Special Problem 2 Peter D Alison May 18, 2009
1
Problem 3.30
Suppose A x 2 + a2
Ψ(x, 0) = for constants A and a.
(a) Determine A, by normalizing Ψ(x, 0). We determine A using the normalization condition Z ∞
|Ψ(x, 0)|2 dx = 1
−∞
Z ∞
(
−∞ x2
A )2 dx + a2
Using Mathematica we obtain 1 ax x ∞ A2 π + arctan( ))|−∞ = =1 = 3( 2 2a a + x2 a 2a3 s
A=a
3 2
2 π
(b) Find < x >, < x2 >, and σx (at time t = 0).
< x >=
Z ∞
x|Ψ(x, 0)|2 dx
−∞
1
< x >=
Z ∞
x(
−∞
=−
2(a2
x2
A )2 dx + a2
1 |∞ = 0 + x2 ) −∞
Anyways the function was odd, so this was quite clear. Z ∞
< x2 >=
x2 |Ψ(x, 0)|2 dx
−∞
Z ∞
A )2 dx + a2 −∞ arctan( xa ) ∞ x + |−∞ = a2 =− 2 2 2(a + x ) 2a √ σx = < x2 > − < x >2 √ σ x = a2 − 0 = a 2
< x >=
x2 (
x2
(c) Find the momentum space wave function Φ(x, 0), and check that it is normalized. 1 Z ∞ −ipx/¯h e Ψ(x, 0) dx 2π¯h −∞ 1 Z ∞ −ipx/¯h A Φ(p, 0) = e dx 2π¯ h −∞ x 2 + a2 Once again, using Mathematica to solve this nasty integral we obtain Φ(p, 0) = √
r
Φ(p, 0) =
a − ap e h¯ h ¯
This is a rather nice, pretty function, so notice how easy it will be to calculate expectation values of p with the momentum space wave function. (d) Use Φ(x, 0) to calculate < p >, < p2 >, and σp (at time t = 0). < p >=
Z ∞
p|Φ(x, 0)|2 dp
0
< p >=
Z ∞ 0
ap a p (e− h¯ )2 dp h ¯
2
This integral is −
e−
2ap h ¯
h ¯ (2ap + h ¯) ∞ |0 2 4a h ¯ < p >= 4a
< p2 >=
Z ∞
p2 |Φ(x, 0)|2 dp
0 2
< p >=
Z ∞ 0
ap a p2 (e− h¯ )2 dp h ¯
This integral is −
e−
2ap h ¯
h ¯ (2a2 p2 + 2ap¯h + h ¯) ∞ |0 3 4a h ¯2 < p2 >= 2 4a s
σp =
q
< p2 > − < p >2 =
√ h ¯ 2 ¯ h ¯2 3h −( ) = 2 4a 4a 4 a
(e) Check the Heisenberg uncertainty principle for this state. The uncertainty principle states σx σp ≥
h ¯ 2
√ √ 3h ¯ 3 h ¯ σx σp = (a)( )= h ¯≥ 4 a 4 2 The uncertainty principle is satisfied. Yay.
3