1
PRODUCTION OF LIQUID FUELS USING SYNGAS PRODUCED BY GASIFICATION OF COAL BY FISCHER TROPSCH SYNTHESIS
GROUP MEMBERS
Syed Najeeb Muhammad Subhani Muhammad Salman Muhammad Ukasha Usman* Hafiz Hussnain Akhtar Muhammad Awais
2014-CH-360 2014-CH-351 2014-CH-332 2014-CH-335 2014-CH-343
PROJECT UNDER THE SUPERVISION
DR. AZAM SAEED ENGR. FAISAL REHMAN
INTRODUCTION
PRODUCT INTRODUCTION
DIESEL
Carbon range C5---C12 . Offers a wide range of performance, efficiency, and safety features.
Diesel fuel also has a greater energy density than other liquid fuels. Provides more useful energy per unit of volume.
GASOLINE Light-duty vehicles (cars, sport utility vehicles, and small trucks) account for about 90% of all gasoline consumption in the United States. Considered as a more cleaner fuel than diesel. Demand increasing more than diesel.
DIESEL
GASOLINE
FT Diesel has a higher cetane number, approaching 70.
FT gasoline has a boiling range from 100-400 °F°
Sulfur content is potentially zero, with almost zero or minimal NOx and SOx.
The Net Heating value is 46.4 MJ/Kg
Heating value of FT diesel is 45.6 MJ/Kg
CTL PROCESS
GTL PROCESS
BTL PROCESS
A CTL plant based on Converts natural gas- Use any Biomass indirect liquefaction. the cleanest burning residues or organic Fischer-Tropsch fossil fuel- into high wastes such as synthesis would quality liquid trees, perennial produce extremely products. grasses, straw, bark, clean-burning liquid GTL products are bagasse, waste paper, hydrocarbon products. colorless and odorless. reclaimed wood or Products are virtually Our country facing fiber based free of sulfur, shortage of natural gas composites. nitrogen, and aromatic so we can’t use this compounds, such as process. benzene, and that are compatible with the existing transportation fuel distribution.
8
Why CTL ? Availability of Coal Abundant resources in Pakistan A CTL plant based on indirect liquefaction and Fischer-Tropsch synthesis would produce extremely clean-burning liquid hydrocarbon products that are virtually free of sulfur, nitrogen, and aromatic compounds, such as benzene, and that are compatible with the existing transportation fuel distribution
9
Direct Liquefaction Direct Liquefaction (DL) is similar to hydrocracking processes used in petroleum refining to convert heavy oils into gasoline and diesel fuel . The direct liquids must be further upgraded to produce liquid fuels. . The hydrogen required can be produced within the liquefaction facility by means of coal gasification and the water-gas shift reaction . The thermal efficiency for direct liquefaction is about 55%.
Indirect Liquefaction Indirect Liquefaction (IL) is a multi-step process for the production of liquid fuels. Coal gasification is the first step in indirect liquefaction. The intermediate product produced by gasification is referred to as syngas. The water-gas-shift reaction both rejects carbon (by converting CO to CO2) and adds H2 (by converting H2O to H2). . Liquid Hydrocarbons can be produced from syngas via the Fischer-Tropsch (FT) synthesis over either an iron or cobalt-based catalyst 10
WHY FT?
F-T diesel has a cetane number over 70 F-T diesel contains virtually no sulfur, lean NOx aftertreatment catalysts can be used to reduce engine NOx emissions.
F-T diesel in engines have shown that hydrocarbon emissions can be reduced by almost 43% compared to petroleum diesel
.
This wax is of extremely high quality and can be sold as a specialty product, or can be cracked to produce additional F-T diesel.
11
PROCESS DESCRIPTION
PROCESS DESCRIPTION
Syngas Production – This section of the plant includes coal handling, drying and grinding, followed by gasification. An air separation unit provides oxygen to the gasifier. Synthesis Gas Conversion – This section of the plant includes water-gas shift, a synthesis-gas conversion reactors, CO2 removal. The clean synthesis gas is shifted to have the desired hydrogen/carbon monoxide ratio, and then catalytically converted to liquid fuel. Acid gas removal For all systems the acid gases CO2, H2S, and COS contained in the syngas are removed CO2 removal is required to improve the kinetics and economics of the downstream synthesis process. H2S removal is required (to much lower levels than is required for power generation applications) to avoid poisoning of the synthesis catalyst.
PROCESS DESCRIPTION F-T Synthesis: In our designs, we utilize a slurry-phase F-T synthesis reactor with an iron catalyst. reactors. The advantage of an iron catalyst over cobalt for converting coal-derived syngas is that iron has water-gas shift activity and internally adjusts the low H2/CO ratio of the coal derived syngas to that required by the FT synthesis reaction
PROCESS FLOW DIAGRAM
15
16
CAPACITY SELECTION
SECTOR WISE OIL CONSUMPTION IN PAKISTAN
More than 91%of the oil consumption in FY 16 took place in two sectors :transport(48.8%) and power (42.7%)
Pakistan Gasoline consumption by Year 100 90
Thousand barrels per day
80 70 60 50 40 30 20 10 0 1980
1985
1990
1995
2000
2005
2010
2015
2020
Year Indexmundi.com/Pakistan
19
Pakistan diesel consumption per year 180
160
140
1000 BBL/ day
120
100
80
60
40
20
0 1980
1985
1990
1995
2000
2005
2010
2015
2020
Year Indexmundi.com/Pakistan
20
World Gasoline consumption by year 30000
Thousand barrels per day
25000
20000
15000
10000
5000
0 1980
1985
1990
1995
2000
2005
2010
2015
2020
Year Indexmundi.com/Pakistan
21
World's diesel consumption by year 30000
Thousand barrels per day
25000
20000
15000
10000
5000
0 1980
1985
1990
1995
2000
2005
2010
2015
2020
year Indexmundi.com/Pakistan
22
OIL DEMAND FORECAST
The steady increase in population , the changes in life style of people and prices of petroleum products will result in an increase in oil consumption in the coming years. If the local crude production and refining capacity do not increase then Pakistan has to increasingly rely on imports to meet its oil demand 30 29
MMTOE
28 27 26 25 24 23 22 2015
2016
2017
2018
2019 2020 YEAR
2021
2022
2023
2024
Pakistan petroleum products consumption and production by year 600
THOUSAND BARRELS PER DAY
500
400
300
200
100
0 1980
1984
1988
1992
1996
2002
2006
2008
2009
2010
2011
2012
2013
2014
2015
2016
YEAR consumption production
Indexmundi.com/Pakistan
24
Pakistan annual diesel consumption is 8 million metric ton. More than half of requirement is met through direct diesel import. Rest is produced by local refineries through import of crude. Pakistan daily diesel production is 90,000 BBL/day.
25
Pakistan relies heavily on import of liquid fuels to fulfill its requirements. A minimum of 65000 BBL/Day diesel is imported from gulf and other regions. Also Pakistan has abundant resources of low grade lignite coal in Thar and other parts of Pakistan. Using the lignite coal, we have tried to reduce the daily import to 35% by producing 42568 BBL of FT diesel per day
26
COAL RESERVES IN PAKISTAN
Province
Resources (Million tones)
Heating Value (BTU/lb)
SINDH
184,623
5219-1355
BALOCHISTAN
217
9637-15499
PUNJAB
235
9472-15801
NWFP
91
9386-14217
AJK
9
7336-12338
TOTAL
185,175
27
Thar Lignite Coal Ultimate Analysis
Component
Fraction(%)
C
36.39
H
4.21
O
7.76
N
0.64
S
2
Ash
14
Moisture Content
35
28
Material Balance
29
Gasifier Main Reactions C + .5O2
CO
C + H2O
CO + H2
C + CO2
2CO
C + 2H2
CH4
CH4 + H2O
CO + 3H2
H2 + C + N2
2HCN
HCN + H2O
CO + NH3
H2
H2S
+S
H2O + .5O2
H2O
CO + .5O2
CO2
CO + H2O
CO2 + H2O
CO + S
COS 30 30
Operating Conditions • Temperature=1500K • Pressure=75 barr
31
Material Balance across Gasifier Inlet Fraction
Mass (Kg/hr)
Kmol
Outlet
Moles (Kmole)
Mass (Kg/hr)
Weight fraction
C
0.48
343915
28659.6
CO
18887.8
528858.6
0.52
H2
0.06
40183
19932.04
N2
0.009
6106.1
218.1
H2
33601.7
67741.1
0.07
S
0.03
20020
625.6
CO2
8168.3
359406.7
0.35
O2
0.10
74074
2314.8
NH3
5.9
100.8
9.92E-05
H2O
0.13
95566.9
5309.3
H2S
606.8
20633.1
0.02
Ash
0.19
135135
HCN
28.96
781.9
0.0007
COS
18.8
1126.1
0.001
CH4
730.8
11693.1
0.01
N2
200.6
5617.6
0.006
20145.7
0.02
O2 kg/hr 237632.9 H2O (g) kg/hr 188141.2
S1
S4
Gasifier
S2 S5 S3
Slag (Kg/hr)
SOLIDS
TOTAL MASS IN (Kg/hr)
TOTAL MASS OUT Kg/hr)
1.1 * 106
1.1 * 106 32
124888.1
Wet Scrubber Wet scrubbers are particularly useful in the removal of PM with the following characteristics: • Sticky and/or hygroscopic materials (materials that readily absorb water); • Combustible, corrosive and explosive materials; • Particles which are difficult to remove in their dry form; • PM in the presence of soluble gases; and
• PM in waste gas streams with high moisture content 33
Material balance across Scrubber Water Flowrate (Kg/hr) Outlet
Mass (Kg/hr)
Weight fraction
CO
528858.6
0.53
CO2
359406.6
0.36
H2S
20632.9
0.02
CH4
11693.1
0.01
H2
67741.1
0.06
N2
5617.6
0.006
51.45
Inlet
Mass (Kg/hr)
Weight fraction
CO
528858.6
0.52
H2
67741.1
0.06
CO2
359406.7
0.35
NH3
100.8
0.00001
H2S
20633.1
0.02
HCN
781.9
COS
S8
Venturi Wet Scrubber
S7
S9
S 10 Outlet
Mass (Kg/hr)
Weight fraction
0.0007
CO
0.001
5.6E-08
NH3
30.2
0.00003
1126.1
0.001
0.000002
0.01
3.1E-06 6.9E-06 4.3E-08
2.1
11693.1
0.06 0.1 0.0009
H2O
CH4
CO2 H2S CH4
Particle
2014.6
0.002
5617.6
0.006 0.019
Total
1016105
1
0.002 3.6E-09 0.004 3.9E-08 0.04 0.05 0.9
1
20145.7
49.3 0.00007 70.6 0.0008 781.9 1126.1 18131.
995996.9
Solids
H2O H2 NH3 N2 HCN COS Particle Total
Total
N2
20159.3
1
Total Mass in (Kg/hr)
Total Mass out(Kg/hr)
1.0 * 106
1.0 * 106 34
Water Gas Shift Reactor The product from gasifier has a H2 / CO ratio of 1.6. For proper synthesis in FT reactor, H2 /CO ratio must be more than 2, so a water gas shift reactor is installed. Steam is added, the ratio of entering steam and CO, CO/H2O is set to be 1/2. A Fe2O3/Cr203 Catalyst is used, because a high temperature shift is required due to presence of H2S content in the gas. With 38% conversion at 598.15K , the new H/CO ratio becomes 3.2.
598.15 k CO + H20
CO2 + H2 Fe2O3/Cr203 35
Material balance across Water Gas Shift Reactor
Inlet
Mass (Kg/hr)
CO CO2
528858.5 359406
H2
67741.01
CH4 NH3 N2
11693.1 30.2 5617.6
H2S
20632.9
PM H2 O
2039.2 2.1
Total
996020.7
Inlet
H2 O Total
Flowrate (kg/hr) 679960.8 679960.8 S 12
Water Gas Shift Reactor S 11
S 13
Outlet
Mass (kg/hr)
CO CO2
317315.1 675210.1
H2
78929.2
CH4 NH3 N2
17737.2 30.2 5617.6
H2 S
20632.9
PM H2 O
2039.2 557570.1
Total
1675981.6
TOTAL MASS IN (Kg/hr)
TOTAL MASS OUT (Kg/hr)
1.7 * 106
1.7 * 106
36
Absorber Absorber is used to remove acid gases in syn-gas stream, Because Acid gas is extremely poison and harmful to humans. In addition the removal of acid gases is necessary because of:
Their removal is further justified by the corrosion effects. H2S can be converted to elemental sulfur. Acid gases are extremely poisonous and very harmful to humans. Their pungent odor males their presence very undesirable. MDEA has the potential to absorb 98% H2S ,90% CO2, 99% CH4, 100% H2O (at 25 °C)
37
Material balance across Absorber Outlet MDEA Mass flow rate (kg/hr)
Molar flow rate (kgmol/hr)
MDEA Concentration
1073587.1
1805.1
23%
S15
S 17
Moles (kmoles)
Mass (Kg/hr)
Weight fraction
CO CO2
11219.4 1534.6
314141.9 67521.01
0.67 0.14
H2 CH4 NH3 N2 H2S Total
39914.6 5.5 1.8 200.6 6.1 52882.6
79829.3 88.7 30.3 5617.6 206.3 467435
0.17 0.0002 0.00006 0.01 0.0004 1
Outlet
Moles (kmoles)
Mass (kg/hr)
Weight fraction
Inlet
Moles (kmole)
Mass (kg/hr)
Weight fraction
CO
11332.7
317315.1
0.19
CO2
15345.7
675210.1
0.40
H2
39914.6
79829.3
0.047
CO
113.3
3173.2
0.003
CH4
1108.6
17737.2
0.01
CO2
13811.1
607689.1
0.50
NH3
1.8
30.2
0.000018
CH4
1103
17648.5
0.01
N2
200.6
5616.8
0.003
H2S
600.8
20426.6
0.01
H2S
606.9
20632.9
0.01
Particle
2039.2
0.002
2039.2
0.001
Particle H2O
30976.1
557570
0.33
Total
99486.9
1675981
1
Absorber
S 14
S 16
H2O
30976.1
557570.1
0.46
Total
46604.3
1208546
1
TOTAL MASS IN (Kg/hr)
TOTAL MASS OUT (Kg/hr)
1.7 * 106
38 6 1.7 * 10
Pressure Swing Adsorption Pressure swing adsorption (PSA) is a technology used to separate some gas species from a mixture of gases under pressure according to the species' molecular characteristics and affinity for an adsorbent material.
Specific adsorptive materials (e.g., zeolites, activated carbon, molecular sieves, etc.) are used as a trap, preferentially adsorbing the target gas species at high pressure. The process then swings to low pressure to desorb the adsorbed material.
Activated Carbon has affinity to adsorb (Methane, Carbon dioxide and Moisture) & Zeolite has affinity to adsorb (Carbon monoxide, Ammonia and Nitrogen). 39
Material balance across PSA
Inlet
Moles (Kmole)
Mass (Kg/hr)
Weight fraction
CO
11219.3
314141.9
0.67
CO2
1534.6
67521
0.14
H2
39914.6
79829.3
0.17
CH4
5.5
88.7
0.0002
NH3
1.8
30.3
0.00006
N2
200.6
5617.6
0.01
H2S
6.1
206.3
0.0004
Total
52882.6
467435
1
Outlet
PSA S 17
S 18
Moles (kmole)
Mass (kg/hr)
Weight fraction
CO
11219.3 314141.9
0.8
H2
39914.6
0.2
Total
79829.3
51133.9 393971.1
1
Total Mass In (Kg/hr)
Total Mass Out (Kg/hr)
Adsorbed Mass (Kg/hr)
4.6 * 105
3.9 * 105
7.3 * 104 40
FT Reactor • FT synthesis is typically carried out in the temperature range of 210-340 °C and at high pressure (15-20) barr.
• The product range includes hydrocarbons (CH4C2H6),propane(C3H8), butane(C4H10), gasoline(C13-C17) , diesel(C5-C12) , and waxes(+C19).
• All reactions are exothermic and product is a mixture of different hydrocarbons mainly consisting of parrafins and olefins
• nCO + (2n+1)H2
CnH2n+2 + nH2O 41
Material balance across FT Reactor Outlet
Inlet
CO
Moles Mass Weight (Kmoles) (Kg/hr) fraction
11219.3
314141.9
0.79
H2
39914.6
79829.3
0.21
Total
51134
393971.1
1
S 19
FT REACTOR
S 20
C3-C4
10%
37427.3
Gasoline
25%
93568.2
823.4
Diesel
30%
112281.8
988.1
Soft Paraffin Wax
20%
74854.5
658.7
Hard Paraffin Wax
15%
56140.9
494
Total
100%
374272.6
3293.6
Outlet TOTAL MASS IN Kg/hr)
TOTAL MASS OUT (Kg/hr)
3.9 * 105
3.9 * 105
CO Conversion 95%
Mass Mass Composition (Kg/hr) (BBL/hr)
Mass (kg/hr)
CO
656.6
H2
328.3
H2O
18713
42
Distillation Column The product from FT has 4 components, with C3-C4 being the lightest, and waxes being the heaviest of them. Considering gasoline as our Light key in the first column, it has a boiling point range of 35-200 °C. Setting the temperature of first column to 200 °C and taking sharp split into account, 99% of gasoline is recovered the distillate. In the second column where now diesel is the light key, setting the temperature to 320 °C, 99% of diesel is recovered from the distillate. Waxes both soft and hard are recovered as the bottom product. 43
Material balance across Distillation Column 1
S 21 Inlet
Mass (Kg/hr)
BBL/hr
C1-C4
37427.3
329.4
Gasoline
93568.2
823.4
Diesel
112281.8
988.07
Soft wax
74854.5
658.7
wax
56140.9
494.0
Distillation column 1
Outlet
Distillate (Kg/hr)
C1-C4
37427.3
Gasoline
92632.5
Diesel
1122.8
Soft wax
0
wax
0
Outlet
Bottom (Kg/hr)
C1-C4
0
Gasoline
935.7
Diesel
111159
Soft wax
74854.5
wax
44 56140.9
S 20
S 22 Total Mass In (Kg/hr)
Total Mass Out (Kg/hr)
3.7 * 105
3.7 * 105
Material balance across Hydrocracker
Inlet
Kg/hr
Gasoline
935.6815
Diesel
111159
Soft wax
74854.52
wax
56140.89
Total
243090.1
S 25’
Outlet
Outlet (kg/hr)
C1-C4
16138.64
gasoline
20008.61
Diesel
203589.3
Hydrocracker Total
S 23’ Unconverted
258809.5
19072.93
S 24’ H2 enter
Total Mass In (Kg/hr)
Total Mass out (Kg/hr)
2.5 * 105
2.5 * 105
15719.45 (kg/hr)
45 45
Material balance across Distillation Column 2
S 25 Inlet
Gasoline
Mass (Kg/hr) 935.7
BBL/hr
Distillation column 2
8.233997
Diesel
111159
978.1989
Soft wax
74854.5
658.7198
wax
56140.9
494.0398
S 23
S 24
Total Mass In (Kg/hr)
Total Mass out (Kg/hr)
2.4 * 105
2.4 * 105
Outlet
Distillate (Kg/hr)
Gasoline
935.7
Diesel
110047.4
Soft wax
0
wax
0
Outlet
Bottom (Kg/h)
Gasoline
0
Diesel
1111.6
Soft wax
74854.4
wax
56140.9
46
Overall Material Balance S8
S12
S15 S21 S24 S25
S1 CTL PLANT
S2 S3 S5
S9
S16
S18’
S20’
Inlet Stream No.
Mass (Kg/hr)
Outlet Steam No. Mass (Kg/hr)
S1
715000
S5
124888.1
S2
237632.9
S9
20159.3
S3
188141.2
S16
2282133.1
S8
51.45
S18’
73463.9
S12
679960.8
S20’
19698.56
S15 Total Mass In
1073587.1 Total Mass Out
S21
131182.6
2894373.4 Kg/hr
2894373.4 Kg/hr
S24
131358.5
S25
111731.6
47
Overall Material Balance
Total Coal In (Kg/day) 17160000
C1-C4
1281708 Kg/day
Gasoline
4183
BBL/day
Diesel
42568
BBL/day
Wax
457750 Kg/day
48
Energy Balance
49
Energy balance across Gasifier
Outlet
Cp (kJ/kg)
Mass (Kg/hr)
Q 106(KJ/hr)
CO
1.1
528858.6
730.4
CO2
1.2
359406.7
500.9
H2
15.0
67741.1
1224.5
Inlet
Cp (kJ/kg)
Mass (Kg/hr)
Qin 106(KJ/hr)
C
0.7
343915
3.8
H2
14.3
40183
8.6
H2S
1.3
20633.1
31.6
N2
1.0
6106.1
0.1
N2
1.1
5617.6
7.7
O2
0.1
74074
1.02
CH4
5.1
11693.1
72.05
S
0.7
20020
0.21
100.8
0.29
4.2
95566.9
6.02
NH3
2.4
H2O Ash
1.4
135135
2.83
Particle
1.4
20145.7
33.9
Total
2.1
715000
22.7
HCN COS
1.8 1.0
782 1126.1
1.7 1.4
Total
2.1
1016104.7
2604.4
Inlet O2
Cp Mass Qin (kJ/kg) (Kg/hr) 106(Kj/hr) 1.1 237632.9 327.3 Q H2 O 106( KJ/hr) 606.7
S1
S4
Gasifier S2
S5 S3
Outlet
Q out 106 (KJ/hr)
Slag
210.8
IN-OUT+GENERATION+CONSUMPTION=ACCUMULATION (956.7 * 106 ) – (2815.2 * 106) + (1858.5 * 106) + 0=0 IN+GENERATION=OUT
50
Energy balance across Scrubber Water Q (Kj/hr)
Cp (Kj/kg)
Q in 6 10 (KJ/hr)
Inlet
Mass (kg/hr)
CO
528858.6
1.1
83.9
H2
67741.1
14.4
146.5
CO2
359406.7
0.9
50.7
NH3
100.8
2.2
0.03
H2S
20633.1
HCN
781.9
COS CH4
N2
1126.1 11693.1
5617.6
Particles 20145.7 Total
1016105
1.1
0 (at 25° C)
S8 Venturi Wet Scrubber S9
S7
3.3
Outlet CO
S 10
Mass (Kg/hr)
Cp (Kj/kg
0.001
1.0
Cp (Kj/kg)
Outlet
Mass (Kg/hr)
Qout 6 10 (KJ/hr)
CO
528858.6
1.0
16.6
CO2
359406.6
0.9
9.4
H2S
20633
1.0
0.6
CH4
11693.1
2.3
0.8
H2
67741.1
14.5
29.7
N2
5617.6
1.0
0.2
0.2
CO2
0.06
0.9
0.1
H2S
0.1
1.0
NH3
2.1
0.002
4.4
0.0009
2.3
30.3
CH4
49.3
1.9
H2O
2.1
1.9
0.0001
0.9
H20
14.4
2014.6
1.5
0.09
5.1
0.00007
Particle
1.7
H2
1.93
295.1
NH3
70.6
2.2
Total
995996.9
1.9
57.3
N2
0.0008
1.0
HCN
781.9
1.4
CoS
1126.1
0.7
Particle
18131.1
1.8
1.4 0.7 2.5
1.0
Qout 106(KJ/hr)
240.3
51
IN-OUT+GENERATION+CONSUMPTION=ACCUMULATION (297.6 * 106 ) – (297.6 * 106 )+ 0 + 0 = 0 IN=OUT
52
Energy balance across Water-Gas shift reactor
Inlet
Mass (kg/hr)
Outlet
Cp Qin (Kj/kg) 106(KJ/hr) Inlet
Mass Cp Qout (kg/hr) (Kj/kg) 106(KJ/hr)
CO
317315.1
1.1
264.7
CO2
675210.1
1.1
555
2055.81
H2
78929.2
14.7
887.4
2055.81
CH4
17737.2
3.4
46.6
NH3
30.25
2.6
0.06
N2
5617.6
2.2
9.3
H2S
20632.9
1.2
18.4
PM
2039.18
1.5
2.2
557570.1 1675081. 6
2.1
86.7
2.0
2651.6
Mass (kg/hr)
Qin 106(KJ/hr)
H20
679960.8
Total
679960.8
CO
528858.5
1.1
169.98
CO2
359406
0.1
107.5
H2
67741.1
14.5
294.4
CH4
11693.1
2.8
9.8
NH3
30.3
2.4
0.02
N2
5617.6
2.1
3.6
H2S
20632.9
1.1
6.8
PM
2039.2
1.5
0.89
H2O
2.1
1.9
0.001
H2O
Total
996020.7
1.9
592.8
Total
S 12 S 11
S 13
Water Gas Shift Reactor
IN-OUT+GENERATION+CONSUMPTION=ACCUMULATION (2338.6 * 106 ) – (2311.9 * 106) + ( 3.1 * 106) + 0=0 IN+GENERATION=OUT
53
Energy balance across Absorber Inlet
Mass Kg/hr
Cp (Kj/kg)
Qin 106(Kj/hr)
MDEA soln.(23%)
10730 52.09
3.76
101.3
Inlet
S 15
Mass Cp Qout Outlet (Kg/hr) (Kj/kg) 106(Kj/hr)
Qgeneration (1160.5 Kj/hr)
CO
314141.9
1.0
13.5
CO2
67521.1
0.9
2.42
H2S
206.3
1.0
0.009
CH4
88.7
2.3
0.008262
S 16
H2
79829.3
14.6
47.7
Mass Cp Qout 6 (Kg/hr) (Kj/kg) 10 (Kj/hr)
N2
5617.6
1.0
0.2
NH3
30.3
2.1
0.003
Total
467435
3.3
63.9
S 17 Absorber
Mass Cp Qin 6 ( Kg/hr) (Kj/kg) 10 (Kj/hr)
CO
317315.3
1.04
3.3
CO2
675210.1
0.9
5.8
H2
79829.3
14.4
11.5
Outlet
H2S
20632.9
1.0
0.2
CO
3173.151
1.0
0.14
N2
5616.8
1.0
0.06
CO2
607689.1
0.9
22.4
CH4
17737.2
2.2
0.4
H2S
20426.57
1.0
0.9
NH3
30.1
2.1
0.0006
CH4
17648.51
2.3
1.7
H2O
557570
1.9
10.4
H2O
557570.1
1.9
43.8
particle
2039.2
1.5
0.03
Particle
2039.18
1.53
0.13
Total
1675981
26.04
1.89
Total
1208547
1.4
69.1
S 14
54
IN-OUT+GENERATION+CONSUMPTION=ACCUMULATION (133 * 106 ) – (133 * 106) + (1160) + 0=0 IN+GENERATION=OUT
55
Energy balance across PSA
Inlet
Mass (Kg/hr)
Cp (Kj/kg
Qout 6 10 (KJ/hr)
CO
314141.9
1.0
4259019
CO2
67521.1
0.9
0.8
H2S
206.3
1.0
0.003
CH4
88.7
2.3
0.003
H2
79829.3
14.6
15.2
N2
5617.6
1.0
S 17
PSA
S 18
Cp (KJ/kg
Outlet
Mass (kg/hr)
Qout 106(KJ/hr)
CO
314141.9
1.0
4.3
H2
79829.3
14.6
15.2
Total
393971.1
3.8
19.5
0.08
NH3
30.3
2.1
0.0008
Total
467435
3.3
20.2
IN-OUT+GENERATION+CONSUMPTION=ACCUMULATION (63.9 * 106 ) – (63.9 * 106) + 0 + 0=0 IN=OUT 56
Energy balance across FT-Reactor
Outlet
Inlet
Mass (kg/hr)
Cp Qin (KJ/kg) 106(KJ/hr)
S 19 CO
H2
Total
314141.9
79829.3
393971.2
1.1
14.4
3.8
64.01
FT REACTOR
S 20
Mass (kg/hr)
Cp (KJ/kg)
Qout 106(KJ/hr)
Propane 18171.3
2.5
16.8
Butane
18171.2
2.4
16.6
Gasoline 90856.1
2.4
81.7
109027.3
2.3
94.1
Soft Wax 72684.9
2.4
65.4
Hard Wax 639.6 CO 328.31
2.5
0.6
1.1
0.1
14.4
3.5
1.9
4.5
2.4
283.4
Diesel
221.2
H2
656.62
H2O
6237.8 8
285.2
Total
316773
IN-OUT+GENERATION+CONSUMPTION=ACCUMULATION (285.2 * 106 ) – (283.2 * 106) + (1.8 * 106)+ 0=0 IN=OUT 57
58