Earth Pressure has been considered including Surcharge of 10 KN/ m2. The earth pressure due to 2.0m height of soil has been considered .

1.3 References IS : 456-2000

Code of practice of plain and reinforce concrete.

IS 1905-1987

Code of Practice for Structural Use of Un-reinforced Masonry

SP -16

Design Aids for Reinforced Concrete to IS:456-1978

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 3 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

.

IS : 875-1987

(Parts I to V) Code of practice for Design loads (other than earthquake) for Buildings and Structures

IS : 1893 Pt.I-2002 Criteria for Earthquake Resistant Design of Structure. IS :13920

Code of practice for ductile detailing of RCC Structures subjected to Seismic forces

IS: 1080

Code of practice for design and construction of shallow foundations in soils (other than raft, ring and shell).

IS:1904

Code of practice for design and construction of foundations in soils - General requirements.

Job 20/07-07

Geotechnical / Soil Investigation Report of M. K.. Soil Test Laboratory, Ahmedabad-7

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 4 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

2.0 Design Calculation Tie Beam 345x230

Calculation of Wind Load at FGL of Compound Wall

Brick Wall (230 Tk) WIND 2.5 m

PLINTH BEAM (345x300)

GRADE BEAM (345 x 300)

FGL +99.55

RCC Wall (150Tk)

5 KN/m2

2.0 m

27.44 KN/m2 Earth Pressure Diagram

Vb 50 m/s K1= 1.05 K2= 1.05 K3= 1 Design wind speed Vb*K1*K2*K3 Design wind pressure 0.6*Vz2 Force coeffiicient (Table 24)B/h=1.16<12 Total wind pressure Length of wall above FGL Wind shear 2.19*2.27 Shear stress 4.97/0.23 Allowable shear stress

= = = = = = = = = =

0.1+fd/6

Height of wall above FGL Moment at top of Plinth Beam due to wind Self weight of Brick wall Compressive stress on the wall

4.97*(2.27/2) 0.23*20*2.27 10.442/0.23 + 5.64x6/1x0.2302

Slenderness ratio 2.27/0.23 Redn. Factor (as per Tab 9) 2.27/2.655 Height / Width ratio Shape Modification Factor Allowable Compressive Stress ( as per Tab8 of IS 1905) =8.35x0.89x1.2 for Mortar Type M1 CALCULATION OF SEISMIC FORCE ON COMPOUND WALL (As per IS 1893-2002) Zone factor for Zone IV Z Importance factor I Reduction Factor R (as per IS 1893-2002, Tab 7) Sa/g For Rock 1.00/T Time Period=T 0.09*h/d^0.5 Horizontal Seismic Coefficient h=4.8m d=0.23m α = Z*I*Sa/2*R*g Weight of wall 0.23*2.27*20

= = = = = = = =

55.125 1.82 1.2 2.19 3 4.97 21.59 0.022 0.1+0.685/6 0.214 2.27

KN/M2 M Kn/M Kn/M2 N/mm2 N/mm2 M

Hence, SAFE

5.64 KN.M/M 10.442 KN/M 684.76 KN/M2 0.685 N/mm2 9.87 0.89 0.85 1.20 8.92 N/mm2 > 0.685 N/mm2

= = = = =

0.24 1.5 1.5 1.11 0.90

=

0.13

=

m/s KN/M2

10.44 KN/m

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 5 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Seismic shear

0.13*10.44

=

Shear stress

1.39/0.23

= = = = = =

Allowable shear stress 0.1+fd/6 Height of wall above FGL Moment at top of Plinth Beam due to Seismic Compressive stress on the wall

1.39*(2.27/2) 10.44/0.23 + 1.58x6/1x0.2302

=

1.39 KN/m 6.05 0.006 0.1+0.224/6 0.14 2.27 1.58

KN/M2 2 N/mm N/mm2 M KNm/M

SAFE

224.48 KN/M2 0.224 N/mm2

Wind Shear Governs Design of Brick Masonry: Boundary wall is supported on all four sides Panel size

Length L Height H Height/Length Refer table 14 of IS 1905 Bending moment PL2/24

Design of Tie Beam For Vertical Load Assume Size of Tie beam Length of ISA 50X50X6 450+300x1.414 Wt of ISA 50x50x6 @ 3.8 Kg/m Wt of Barbed Wire @ 0.1 Kg/m for 15m Total Wt. of Fence post (ISA 50x50x5) and Barbed wire

For Barbed wire Total area Wind Pressure Total Load 2.19x0.0475 This will act at half of the projected height of fence Projected Ht. of fence Total Moment 0.1*0.375 Size of Tie beam Effective Depth (230-40-10) K= M/bd2 Provide Minimum reinforcement Percentage of reinforcement Area of reinforcment Provide 12 dia 2 nos Area provided 2*3.14*12*12/4 Max. Shear 1.98x1.5+0.05/2 From IS 456, Tab 62 Vus/d 1.5x3/18 Provide stirrups #8 @ 150 c/c

2.7 m 2.27 m 0.84

= 4.97*2.72/24 = 1.51 KNm = 1.51*10^6*6/(2700*(230+15+15)^2) = 0.05 N/mm2 < 0.05*1.25= 0.06 N/mm2 SAFE Refer Cl 5.4.2 of IS 1905-1987 (Note 2)

Bending Stress

Self Weight of Tie Beam 0.23*0.345*25 Bending Moment 1.98*3*3/12+0.05*3/4 Factored Moment 1.52*1.5 For Wind Load on Fencing Area of Exposure For ISA 50x50x5

= = =

= = = = = = = =

= = = = = = =

345x230 0.87 3.32 1.5 4.82 0.05 1.98 1.52 2.28

0.05x0.75 0.0375 0.002x5 0.01 0.0475 2.19 0.10

= =

m Kg Kg Kg KN KN/m KN .m KN.m

m2 m2 m2 KN/m2 KN

0.75 m 0.039 KN.m = = =

345x230 mm 180 mm 0.20

= =

0.205 % 162.6675 mm2

= =

226.08 mm2 3.00 KN

=

0.25

=

27.6 KN/m3

< BM due to Vertical Load

Calculation of Earth Pressure Density of Soil w Co-eff. of Earth Pressure at rest Ko for Sand Ko = 1-sin ∅ ∅ = 30 (Assumed) Surcharge q Lateral Earth Pressure due to Surcharge Lateral Earth Pressure due to Earth for a height of 2m Average Earth Pressure

=

0.5

= = = = = = =

10 0.5x10 5 0.5x27.6x2 27.6 (5+32.6)/2 18.8

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

KN/m2 ` KN/m2 KN/m2 KN/m2

Page 6 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

2.1 Design of Plinth Beam For lateral earth pressure: Assume Size of Plinth beam Self Weight of Plinth Beam 0.3*0.345*25 Average Earth Pressure Load due to Earth Pressure 18.8 x 2/2 Bending Moment 18.8*3*3/10 Factored Moment 16.92*1.5 For vertical Load : Total weight of Brick panel Self Weight of Plinth Beam 0.3*0.345*25 Total Udl Bending Moment 13.03*3*3/10 Size of Plinth beam Effective Depth ( 345-40-8) K= M/bd2 Percentage of reinforcement Area of reinforcement Provide 16 dia 2 nos Area provided 2*3.14*16*16/4 Max. Shear 18.8 x3/2 From IS 456, Tab 62 Vus/d 1.5x28.2/29.7 Provide stirrups #8 @ 150 c/c

= = = = = = = = = = = = = = = = =

345x300 2.59 18.80 18.80 16.92 25.38

KN/m KN/m2 KN/m KN.m KN.m

10.442 KN/m 2.59 KN/m 13.03 11.73 345x300 297 0.96 0.216 192.456

KN/m KN/m mm mm

< BM due to lateral earth pressure

% mm2

401.92 mm2 28.20 KN 1.42

2.2 Design of Grade Beam For lateral earth pressure: Assume Size of Grade beam Average Earth Pressure Load due to Earth Pressure

18.8 x 2/2

= = =

Total Load Bending Moment Factored Moment

18.8*3*3/10 16.92*1.5

= = =

18.80 KN/m 16.92 KN.m 25.38 KN.m

= =

5.25 KN/m 2.59 KN/m

For vertical Load : Total weight of RCC panel 0.15x1.4x25 Self Weight of Grade Beam 0.3*0.345*25 Total Load Bending Moment 7.84*3*3/10 Size of Grade beam Effective Depth ( 345-40-8) K= M/bd2 From SP 16, Tab 3 Percentage of reinforcement Area of reinforcement Provide 16 dia 2 nos Area provided 2*3.14*16*16/4 Max. Shear 18.8 x3/2 From SP 16, Tab 62 Vus/d 1.5x28.2/29.7 Provide stirrups #8 @ 150 c/c

= = = = =

345x300 18.80 KN/m2 18.80 KN/m

7.84 7.05 345x300 297 0.96

KN/m KN/m mm mm

= =

0.216 % 192.456 mm2

= =

401.92 mm2 28.20 KN

=

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

< BM due to lateral earth pressure

1.42

Page 7 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

2.3 Design of Column Self Wt. of Centre column 0.475x0.3x4.5x25 Self Wt. of Centre column @ Expan 0.345x0.3x4.5x25 Self Wt. of Corner column 0.410x0.410x4.5x25 Moment due to wind at the top of Pile cap 4.97x (2.5/2+2) x 3+0.1x4.875 +2.19x3x0.23x(4.27+0.115) Moment due to wind at the top of Plinth Beam 4.97x (2.5/2) x 3+0.1x(2.5+0.375)+ 2.19x0.23x3x2.39 Centre Column 475mm x 300 mm Fx Fy Fz SLS DL+WL+EP 0.00 78.37

129.31

168.36

0

0.00

ULS 1.5DL+1.5WL+1.5EP

193.97

252.54

0

0.00

0

117.56

0

22.53 KN.m

Total Vertical Load on Column 11.64+7.84x1.5+13.03*1.5+1.98x1.5+0.05 Total moment due to Seismic at top of footing at perpendicular direction to wall (55.56+18.8x3x2x1)/2 Length /depth ratio 2500/300 Size of column 475x300 mm Concrete grade Reinforcement grade 415 N.mm2

My

Mz

78.37 KN

=

117.56 KN

=

252.54 KNm

= =

3.5 % 4987.5 mm2 0.14

= =

0.11 0.03 0.165 279.21 KNm

>

Muy

5180 mm2 =

47.99 KN

22.53 KNm 5.26

=

71.99 KN 33.80 KN.m

= =

1% 1425 mm2 0.04

=

0.11 0.02 0.06

Fz

68.92

KN KN KN KN.m

168.36 KNm 8.33 Short column (300=parrellel to wall, 475=Perpendicular to wall)

=

Centre Column at Expansion Jt. 475mm x 300 mm Fx Fy SLS DL+WL+EP 0.00 45.94 ULS 1.5DL+1.5WL+1.5EP

=

=

Factored moment perpendicular to wall Muy Reinforcement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage Area of Reinforcement = p/Fck UNIAXIAL MOMENT CAPACITY XX direction d'/D 52.5/475 = Use chart 45 Pu/fck bd 117.56*1000/25*300*475 = Muy1/fckbd2 Muy1= 0.165*25*300*475*475 Hence,Safe Provide 4 # 32 + 4 # 25 Area of Reinforcement provided = At FGL: Total weight of brick wall and beams at Plinth Level 2.59x3+10.44x3+0.3x0.475x2.5x25 Total moment due to wind at bottom of Plinth beam = 4.97x (2.5/2) x 3+0.1x(2.5+0.375)+2.19x0.23x3x2.39 Length /depth ratio 2500/475 Concrete grade M25 Reinforcement grade 415 N.mm2 Factored Pu Factored moment perpendicular to wall Muy Reinfocement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage Area of Reinforcement = p/Fck 1.0/25 UNIAXIAL MOMENT CAPACITY YY direction d'/D 52.5/475 = Use chart 45 Pu/fck bD 71.99*1000/25*300*475 = 2 Mux1/fckbD 0.06*25*300*475*475/10^6

16.03 11.64 18.91 55.56

Mx

For Centre Column (Uni-axial bending) Total Vertical Load on Column 16.03+7.84x2.7+13.03*2.7+1.98x3+0.05 Total moment due to Seismic at top of footing at perpendicular direction to wall 55.56+18.8x3x2x1 Length /depth ratio 2500/300 Size of column 475x300 mm Concrete grade Reinforcement grade 415 N.mm2 Factored Pu

Muy1=

= = =

Short column

101.53 KNm

Mx

>

My

Muy

Mz

64.66

84.18

0

0.00

96.99

126.27

0

0.00

= =

45.94 KN 84.18 KNm 8.33 Short column (300=parrellel to wall, 475=Perpendicular to wall)

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 8 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Factored Pu

=

Factored moment perpendicular to wall

68.92 KN

=

Muy

Reinforcement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage = = Area of Reinforcement p/Fck = UNIAXIAL MOMENT CAPACITY XX direction d'/D 52.5/475 = Use chart 45 Pu/fck bd 68.92*1000/25*300*475 = = Muy1/fckbd2 Muy1= 0.145*25*300*475*475 = Hence,Safe Provide 8 # 20 Area of Reinforcement provided = At FGL: Total weight of brick wall and beams at Plinth Level 2.59x1.5+10.44x1.5+0.3x0.345x2.5x25 Total moment due to wind at bottom of Plinth beam (4.97x (2.5/2) x 3+0.1x(2.5+0.375)+2.19x0.23x3x2.39)/2 Length /depth ratio 2500/475 Size of column 300x475 mm Concrete grade M25 Reinforcement grade 415 N.mm2 Factored Pu Factored moment parrellel to wall Mux Factored moment perpendicular to wall Muy Reinfocement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage Area of Reinforcement p/Fck 1.5/25 UNIAXIAL MOMENT CAPACITY XX direction Use chart 45 Muy1=

d'/D Pu/fck bD Mux1/fckbD2 0.055*25*300*475*475/10^6

Corner Column

410mm x 410 mm

SLS DL+WL+EP

Fx

ULS 1.5DL+1.5WL+1.5EP

=

1.5 % 2137.5 mm2 0.06 0.11 0.02 0.08 135.38 KNm

>

Muy

2512 mm2

26.01 KN

= 11.27 KNm 5.26 Short column (300=parrellel to wall, 345=Perpendicular to wall)

= = =

39.02 KN 16.90 KN.m 16.90 KN.m

=

1%

=

1425 mm2 0.04

=

52.5/475 39.02*1000/25*300*475 =

=

0.13 0.01 0.055 93.07 KNm

= =

Fy

126.27 KNm

Fz

Mx

>

My

Muy

Mz

64.66

87.51

64.66

84.18

0

84.18

96.99

131.27

96.99

126.27

0

126.27

Total weight of brick wall and beams at top of Pile Cap = 87.51 KN 18.91+7.84x3+13.03x3+1.98x3+0.05 Total moment due to wind at top of footing at perpendicular direction to wall (55.56+18.8x3x2x1)/2 84.18 KNm Total moment due to wind at top of footing at perpendicular direction to wall = 84.18 KNm Length /depth ratio 2500/345 7.25 Short column Size of column 410x410 mm (410=parrellel to wall, 410=Perpendicular to wall) Concrete grade M25 Reinforcement grade 415 N.mm2 Factored Pu = 131.27 KN = 126.27 KN.m Factored moment parrellel to wall Mux Factored moment perpendicular to wall = 126.27 KN.m Muy Reinfocement will be equally distributed on all four sides with 20 mm bars and eff. cover of 52.5 mm Assume reinforcement percentage = 3.2 % = 5379.2 mm2 Area of Reinforcement p/Fck 3.2/25 = 0.128 UNIAXIAL MOMENT CAPACITY XX direction d'/D 52.5/410 = 0.13 Use chart 45 Pu/fck bD 131.27*1000/25*345*345 = 0.03 2 = 0.155 Mux1/fckbD Mux1= 0.155*25*410*410*410/10^6 = 267.07 KNm YY Direction d'/D 52.5/410 = 0.13 Use chart 45 Pu/fck bd 131.27*1000/25*345*345 = 0.03 2 = 0.155 Muy1/fckbd Muy1= 0.155*25*410*410*410/10^6 = 267.07 KNm

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 9 of 29

MAYTAS NAFTOGASBUD JV

Refer chart 63 for calculation of Pz p=3.2%

fy=415

Pu/Puz Mux/Mux1 Muy/Muy1 Referring to chart 64 For Muy/Muy1 and Pu/Puz

GSPL203-73-1517 Rev 0

fck=25 Puz/Ag Puz 131.27/3496.48 126.27/267.07 126.27/267.07 Mux/Mux1 Safe

= = = = =

20.8 N/mm2 3496.48 KN 0.04 0.47 0.47

=

0.52

>

0.45

Provide 12 # 25 Area of Reinforcement provided

= 5892 mm2 At FGL: Total weight of brick wall and beams at top of Pile Cap = 49.59 KN 2.59x3+10.44x3+0.3x0.475x2.5x25 Total moment due to wind at top of footing at perpendicular direction to wall = (4.97x (2.5/2) x 3+0.1x(2.5+0.375)+2.19x0.23x3x2.39)/2 = 11.27 KNm Total moment on top of footing at parellel direction to wall = 11.27 KNm Length /depth ratio 2500/345 7.25 Short column Size of column 345x345 mm (345=parrellel to wall, 345=Perpendicular to wall) Concrete grade M25 Reinforcement grade 415 N.mm2 Factored Pu = 74.39 KN = 16.90 KN.m Factored moment parrellel to wall Mux Factored moment perpendicular to wall = 16.90 KN.m Muy Reinforcement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage = 1.25 % Area of Reinforcement = 1487.8125 mm2 p/Fck 1.25/25 = 0.05 UNIAXIAL MOMENT CAPACITY XX direction d'/D 52.5/345 = 0.15 Use chart 45 Pu/fck bD 74.39*1000/25*410*410 = 0.02 = 0.075 Mux1/fckbD2 Mux1= 0.075*25*410^3/10^6 = 129.23 KNm YY Direction d'/D 52.5/345 = 0.15 Use chart 45 Pu/fck bd 74.39*1000/25*410*410 = 0.03 = 0.075 Muy1/fckbd2 Muy1= 0.075*25*410*410*410/10^6 = 129.23 KNm Refer chart 63 for calculation of Pz p=1.25 fy=415 fck=25 = 14.8 N/mm2 Puz/Ag Puz = 1761.57 KN Pu/Puz 74.39/1761.57 = 0.04 Mux/Mux1 16.9/129.23 = 0.13 Muy/Muy1 16.9/129.23 = 0.13 Referring to chart 64 For Muy/Muy1 and Pu/Puz Mux/Mux1 = 0.85 > 0.13 Safe Provide 12 # 16 Dia. Area of Reinforcement provided = 1600 mm2

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 10 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

2.4 Design of RC WALL RC wall has been designed as slab discontinuous in all four sides

Input: Thickness of Wall, Thk

=

150

mm

Clear cover

=

30

mm

Top Reinforcement: Assumed Dia of Main bar

=

8

mm

Assumed Dia of secondary bar

=

8

mm

Effective length in shorter-direction, Eff Lx

=

1.40

m

Effective length in Longer direction, Eff Ly

=

2.70

m

3.75

kN/m

2 2

Dead load Live load, LL due to Earth Pressure

=

18.80

kN/m

Unit weight of concrete Grade of concrete,fck

= =

25.00 25.00

kN/m 2 N/mm

Grade of steel,fy

=

415.00

N/mm

Factor of Saftey

=

1.50

Total Factor Load

=

33.83

=

1.93

=

All Edges Discontinous (IS 456-2000 0.1070 Annexure-D0.0560 Table-26)

3

kN/m

2

2

Analysis : Consider One meter breadth of the wall. coefficient calculations for Moments : Ratio of eff.Ly/ eff.Lx,r Condition

=

shorterside of edge2,α x +

=

longer side of edge2,α y+

=

Select sides of the slab : DL+LL+FL

discontinuous

discontinuous

1.40 m in lx-direction

DL + LL+FL

discontinuous

discontinuous

2.70 m in ly-direction

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 11 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0 cl2

discontinuous

cs1

cs2

y

discontinuous

1.40

discontinuous

x

2.70

discontinuous cl1 Note:

Refer to Text Book "R.C Design by unnikrishna pillai & devdas menon"

+

2

Dead load '+ve' bending moment, Mx+

=

αx x w x Lx

Dead load '+ve' bending moment, MY+

= =

7.09 kN m + 2 αy x w x Lx

=

3.71

Dead load Shear force in X-dir

Vu

= =

Dead load Shear force in Y-dir Vu

kN m

w x lx /2 23.68

=

kN

w x ly /2

=

45.66

kN

Assume dia of bar

=

8

mm

Effective Thickness of the Slab

=

150 - 30 - 8-8 / 2

for shorter direction

=

116

Effective depth required for Slab

=

v(Mux/(0.138 x fck x 1000))

=

34.24

Check for wall thickness

d-reqd

mm

mm

Provided depth is ok Calculation of main steel Effective Depth of slab in X dir

dx

=

116.000

mm

dy

=

108.000

mm

=

( 0.5 fck/fy ) x [ 1-v( 1 - (4.6Mux/(fck x 1000 x d )) ) ] x 1000d mm2 / m 173.78

(150-30-8/2) Effective Depth of slab in Y dir (150-30-8-8/2) (a) Area of Steel Mx+ AstR Required spacing of steel

S

(b) Area of Steel My+

AstR

Required spacing of steel

S

=

2

289.10

mm 2

=

( 0.5 fck/fy ) x [ 1-v( 1 - (4.6Mux/(fck x 1000 x d )) ) ] x 1000d

=

96.70

mm2 / m

=

519.56

mm

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 12 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Minimum percentage of steel is

=

Minimun area of the steel AstM Higher value of Ast is provided, AstP

0.12

=

0.12 % x b x D

= =

0.12x 1000 x 150/ 100 mm2 / m 180 mm2 / m 180.00

=

Provide 8 mm dia bar at Maximum allowable spacing

=

on positive and negative reinforcement

mm c/c

200

3d or 300 mm whichever is lesser

Cls 26.3

Spacing is less than maximum spacing, OK Provide8 mm Dia bar @ 200 mm c/c as main steel Provide 8 mm Dia bar @ 250 c/c as Distributor

Shear Check Check for shear in X-direction: Designed Shear Force Ast provided Percentage of Steel Provided Pt k τc Vult

Vu

=

k τc bd , k and τc are calculated below

=

300

=

100xAst/bxd

=

0.2586

= =

1.300 0.360

N/mm2

=

50.54

KN

= Vult > Vu

(IS 456-2000-Table -19)

mm2

Refer Cls 40.2

23.68

KN

(Refer IS 456-2000-Table 19)

Depth

k

300

1.00

275

1.05

175

1.25

150

1.30

`

Therefore No shear reinforcement is required

Check for Deflection (Refer RCC Design by Unnikrishnapillai and devodos menon) Basic span depth ratio for S.S slab fs

= =

240.7

=

Percentage of Steel Provided Pt

=

Modification Factor

=

(Ast provided = Ast required)

1.4 0.259 2

(l/d)max

=

40

(l/d)provided

=

12.07

(l/d)provided

(From IS 456-2000 Clause :23.2.1.a)

0.58 x fy x Ast required / Ast provided

Effective Span length

kt

20

=

(From IS 456-2000-Fig-4 )

< (l/d)max

Hence it is Safe.

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 13 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

2.5 Design of Footing For Corner Footing Fz

Fy

Foundation Dimension: Fx Base

Pedestal

Lx (m)

2.50

Lz (m)

2.50

Px (m)

0.410

Pz (m)

0.410

FGLx

h1 (m)=

0.00

h2 (m)=

2.65

D (m)= 0.65

Design Summary: 2 335.25 KN/m

Max Bearing Press.:

Mz1

2 68.59 KN/m

Min Bearing Press.: Min Contact Length:

91%

X-Axis Mx1

Soil Properties

Z-Axis 500.0

KN/m2

569.4

KN/m2

694.4

KN/m2

Minimum 28 Days Compressive of Concrete : FC

25000

KN/m2

Yield Strength of Reinforcing Steel : FY

415000

KN/m2

Density of Structural fill

26

KN/m3

Density of Concrete

25

KN/m3

Safe Bearing Capacity of Soil q

safe =

q safe + γ x h2 At depth h2 q all = 1.25 x q safe + γ x h2 At depth h2 q

all =

Material Properties:

Load Combination: Unfactored Loads (in KN m) LC No.

Fx

Fy

Fz

Mx

Mz

Case I

0

0.00

0.00

0.00

0.00

0.00

Case II (DL+WL+EP)

1

64.66

87.51

64.66

84.18

84.18

Case III

0

0

0

0

0

0

Factored Loads (in KN m) LC No.

Fx

Fy

Fz

Mx

Mz

Case I

0

0.00

0.00

0.00

0.00

0.00

Case II (DL+WL+EP)

1

96.99

131.27

96.99

126.27

126.27

Case III

0

0.00

0.00

0.00

0.00

0.00

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 14 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Check For Bearing Pressure: Total Substructure Load: Weight of Pedestal Weight of Footing Weight of Imposed Earth above footing

=

8.4

KN

=

101.6

KN

= TOTAL =

318.7

KN

428.7

KN

Case I: Axial load P = Fy + SubStructure Load

=

428.7 KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0.00 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.00 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

=

0.000

m < Lx / 6

Contact Length= 3 x (Lx /2 - ex) / Lx =

100%

=

0.000

m < Lz / 6

Contact Length= 3 x (Lz /2 - ez) / Lz =

100%

ex / Lx = ez / Lz =

0.000

From Table, K=

1.00

Max. Bearing Press.=qmax =K x P / Lx * Lz =

0.000

68.59 KN/m2 < q =>

all =

q safe + γ x h2

Hence Satisfactory

Case II: Axial load P = Fy + SubStructure Load

=

516.2 KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

255.53 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

255.53 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

=

0.495

m > Lx / 6

Contact Length= 3 x (Lx /2 - ex) / Lx =

91%

=

0.495

m > Lz / 6

Contact Length= 3 x (Lz /2 - ez) / Lz =

91%

ex / Lx = ez / Lz =

0.198

From Table, K=

4.06

Max. Bearing Press.=qmax =K x P / Lx * Lz =

0.198

335.25 KN/m2 < q =>

q safe + γ x h2

all =1.25*

Hence Satisfactory

Case III: Axial load P = Fy + SubStructure Load

=

428.7 KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.00 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P ex / Lx = ez / Lz =

=

0.000

m < Lx / 6

Contact Length= 3 x (Lx /2 - ex) / Lx =

100%

=

0.000

m < Lz / 6

Contact Length= 3 x (Lz /2 - ez) / Lz =

100%

0.000 0.000

From Table, K=

1.00

Max. Bearing Press.=qmax =K x P / Lx * Lz =

68.59 KN/m2 < q =>

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

all =

1.25*q safe + γ x h2

Hence Satisfactory

Page 15 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Design Of Base (Ref. IS-456) Downward pressure on Base: ws=(Weight of Footing + Weight of Imposed Earth above footing) / Lx . Lz= Cover to Main Reinf. =

C

=

2 67.24 KN/m

65.00 mm

Effective Depth d =(D - C - φ/2)=

0.58 m

Projected Length of Base:

ax az

=

1.045 m

=

1.045 m

ax Flexure Section

Case I: Factor for Substructure Load =

1.5 2 100.86 KN/m

Factored ws = fws = Axial load P = Fy + SubStructure Load

Flexure Shear

d

643.0

KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

=

0.000

KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.000

KNm

qm

qs

qma

Base Pressure Distribution Diagram

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

(m) =

0.000

(m) =

0.000

ex / Lx = e z / Lz =

0.000

From Table,

0.000

qmax qmin

K=

1.00

= K x P / Lx * Lz (KN/m2)=

102.88

= (KN/m2)

102.88

=

Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =

1.10 KNm / Unit Width

BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =

1.10 KNm / Unit Width

Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =

0.94 KN / Unit Width

SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =

0.94 KN / Unit Width

Case II: Factor for Substructure Load =

1.5 2 100.86 KN/m

Factored ws = fws = Axial load P = Fy + SubStructure Load

=

774.3

KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

383.2935 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

383.2935 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

(m) =

0.495

(m) =

0.495

ex / Lx = e z / Lz =

0.198

From Table,

0.198

qmax qmin

K=

4.06

= K x P / Lx * Lz (KN/m2) =

502.88

= (KN/m2)

-170.49

=

Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =

177.28 KNm / Unit Width

BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =

177.28 KNm / Unit Width

Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =

163.23 KN / Unit Width

SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =

163.23 KN / Unit Width

Case III: Factor for Substructure Load =

1.5 2 100.86 KN/m

Factored ws = fws = Axial load P = Fy + SubStructure Load

=

643.0

KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0

KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0

KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

(m) =

0.000

(m) =

0.000

ex / Lx = e z / Lz =

0.000

From Table,

0.000

qmax qmin

K=

1.00

= K x P / Lx * Lz (KN/m2) = 2

= (KN/m )

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

=

102.88 102.88

Page 16 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =

1.10 KNm / Unit Width

BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =

1.10 KNm / Unit Width

Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =

0.94 KN / Unit Width

SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =

0.94 KN / Unit Width

Bottom Reinforcement: X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

177.28 KNm / Unit Width

Required

ρ = ρmin =

0.53 N/Sqmm.

Ast = ρ x b x d = Ast (min) =

0.00152 0.0012

2 880.7 mm

Providing Bar :

2 694.8 mm

Spacing Required = 128.40

# 12 mm

Hence Adopt #12 @ 128mm c/c both sides However, Provide #12 @ 125 c/c BW Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

177.28 KNm / Unit Width

Required

ρ = ρmin =

0.53 N/Sqmm.

Ast = ρ x b x d = Ast (min) =

0.00152 0.0012

2 880.7 mm

Providing Bar :

2 694.8 mm

Spacing Required =

# 12 128.40

mm

Hence Adopt #12 @ 128mm c/c both sides However, Provide #12 @ 125c/c BW One-way Shear Check : Maximum Shear Force at 'd' distance from Pedestal face = V =

163.23 KN / Unit Width

Nominal Shear Stress

2 0.28 N/mm

Design Shear Srength of Concrete

2 0.29 N/mm

'=> Hence Satisfactory Top Reinforcement: Maximum

fws

=

100.86

KN/m2

BM in X - Direction = (fws x ax2/2)

=

55.07 KNm

BM in Z - Direction = (fws x az2/2)

=

55.07 KNm

X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

55.07 KNm / Unit Width

Required

ρ = ρmin =

0.16 N/Sqmm. 0.00048 0.0012

Ast = ρ x b x d = Ast (min) =

2 275.9 mm

Providing Bar :

2 694.8 mm

Spacing Required =

# 10 113.03

mm

Hence Adopt #10 @ 113mm c/c both sides However, Provide #10 @ 100c/c

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 17 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

55.07 KNm / Unit Width

Required

ρ = ρmin =

0.16 N/Sqmm.

Ast = ρ x b x d = Ast (min) =

0.00048 0.0012

2 275.9 mm

Providing Bar :

2 694.8 mm

Spacing Required =

# 10 113.03

mm

Hence Adopt #10 @ 113mm c/c both sides However, Provide #10 @ 100c/c Punching Shear Check : Shear at 'd/2' distance from the col face = Punching Shear Stress (N/mm2) 2

Allowable Shear Stress (N/mm )

1235.05 KN

=

0.539

=

1.25

'=> Hence Satisfactory. STABILITY CHECK Overturning Check Case 2 Overturning moment in' Z' direction=

255.5 KNm

Restoring moment in' Z' direction=

645.2 KNm

Factor of safety=

2.5

>1.5 Hence Satisfactory

Overturning moment in' X' direction=

255.5 KNm

Restoring moment in' X' direction=

645.2 KNm

Factor of safety=

2.5

>1.5 Hence Satisfactory

Sliding check Coefficient of friction=

0.5

Case 2 Total sliding force=

91.4 KN

Resisting frictional force=

258.1 KN Factor of safety=

2.8

>1.5 Hence Satisfactory

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 18 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

For Centre Column Footing Fz

Fy

Foundation Dimension: Fx Base

Pedestal

Lx (m)

2.70

Lz (m)

2.70

Px (m)

0.475

Pz (m)

0.30

FGLx

h1 (m)=

0.00

h2 (m)=

2.70

D (m)= 0.70

Design Summary: 2 337.75 KN/m

Max Bearing Press.:

Mz1

2 69.85 KN/m

Min Bearing Press.: Min Contact Length:

52%

X-Axis Mx1

Soil Properties

Z-Axis 500.0

KN/m2

570.7

KN/m2

695.7

KN/m2

Minimum 28 Days Compressive of Concrete : FC

25000

KN/m2

Yield Strength of Reinforcing Steel : FY

415000

KN/m2

Density of Structural fill

26

KN/m3

Density of Concrete

25

KN/m3

Safe Bearing Capacity of Soil q

safe =

q safe + γ x h2 At depth h2 q all = 1.25 x q safe + γ x h2 At depth h2 q

all =

Material Properties:

Load Combination: Unfactored Loads (in KN m) LC No.

Fx

Fy

Fz

Mx

Mz

Case I

0

0.00

0.00

0.00

0.00

0.00

Case II (DL+WL+EP)

1

0.00

78.37

129.31

168.36

0.00

Case III

0

0

0

0

0

0

Factored Loads (in KN m) LC No.

Fx

Fy

Fz

Mx

Mz

Case I

0

0.00

0.00

0.00

0.00

0.00

Case II (DL+WL+EP)

1

0.00

117.56

193.97

252.54

0.00

Case III

0

0.00

0.00

0.00

0.00

0.00

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 19 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Check For Bearing Pressure: Total Substructure Load: Weight of Pedestal Weight of Footing Weight of Imposed Earth above footing

=

7.1

KN

=

127.6

KN

= TOTAL =

374.5

KN

509.2

KN

Case I: Axial load P = Fy + SubStructure Load

=

509.2 KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0.00 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.00 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

=

0.000

m < Lx / 6

Contact Length= 3 x (Lx /2 - ex) / Lx =

100%

=

0.000

m < Lz / 6

Contact Length= 3 x (Lz /2 - ez) / Lz =

100%

ex / Lx = ez / Lz =

0.000

From Table, K=

1.00

Max. Bearing Press.=qmax =K x P / Lx * Lz =

0.000

69.85 KN/m2 < q =>

all =

q safe + γ x h2

Hence Satisfactory

Case II: Axial load P = Fy + SubStructure Load

=

587.6 KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

517.50 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.00 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

=

0.000

m < Lx / 6

Contact Length= 3 x (Lx /2 - ex) / Lx =

100%

=

0.881

m > Lz / 6

Contact Length= 3 x (Lz /2 - ez) / Lz =

52%

ex / Lx = ez / Lz =

0.000

From Table, K=

4.19

Max. Bearing Press.=qmax =K x P / Lx * Lz =

0.326

337.75 KN/m2 < q =>

q safe + γ x h2

all =1.25*

Hence Satisfactory

Case III: Axial load P = Fy + SubStructure Load

=

509.2 KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.00 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P ex / Lx = ez / Lz =

=

0.000

m < Lx / 6

Contact Length= 3 x (Lx /2 - ex) / Lx =

100%

=

0.000

m < Lz / 6

Contact Length= 3 x (Lz /2 - ez) / Lz =

100%

0.000 0.000

From Table, K=

1.00

Max. Bearing Press.=qmax =K x P / Lx * Lz =

69.85 KN/m2 < q =>

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

all =

1.25*q safe + γ x h2

Hence Satisfactory

Page 20 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Design Of Base (Ref. IS-456) Downward pressure on Base: ws=(Weight of Footing + Weight of Imposed Earth above footing) / Lx . Lz= Cover to Main Reinf. =

C

=

2 68.88 KN/m

65.00 mm

Effective Depth d =(D - C - φ/2)=

0.63 m

Projected Length of Base:

ax az

=

1.1125 m

=

1.2 m

ax Flexure Section

Case I: Factor for Substructure Load =

Flexure Shear

d

1.5 2 103.31 KN/m

Factored ws = fws = Axial load P = Fy + SubStructure Load

=

763.8

KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0.000

KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.000

KNm

qm

qs

qma

Base Pressure Distribution Diagram

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

(m) =

0.000

(m) =

0.000

ex / Lx = e z / Lz =

0.000

From Table,

0.000

qmax qmin

K=

1.00

= K x P / Lx * Lz (KN/m2)=

104.78

= (KN/m2)

104.78

=

Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =

0.91 KNm / Unit Width

BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =

1.06 KNm / Unit Width

Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =

0.71 KN / Unit Width

SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =

0.84 KN / Unit Width

Case II: Factor for Substructure Load =

1.5 2 103.31 KN/m

Factored ws = fws = Axial load P = Fy + SubStructure Load

=

881.4

Moment at base Mx1= Mx + Fz x (h1+h2) =

KN

776.2455 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0

KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

(m) =

0.000

(m) =

0.881

ex / Lx = e z / Lz =

0.000

From Table,

0.326

qmax qmin

K=

4.19

= K x P / Lx * Lz (KN/m2) = 2

= (KN/m )

=

506.62 -115.72

Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 = 2

BM in Z- Direction = (qm - fws) x az / 2 + ( qmax - qm ) x

az2/3

220.87 KNm / Unit Width

=

186.75 KNm / Unit Width

Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =

180.38 KN / Unit Width

SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =

171.63 KN / Unit Width

Case III: Factor for Substructure Load =

1.5 2 103.31 KN/m

Factored ws = fws = Axial load P = Fy + SubStructure Load

=

763.8

KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0

KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0

KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

(m) =

0.000

(m) =

0.000

ex / Lx = e z / Lz =

0.000

From Table,

0.000

qmax qmin

K=

1.00

= K x P / Lx * Lz (KN/m2) =

104.78

= (KN/m2)

104.78

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

=

Page 21 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 = 2

BM in Z- Direction = (qm - fws) x az / 2 + ( qmax - qm ) x

az2/3

0.91 KNm / Unit Width

=

1.06 KNm / Unit Width

Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =

0.71 KN / Unit Width

SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =

0.84 KN / Unit Width

Bottom Reinforcement: X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

220.87 KNm / Unit Width

Required

ρ = ρmin =

0.56 N/Sqmm.

Ast = ρ x b x d = Ast (min) =

0.00161 0.0012

2 1010.9 mm 2 754.8 mm

Providing Bar :

# 12

Spacing Required = 111.86

mm

Hence Adopt #12 @ 112mm c/c both sides However, Provide #12 @ 100 c/c BW Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

186.75 KNm / Unit Width

Required

ρ = ρmin =

0.47 N/Sqmm.

Ast = ρ x b x d = Ast (min) =

0.00136 0.0012

2 852.8 mm

Providing Bar :

2 754.8 mm

Spacing Required =

# 12 132.60

mm

Hence Adopt #12 @ 133mm c/c both sides However, Provide #12 @ 100c/c BW One-way Shear Check : Maximum Shear Force at 'd' distance from Pedestal face = V =

180.38 KN / Unit Width

Nominal Shear Stress

2 0.29 N/mm

Design Shear Srength of Concrete

2 0.30 N/mm

'=> Hence Satisfactory Top Reinforcement: Maximum

fws

=

103.31

KN/m2

BM in X - Direction = (fws x ax /2)

=

63.93 KNm

BM in Z - Direction = (fws x az2/2)

=

74.39 KNm

2

X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

63.93 KNm / Unit Width

Required

ρ = ρmin =

0.16 N/Sqmm. 0.00047 0.0012

Ast = ρ x b x d = Ast (min) =

2 295.0 mm

Providing Bar :

2 754.8 mm

Spacing Required =

# 10 104.04

mm

Hence Adopt #10 @ 104mm c/c both sides However, Provide #10 @ 100c/c

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 22 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

74.39 KNm / Unit Width

Required

ρ = ρmin =

0.19 N/Sqmm.

Ast = ρ x b x d = Ast (min) =

0.00054 0.0012

2 341.9 mm

Providing Bar :

2 754.8 mm

Spacing Required =

# 10 104.04

mm

Hence Adopt #10 @ 104mm c/c both sides However, Provide #10 @ 100c/c Punching Shear Check : Shear at 'd/2' distance from the col face =

530.41 KN

Punching Shear Stress (N/mm2)

=

0.207

Allowable Shear Stress (N/mm2)

=

1.25

'=> Hence Satisfactory. STABILITY CHECK Overturning Check Case 2 Overturning moment in' X' direction=

517.5 KNm

Restoring moment in' X' direction=

793.3 KNm

Factor of safety=

1.5

>1.5 Hence Satisfactory

Sliding check Coefficient of friction=

0.5

Case 2 Total sliding force=

129.3 KN

Resisting frictional force=

293.8 KN Factor of safety=

2.3

>1.5 Hence Satisfactory

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 23 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

For Expansion Jt. Column Footing Fz

Fy

Foundation Dimension: Fx Base

Pedestal

Lx (m)

2.70

Lz (m)

2.70

Px (m)

0.345

Pz (m)

0.30

FGLx

h1 (m)=

0.00

h2 (m)=

2.70

D (m)= 0.70

Design Summary: 2 324.87 KN/m

Max Bearing Press.:

Mz1

2 69.87 KN/m

Min Bearing Press.: Min Contact Length:

54%

X-Axis Mx1

Soil Properties

Z-Axis 500.0

KN/m2

570.7

KN/m2

695.7

KN/m2

Minimum 28 Days Compressive of Concrete : FC

25000

KN/m2

Yield Strength of Reinforcing Steel : FY

415000

KN/m2

Density of Structural fill

26

KN/m3

Density of Concrete

25

KN/m3

Mx

Mz

Safe Bearing Capacity of Soil q

safe =

q safe + γ x h2 At depth h2 q all = 1.25 x q safe + γ x h2 At depth h2 q

all =

Material Properties:

Load Combination: Unfactored Loads (in KN m) LC No.

Fx

Fy

Fz

Case I

0

0.00

0.00

0.00

0.00

0.00

Case II (DL+WL+EP)

1

0.00

91.88

129.31

168.36

0.00

Case III

0

0

0

0

0

0

Factored Loads (in KN m) LC No.

Fx

Fy

Fz

Mx

Mz

Case I

0

0.00

0.00

0.00

0.00

0.00

Case II (DL+WL+EP)

1

0.00

137.82

193.97

252.54

0.00

Case III

0

0.00

0.00

0.00

0.00

0.00

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 24 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Check For Bearing Pressure: Total Substructure Load: Weight of Pedestal

=

5.2

KN

Weight of Footing

=

127.6

KN

Weight of Imposed Earth above footing

= TOTAL =

376.6

KN

509.3

KN

Case I: Axial load P = Fy + SubStructure Load

=

509.3 KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0.00 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.00 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

=

0.000

m < Lx / 6

Contact Length= 3 x (Lx /2 - ex) / Lx =

100%

=

0.000

m < Lz / 6

Contact Length= 3 x (Lz /2 - ez) / Lz =

100%

ex / Lx = ez / Lz =

0.000

From Table, K=

1.00

Max. Bearing Press.=qmax =K x P / Lx * Lz =

0.000

69.87 KN/m2 < q =>

all =

q safe + γ x h2

Hence Satisfactory

Case II: Axial load P = Fy + SubStructure Load

=

601.2 KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

517.50 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.00 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

=

0.000

m < Lx / 6

Contact Length= 3 x (Lx /2 - ex) / Lx =

100%

=

0.861

m > Lz / 6

Contact Length= 3 x (Lz /2 - ez) / Lz =

54%

ex / Lx = ez / Lz =

0.000

From Table, K=

3.94

Max. Bearing Press.=qmax =K x P / Lx * Lz =

0.319

324.87 KN/m2 < q =>

q safe + γ x h2

all =1.25*

Hence Satisfactory

Case III: Axial load P = Fy + SubStructure Load

=

509.3 KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.00 KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P ex / Lx = ez / Lz =

=

0.000

m < Lx / 6

Contact Length= 3 x (Lx /2 - ex) / Lx =

100%

=

0.000

m < Lz / 6

Contact Length= 3 x (Lz /2 - ez) / Lz =

100%

0.000 0.000

From Table, K=

1.00

Max. Bearing Press.=qmax =K x P / Lx * Lz =

69.87 KN/m2 < q =>

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

all =

1.25*q safe + γ x h2

Hence Satisfactory

Page 25 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Design Of Base (Ref. IS-456) Downward pressure on Base: ws=(Weight of Footing + Weight of Imposed Earth above footing) / Lx . Lz= Cover to Main Reinf. =

C

=

2 69.16 KN/m

65.00 mm

Effective Depth d =(D - C - φ/2)=

0.63 m

Projected Length of Base:

ax az

=

1.1775 m

=

1.2 m

ax Flexure Section

Case I: Factor for Substructure Load =

Flexure Shear

d

1.5 2 103.73 KN/m

Factored ws = fws = Axial load P = Fy + SubStructure Load

764.0

KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

=

0.000

KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0.000

KNm

qm

qs

qma

Base Pressure Distribution Diagram

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

(m) =

0.000

(m) =

0.000

ex / Lx = e z / Lz =

0.000

From Table,

0.000

qmax qmin

K=

1.00

= K x P / Lx * Lz (KN/m2)= 2

= (KN/m )

=

104.80 104.80

Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 = 2

BM in Z- Direction = (qm - fws) x az / 2 + ( qmax - qm ) x

az2/3

0.74 KNm / Unit Width

=

0.77 KNm / Unit Width

Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =

0.58 KN / Unit Width

SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =

0.61 KN / Unit Width

Case II: Factor for Substructure Load =

1.5 2 103.73 KN/m

Factored ws = fws = Axial load P = Fy + SubStructure Load

=

901.8

Moment at base Mx1= Mx + Fz x (h1+h2) =

KN

776.2455 KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0

KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

(m) =

0.000

(m) =

0.861

ex / Lx = e z / Lz =

0.000

From Table,

0.319

qmax qmin

K=

3.94

= K x P / Lx * Lz (KN/m2) =

487.31

= (KN/m2)

-112.92

=

Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =

233.18 KNm / Unit Width

BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =

180.55 KNm / Unit Width

Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =

192.29 KN / Unit Width

SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =

164.90 KN / Unit Width

Case III: Factor for Substructure Load =

1.5 2 103.73 KN/m

Factored ws = fws = Axial load P = Fy + SubStructure Load

=

764.0

KN

Moment at base Mx1= Mx + Fz x (h1+h2) =

0

KNm

Moment at base Mz1= Mz + Fx x (h1+h2) =

0

KNm

Eccentricity,

ex = Mz1 / P ez = Mx1 / P

(m) =

0.000

(m) =

0.000

ex / Lx = e z / Lz =

0.000

From Table,

0.000

qmax qmin

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

K=

1.00

= K x P / Lx * Lz (KN/m2) = 2

= (KN/m )

=

104.80 104.80

Page 26 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =

0.74 KNm / Unit Width

BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =

0.77 KNm / Unit Width

Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =

0.58 KN / Unit Width

SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =

0.61 KN / Unit Width

Bottom Reinforcement: X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

233.18 KNm / Unit Width

Required

ρ = ρmin =

0.59 N/Sqmm.

Ast = ρ x b x d = Ast (min) =

0.00170 0.0012

2 1068.2 mm 2 754.8 mm

Providing Bar :

# 12

Spacing Required = 105.86

mm

Hence Adopt #12 @ 106mm c/c both sides However, Provide #12 @ 100 c/c BW Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

180.55 KNm / Unit Width

Required

ρ = ρmin =

0.46 N/Sqmm.

Ast = ρ x b x d = Ast (min) =

0.00131 0.0012

2 824.3 mm

Providing Bar :

2 754.8 mm

Spacing Required =

# 12 137.19

mm

Hence Adopt #12 @ 137mm c/c both sides However, Provide #12 @ 100c/c BW One-way Shear Check : Maximum Shear Force at 'd' distance from Pedestal face = V =

192.29 KN / Unit Width

Nominal Shear Stress

2 0.31 N/mm

Design Shear Srength of Concrete

2 0.31 N/mm

'=> Hence Satisfactory Top Reinforcement: Maximum

fws

=

103.73

KN/m2

BM in X - Direction = (fws x ax2/2)

=

71.91 KNm

BM in Z - Direction = (fws x a

=

74.69 KNm

2 z /2)

X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

71.91 KNm / Unit Width

Required

0.18 N/Sqmm.

ρ = ρmin =

Ast = ρ x b x d = Ast (min) =

0.00053 0.0012

2 330.8 mm

Providing Bar :

2 754.8 mm

Spacing Required =

# 10 104.04

mm

Hence Adopt #10 @ 104mm c/c both sides However, Provide #10 @ 100c/c

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 27 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =

74.69 KNm / Unit Width

Required

0.19 N/Sqmm.

ρ = ρmin =

Ast = ρ x b x d = Ast (min) =

0.00055 0.0012

2 343.2 mm

Providing Bar :

2 754.8 mm

Spacing Required =

# 10 104.04

mm

Hence Adopt #10 @ 104mm c/c both sides However, Provide #10 @ 100c/c Punching Shear Check : Shear at 'd/2' distance from the col face = Punching Shear Stress (N/mm2) 2

Allowable Shear Stress (N/mm )

571.91 KN

=

0.239

=

1.25

'=> Hence Satisfactory. STABILITY CHECK Overturning Check Case 2 Overturning moment in' X' direction=

517.5 KNm

Restoring moment in' X' direction=

811.6 KNm

Factor of safety=

1.6

>1.5 Hence Satisfactory

Sliding check Coefficient of friction=

0.5

Case 2 Total sliding force=

129.3 KN

Resisting frictional force=

300.6 KN Factor of safety=

2.3

>1.5 Hence Satisfactory

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Page 28 of 29

MAYTAS NAFTOGASBUD JV

GSPL203-73-1517 Rev 0

3..0 CONCLUSION SIZE (IN MM)

AT BOTTOM

AT TOP

FOOTING COLUMNS At Centre At Exp.Jt. At Corner

COLUMNS At Centre At Exp. Jt At Corner

2700 X 2700 X 700 2700 X 2700 X 700 2500 X 2500 X 650

# 12 @ 100 C/C BW # 12 @ 100 C/C BW # 12 @ 125 C/C BW

#10 @ 100 C/CBW #10 @ 100C/CBW #10 @ 100C/CBW

475 X300 475 X300 410 X410

4 # 32+ 4 # 25 8 # 20 12 # 25

BEAMS PLINTH BEAM

345 X300

2 #16 (TOP & BOTTOM)

Stirrups #8 @ 150 c/c

GRADE BEAM

345 X300

2#16 (TOP & BOTTOM)

Stirrups #8 @ 150 c/c

TIE BEAM

345 X230

2#12 (TOP & BOTTOM)

Stirrups #8 @ 150 c/c

RC WALL

150 Tk.

#8 @ 200 C/C Vertical

BOUNDARY WALL DESIGN CALCULATIONS - SV2 STATION AT CHELA

Stirrups #8 @ 200 c/c Stirrups #8 @ 200 c/c Stirrups #8 @ 200 c/c

#8 @ 250 c/c Horizontal

Page 29 of 29

Related Documents