Concordia University Faculty of Engineering and Computer Science Department of Mechanical Engineering
Gas Turbine Design Project Report Winter 2009
1
2
Summary 1. Part A: Engine Design 1.1 LPC exit (2) 1.2 HPC exit (3) 1.3 Combustor exit (4) 1.4 HPT exit (5) 1.5 Inter-turbine duct (6) 1.6 LPT exit (7) 1.7 Inter-turbine duct (8) 1.8 Power turbine (8) 1.9 Engine horsepower and SFC
2. Part B: Turbine Design 2.1 Mean Line design of HPT 2.1.1 Rotational speed and gas path 2.1.2 Velocity triangles and nozzle & rotor loss coefficients 2.2 Hub and tip velocity triangles 2.3 Vane and Blade parameters 2.4 Nozzles and rotor loss coefficients 2.5 Off-design performance 2.5.1 Reduction of the speed by 20% 2.5.2 Reduction of the pressure ratio by 20%
3
Introduction Blah blah blah
4
1. Part A: Engine Design In this part we have to determine the cycle points, temperatures, pressures, compressors and turbine work and the engine horsepower General assumptions at intake: To1 = 100oF= 310.78 oK
Altitude= 4000 ft =1219.2m 88100,15 Pa
P01 =
1.1 LPC exit (2) T T02 = T01+ 01 ( P.R η
γ −1 γ
Assumptions m = 12 lb/sec P.R=4.25 η=.86
− 1)
P02 = P.R * P01
Results
W2= Cp (T02 – T01) p0 2 T0 2 W 2
374425,6 3 Pa 497,02 K 186339,6 3 J.kg-1
1.2 HPC exit (3) m3= (1-10%) m2
T T03 = T02+ 02 ( P.R η
γ −1 γ
− 1)
Assumptions cooling air = 10% P.R=2.65 η=.84
P03 = P.R * P02
Results
W3= Cp (T02 – T01) m 3 p0 3 T0 3
5,44 Kg/s 992227,9 3 Pa 686,99 K
5
W 3
190870,4 3 J.kg-1
m4= m3 (1+Fuel air ration) P04 = P03(1-ΔP/P) T04 =
(m
3 C p T03 +η * f .a.r * m 3 * HV )
1.3 Combustor exit (4)
C p ( m 3 + m fuel )
BTU/lb
Assumptions Fuel ration=0.02
η=.99
HV=16760
ΔP/P=0.02
Results m4 p04 T04
4,90 Kg/s 972383,3 7 Pa 1331,07 K
m5= m4+ (1+0.5*cooling air) γ
T γ −1 P05 = P04 1 + 1 05 −1 η T04 T05 = T04 -
(m C i
p
1.4 HPT exit (5)
(T03 −T02 )
m5 C p
Assumptions η=.88
W5= Cp (T05 – T04)
Results m5 p05 T05 W5
5,17 505486,6 0 1154,45 -202945,7 0
Kg/s Pa K J.kg-1
m 6= m 5
P06 = P05 1 +
∆p p
T06 = T05
1.5 Inter-turbine duct (6) Assumptions
ΔP/P=0.02
6
Results m7= m6+ (1+0.5*cooling air)
p06 T06
γ
T γ −1 P07 = P06 1 + 1 07 −1 η T06 T07 = T06 -
(m C i
p
(T02 − T01 )
495376, 87 Pa 1154,45 K
1.6 LPT exit (7)
m7 C p
W7= Cp (T07 – T06)
Assumptions η=.90
Results m7 p07 m 8= m 7
P08 = P07 1 +
T07 W7
∆p p
5,44 244768,5 1 986,67 -192798,4 1
Kg/s Pa K J.kg-1
T08 = T07
1.7 Inter-turbine duct (8) Assumptions
ΔP/P=0.02
Results p08
m 9= m 2 P atm 09 ∆ P P = 1− P
T08
p 09 T09 = T08 - η * T08 1 − p 08
γ −1 γ
239873,1 4 Pa 986,67 K
1.8 Power turbine (8) Assumptions η=.93
W9= Cp (T09 – T08)
ΔP/P=0.02
7
Results
HP= m9*W9
m9 p09 T09 W9
f .a.r SFC = m3* HP
5,44 89898,11 787,16 -229265,8 5
Kg/s Pa K J.kg-1
1.9 Engine horsepower and SFC
Engine Horspower
SFC
1247912,3 8 W kg/Kw/ 0,314046 h
1673,48 HP 516290, lb/hp/ 09 h
8
9
2. Part B: Turbine Design 2.1 Mean Line design of HPT 2.1.1 Rotational speed and gas path Assumptions N=
AN
2
AN2
π( rt 2 −rh 2 )
rt = rh
π* AN 2 30 2 * U h
rh =U h
60 2πN
2
Uh +1
M1 M3 α1 α3
4E+1 0 rpm.in² 1100 ft/sec 0,1 0,4 10 deg 10 deg
Results Hub to tip ratio
rh/r t
Hub radius
rh
Tip radius
rt
Rotational speed
N
0.71 0.10 3.79
m in
0.14 5.34 30019.0 51
m in rp m
The radius rh is calculated from the blade hub speed. The radius rt is calculated from the area A1 which is calculated from the formula A1 =
in the report.
10
m1RT1 calculated later P1V1
2.1.2 Velocity triangles and nozzle & rotor loss coefficients T1 =
P1 =
T01 γ −1 2 1+ M1 2
T3 =
P01 γ −1 2 1 + M 1 2
γ γ −1
V1 = M 1 . γ .R.T1
P3 =
T03 γ −1 2 1+ M3 2
2
T2 = T3 +
P03 γ −1 2 1 + M 3 2
γ γ −1
V3 = M 3 . γ .R.T3
Va1= V1 cos α1
P2 =
Vr 3 − Vr 2 2Cp
P01
2
γ
T01 γ −1 T '2
T’2=T2-λN(T02-T2)
Va3= V3 cos α3
Va2
Vu3= V3 sin α3
Vu2=-
=Vu2/tanα2 Vu1= V1 sin α1 WHPT/Um –Vu3 A1 =
U + Vu 3 α r 3 = tan −1 m Va 3
m1RT1 P1V1
Vr2=Vu2-Um
Vr3=Va3/cos αr3 2
V r 2 = V ru + V a 2
2
A3 =
m3 RT3 P3V3
2
V 2 = Vu + V a 2
ρ2 =
2
P2 R.T2
Results
at 1 V1 Vu 1 Va 1
at 2 71.3 1 12.3 8 70.2 3
m/ s m/ s m/ s
Vu2 Va2 V2 V ru2 Vr2
at 3 511. 36 186. 12 544. 18 146. 95 237. 14
11
m/ s m/ s m/ s m/ s m/ s
V3 Vu 3 Va 3 Vr3
262. 39 45.5 6 258. 40 484. 61
12
YN =
P0 r 2
P01 - P02 P02 - P2
T = P2 0 r 2 T2
YR =
γ
γ
γ −1
V 2 T0 r 2 = T2 + r 2 2C p
P0r2 - P0r3 P0r3 - P3
P0 r 3
T γ −1 = P3 0 r 3 T3
V 2 T0 r 3 = T3 + r 3 2C p
The nozzle and rotor loss coefficients are: YN YR
0,111 0,166
Efficie ncy ξN ξR ηtt
0,0768 0,1204 0,87
These losses were verified by the efficiency calculated from the losses, which is 87% knowing that the efficiency should be 88%.
13
2.2 Hub and tip velocity triangles Free vortex : Vu1= cste1/r Vu2= cste2/r Vu3= cste3/r U=N.r 2
V1 = Vu1 + V a1
2
2
V 2 = Vu 2 + V a 2
2
2
V3 = Vu 3 + Va 3
2
Vru 2 = Vu 2 − U 2
Vr 2 = Vru 2 + Va 2 V α 1 = tan −1 u1 Va1
V α 2 = cos −1 a 2 V2
V 2 T2 = T02 − 2 2C p
V 2 T0 r 2 = T2 + r 2 2C p
R=
U + Vu 3 α r 3 = tan −1 Va 3 (V 2 − Vr 2 2 T3 = T2 − r 3 2C p V 2 T0 r 3 = T3 + r 3 2C p P3 = ρ 3 .R.T3
P2 = ρ 2 .R.T2 T P02 = P2 02 T2
Vr 3 = Va 3 / cos α r 3 V α 3 = tan −1 u 3 Va 3
V α r 2 = tan −1 ru 2 Va 2 V2 T1 = T01 − 1 2C p
2
γ
T P03 = P3 03 T3
γ −1
γ
γ −1
T2 − T3 T1 − T3
M = V / γ .R.T The Results are:
r
0.10
0.11
0.12
0.13
0.14
T2
1151.00
1180.15
1202.21
1219.31
1232.82
T3 p2
1124.09 597057.7
1124.32 612182.9
1124.50 623626.3
1124.63 632492.5
1124.74 639501.3
14
6 454826.2 9 1068336. 66 506035.9 1
7 454919.9 5 991016.3 7 505723.1 0
0 454990.8 2 937404.7 0 505486.6 0
9 455045.7 2 898495.0 0 505303.4 6
1 455089.1 3 869247.2 0 505158.7 6
73.18
71.58
70.00
68.45
66.94
11.99
10.91
10.00
9.23
8.57
V2
643.30
588.92
544.18
506.80
475.18
V3
264.16
263.15
262.39
261.79
261.32
Vu2
615.79
558.74
511.36
471.39
437.21
Vu3
54.87
49.78
45.56
42.00
38.96
Va2
186.12
186.12
186.12
186.12
186.12
Va3
258.40
258.40
258.40
258.40
258.40
Vr2
364.31
292.18
237.14
201.07
186.44
Vru2
313.18
225.23
146.95
76.08
11.00
Vr3
441.09
462.26
484.61
507.95
532.12
0.13
0.27
0.37
0.45
0.52
p3 p02 p03 α2 deg α3 deg
R
This table shows: A radial increase in temperature and pressure for the leading edge, this is due to the change in the radius so a change in the speed. However for the trailing edge, the radial conditions are almost the same, since we are at the exit of the HPT, A temperature and a pressure drop between leading and trailing edge, which is normal since we transfer energy from the flow to the blades in a turbine, The turning is lower as the radius increases, in order to reduce the losses on the tip (tip leakage, secondary…) The reaction increases with the radius since the temperature follows the same pattern.
15
2.3 Vane and Blade parameters Stagger angle is calculated from Fig5
(rt - rh ) h/c
Chord
c=
Axial chord
ca=c*cos(γ)
Pitch of vanes
s = ca
ψ 2.(tanα 1 + tan α 2 ) cos 2 α 2 N=
Number of vanes/blades
2π .rm s
Results To be validated Vane h/c Ψ TAT C Ca γ s Nv
Blade 0,7 0,75 0,04 0,056 0,036 50 0,040 18
in m m deg m vane
h/c Ψ TAT C Ca γ s Nb
So the final design will be 18 vanes and 44 blades.
16
1,3 0,9 0,02 0,028 0,022 38 0,018 44
in m m deg m blade
2.4 Nozzles and rotor loss coefficients YN = YP * fRE + YS + YTET +YTC 2 YP , AMDC K P + Yshock 3
YP = 0.914
YP, AMDC =
t /c β 1 β1 YP( β 1=0 ) + YP( β 1=α 2 ) - YP( β1 =0 ) max α 2 α 2 0.2
[
]
β1 α2
With Kp = 1 – K2 (1- K1), K1 = 1-1.25(M2-0.2), K2 = (M1/M2)2 YS = 1.2 YS, AMDCKS
YS, AMDC = 0.0334 f(AR)
With
cosα 2 cosβ1
CL s/c = 2(tanα
C L 2 cos 2α 2 3 s/c cos α m −1
1
+ tanα2) cosαm
αm = tan
1 (tan α1 − tan α2 ) 2
f(AR) =
1 − 0.25 2 − h c h c
Using AMDC loss system, the loss coefficients for the stator are: secondary losses
profile losses
Trailing
edge
losses book page 330
tmax/c s/c Yp (β1=0)
0,2
assumption
from graph
Yp (β1=α2)
Yshock
0 0,10
M2
0,80
K1
0,25
0,99
Re
1,38E+06
Yp
M1 is too small
0,015
Kp
f(Re)
from graph
0,0387
M1
K2
-0,91
rad
-52,12
deg
t/s correction factor
CL/(s/c) 0,14
Yp AMDC
1,02
αm
0,705 0,04
fAR
3,59 Ys AMDC
0,08
K3
0,84
Ks
0,99
Ys
0,093
reynolds > 10^6
0,938 0,022
17
YTET
0,02 6
≠ 0,02 from 1,05 graph 0 ,00 6
Total Pressure loss
Total AMDC loss YN
0,12
compared to
0,11
Assuming an unshrouded blade with a radial tip clearance of 2% of blade height, the loss coefficients for the rotor are: profile losses tmax/c
0,200
s/c
0,525
Yp (β2=0)
0,040
Yp (β2=αr3)
0,100
Yp AMDC
secondary losses
Tip clearance losses
fAR
book page 329 assumption of unshrouded blades with radial tip clearance of 2% of blade height
0,6083
αm from graph from graph
CL/(s/c)
-0,379
rad
-21,73
deg
4.4146 0,098
Ys AMDC 0,069
Δp/q1 hub
0,027
K3
0,5397
Δp/q1 shock
0,019
Ks
0,92
Yshock
0,005
Mr2
0,350
Mr3
0,739
K1
0,327
K2
0,224
Kp
0,849
Re
5,16E+05
f(Re)
Yp
1
1
0,04
0,108
Ys
Trailing edge losses
(cosβ3/cosβ2) ^2 /(1+rm/rt)
0,263
λ
0,008
B(k/h)
0,010
βm
0,354
Ys+Yk
0,121
YTC
rad
0,01 3
book page 330 t/s correctio n factor
0,032 1,05
YTET
Total AMDC loss YR 0,17
≠ 0,02 from graph
0,009
Total Pressure loss compared to
0,17
We notice that the loss coefficients calculated with the AMDC method are very close to those calculated with the pressure losses. We also notice that the most predominant losses are the secondary.
18
Blade metal area ration
τ K1 K2 K3 K4 ρ
300 15 55,6 -5,2 0,6 0,315
h
lb/in3 -
Lm2
45,2
KSI
Lm1
45,2
KSI
maximum life Actual life
σc
247,3
23,48
KSI
K5 AH/AT
175,7
16,68
≈1
2.3
Since the Lm1 equation is a second order equation, we have 2 solutions for σc and so for K5 , but only one of them seems to be reasonable. We chose 2.3 as AH/AT.
19
2.5 Off-design performance 2.5.1 Reduction of the speed by 20% ioff = α r 2 off - β2 with β2 is metal angle (unchanged) Incidence on the rotor Umean off β2 αr2 off
291.5 2 metal γ −1 angle 2iscst 1 40.29 1− M
Y’=0,88
50.39 i off
10,10
−γ
γ−1 −1 −1
r3 2 2 φ rad −γ 1 γ −1 2 γ− 1 −1 + M r3 2 deg
incidence on the rotor
x’=
−1.6
d s
−2
cos β2 cos β3
*
* (α r 2 off − α r 2 )
Incident Loss on rotor 2
and
φ 2 = 1 − ∆φ p
∆φ p =0.778*10 x’ + 0.56*10 x’ + 0.4*10 x’ + 2.054*10 incident profile incident secondary losses losses assumed 2 χ'' x ”) d/c 0,044 0,18 Y’’= Ys,des(exp(0.9 x ”) + 13 x ” + 400 -5
-7
s/c
0.52
d/s
0.08
β2
40.29
deg
0,70
rad
β3
57.78
deg
1,01
rad
αr2
38.29
deg
Mr 3
0.75
χ' ∆φ²P YiP
312.23 0,0093 0 0,0117 3
x” =
αoff r 2 − β2 180 − (β2 + β3 )
0 < χ' < 800
2
(Y/Ydes−)1S.5
cos β2 * cos iS 3 Yβ
-10
2,08−0.3
d * C 0,225
3
0 < χ'' < ,3
Assume same TET and Tip clearance losses
Total loss YR
20
0,31 7
-19
x’6
2
Efficiency YN drop ξ N = 1 + 0.5 * γ * M ξN ξR ηtt
2 2
0,0690 YR 2 0,2298 1 + 0. 5 * γ * M r 3 Knowing that we originally had to 0,8256
ξR =
have 0,88
dηtt
η tt off
1 2 ξ .V + ξ R (Vr3 ) 2 1+ N 2 2.(h 01 − h03 )
6,19 % =
With (h01-h03)=U2Vu2-U3Vu3=Um(Vu2-Vu3)
Reducing the speed by 20% will lead to: an increase of αr2 and then generate a positive incidence of 10 degrees an increase of losses on the rotor a reduction of the efficiency by 6.19%
21
2.5.2 Reduction of the pressure ratio by 20%
Design conditions
80% Pressure ratio
22
% decrease 1.67
Design 71.31
80% PR 70.12
Vu1
12.38
12.18
1.67
Va1
70.23
69.05
1.67
Vu2
471.32
369.81
21.53
Va2
171.55
134.60
21.54
V2
501.56
393.54
21.54
78.68
5.40
93.13
Vr2
188.73
134.71
28.62
V3
262.39
262.47
-0.03
Vu3
45.56
45.58
-0.03
Va3
258.40
258.48
-0.03
V1
Vru2
23
Vr3
508.71
484.66
4.73
The effect of reducing the pressure ratio by 20% on the velocity triangle is: a reduction of the incidence (so a reduction of losses), a reduction of speeds at the stator and the rotor, a reduction of the component Vu, which reduces the energy transfer.
24
Conclusion
25