Giai-deso3

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Giai-deso3 as PDF for free.

More details

  • Words: 1,555
  • Pages: 5
www.khoabang.com.vn

LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0

_________________________________________________________ C©u I.

1) y' = mx m−1(4 − x)2 − 2(4 − x)x m = = x m −1 (4 − x)[4m − (m + 2)x] .

a) XÐt tr−êng hîp m ≥ 2. Khi ®ã ph−¬ng tr×nh y' = 0 cã ba nghiÖm x1 = 0 , x2 = x3 = 4 .

NÕu m − 1 ch½n (tøc m = 3, 5, 7, ...) th× y' sÏ cïng dÊu víi (4 − x) [4m − (m + 2)x] vµ do ®ã : y min (4) = 0 vµ y max (x2 ) =

m m 4m + 4 (m + 2)m +2

= M.

NÕu m - 1 lÎ (tøc m = 2, 4, 6, ...) th× dÊu cña y' lµ dÊu cña

x(4 − x)[4m − (m + 2) x]

LËp b¶ng xÐt dÊu sÏ cã kÕt qu¶

y min (0) = 0 ; y max (x2 ) = M , y min (4) = 0

b) §Ò nghÞ b¹n ®äc tù lµm cho tr−êng hîp m = 1 (y = x(4 − x)2 ) .

2) Kh¶o s¸t, vÏ ®å thÞ hµm sè y = x(4 − x)2

dµnh cho b¹n ®äc. C©u II.

1) x2 − 2(cosB + cosC)x + 2(1 − cosA) ≥ 0 . (1) ∆ ' = (cosB + cosC)2 − 2(1 − cosA) = C+ B 2 B−C A = 4 cos2 cos − 4sin2 = 2 2 2 A B−C  = 4sin2  cos2 − 1 ≤ 0 2 2 

VËy (1) ®óng víi mäi x.

sin x + cosx 10 = sin x cosx 3 §Æt t = cosx + sin x(− 2 ≤ t ≤ 2) (2)

2) cosx + sin x +

th× t 2 = 1 + 2sin x cosx vµ ta ®−îc t + §Æt ®iÒu kiÖn t ≠ ±1 sÏ tíi

2t

10 t2 − 1 3 =

3t 3 − 10t 2 + 3t + 10 = 0

tøc lµ : 1 + a + b + c + ab + ac + bc ≥ 0 (2) Céng (1) vµ (2) ta cã : abc + 2 (1 + a + b + c + ac + bc + ac) ≥ 0. (t − 2)(3t 2 − 4t − 5) = 0 . hay Ph−¬ng tr×nh nµy cã ba nghiÖm t1 = 2 ; t 2 =

2 − 19 2 + 19 ; t3 = 3 3

4m vµ m+2

www.khoabang.com.vn

LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0

_________________________________________________________ ChØ cã t 2 lµ thÝch hîp. Thay vµo (2) ta cã ph−¬ng tr×nh π  2 − 19  cos  x −  = . 4 3 2 

§Æt cos α =

2 − 19 3 2

th× ®−îc hai hä nghiÖm : x1 =

π π + α + 2kπ ; x2 = − α + 2mπ 4 4

C©u III.

1) §Æt ®iÒu kiÖn x - a ≠ 0 ; x + a ≠ 0 th× (1) ®−îc biÕn ®æi vÒ d¹ng : x[a − 1)x + a 2 + a + 2b] = 0 (2) Víi ∀a, b (2) ®Òu cã nghiÖm x1 = 0 . Gi¶i (a − 1)x + a 2 + a + 2b = 0 . NÕu a ≠ 1 cã nghiÖm x2 =

a 2 + a + 2b 1− a

NÕu a = 1 ta cã : 0x = − 2(1 + b). (3) Víi b ≠ − 1 th× (3) v« nghiÖm ; víi b = -1 th× (3) nghiÖm ®óng víi ∀x. KiÓm tra x2 cã tháa m·n ®iÒu kiÖn x2 ≠ ±a ? x2 ≠ a ⇔

a 2 + a + 2b ≠ a ⇔ a 2 + a + 2b ≠ 1− a

≠ a − a 2 ⇔ 2(a 2 + b) ≠ 0 ⇔ b ≠ −a 2 x 2 ≠ −a ⇔

a 2 + a + 2b ≠ −a ⇔ a 2 + a + 2b ≠ a 2 − a ⇔ b ≠ −a . 1− a

KÕt luËn :  víi b ≠ −1 , (1) cã nghiÖm duy nhÊt x1 = 0 . NÕu a = 1 th× :   víi b = − 1, (1) cã nghiÖm lµ ∀x ≠ ± 1.

NÕu a ≠ 1 ; 0 th× : 2  víi b ≠ −a , b ≠ - a, (1) cã hai nghiÖm  x1 = 0,  a 2 + a + 2b  x =  2 1− a   víi b = −a 2 hoÆc b = - a th× (1) cã mét nghiÖm x1 = 0 .

NÕu a = 0 th× (1) cã mét nghiÖm x2 = 2b nÕu b ≠ 0 ; (1) sÏ v« nghiÖm nÕu b = 0. 2) V× a 2 + b2 + c2 = 1 nªn - 1 ≤ a, b, c ≤ 1. Do ®ã 1 + a ≥ 0 , 1 + b ≥ 0, 1 + c ≥ 0 ⇒ (1 + a) (1 + b) (1 + c) ≥ 0 ⇒ ⇒ 1 + a + b + c + ab + ac + bc + abc ≥ 0. (1) MÆt kh¸c : a 2 + b2 + c2 + a + b + c + ab + ac + bc =

(1 + a + b + c)2 ≥0, 2

www.khoabang.com.vn LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0 ________________________________________________________________________________ C©u IVa. 1) Víi x > 0 ta cã F(x) = x - ln(1 + x) Þ F’(x) = 1 -

1 x ; = 1 + x 1 + x

víi x < 0 ta cã F(x) = - x - ln(1 - x) Þ F’(x) = - 1 +

1 x . = 1 - x 1 - x

Tõ ®ã suy ra víi x ¹ 0 F’(x) =

x . 1 + | x|

Ta chØ cßn ph¶i chøng minh r»ng F’(0) = 0. Qu¶ vËy 1 1 (F( ∆x) - F(0)) = lim ∆ x → 0 ∆x → 0 ∆x ∆x ∆ ln(1 + x)  = lim 1  = 0, ∆x →0  ∆x  F’(0) = lim

v× lim

∆x → 0

( ∆x - ln(1 + ∆x)) =

ln(1 + ∆x) = 1. ∆x

e

2) I = ∫ xln2xdx. 1

 u = ln x §æt   dv = xdx 2



ln x  du = 2 dx  x  1 v = x 2,  2

1 e suy ra I = x 2 ln 2 x 2 1 §Ó tÝnh J, ®Æt  du = ux u = ln x   x ⇒  1  dv = xdx v =  2

e

∫ 1

e e2 xlnxdx = - J, víi J = ∫ xlnxdx. 2 1

www.khoabang.com.vn LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0 ________________________________________________________________________________ suy ra J =

e 1 2 1 e 1 e2 . x ln x − ∫1 xdx = − 2 1 2 2 2 4( e − 1)

VËy 1 I = (e2 - 1). 4 C©u Ivb. 1) V× K lµ trung®iÓm cña SC, nªn theo h×nhbªn, trong tam gi¸c SAC, SO vµ AK lµ hai ®ûêng trungtuyÕn c¾t nhau t¹i trängt©m H, vËy SH 2 = . SO 3 Theo h×nh bªn , ta cã dt(SNH) =

SN SH . . dt(SDO) = SD SO

=

SN 2 1 SH SM . . dt(SDB),dt(SHM) = . . dt(SOB) SD 3 2 SO SB

=

2 SM 1 . . dt (SDB). 3 SB 2

§ång thêi dt(SNH) + dt(SHM) = dt(SNM) =

Tõ c¸c hÖ thøc trªn, suy ra Û

SN SM dt(SDB). . SD SB

1 SN 1 SM SN SM . = . . + SD SD 3 SD 3 SB

SB SD + = 3. SM SN SM SN 1 1 2) §Æt = y, theo hÖ thøc trªn ta cã + = x, = 3. §ång thêi, do ý nghÜa h×nh häc, ph¶i cã 0 < x £ 1, SB SD x y

0 < y £ 1. V× 1 1 x , = 3 ⇒ y = y x 3x - 1 x nªn 0 < ≤ 1 3x - 1 1 Þ ≤ x ≤ 1. 2 0<x£1

www.khoabang.com.vn LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0 ________________________________________________________________________________ Ta cã theo h×nh bªn V 1 = V SAMN + V SMNK , VSAMN =

SM SN 1 . .VSABD = xyV, SB SD 2

V SMNK =

SM SN SK 1 . . . VSBDC = xyV SB SD SC 4 V1 3 3x 2 1  = xy =  ≤ x ≤ 1. V 4 4(3x - 1)  2 

suy ra

1 3x 2 3x(3x - 2) f(x) = cã ®¹o hµm f’(x) = , do vËy trªn ®o¹n  ; 1 cã b¶ng biÕn thiªn 2   4(3x - 1) 4(3x - 1) 2

Hµm sè

1 2

x

f’ f

1

-

0

3 8

+ 3 8

1 3 VËy víi

V 1 3 1 ≤ x ≤ 1 th× ≤ 1 ≤ . 3 V 8 2