ﺩﺍﻧﺸﻜﺪﻩ ﺻﻨﻌﺖ ﺍﻟﻜﺘﺮﻭﻧﻴﻚ
ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﻭ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺍﻛﺒﺮ ﺭﻫﻴﺪﻩ ١٣٨٢
١
ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﻭ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ: .١ﻣﻘﺪﻣﻪ .١,١ﻫﻮﺵ ﻣﺼﻨﻮﻋﻲ .١,٢ﻣﻘﺪﻣﻪﺍﻱ ﺑﺮ ﻣﻨﻄﻖ ﻓﺎﺯﻱ .١,٣ﺗﺎﺭﻳﺨﭽﻪ ﻣﻨﻄﻖ ﻓﺎﺯﻱ .١,٤ﺳﺎﺧﺘﺎﺭ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ .١,٥ﻣﺮﻭﺭﻱ ﻛﻠﻲ ﺑﺮ ﺗﺌﻮﺭﻱ ﻣﻨﻄﻖ ﻓﺎﺯﻱ .١,٦ﺑﺮﺧﻲ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ .٢ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ .٢,١ﻣﻘﺎﻳﺴﻪﺍﻱ ﺑﻴﻦ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻛﻼﺳﻴﻚ ﻭ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ .٢,٢ﺗﻌﺮﻳﻒ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ .٢,٣ﺍﻧﻮﺍﻉ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ .٢,٤ﻣﻌﺮﻓﻲ ﻣﻔﺎﻫﻴﻢ ﺍﺳﺎﺳﻲ ﻣﺮﺗﺒﻂ ﺑﺎ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ .٣ﻋﻤﻠﻴﺎﺕ ﺑﺮ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ .٣,١ﻣﻌﺎﺩﻝ ﺑﻮﺩﻥ .٣,٢ﺯﻳﺮ ﻣﺠﻤﻮﻋﻪ ﺑﻮﺩﻥ .٣,٣ﻣﻜﻤﻞ .٣,٤ﺍﺟﺘﻤﺎﻉ .٣,٥ﺍﺷﺘﺮﺍﻙ .٣,٦ﻣﻴﺎﻧﮕﻴﻦ .٤ﺭﻭﺍﺑﻂ ﻓﺎﺯﻱ .٤,١ﺗﺮﻛﻴﺐ ﺭﻭﺍﺑﻂ ﻓﺎﺯﻱ .٥ﻣﺘﻐﻴﺮﻫﺎﻱ ﺯﺑﺎﻧﻲ ﻭ ﻗﻮﺍﻋﺪ IF-THEN
.٥,١ﻗﻴﻮﺩ ﺯﺑﺎﻧﻲ .٦ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻭ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻓﺎﺯﻱ .٧ﻓﺎﺯﻱ ﺳﺎﺯﻫﺎ ﻭ ﻓﺎﺯﻱ ﺯﺩﺍﻫﺎ .٨ﺑﻜﺎﺭ ﮔﻴﺮﻱ ﺟﻌﺒﻪ ﺍﺑﺰﺍﺭ ﻓﺎﺯﻱ ﺩﺭ ﻣﺤﻴﻂ MATLAB
٢
ﭼﻨﺪ ﻣﺜﺎﻝ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺟﻌﺒﻪ ﺍﺑﺰﺍﺭ ﻓﻮﻕ.٩ :ﻣﺮﺍﺟﻊ A course in fuzzy system and control
by:Li-Xin Wang
٣
-١ﻣﻘﺪﻣﻪ -١-١ﻫﻮﺵ ﻣﺼﻨﻮﻋﻲ ﭘﻴﺸﺮﻓﺖﻫﺎﻱ ﺍﺧﻴﺮ ﺩﺭ ﺗﺌﻮﺭﻱ ﻛﻨﺘﺮﻝ ﺑﺎﻋﺚ ﺷﺪﻩ ﻛﻪ ﺭﻭﺷﻬﺎﻱ ﻣﺮﺳﻮﻡ ﺩﺭ ﻃﺮﺍﺣﻲ ﻛﻨﺘﺮﻟﺮﻫﺎ ﺟﺎﻱ ﺧﻮﺩ ﺭﺍ ﺑﻪ ﺗﻜﻨﻴﻚﻫﺎﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﻫﻮﺷﻬﺎﻱ ﻣﺼﻨﻮﻋﻲ )ﻋﺼﺒﻲ ،ﻓﺎﺯﻱ ،ﻓﺎﺯﻱ-ﻋﺼﺒﻲ ﻭ ﮊﻧﺘﻴﻚ( ﺑﺪﻫﻨﺪ .ﺍﻳﻦ ﺭﻭﺷﻬﺎ ﺑﻮﺳﻴﻠﺔ ﺍﻃﻼﻋﺎﺕ ﻭ ﺩﺍﻧﺶﻫﺎﻱ ﻗﺒﻠﻲ ﺩﺭﺑﺎﺭﺓ ﺳﻴﺴﺘﻢ ﻭ ﻋﻤﻠﻜﺮﺩ ﺁﻥ ﺗﻮﺻﻴﻒ ﻣﻲﺷﻮﻧﺪ .ﺑﺪﻟﻴﻞ ﻣﺰﺍﻳﺎﻱ ﺑﻴﺸﻤﺎﺭﻱ ﻛﻪ ﺍﻳﻦ ﺭﻭﺷﻬﺎ ﺩﺍﺭﻧﺪ ﺩﺭ ﺁﻳﻨﺪﻩ ﻧﺰﺩﻳﻚ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳﻦ ﺭﻭﺷﻬﺎﻱ ﻧﻮﻳﻦ ﺩﺭ ﺻﻨﻌﺖ ﺍﺟﺘﻨﺎﺏ ﻧﺎﭘﺬﻳﺮ ﺧﻮﺍﻫﺪ ﺑﻮﺩ .ﺑﺮﺧﻲ ﺍﺯ ﻣﺰﺍﻳﺎﻱ ﺍﺻﻠﻲ ﻫﻮﺵﻫﺎﻱ ﻣﺼﻨﻮﻋﻲ ﻋﺒﺎﺭﺗﻨﺪ ﺍﺯ: • ﻃﺮﺍﺣـﻲ ﺍﻳـﻦ ﺳﻴﺴـﺘﻢﻫـﺎ ﻧـﻴﺎﺯﻱ ﺑﻪ ﻣﺪﻝ ﺭﻳﺎﺿﻲ ﭘﺮﻭﺳﻪ ﻧﺪﺍﺭﺩ) .ﺑﻌﺒﺎﺭﺕ ﺩﻳﮕﺮ ﻃﺮﺍﺣﻲ ﺑﺮ ﻣﺒﻨﺎﻱ ﺍﻃﻼﻋﺎﺕ ﺳﻴﺴﺘﻢ ﻫﺪﻑ ﻣﻲﺑﺎﺷﺪ( • ﺩﺭ ﻳـﻚ ﺳﻴﺴـﺘﻢ ﻓـﺎﺯﻱ ﻛـﻪ ﻳﻚ ﺳﻴﺴﺘﻢ ﺧﺒﺮﻩ ﻣﻲﺑﺎﺷﺪ .ﻃﺮﺍﺣﻲ ﻣﻲﺗﻮﺍﻧﺪ ﻣﻨﺤﺼﺮﹰﺍ ﺑﺮﻣﺒﻨﺎﻱ ﺍﻃﻼﻋﺎﺕ ﺯﺑﺎﻧﻲ ﮔﺮﻓـﺘﻪ ﺷـﺪﻩ ﺍﺯ ﻛﺎﺭﺷﻨﺎﺳـﺎﻥ ﻭ ﻳﺎ )ﻭﻗﺘﻲ ﻛﻪ ﺍﻃﻼﻋﺎﺕ ﻛﺎﺭﺷﻨﺎﺳﻲ ﺩﺭ ﺩﺳﺘﺮﺱ ﻧﺒﺎﺷﺪ( ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺩﺳﺘﻪﺑﻨﺪﻱ ﺍﻃﻼﻋﺎﺕ ﺑﺎﺷﺪ. • ﺩﺭ ﻳـﻚ ﺳﻴﺴـﺘﻢ ﻓﺎﺯﻱ ـ ﻋﺼﺒﻲ ﻛﻪ ﻳﻚ ﺷﺒﻜﺔ ﻋﺼﺒﻲ ﻛﺎﺭﺷﻨﺎﺱ ﻣﻲﺑﺎﺷﺪ ﻃﺮﺍﺣﻲ ﻣﻲﺗﻮﺍﻧﺪ ﺑﺮﺍﺳﺎﺱ ﻗﻮﺍﻋﺪ ﺯﺑﺎﻧـﻲ ﺑﺪﺳـﺖ ﺁﻣـﺪﻩ ﺍﺯ ﻛﺎﺭﺷﻨﺎﺳـﺎﻥ ﻭ ﻳﺎ ﺩﺳﺘﻪﺑﻨﺪﻱ ﺍﻃﻼﻋﺎﺕ )ﻭﻗﺘﻲ ﻛﻪ ﺍﻃﻼﻋﺎﺕ ﻛﺎﺭﺷﻨﺎﺳﻲ ﺩﺭ ﺩﺳﺘﺮﺱ ﻧﺒﺎﺷـﺪ( ﺍﻧﺠـﺎﻡ ﮔﻴﺮﺩ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﺪﻝ ﺷﺒﻜﻪ ﻣﻲﺗﻮﺍﻧﺪ ﻓﻘﻂ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻃﻼﻋﺎﺕ ﺳﻴﺴﺘﻢ ﻫﺪﻑ ﺑﻨﺎ ﺷﻮﺩ ﻭ ﺩﺭ ﺍﺑـﺘﺪﺍﻱ ﺗﻌﻠـﻴﻢ ﻧـﻴﺎﺯﻱ ﺑـﻪ ﺍﻃﻼﻋـﺎﺕ ﻗﺒﻠـﻲ ﺍﺯ ﻗﻮﺍﻋـﺪ ﻓـﺎﺯﻱ ﻭ ﺗﻮﺍﺑـﻊ ﻋﻀﻮﻳﺖ ﻧﻤﻲﺑﺎﺷﺪ .ﻫﺮ ﭼﻨﺪ ﺩﺍﻧﺶ ﻛﺎﺭﺷﻨﺎﺳـﺎﻧﻪ ﺍﺯ ﺳﻴﺴـﺘﻢ ﻫﺪﻑ ﺩﺭ ﺍﻧﺘﺨﺎﺏ ﺍﻭﻟﻴﻪ ﺳﺎﺧﺘﺎﺭ ﺷﺒﻜﻪ ﻛﻤﻚ ﻣﻲﻧﻤﺎﻳﺪ ﻭ ﺍﺯ ﺍﻳﻦ ﻃﺮﻳﻖ ﻣﻲﺗﻮﺍﻥ ﺧﻄﺎ ﻭ ﺯﻣﺎﻥ ﺗﻌﻠﻴﻢ ﺭﺍ ﻛﺎﻫﺶ ﺩﺍﺩ. • ﺩﺭ ﻳـﻚ ﺳﻴﺴـﺘﻢ ﺷﺒﻜﻪ ﻋﺼﺒﻲ )ﺑﺪﻭﻥ ﻓﺎﺯﻱ( ﺍﮔﺮ ﺷﺒﻜﻪ ﻋﺼﺒﻲ ﺑﺎ ﺭﻭﺵ ﺗﻌﻠﻴﻢ ﺗﺤﺖ ﻧﻈﺎﺭﺕ ﺁﻣﻮﺯﺵ ﺑﺒﻴﻨﺪ، ﻃﺮﺍﺣـﻲ ﻣﺒﻨـﻲ ﺑﺮ ﺍﻃﻼﻋﺎﺕ ﻣﻮﺟﻮﺩ ﺑﺮﺍﻱ ﺗﻌﻠﻴﻢ ﺑﻮﺩﻩ ﻭ ﺍﻳﻦ ﺍﻃﻼﻋﺎﺕ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺍﺯ ﻣﻨﺎﺑﻊ ﻣﺘﻌﺪﺩﻱ ﺍﺳﺘﺨﺮﺍﺝ ﺷـﻮﻧﺪ )ﺑﻌـﻨﻮﺍﻥ ﻣـﺜﺎﻝ ﺍﺯ ﻃـﺮﻳﻖ ﺍﻧـﺪﺍﺯﻩ ﮔـﻴﺮﻱ( .ﻫﺮﭼﻨﺪ ﻭﻗﺘﻲ ﺷﺒﻜﻪ ﻋﺼﺒﻲ ﺑﺎ ﺭﻭﺵ ﺗﻌﻠﻴﻢ ﺑﺪﻭﻥ ﻧﻈﺎﺭﺕ ﺁﻣـﻮﺯﺵ ﻣـﻲﺑﻴـﻨﺪ ﺑﻌﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺷﺒﻜﻪ ﻋﺼﺒﻲ ﺧﻮﺩ ﺳﺎﺯﻣﺎﻧﺪﻩ ،ﺷﺒﻜﻪ ﻋﺼﺒﻲ ﺍﻃﻼﻋﺎﺕ ﺭﺍ ﺑﺮ ﻃﺒﻖ ﺭﻭﺵ ﺑﻜﺎﺭ ﮔﺮﻓﺘﻪ ،ﺩﺳﺘﻪﺑﻨﺪﻱ ﻣﻲﻧﻤﺎﻳﺪ. • ﺩﺭ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﻫﻮﺵ ﻣﺼﻨﻮﻋﻲ ﺗﺎﺛﻴﺮﺍﺕ ﺗﻨﻈﻴﻢ ﻣﻲﺗﻮﺍﻧﺪ ﺑﺴﻴﺎﺭ ﻛﻤﺘﺮ ﺍﺯ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻣﻌﻤﻮﻟﻲ ﺑﺎﺷﺪ. • ﺍﻳﻨﮕﻮﻧﻪ ﺳﻴﺴﺘﻢﻫﺎ ﺑﺨﻮﺑﻲ ﺧﻮﺩ ﺭﺍ ﺗﻌﻠﻴﻢ ﻭ ﻋﻤﻮﻣﻴﺖ ﻣﻲﺩﻫﻨﺪ )ﻳﻌﻨﻲ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺗﺨﻤﻴﻦﻫﺎﻱ ﺧﻮﺑﻲ ﺭﺍ ﺩﺭ ﻗﺒﺎﻝ ﺍﻃﻼﻋﺎﺕ ﻭﺭﻭﺩﻱ ﻧﺎﺷﻨﺎﺧﺘﻪ ﺍﺯ ﺧﻮﺩ ﺍﺭﺍﺋﻪ ﺩﻫﻨﺪ( ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﺴﺘﻘﻞ ﺍﺯ ﺧﺼﻮﺻﻴﺎﺕ ﺩﺭﺍﻳﻮ ﻫﺴﺘﻨﺪ. • ﺍﻳﻦ ﺳﻴﺴﺘﻤﻬﺎ ﺧﺼﻮﺻﻴﺖ ﺣﺬﻑ ﻧﻮﻳﺰ ﺭﺍ ﺑﺨﻮﺑﻲ ﺍﺯ ﺧﻮﺩ ﻧﺸﺎﻥ ﻣﻲﺩﻫﻨﺪ. • ﺍﻳـﻦ ﺳﻴﺴـﺘﻢﻫﺎ ﺩﺭ ﻫﻨﮕﺎﻡ ﻭﻗﻮﻉ ﺧﻄﺎ ﺗﺤﻤﻞ ﻧﺴﺒﺘﹰﺎ ﺧﻮﺑﻲ ﺍﺯ ﺧﻮﺩ ﻧﺸﺎﻥ ﻣﻲﺩﻫﻨﺪ .ﺑﻌﺒﺎﺭﺕ ﺩﻳﮕﺮ ﺍﮔﺮ ﺩﺭ ﻳﻚ ﺷـﺒﻜﻪ ﻋﺼﺒﻲ ﻳﻚ ﻋﺼﺐ ﺧﺮﺍﺏ ﻳﺎ ﺣﺬﻑ ﺷﻮﺩ ﻭ ﻳﺎ ﺍﻳﻨﻜﻪ ﺩﺭ ﻳﻚ ﺷﺒﻜﻪ ﻓﺎﺯﻱ ـ ﻋﺼﺒﻲ ﻳﻚ ﻗﺎﻋﺪﻩ ﺣﺬﻑ ﺷـﻮﺩ ﺳﻴﺴـﺘﻢ ﻣﺒﺘﻨﻲ ﺑﺮ ﻫﻮﺵ ﻣﺼﻨﻮﻋﻲ ﺑﺪﻟﻴﻞ ﺳﺎﺧﺘﺎﺭ ﻣﻮﺍﺯﻱ ﻣﻲﺗﻮﺍﻧﺪ ﺑﻜﺎﺭ ﺧﻮﺩ ﺍﺩﺍﻣﻪ ﺩﻫﺪ )ﺍﻟﺒﺘﻪ ﻋﻤﻠﻜﺮﺩ ﺳﻴﺴﺘﻢ ﻛﻤﻲ ﺩﭼﺎﺭ ﻣﺸﻜﻞ ﻣﻲﺷﻮﺩ(.
۴
• ﺳﻴﺴﺘﻢﻫﺎﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﻫﻮﺵ ﻣﺼﻨﻮﻋﻲ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺑﻪ ﺁﺳﺎﻧﻲ ﺗﻌﻤﻴﻢ ﻭ ﺗﻮﺳﻌﻪ ﻭ ﻫﻤﭽﻨﻴﻦ ﺗﻌﺪﻳﻞ ﺷﻮﻧﺪ. • ﺍﻳﻦ ﺳﻴﺴﺘﻢﻫﺎ ﻫﻤﭽﻨﻴﻦ ﺩﺭ ﻣﻘﺎﺑﻞ ﺗﻐﻴﻴﺮ ﭘﺎﺭﺍﻣﺘﺮﻫﺎ ﺑﺴﻴﺎﺭ ﻣﻘﺎﻭﻡ ﻣﻲﺑﺎﺷﻨﺪ. -٢-١ﻣﻘﺪﻣﻪﺍﻱ ﺑﺮ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﻛﻠﻤﻪ ﻓﺎﺯﻱ ﺩﺭ ﻓﺮﻫﻨﮓ ﻟﻐﺖ ﺑﺎ ﻣﻌﺎﻧﻲ ﻣﺒﻬﻢ ،ﮔﻨﮓ ،ﻧﺎﺩﻗﻴﻖ ،ﮔﻴﺞ ،ﻣﻐﺸﻮﺵ ،ﺩﺭﻫﻢ ﻭ ﻧﺎﻣﺸﺨﺺ ﺁﻭﺭﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﺩﻗﺖ ﺷﻮﺩ ﺑﺎ ﻭﺟﻮﺩ ﺍﻳﻨﻜﻪ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﭘﺪﻳﺪﻩﻫﺎﻱ ﻏﻴﺮ ﻗﻄﻌﻲ ﻭ ﻧﺎﻣﺸﺨﺺ ﺭﺍ ﺗﻮﺻﻴﻒ ﻣﻲﻧﻤﺎﻳﻨﺪ ﻭﻟﻲ ﺧﻮﺩ ﺗﺌﻮﺭﻱ ﻓﺎﺯﻱ ،ﺗﺌﻮﺭﻳﻲ ﻼ ﺩﻗﻴﻖ ﻣﻲﺑﺎﺷﺪ. ﻛﺎﻣ ﹰ ﺩﺭ ﺍﻳﻨﺠﺎ ﺩﻭ ﺗﻮﺟﻴﻪ ﺑﺮﺍﻱ ﺗﺌﻮﺭﻱ ﻓﺎﺯﻱ ﺑﻴﺎﻥ ﻣﻲﺷﻮﺩ: • ﭘﻴﭽﻴﺪﮔﻲ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻭﺍﻗﻌﻲ ﻛﻪ ﺗﻮﺻﻴﻒ ﺩﻗﻴﻖ ﺑﺮﺍﻱ ﺁﻧﻬﺎ ﻣﻤﻜﻦ ﻧﻤﻲﺑﺎﺷﺪ. •
ﻓﺮﻣﻮﻟﻪ ﻛﺮﺩﻥ ﺩﺍﻧﺶ ﺑﺸﺮﻱ
-٣-١ﺗﺎﺭﻳﺨﭽﻪ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﺗﺌﻮﺭﻱ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﺩﺭ ﺳﺎﻝ ١٩٦٥ﺗﻮﺳﻂ ﭘﺮﻓﺴﻮﺭ ﻟﻄﻔﻲ ﺯﺍﺩﻩ ﺩﺭ ﻣﻘﺎﻟﻪﺍﻱ ﺑﻨﺎﻡ " ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ" ﻣﻄﺮﺡ ﺷﺪ. Zadeh.L.A, [1965] , “Fuzzy Sets” , Information and Control, 8, pp. 338-353.
-٤-١ﺳﺎﺧﺘﺎﺭ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺑﻄﻮﺭ ﻛﻠﻲ ﺳﻪ ﻧﻮﻉ ﺳﺎﺧﺘﺎﺭ ﺑﺮﺍﻱ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﻭﺟﻮﺩ ﺩﺍﺭﺩ: •
ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺧﺎﻟﺺ
•
ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺗﺎﻛﺎﮔﻲ-ﺳﻮﮔﻨﻮ ﻭ ﻛﺎﻧﮓ )(TSK
•
ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺑﺎ ﻓﺎﺯﻱﺳﺎﺯ ﻭ ﻓﺎﺯﻱﺯﺩﺍ ١
.١-٤-١ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺧﺎﻟﺺ
ﺳﺎﺧﺘﺎﺭ ﺍﺻﻠﻲ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﺩﺭ ﺷﻜﻞ ) (١-١ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ.
ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ
ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ
ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻓﺎﺯﻱ
ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ
ﺷﻜﻞ ) :(١-١ﺳﺎﺧﺘﺎﺭ ﺍﺻﻠﻲ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺧﺎﻟﺺ ﻣﺸﻜﻞ ﺍﺻﻠﻲ ﺩﺭ ﺭﺍﺑﻄﻪ ﺑﺎ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺧﺎﻟﺺ ﺍﻳﻦ ﺍﺳﺖ ﻛﻪ ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟﻲﻫﺎﻱ ﺁﻥ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﻣﻲﺑﺎﺷﻨﺪ ﺣﺎﻝ ﺁﻧﻜﻪ 1 - Pure Fuzzy system
۵
ﺩﺭ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻣﻬﻨﺪﺳﻲ ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟﻲﻫﺎ ﻣﺘﻐﻴﺮﻫﺎﻳﻲ ﺑﺎ ﻣﻘﺎﺩﻳﺮ ﺣﻘﻴﻘﻲ ﻣﻲﺑﺎﺷﻨﺪ .ﺑﺮﺍﻱ ﺣﻞ ﺍﻳﻦ ﻣﺸﻜﻞ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺗﺎﻛﺎﮔﻲ ﺳﻮﮔﻨﻮ ﻭ ﻛﺎﻧﮓ ﻣﻌﺮﻓﻲ ﺷﺪ.
١
.٢-٤-١ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺗﺎﻛﺎﮔﻲ-ﺳﻮﮔﻨﻮ ﻭ ﻛﺎﻧﮓ )(TSK
ﺳﺎﺧﺘﺎﺭ ﺍﺻﻠﻲ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺗﺎﻛﺎﮔﻲ-ﺳﻮﮔﻨﻮ ﻭ ﻛﺎﻧﮓ ﺩﺭ ﺷﻜﻞ ) (٢-١ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ.
ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ
ﻣﻴﺎﻧﮕﻴﻦ ﻭﺯﻧﻲ
ﻣﺠﻤﻮﻋﻪ ﻏﻴﺮ ﻓﺎﺯﻱ
ﻣﺠﻤﻮﻋﻪ ﻏﻴﺮ ﻓﺎﺯﻱ
ﺷﻜﻞ ) :(٢-١ﺳﺎﺧﺘﺎﺭ ﺍﺻﻠﻲ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺗﺎﻛﺎﮔﻲ-ﺳﻮﮔﻨﻮ ﻭ ﻛﺎﻧﮓ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺗﺎﻛﺎﮔﻲ-ﺳﻮﮔﻨﻮ ﻭ ﻛﺎﻧﮓ ﻧﻴﺰ ﻣﺸﻜﻼﺗﻲ ﺩﺍﺭﺩ ﻛﻪ ﻋﺒﺎﺭﺗﻨﺪ ﺍﺯ: •
ﺑﺨﺶ ﺁﻧﮕﺎﻩ ﻗﺎﻋﺪﻩ ﻓﺎﺯﻱ ﻳﻚ ﻓﺮﻣﻮﻝ ﺭﻳﺎﺿﻲ ﻣﻲﺑﺎﺷﺪ ﻭ ﺑﻨﺎﺑﺮﺍﻳﻦ ﺑﺼﻮﺭﺕ ﺩﺍﻧﺶ ﺑﺸﺮﻱ ﺑﻴﺎﻥ ﻧﻤﻲﺷﻮﺩ.
•
ﺍﻧﻌﻄﺎﻑ ﭘﺬﻳﺮﻱ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺑﺪﻟﻴﻞ ﻋﺪﻡ ﺍﻣﻜﺎﻥ ﭘﻴﺎﺩﻩ ﺳﺎﺯﻱ ﺍﺻﻮﻝ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﻛﻢ ﻣﻲﺷﻮﺩ. ٢
.٣-٤-١ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ ﺑﺎ ﻓﺎﺯﻱﺳﺎﺯ ﻭ ﻓﺎﺯﻱﺯﺩﺍ
ﺳﺎﺧﺘﺎﺭ ﺍﺻﻠﻲ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺑﺎ ﻓﺎﺯﻱﺳﺎﺯ ﻭ ﻓﺎﺯﻱﺯﺩﺍ ﺩﺭ ﺷﻜﻞ ) (٣-١ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ.
ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﻣﺠﻤﻮﻋﻪ ﻏﻴﺮ ﻓﺎﺯﻱ
ﻓﺎﺯﻱﮔﺮ
ﻓﺎﺯﻱﺯﺩﺍ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ
ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻓﺎﺯﻱ
ﻣﺠﻤﻮﻋﻪ ﻏﻴﺮ ﻓﺎﺯﻱ
ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ
ﺷﻜﻞ ) :(٣-١ﺳﺎﺧﺘﺎﺭ ﺍﺻﻠﻲ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺑﺎ ﻓﺎﺯﻱﺳﺎﺯ ﻭ ﻓﺎﺯﻱﺯﺩﺍ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺑﺎ ﻓﺎﺯﻱﺳﺎﺯ ﻭ ﻓﺎﺯﻱﺯﺩﺍ ﻣﻌﺎﻳﺐ ﺩﻭ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﻗﺒﻞ ﻳﻌﻨﻲ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺧﺎﻟﺺ ﻭ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ TSKﺭﺍ ﻧﺪﺍﺭﺩ .ﺍﺯ ﺍﻳﻦ ﭘﺲ ﻣﻨﻈﻮﺭ ﺍﺯ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ،ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺑﺎ ﻓﺎﺯﻱﺳﺎﺯ ﻭ ﻓﺎﺯﻱﺯﺩﺍ ﻣﻲﺑﺎﺷﺪ ﻣﮕﺮ ﺧﻼﻑ ﺁﻥ ﻣﻄﺮﺡ ﺷﻮﺩ. 1 -Takagi-Sugeno-Kang Fuzzy System 2 -Fuzzy System with Fuzzifier & Defuzzifier
۶
-٥-١ﻣﺮﻭﺭﻱ ﻛﻠﻲ ﺑﺮ ﺗﺌﻮﺭﻱ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﺍﺧـﻴﺮﹰﺍ ﻣـﻨﻄﻖ ﻓـﺎﺯﻱ ﺑﻌـﻨﻮﺍﻥ ﺯﻣﻴـﻨﻪﺍﻱ ﺟـﺬﺍﺏ ﺩﺭ ﺗﺤﻘﻴﻘﺎﺕ ﻛﻨﺘﺮﻟﻲ ﻇﻬﻮﺭ ﻳﺎﻓﺘﻪ ﺍﺳﺖ .ﻣﻬﻤﺘﺮﻳﻦ ﺍﺻﻞ ﺩﺭ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﺳﺎﺧﺘﺎﺭ ﻛﻨـﺘﺮﻟﺮﻫﺎﻱ ﻓـﺎﺯﻱ ﻣﻲﺑﺎﺷﺪ ﻛﻪ ﺩﺍﻧﺶﻫﺎﻱ ﺯﺑﺎﻧﻲ ﺍﺷﺨﺎﺹ ﻛﺎﺭﺷﻨﺎﺱ ﺭﺍ ﺑﻜﺎﺭ ﻣﻲﮔﻴﺮﻧﺪ .ﭼﻨﺪﻳﻦ ﻧﻤﻮﻧﻪ ﻛﻨﺘﺮﻟﺮ ﻓﺎﺯﻱ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﻛـﻪ ﺩﺭ ﺍﻳـﻨﺠﺎ ﻧـﻮﻉ ﻛﻨـﺘﺮﻟﺮ ﻓـﺎﺯﻱ ﻣﻤﺪﺍﻧﻲ ١ﺗﺸﺮﻳﺢ ﻣﻲﺷﻮﺩ .ﻫﻤﺎﻧﻄﻮﺭ ﻛﻪ ﺩﺭ ﺷﻜﻞ ) (٤-۱ﻣﺸﺎﻫﺪﻩ ﻣﻲﺷﻮﺩ ،ﻳﻚ ﻛﻨﺘﺮﻟﺮ ﻓﺎﺯﻱ ﺷﺎﻣﻞ ﭼﻬﺎﺭ ﻗﺴﻤﺖ ﺍﺳﺖ ﻛﻪ ﺩﻭ ﻗﺴﻤﺖ ﺁﻥ ﻋﻤﻞ ﺗﺒﺪﻳﻞ ﺭﺍ ﺍﻧﺠﺎﻡ ﻣﻲﺩﻫﻨﺪ]:[۸ •
ﻓﺎﺯﻱﮔﺮ ) ﺗﺒﺪﻳﻞ ( ۱
•
ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ
•
ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ
•
ﻓﺎﺯﻱﺯﺩﺍ ) ﺗﺒﺪﻳﻞ ( ۲
ﻓﺎﺯﻱﮔﺮ ﻣﺘﻐﻴﺮﻫﺎﻱ ﻭﺭﻭﺩﻱ ) ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﻭﺍﻗﻌﻲ ( ﺭﺍ ﻓﺎﺯﻱ ﻣﻲﻧﻤﺎﻳﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﺗﻤﺎﻣﻲ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﻭﺭﻭﺩﻱ ﺑﻔﺮﻡ ﻓﺎﺯﻱ ﺩﺭ ﻣﻲﺁﻳﻨﺪ. ﺑﻌﺒﺎﺭﺕ ﺳﺎﺩﻩﺗﺮ ﻓﺎﺯﻱﮔﺮ ﻣﺘﻐﻴﺮﻫﺎﻱ ﻋﺪﺩﻱ ﺭﺍ ﺑﻪ ﻣﺘﻐﻴﺮﻫﺎﻱ ﻓﺎﺯﻱ ﻭ ﺑﻌﺒﺎﺭﺗﻲ ﻣﺘﻐﻴﺮﻫﺎﻱ ﺯﺑﺎﻧﻲ ﺗﺒﺪﻳﻞ ﻣﻲﻧﻤﺎﻳﺪ .ﺍﻳﻦ ﺗﺒﺪﻳﻞ ﺗﻮﺳﻂ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺍﻧﺠﺎﻡ ﻣﻲﮔﻴﺮﺩ. ﺑﻌـﻨﻮﺍﻥ ﻣـﺜﺎﻝ ﺍﮔـﺮ ﺳـﻴﮕﻨﺎﻝ ﻭﺭﻭﺩﻱ ﻛﻮﭼـﻚ ﻭﻟـﻲ ﻣﺜﺒﺖ ﺑﺎﺷﺪ ﺍﻳﻦ ﺳﻴﮕﻨﺎﻝ ﺑﻪ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﻣﺜﺒﺖ ﻛﻮﭼﻚ ﺗﻌﻠﻖ ﺩﺍﺭﺩ ﻭﺍﮔﺮ ﻛﻮﭼـﻚ ﻭﻟـﻲ ﻣﻨﻔﻲ ﺑﺎﺷﺪ ﺑﻪ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﻣﻨﻔﻲ ﻛﻮﭼﻚ ﻣﺘﻌﻠﻖ ﺍﺳﺖ .ﺑﻪ ﻫﻤﻴﻦ ﺗﺮﺗﻴﺐ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﺩﻳﮕﺮﻱ ﺑﺼﻮﺭﺕ ﻣﺜﺒـﺖ ﻣﺘﻮﺳـﻂ ،ﻣﺜﺒـﺖ ﺑـﺰﺭﮒ ﻭ… ﻧـﻴﺰ ﻣﻲﺗﻮﺍﻧﺪ ﻭﺟﻮﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ .ﺩﺭ ﻳﻚ ﻛﻨﺘﺮﻟﺮ ﻓﺎﺯﻱ ﻣﻌﻤﻮﻟﻲ ،ﺗﻌﺪﺍﺩ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻭ ﺷـﻜﻞ ﺁﻧﻬـﺎ ﺩﺭ ﺍﺑـﺘﺪﺍ ﺗﻮﺳـﻂ ﻛﺎﺭﺑﺮ ﺗﻌﻴﻴﻦ ﻣﻲﺷﻮﺩ .ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻣﻘﺎﺩﻳﺮﻱ ﺑﻴﻦ ۰ﻭ ۱ﺩﺍﺭﻧﺪ ﻭ ﺩﺭﺟﻪ ﺗﻌﻠﻖ ﻳﻚ ﻛﻤﻴﺖ ﺭﺍ ﺑﻪ ﻣﺠﻤﻮﻋـﻪ ﻓﺎﺯﻱ ﻣﺸﺨﺺ ﻣﻲﻧﻤﺎﻳﻨﺪ .ﺍﮔﺮ ﺗﻌﻠﻖ ﻳﻚ ﻛﻤﻴﺖ ﺑﻪ ﻳﻚ ﻣﺠﻤﻮﻋﺔ ﻓﺎﺯﻱ ﺑﻄﻮﺭ ﻣﻄﻠﻖ ﻣﻌﻴﻦ ﺑﺎﺷﺪ ﺁﻧﮕﺎﻩ ﺩﺭﺟﻪ ﺗﻌﻠﻖ ﺁﻥ ﺑﻪ ﻣﺠﻤﻮﻋﺔ ﻓﺎﺯﻱ ﻣﺰﺑﻮﺭ ﻳﻚ ﺑﺎﺷﺪ ) ﺑﻌﺒﺎﺭﺕ ﺩﻳﮕﺮ ﺍﻳﻦ ﻛﻤﻴﺖ ﺻﺪ ﺩﺭ ﺻﺪ ﺑﻪ ﻣﺠﻤﻮﻋﺔ ﻓﺎﺯﻱ ﻣﺰﺑﻮﺭ ﻣﺘﻌﻠﻖ ﺍﺳﺖ ( ﺍﻣﺎ ﺍﮔﺮ ﻳﻚ ﻛﻤﻴـﺖ ﺑـﻪ ﻫـﻴﭻ ﻋـﻨﻮﺍﻥ ﺑـﻪ ﻳﻚ ﻣﺠﻤﻮﻋﺔ ﻓﺎﺯﻱ ﻣﺘﻌﻠﻖ ﻧﺒﺎﺷﺪ ﺩﺭﺟﻪ ﺗﻌﻠﻖ ﺁﻥ ﺑﻪ ﻣﺠﻤﻮﻋﺔ ﻓﺎﺯﻱ ﻣﺬﻛﻮﺭ ﺻﻔﺮ ﺍﺳﺖ .ﺑﻪ ﻫﻤﻴﻦ ﺗﺮﺗﻴـﺐ ﺍﮔـﺮ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺗﻌﻠﻖ ﻳﻚ ﻛﻤﻴﺖ ﺑﻪ ﻳﻚ ﻣﺠﻤﻮﻋﺔ ﻓﺎﺯﻱ ﺑﻪ ﺍﻧﺪﺍﺯﺓ ۵۰ﺩﺭﺻﺪ ﺑﺎﺷﺪ ﺁﻧﮕﺎﻩ ﺩﺭﺟﻪ ﺗﻌﻠﻖ ﺍﻳﻦ ﻛﻤﻴﺖ ﺑﻪ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﻣﺬﻛﻮﺭ ۰/۵ﻣﻲﺑﺎﺷﺪ .ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺍﺷﻜﺎﻝ ﻣﺘﻔﺎﻭﺗﻲ ﻣﺎﻧﻨﺪ ﻣﺜﻠﺜﻲ ،ﮔﻮﺳﻲ ،ﺫﻭﺯﻧﻘﻪﺍﻱ ﻭ ﺑﻄﻮﺭ ﻛﻠﻲﺗﺮ ﺷـﺒﻪ ﺫﻭﺯﻧﻘـﻪﺍﻱ ﺭﺍ ﺑﺨـﻮﺩ ﺑﮕـﻴﺮﺩ .ﻓﺮﻡ ﺍﻭﻟﻴﻪ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻣﻲﺗﻮﺍﻧﺪ ﺑﻮﺳﻴﻠﺔ ﺑﻜﺎﺭﮔﻴﺮﻱ ﻣﻼﺣﻈﺎﺕ ﻛﺎﺭﺷﻨﺎﺳﻲ ﻭ ﻳﺎ ﺩﺳﺘﻪﺑﻨﺪﻱ ﺍﻃﻼﻋﺎﺕ ﻭﺭﻭﺩﻱ ﺍﻧﺘﺨﺎﺏ ﮔﺮﺩﺩ. ﭘﺎﻳﮕـﺎﻩ ﺩﺍﺩﻩ ﺷـﺎﻣﻞ ﺍﻃﻼﻋـﺎﺕ ﻣﺒﻨﺎ ﻭ ﻗﻮﺍﻋﺪ ﺯﺑﺎﻧﻲ ﻣﻲﺑﺎﺷﺪ .ﺩﺍﺩﻩﻫﺎﻱ ﻣﺒﻨﺎ ﺍﻃﻼﻋﺎﺗﻲ ﺭﺍ ﻛﻪ ﺩﺭ ﺗﻌﻴﻴﻦ ﻗﻮﺍﻋﺪ ﺯﺑﺎﻧﻲ ﻻﺯﻡ ﻣﻲﺑﺎﺷﺪ ﻓﺮﺍﻫﻢ ﻣﻲﺁﻭﺭﺩ .ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ) ﻗﻮﺍﻋﺪ ﺧﺒﺮﻩ ( ﻫﺪﻑ ﺍﺻﻠﻲ ﻛﻨﺘﺮﻝ ﺭﺍ ﺗﻮﺳﻂ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﻗﻮﺍﻋﺪ ﻛﻨﺘﺮﻝ ﺯﺑﺎﻧﻲ ﺑﺮ ﺁﻭﺭﺩﻩ ﻣﻲﻛﻨﺪ. ﺑﻌـﺒﺎﺭﺕ ﺩﻳﮕـﺮ ﭘﺎﻳﮕـﺎﻩ ﺩﺍﺩﻩ ﺷﺎﻣﻞ ﻗﻮﺍﻋﺪﻱ ﺍﺳﺖ ﻛﻪ ﺗﻮﺳﻂ ﺍﻓﺮﺍﺩ ﻛﺎﺭﺷﻨﺎﺱ ﻓﺮﺍﻫﻢ ﺁﻣﺪﻩ ﺍﺳﺖ .ﻛﻨﺘﺮﻟﺮ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﻭﺭﻭﺩﻱ ﺭﺍ ﺗﻮﺳـﻂ ﻗﻮﺍﻋـﺪ ﺧﺒﺮﻩ ﺑﻪ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺧﺮﻭﺟﻲ ﻣﻨﺎﺳﺐ ﺗﺒﺪﻳﻞ ﻣﻲﻧﻤﺎﻳﺪ .ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﺷﺎﻣﻞ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﻗﻮﺍﻋﺪ –IF
THENﻣﻲﺑﺎﺷﺪ .ﺑﺮﺧﻲ ﺭﻭﺷﻬﺎﻱ ﺍﺻﻠﻲ ﺗﺸﻜﻴﻞ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﺑﻘﺮﺍﺭ ﺯﻳﺮﻧﺪ: •
ﺑﻜﺎﺭﮔﻴﺮﻱ ﺩﺍﻧﺶ ﻭ ﺗﺠﺮﺑﻴﺎﺕ ﻳﻚ ﻓﺮﺩ ﻛﺎﺭﺷﻨﺎﺱ ﺟﻬﺖ ﺑﺮﺁﻭﺭﺩﻩ ﻛﺮﺩﻥ ﺍﻫﺪﺍﻑ ﻛﻨﺘﺮﻝ 1 - Mamdani
٧
• ﻣﺪﻟﺴﺎﺯﻱ ﻋﻤﻠﻜﺮﺩ ﻛﻨﺘﺮﻝ • ﻣﺪﻝ ﻛﺮﺩﻥ ﭘﺮﻭﺳﻪ • ﺑﻜﺎﺭﮔﻴﺮﻱ ﻳﻚ ﻛﻨﺘﺮﻟﺮ ﻓﺎﺯﻱ ﺧﻮﺩ ﺳﺎﺯﻣﺎﻧﺪﻩ • ﺑﻜﺎﺭﮔﻴﺮﻱ ﺷﺒﻜﻪﻫﺎﻱ ﻋﺼﺒﻲ ﻣﺼﻨﻮﻋﻲ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻓﺎﺯﻱﮔﺮ
ﻓﺎﺯﻱﺯﺩﺍ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ
ﺳﻴﺴﺘﻢ ﺗﺤﺖ ﻛﻨﺘﺮﻝ ﺟﻬﺖ ﺩﺍﺩﻩﻫﺎﻱ ﻓﺎﺯﻱ
ﺟﻬﺖ ﺩﺍﺩﻩﻫﺎﻱ ﺷﻜﻞ ) (٤-١ﺑﻠﻮﻙ ﺩﻳﺎﮔﺮﺍﻡ ﻳﻚ ﺳﻴﺴﺘﻢ ﻛﻨﺘﺮﻝ ﺷﺎﻣﻞ ﻛﻨﺘﺮﻟﺮ ﻓﺎﺯﻱ
ﻭﻗﺘـﻲ ﻛﻪ ﻗﻮﺍﻋﺪ ﺍﻭﻟﻴﻪ ﺑﻮﺳﻴﻠﺔ ﻣﻼﺣﻈﺎﺕ ﻛﺎﺭﺷﻨﺎﺳﻲ ﺑﺪﺳﺖ ﺁﻣﺪ ﺍﻳﻦ ﻗﻮﺍﻋﺪ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺑﺎ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺳﻪ ﻫﺪﻑ ﺍﺻﻠﻲ ﺑﺮﺍﻱ ﺍﺳﺘﻔﺎﺩﻩ ﺩﺭﻛﻨﺘﺮﻟﺮ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﻓﺮﻡ ﺩﺍﺩﻩ ﺷﻮﻧﺪ: • ﺣﺬﻑ ﻫﺮﮔﻮﻧﻪ ﺧﻄﺎﻱ ﻗﺎﺑﻞ ﻣﻼﺣﻈﻪ ﺩﺭ ﺧﺮﻭﺟﻲ ﭘﺮﻭﺳﻪ ﺑﻮﺳﻴﻠﻪ ﺗﻨﻈﻴﻢ ﻣﻨﺎﺳﺐ ﺧﺮﻭﺟﻲ ﻛﻨﺘﺮﻟﺮ • ﺗﺨﻤﻴﻦ ﻋﻤﻠﻜﺮﺩ ﻛﻨﺘﺮﻟﻲ ﻧﺰﺩﻳﻚ ﻣﻘﺪﺍﺭ ﻣﻄﻠﻮﺏ • ﺍﺟﺘﻨﺎﺏ ﺍﺯ ﺍﻳﻨﻜﻪ ﺧﺮﻭﺟﻲ ﭘﺮﻭﺳﻪ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﺗﻌﻴﻴﻦ ﺷﺪﻩ ﺗﻮﺳﻂ ﻛﺎﺭﺑﺮ ﺗﺠﺎﻭﺯ ﻧﻨﻤﺎﻳﺪ. ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻣﻐﺰ ﻳﻚ ﻛﻨﺘﺮﻟﺮ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﻣﻲﺑﺎﺷﺪ ﻭ ﺗﻮﺍﻧﺎﻳﻲ ﺷﺒﻴﻪﺳﺎﺯﻱ ﺗﺼﻤﻴﻢﮔﻴﺮﻱ ﺑﺸﺮﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﺍﻳﺪﺓ ﻓﺎﺯﻱ ﻭ ﻫﻤﭽﻨﻴﻦ ﺗﻮﺍﻧﺎﻳـﻲ ﻧﺘـﻴﺠﻪﮔـﻴﺮﻱ ﻋﻤﻠﻜـﺮﺩ ﻛﻨﺘﺮﻝ ﻓﺎﺯﻱ ﺑﺎ ﺑﻜﺎﺭﮔﻴﺮﻱ ﻗﻮﺍﻋﺪ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﺭﺍ ﺩﺍﺭﺩ .ﺑﻌﺒﺎﺭﺕ ﺩﻳﮕﺮ ﺗﻤﺎﻣﻲ ﻣﺘﻐﻴﺮﻫﺎﻱ ﻭﺭﻭﺩﻱ ﺗﻮﺳـﻂ ﻓـﺎﺯﻱﮔـﺮ ﺑـﻪ ﻣﺘﻐـﻴﺮﻫﺎﻱ ﺯﺑﺎﻧـﻲ ﻣﺮﺑﻮﻁ ﺑﻪ ﺧﻮﺩﺷﺎﻥ ﺗﺒﺪﻳﻞ ﺷﺪﻩ ﻭ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﻗﻮﺍﻋﺪ IF–THEN
ﻣﻮﺟـﻮﺩ ﺩﺭ ﭘﺎﻳﮕـﺎﻩ ﺩﺍﺩﻩ ﺭﺍ ﺍﺭﺯﻳﺎﺑـﻲ ﻧﻤـﻮﺩﻩ ﻭ ﺳـﭙﺲ ﻧﺘﻴﺠﺔ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ ﺍﻳﻦ ﺍﺭﺯﻳﺎﺑﻲ ﻛﻪ ﻳﻚ ﻣﻘﺪﺍﺭ ﺯﺑﺎﻧﻲ ﻣﻲﺑﺎﺷﺪ ﺗﻮﺳﻂ ﻓﺎﺯﻱﺯﺩﺍ ﺑﻪ ﺧﺮﻭﺟﻲ ﻭﺍﻗﻌﻲ ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ. ﺗـﺒﺪﻳﻞ ﺩﻭﻡ ﻛـﻪ ﺗﻮﺳـﻂ ﻓـﺎﺯﻱﺯﺩﺍ ﺍﻧﺠﺎﻡ ﻣﻲﭘﺬﻳﺮﺩ ﻣﻘﺪﺍﺭ ﻓﺎﺯﻱ ﺩﺭ ﺧﺮﻭﺟﻲ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺭﺍ ﺗﻮﺳﻂ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺑﻪ ﻣﻘﺪﺍﺭ ﻭﺍﻗﻌﻲ ﻭ ﻋﺪﺩﻱ ﺗﺒﺪﻳﻞ ﻣﻲﻧﻤﺎﻳﺪ .ﭼﻨﺪﻳﻦ ﻧﻤﻮﻧﻪ ﺗﻜﻨﻴﻚ ﺑﺮﺍﻱ ﻓﺎﺯﻱ ﺯﺩﺍﻳﻲ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺍﻣﺎ ﺑﺪﻟﻴﻞ ﺳﺎﺩﮔﻲ ﺑﻜﺎﺭﮔﻴﺮﻱ ﻭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺳﺎﺩﻩﺗﺮ ﺭﻭﺵ ﻣﻴﺎﻧﮕﻴﻦ ﻣﺮﺍﻛﺰ ﺑﻜﺎﺭ ﮔﺮﻓﺘﻪ ﻣﻲﺷﻮﺩ. -٦-١ﺑﺮﺧﻲ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﺳﻴﺴﺘﻢﻫﺎﻱ ﻓﺎﺯﻱ .١-٦-١ﻣﺎﺷﻴﻦ ﺷﺴﺘﺸﻮﻱ ﻓﺎﺯﻱ ﺩﺭ ﺍﻳﻦ ﻛﺎﺭﺑﺮﺩ ﻫﺪﻑ ﺗﻌﻴﻴﻦ ﺗﻌﺪﺍﺩ ﺩﻭﺭ ﻣﻨﺎﺳﺐ ﺑﺮﺍﻱ ﻣﺎﺷﻴﻦ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﻮﻉ ﻛﺜﻴﻔﻲ ،ﻣﻴﺰﺍﻥ ﻛﺜﻴﻔﻲ ﻭ ﺍﻧﺪﺍﺯﻩ ﺑﺎﺭ ﻣﻲﺑﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ
٨
ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺩﺍﺭﺍﻱ ﺳﻪ ﻭﺭﻭﺩﻱ ﻧﻮﻉ ﻛﺜﻴﻔﻲ ،ﻣﻴﺰﺍﻥ ﻛﺜﻴﻔﻲ ﻭ ﺍﻧﺪﺍﺯﻩ ﺑﺎﺭ ﻭ ﻳﻚ ﺧﺮﻭﺟﻲ ﻳﻌﻨﻲ ﺗﻌﺪﺍﺩ ﺩﻭﺭ ﻣﻨﺎﺳﺐ ﻣﻲﺑﺎﺷﺪ.
٩
-٢ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ١
-١-٢ﻣﻘﺎﻳﺴﻪﺍﻱ ﺑﻴﻦ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻛﻼﺳﻴﻚ ﻭ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ
ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﺑﺎ ﺫﻛﺮ ﻳﻚ ﻣﺜﺎﻝ ﻣﻘﺎﻳﺴﻪﺍﻱ ﺑﻴﻦ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻛﻼﺳﻴﻚ ﻭ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﺍﻧﺠﺎﻡ ﻣﻲﮔﻴﺮﺩ: ﻣﺜﺎﻝ :١ﻓﺮﺽ ﻛﻨﻴﺪ Uﻣﺠﻤﻮﻋﻪ ﻣﺮﺟﻊ ٢ﺑﻔﺮﻡ ﺯﻳﺮ ﺑﺎﺷﺪ:
}U = {0 ,1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,10
ﺣـﺎﻝ ﺍﺑـﺘﺪﺍ ﻣﺠﻤﻮﻋـﻪ ﻛﻼﺳـﻴﻚ Aﺑﺼـﻮﺭﺕ ﻋﺪﺩ ﻣﻴﺎﻧﻲ ﻣﺠﻤﻮﻋﻪ ﻣﺮﺟﻊ ﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ' Aﺑﺼﻮﺭﺕ ﺍﻋﺪﺍﺩ ﻧﺰﺩﻳﻚ ﺑﻪ ﻋﺪﺩ ﻣﻴﺎﻧـﻲ ﻣﺠﻤﻮﻋـﻪ ﻣـﺮﺟﻊ ﺭﺍ ﺑﺪﺳـﺖ ﺁﻭﺭﻳـﺪ ﻭ ﺳـﭙﺲ ﻣﺠﻤﻮﻋـﻪ ﻛﻼﺳﻴﻚ Bﺑﺼﻮﺭﺕ ﻛﻮﭼﻜﺘﺮﻳﻦ ﻋﺪﺩ ﺩﺭ ﻣﺠﻤﻮﻋﻪ ﻣﺮﺟﻊ ﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ' Bﺑﺼﻮﺭﺕ ﺍﻋﺪﺍﺩ ﻛﻮﭼﻚ ﺩﺭ ﻣﺠﻤﻮﻋﻪ ﻣﺮﺟﻊ ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﻳﺪ. ﺣﻞ :ﺍﺑﺘﺪﺍ ﺑﺮﺍﻱ ﻣﺠﻤﻮﻋﻪ ﻛﻼﺳﻴﻚ Aﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ' Aﺩﺍﺭﻳﻢ:
ﻛﻪ ﺩﺭ ﻓﺮﻡ ﺩﻭﻡ ﻧﻤﺎﻳﺶ ﻣﺠﻤﻮﻋﻪ
0 0 0 0 0 1 0 0 0 0 0 A= , , , , , , , , , , 0 1 2 3 4 5 6 7 8 9 10 ﻛﻼﺳﻴﻚ Aﺍﻋﺪﺍﺩ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺩﺭ ﻣﺨﺮﺝ ﻛﺴﺮﻫﺎ ﻫﻤﺎﻥ ﺍﻋﺪﺍﺩ ﻣﺠﻤﻮﻋﻪ
}A = {5
or
ﻣﺮﺟﻊ Uﻫﺴﺘﻨﺪ ﻭ
ﺍﻋﺪﺍﺩ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺩﺭ ﺻﻮﺭﺕ ﻛﺴﺮﻫﺎ ﻣﻘﺪﺍﺭ ﻋﻀﻮﻳﺖ ﻋﺪﺩ ﻣﺨﺮﺝ ﺭﺍ ﺑﻪ ﻣﺠﻤﻮﻋﻪ Aﻧﺸﺎﻥ ﻣﻲﺩﻫﻨﺪ. 0 0 .2 0 .4 0 .6 0 .8 1 0 .8 0 .6 0 .4 0 .2 0 A′ = , , , , , , , , , , 1 2 3 4 5 6 7 8 9 10 0
ﻛﻪ ﻓﺮﻡ ﺩﻳﮕﺮ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ' Aﺑﺼﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪ: 0 0 .2 0 .4 0 .6 0 .8 1 0 .8 0 .6 0 .4 0 .2 0 + + + + + + + + + + 0 1 2 3 4 5 6 7 8 9 10
= A′
ﺣﺎﻝ ﺑﺮﺍﻱ ﻣﺠﻤﻮﻋﻪ ﻛﻼﺳﻴﻚ Bﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ' Bﺩﺍﺭﻳﻢ: 1 0 0 0 0 0 0 0 0 0 0 B= , , , , , , , , , , 0 1 2 3 4 5 6 7 8 9 10 1 0 .9 0 .8 0 .7 0 .6 0 .5 0 .4 0 .3 0 .2 0 .1 0 B′ = , , , , , , , , , , 1 2 3 4 5 6 7 8 9 10 0
}B = {0
or
٣
-٢-٢ﺗﻌﺮﻳﻒ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ
ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﻣﻴﺰﺍﻥ ﻭﺍﺑﺴﺘﮕﻲ ﻫﺮ ﻋﻀﻮ ﺭﺍ ﺑﻪ ﻣﺠﻤﻮﻋﻪ ﻣﻮﺭﺩ ﻧﻈﺮ ﺑﻔﺮﻡ ﻳﻚ ﺗﺎﺑﻊ ﺭﻳﺎﺿﻲ ﺑﻴﺎﻥ ﻣﻲﻛﻨﺪ .ﺑﻌﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺑﺮﺍﻱ ﻣﺠﻤﻮﻋﻪ ﻛﻼﺳﻴﻚ Aﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ' Aﻛﻪ ﺑﺎ ﻧﻤﺎﺩ µﻧﻤﺎﻳﺶ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ ،ﺑﺼﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪ: )µA (x
x=5 x≠5
1 5
1 µ A ( x) = 0
1 - Fuzzy Sets 2 - Universal Set 3 - Membership Function
١٠
µA’(x)
x < 0 or x > 10 0 0≤ x≤5 µ A′ ( x) = x / 5 2 − x / 5 5 ≤ x ≤ 10
1 5
ﺍﻧﻮﺍﻉ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ-٣-٢ .( ﺁﻧﻬﺎ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ١-٢) ﺩﺭ ﺯﻳﺮ ﺍﻧﻮﺍﻉ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺫﻛﺮ ﺷﺪﻩ ﺍﺳﺖ ﻛﻪ ﺷﻜﻞ (trimf) ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﻣﺜﻠﺜﻲ
•
(trapmf) 2ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺫﻭﺯﻧﻘﻪﺍﻱ
•
(gaussmf) 3ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﮔﻮﺳﻲ
•
(gbellmf) 4ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺯﻧﮕﻮﻟﻪﺍﻱ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ
•
(gauss2mf) 5ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﮔﻮﺳﻲ ﺩﻭ ﻃﺮﻓﻪ
•
(smf) 6 ﺷﻜﻞS ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ
•
(zmf) 7 ﺷﻜﻞZ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ
•
(sigmf) 8ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺳﻴﮕﻤﻮﻳﺪ
•
١
− ( x −c ) 2
f ( x; σ , c) = e
f ( x; a, b, c) =
f ( x; a, c) =
2σ 2
1 x−c 1+ a
2b
1 1 + e − a ( x −c )
1 - Triangular Membership Function 2 - Trapezoidal Membership Function 3 - Gaussian Curve Membership Function 4 - Generalized Bell Membership Function 5 - Two-sided Gaussian Curve Membership Function 6 - S-shaped Curve Membership Function 7 - Z-shaped Curve Membership Function 8 - Sigmoid Curve Membership Function
١١
•
ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺣﺎﺻﻠﻀﺮﺏ ﺩﻭ ﺳﻴﮕﻤﻮﻳﺪ(psigmf) 1
•
ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺗﻔﺎﺿﻞ ﺩﻭ ﺳﻴﮕﻤﻮﻳﺪ(dsigmf) 2
•
ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ πﺷﻜﻞ(pimf) 3
ﺷﻜﻞ ) : (١-٢ﺍﻧﻮﺍﻉ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ
-٤-٢ﻣﻌﺮﻓﻲ ﻣﻔﺎﻫﻴﻢ ﺍﺳﺎﺳﻲ ﻣﺮﺗﺐ ﺑﺎ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﻣﻔﺎﻫﻴﻢ ﺗﻜﻴﻪﮔﺎﻩ ﻓﺎﺯﻱ ،ﻣﻨﻔﺮﺩ ﻓﺎﺯﻱ ،ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺗﻬﻲ ،ﻣﺮﻛﺰ ،ﻧﻘﻄﻪ ﺗﻘﺎﻃﻊ ،ﺍﺭﺗﻔﺎﻉ ﻭ ﺑﺮﺵ ﺁﻟﻔﺎ ﺭﺍ ﺑﺮﺭﺳﻲ ﻣﻲﺷﻮﺩ: -١ﺗﻜﻴﻪ ﮔﺎﻩ :٤ﺗﻜﻴﻪﮔﺎﻩ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ Aﺩﺭ ﻓﻀﺎﻱ ﻣﺠﻤﻮﻋﻪ ﻣﺮﺟﻊ Uﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻏﻴﺮ ﻓﺎﺯﻱ )ﻛﻼﺳﻴﻚ( ﺍﺳﺖ ﻛﻪ ﺷﺎﻣﻞ ﺗﻤﺎﻣﻲ ﻋﻀﻮﻫﺎﻱ ﻏﻴﺮ ﺻﻔﺮ Uﻣﻲﺷﻮﺩ ﻳﻌﻨﻲ }Supp ( A) = {x ∈ U | µ A ( x) > 0
ﻣﺜﺎﻝ :٢ﺩﺭ ﻣﺜﺎﻝ ١ﺑﺮﺍﻱ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ' Aﻭ ' Bﺗﻜﻴﻪﮔﺎﻩ ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﻳﺪ. }Supp ( A′) = {1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }Supp ( B ′) = {0 ,1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
1 - Product of two Sigmoid Membership Function 2 - Difference between two Sigmoid Membership Function 3 - Pi-shaped Curve Membership Function 4 - Support
١٢
-٢ﻣﻨﻔﺮﺩ ﻓﺎﺯﻱ :١ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺍﺳﺖ ﻛﻪ ﺗﻜﻴﻪﮔﺎﻩ ﺁﻥ ﻳﻚ ﻧﻘﻄﻪ ﻭﺍﺣﺪ ﺩﺭ Uﺑﺎﺷﺪ. -٣ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺗﻬﻲ :٢ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺍﺳﺖ ﻛﻪ ﺗﻜﻴﻪﮔﺎﻩ ﺁﻥ ﺗﻬﻲ ﺑﺎﺷﺪ. -٤ﻣﺮﻛﺰ :٣ﻣﺮﻛﺰ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﺩ: • ﺍﮔﺮ ﺣﺪﺍﻛﺜﺮ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﻣﺘﻌﻠﻖ ﺑﻪ ﻧﻘﺎﻁ ﻣﺤﺪﻭﺩﻱ ﺑﺎﺷﺪ ﺁﻧﮕﺎﻩ ﻣﻴﺎﻧﮕﻴﻦ ﻧﻘﺎﻁ ﻣﺮﻛﺰ ،ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﻣﻲﺑﺎﺷﺪ.
Center
Center
• ﺍﮔﺮ ﺣﺪﺍﻛﺜﺮ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﻣﺘﻌﻠﻖ ﺑﻪ ﻧﻘﺎﻁ ﻧﺎﻣﺤﺪﻭﺩﻱ ﺑﺎﺷﺪ ﺁﻧﮕﺎﻩ ﻛﻮﭼﻜﺘﺮﻳﻦ ﻳﺎ ﺑﺰﺭﮔﺘﺮﻳﻦ ﻧﻘﻄﻪﺍﻱ ﻛﻪ ﺩﺭ ﺁﻥ ﻧﻘﻄﻪ ﺗﺎﺑﻊ ﺑﻪ ﺣﺪﺍﻛﺜﺮ ﻣﻘﺪﺍﺭ ﺧﻮﺩ ﻣﻲﺭﺳﺪ ﺑﻌﻨﻮﺍﻥ ﻣﺮﻛﺰ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﺩ.
Center
Center
-٥ﻧﻘﻄﻪ ﺗﻘﺎﻃﻊ :٤ﻧﻘﻄﻪ ﺗﻘﺎﻃﻊ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﻧﻘﻄﻪﺍﻱ ﺩﺭ Uﺍﺳﺖ ﻛﻪ ﺩﺭ ﺁﻥ ﻣﻘﺪﺍﺭ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺑﺮﺍﺑﺮ ﺑﺎ ٠/٥ﻣﻲﺷﻮﺩ.
0.5 Crossover
-٦ﺍﺭﺗﻔﺎﻉ :٥ﺍﺭﺗﻔﺎﻉ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺑﺰﺭﮔﺘﺮﻳﻦ ﻣﻘﺪﺍﺭ ﻳﻚ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺍﺳﺖ. ﺗﺬﻛﺮ :ﺍﮔﺮ ﺍﺭﺗﻔﺎﻉ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺑﺮﺍﺑﺮ ﺑﺎ ﻳﻚ ﺑﺎﺷﺪ ﺩﺭ ﺁﻥﺻﻮﺭﺕ ﺁﻧﺮﺍ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﻧﺮﻣﺎﻝ ﮔﻮﻳﻨﺪ. -٧ﺑﺮﺵ ﺁﻟﻔﺎ :٦ﺑﺮﺵ ﺁﻟﻔﺎﻱ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ،ﻣﺠﻤﻮﻋﻪ ﻏﻴﺮ ﻓﺎﺯﻱ Aαﺍﺳﺖ ﻛﻪ ﺷﺎﻣﻞ ﺗﻤﺎﻣﻲ ﻋﻀﻮﻫﺎﻱ Uﺍﺳﺖ ﻛﻪ ﻣﻘﺎﺩﻳﺮ 1 - Fuzzy Singleton 2 - Empty Fuzzy Set 3 - Center 4 - Crossover Point 5 - Height 6 - α-Cut
١٣
ﺑﺰﺭﮔﺘﺮ ﻳﺎ ﻣﺴﺎﻭﻱ αﺩﺍﺭﻧﺪ: 0 <α <1
} Aα = {x ∈ U | µ A ( x) ≥ α
ﻣﺜﺎﻝ :٣ﺑﺮﺍﻱ ﻣﺜﺎﻝ ١ﺑﺮﺵ ٠/٨ﺑﺮﺍﻱ ' Aﻭ ﺑﺮﺵ ٠/٧ﺑﺮﺍﻱ ' Bﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﻳﺪ. }A0′.8 = {4 , 5 , 6 }B0′.7 = {0 ,1, 2 , 3
١۴
-٣ﻋﻤﻠﻴﺎﺕ ﺑﺮ ﺭﻭﻱ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﻋﻤﻠﻴﺎﺕﻫﺎﻱ ﻣﻌﺎﺩﻝ ﺑﻮﺩﻥ ،ﺯﻳﺮ ﻣﺠﻤﻮﻋﻪ ﺑﻮﺩﻥ ،ﻣﻜﻤﻞ ،ﺍﺟﺘﻤﺎﻉ ﻭ ﺍﺷﺘﺮﺍﻙ ﺭﺍ ﻣﻌﺮﻓﻲ ﻣﻲﻧﻤﺎﻳﻴﻢ: ١
-١ﻣﻌﺎﺩﻝ ﺑﻮﺩﻥ
ﺩﻭ ﻣﺠﻤﻮﻋﻪ Aﻭ Bﻣﻌﺎﺩﻝ ﻫﺴﺘﻨﺪ ﺍﮔﺮ ﻭ ﻓﻘﻂ ﺍﮔﺮ ﺑﺮﺍﻱ ﺗﻤﺎﻣﻲ ﻣﻘﺎﺩﻳﺮ x ∈ U
)µ A ( x) = µ B ( x
٢
-٢ﺯﻳﺮ ﻣﺠﻤﻮﻋﻪ ﺑﻮﺩﻥ
ﻣﺠﻤﻮﻋﻪ Aﺯﻳﺮ ﻣﺠﻤﻮﻋﻪ Bﺍﺳﺖ ﺍﮔﺮ ﻭ ﻓﻘﻂ ﺍﮔﺮ ﺑﺮﺍﻱ ﺗﻤﺎﻣﻲ ﻣﻘﺎﺩﻳﺮ x ∈ U
)µ A ( x) ≤ µ B ( x )µB (x )µA (x
٣
-٣ﻣﻜﻤﻞ
ﻣﻜﻤﻞ Aﺩﺭ A ،Uﺍﺳﺖ ﺍﮔﺮ x ∈ U
)µ A ( x) = 1 − µ A ( x )1−µA (x
)µA (x
٤
-٤ﺍﺟﺘﻤﺎﻉ
ﺍﺟﺘﻤﺎﻉ Aﻭ Bﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺍﺳﺖ ﻛﻪ ﺑﺎ
A U B
ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ ﻭ ﺩﺍﺭﺍﻱ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺯﻳﺮ ﺍﺳﺖ:
µ AU B
])µ AU B ( x) = max[ µ A ( x), µ B ( x )µB (x
)µA (x
٥
-٥ﺍﺷﺘﺮﺍﻙ
ﺍﺷﺘﺮﺍﻙ Aﻭ Bﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺍﺳﺖ ﻛﻪ ﺑﺎ
A I B
ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ ﻭ ﺩﺍﺭﺍﻱ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺯﻳﺮ ﺍﺳﺖ: ])µ AI B ( x) = min[ µ A ( x), µ B ( x
µ AI B
)µB (x
)µA (x
1 - Equal 2 - Containment 3 - Complement 4 - Union 5 - Intersection
١۵
ﻣﺜﺎﻝ :٤ﺩﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ Aﻭ Bﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ ،ﺍﺑﺘﺪﺍ ﻣﻜﻤﻞ ﻓﺎﺯﻱ Aﻭ Bﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﻳﺪ ﻭ ﺳﭙﺲ ﺍﺟﺘﻤﺎﻉ ﻭ ﺍﺷﺘﺮﺍﻙ Aﻭ Bﺭﺍ ﻧﻴﺰ ﻣﺤﺎﺳﺒﻪ ﻧﻤﺎﻳﻴﺪ. 1 0 .8 0 .6 0 .4 0 .2 0 0 0 .2 0 .4 0 .6 0 .8 A= , , , , , , , , , , 5 6 7 8 9 10 1 2 3 4 0 1 0 .9 0 .8 0 .7 0 .6 0 .5 0 .4 0 .3 0 .2 0 .1 0 B= , , , , , , , , , , 5 6 7 8 9 10 1 2 3 4 0 1 10 1 , 10 0 , 10 0 , 10 ,
0 .8 9 0 .9 , 9 0 .2 , 9 0 .1 , 9 ,
0 .6 8 0 .8 , 8 0 .4 , 8 0 .2 , 8 ,
0 .4 7 0 .7 , 7 0 .6 , 7 0 .3 , 7 ,
١۶
0 .2 6 0 .6 , 6 0 .8 , 6 0 .4 , 6 ,
0 5 0 .5 , 5 1 , 5 0 .5 , 5 ,
0 .2 4 0 .4 , 4 0 .8 , 4 0 .6 , 4 ,
0 .4 3 0 .3 , 3 0 .7 , 3 0 .6 , 3 ,
0 .6 2 0 .2 , 2 0 .8 , 2 0 .4 , 2 ,
0 .8 1 0 .1 , 1 0 .9 , 1 0 .2 , 1 ,
1 A = 0 0 B = 0 1 AU B = 0 0 AI B = 0
-٤ﻋﻤﻠﻴﺎﺕ ﺩﻳﮕﺮﻱ ﺑﺮ ﺭﻭﻱ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﻋﻼﻭﻩ ﺑﺮ ﻣﻜﻤﻞ ،ﺍﺟﺘﻤﺎﻉ ﻭ ﺍﺷﺘﺮﺍﻙ ﺗﻌﺮﻳﻒ ﺷﺪﻩ ﺑﺼﻮﺭﺕ ﻗﺒﻞ ،ﺻﻮﺭﺕﻫﺎﻱ ﺩﻳﮕﺮﻱ ﻧﻴﺰ ﺍﺯ ﺗﻌﺮﻳﻒ ﻣﻜﻤﻞ ،ﺍﺟﺘﻤﺎﻉ ﻭ ﺍﺷﺘﺮﺍﻙ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﻭﺟﻮﺩ ﺩﺍﺭﻧﺪ ﻛﻪ ﺩﺭ ﺍﻳﻨﺠﺎ ﺑﻪ ﺑﺮﺭﺳﻲ ﺁﻧﻬﺎ ﻣﻲﭘﺮﺩﺍﺯﻳﻢ: ١
-١ﻣﻜﻤﻞ ﻓﺎﺯﻱ
• ﻣﻜﻤﻞ ﻓﺎﺯﻱ ﺍﺳﺎﺳﻲ
٢
)C [µ A ( x)] = 1 − µ A ( x
• ﻛﻼﺱ ﺳﻮﮔﻨﻮ
٣
)1 − µ A ( x )1 + λµ A ( x
) ∞ λ ∈ ( −1 ,
= ])C λ [µ A ( x
• ﻛﻼﺱ ﻳﺎﮔﺮ
٤
) ∞ w ∈ (0 ,
w
}
1
{
C w [µ A ( x)] = 1 − [ µ A ( x)] w
-٢ﺍﺟﺘﻤﺎﻉ ﻓﺎﺯﻱ -S) ٥ﻧﺮﻡ( • ﻛﻼﺱ ﻣﺎﻛﺰﻳﻤﻢ
٦
])S [µ A ( x) , µ B ( x)] = max[µ A ( x) , µ B ( x
• ﻛﻼﺱ ﺩﻭﻣﺒﻲ
٧
) ∞ λ ∈ (0 ,
]
−1 λ
1
[
1 + ( µ A1( x ) − 1) −λ + ( µ B1( x ) − 1) −λ
= ])S λ [µ A ( x) , µ B ( x
• ﻛﻼﺱ ﺩﺑﻮﻳﺲ-ﭘﺮﻳﺪ
٨
]α ∈ [0 ,1
] µ A ( x) + µ B ( x) − µ A ( x) µ B ( x) − min[ µ A ( x), µ B ( x),1 − α ] max[1 − µ A ( x),1 − µ B ( x),α
= ])Sα [µ A ( x) , µ B ( x
• ﻛﻼﺱ ﻳﺎﮔﺮ
٩
) ∞ w ∈ (0 ,
] S w [µ A ( x) , µ B ( x)] = min[1, ([ µ A ( x)] w + [ µ B ( x)] w ) w 1
1 - Fuzzy Complement 2 - Basic Fuzzy Complement 3 - Sugeno Class 4 - Yager Class 5 - Fuzzy Union 6 - Maximum Class 7 - Dombi Calss 8 - Dubois-Prade Class 9 - Yager Class
١٧
• ﺟﻤﻊ ﺩﺭﺍﺳﺘﻴﻚ
١
µ A ( x) S ds [µ A ( x) , µ B ( x)] = µ B ( x) 1
if if
µ B ( x) = 0 µ A ( x) = 0 otherwise
• ﺟﻤﻊ ﺍﻳﻨﺸﺘﻴﻦ
٢
S es [µ A ( x) , µ B ( x)] =
µ A ( x) + µ B ( x) 1 + µ A ( x) . µ B ( x)
• ﺟﻤﻊ ﺟﺒﺮﻱ
٣
S as [µ A ( x) , µ B ( x)] = µ A ( x) + µ B ( x) − µ A ( x) . µ B ( x)
( ﻧﺮﻡ-T) ٤ ﺍﺷﺘﺮﺍﻙ ﻓﺎﺯﻱ-٣ • ﻛﻼﺱ ﻣﻴﻨﻴﻤﻢ
t [µ A ( x) , µ B ( x)] = min[µ A ( x) , µ B ( x)]
• ﻛﻼﺱ ﺩﻭﻣﺒﻲ t λ [µ A ( x) , µ B ( x)] =
[
1
1 + ( µ A1( x ) − 1) λ + ( µ B1( x ) − 1) λ
λ ∈ (0 , ∞ )
]
1 λ
ﭘﺮﻳﺪ-• ﻛﻼﺱ ﺩﺑﻮﻳﺲ tα [µ A ( x) , µ B ( x)] =
µ A ( x) µ B ( x) max[µ A ( x), µ B ( x),α ]
α ∈ [0 ,1]
• ﻛﻼﺱ ﻳﺎﮔﺮ t w [µ A ( x) , µ B ( x)] = 1 − min[1, {[1 − µ A ( x)] w + [1 − µ B ( x)] w } w ] 1
w ∈ (0 , ∞ )
• ﺿﺮﺏ ﺩﺭﺍﺳﺘﻴﻚ µ A ( x) t dp [µ A ( x) , µ B ( x)] = µ B ( x) 0
if if
µ B ( x) = 1 µ A ( x) = 1 otherwise
1 - Drastic Sum 2 - Einstein Sum 3 - Algebraic Sum 4 -Fuzzy Intersection
١٨
• ﺿﺮﺏ ﺍﻳﻨﺸﺘﻴﻦ µ A ( x) .µ B ( x) 2 − [ µ A ( x) + µ B ( x) − µ A ( x) . µ B ( x)]
t ep [µ A ( x) , µ B ( x)] =
• ﺿﺮﺏ ﺟﺒﺮﻱ
t ap [µ A ( x) , µ B ( x)] = µ A ( x) . µ B ( x) Minimum Drastic Product Einstein Product Algebraic Product Dombi T-norm λ
Fuzzy AND
Fuzzy OR
Max-Min Averages λ
Yager T-norm ω
Maximum Drastic Sum Einstein Sum Algebraic Sum Dombi S-norm λ Yager S-norm ω
Generalized Means α
tdp (a,b)
min (a,b)
Intersection Operators
max (a,b) Averaging Operators
Sds (a,b) Union Operators
a = µ A ( x) , b = µ B ( x) ( ﻣﺤﺪﻭﺩﻩ ﻛﺎﻣﻞ ﻋﻤﻠﮕﺮﻫﺎﻱ ﻓﺎﺯﻱ١-٤) ﺷﻜﻞ
( ﻣﻲﺗﻮﺍﻥ ﺩﻳﺪ ﻛﻪ ﻋﻤﻠﻜﺮﺩﻫﺎﻱ ﺍﺟﺘﻤﺎﻉ ﻭ ﺍﺷﺘﺮﺍﻙ ﻧﻤﻲﺗﻮﺍﻧﻨﺪ ﺗﻤﺎﻣﻲ ﻣﺤﺪﻭﺩﻩﻫﺎ ﺭﺍ ﭘﻮﺷﺶ ﺩﻫﻨﺪ١-٤) ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺷﻜﻞ :ﺑﻨﺎﺑﺮﺍﻳﻦ ﻋﻤﻠﮕﺮ ﻣﻴﺎﻧﮕﻴﻦ ﻣﻌﺮﻓﻲ ﻣﻲﺷﻮﺩ ( ﻧﺮﻡ-v) ١ ﻣﻴﺎﻧﮕﻴﻦ ﻓﺎﺯﻱ-٤ ٢
Vλ [µ A ( x) , µ B ( x)] = λ max[µ A ( x) , µ B ( x)] + (1 − λ ) min[µ A ( x) , µ B ( x)]
Max-Min ﻣﻴﺎﻧﮕﻴﻦ
•
λ ∈ [0,1]
• ﻣﻴﺎﻧﮕﻴﻦ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ
٣
[ µ ( x)]α + [ µ B ( x)]α Vα [µ A ( x) , µ B ( x)] = A 2
1 α
α ∈ R (α ≠ 0)
1 - Fuzzy Averaging 2 - Max-Min Averaging 3 - Generalized Means
١٩
V P [µ A ( x) , µ B ( x)] = P. min[µ A ( x) , µ B ( x)] +
Vγ [µ A ( x) , µ B ( x)] = γ . max[µ A ( x) , µ B ( x)] +
(1 − P ).[µ A ( x) + µ B ( x)] 2
(1 − γ ).[µ A ( x) + µ B ( x)] 2
٢٠
ﻓﺎﺯﻱAND • P ∈ [0,1]
ﻓﺎﺯﻱOR • γ ∈ [0,1]
-٥ﺭﻭﺍﺑﻂ ﻓﺎﺯﻱ ﻓﺮﺽ ﻛﻨﻴﺪ Aﻭ Bﺩﻭ ﻣﺠﻤﻮﻋﻪ ﻛﻼﺳﻴﻚ ﺑﺎﺷﻨﺪ: }A = {1, 2 , 3
}B = {0 ,1
ﺁﻧﮕﺎﻩ A × Bﺧﻮﺩ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻛﻼﺳﻴﻚ ﺷﺎﻣﻞ ﺯﻭﺝﻫﺎﻱ ﻣﺮﺗﺐ ) bﻭ (aﻣﻲﺑﺎﺷﻨﺪ:
})A × B = {(1, 0) , (1,1) , (2 , 0) , (2 ,1) , (3 , 0) , (3 ,1
ﺣﺎﻝ ﻓﺮﺽ ﻛﻨﻴﺪ ﻣﺠﻤﻮﻋﻪ ﻛﻼﺳﻴﻚ ) bﻭ C (aﻳﻚ ﺭﺍﺑﻄﻪ ﺑﺪﻳﻦ ﺻﻮﺭﺕ ﺍﺳﺖ ﻛﻪ " ﻋﻨﺼﺮ ﺍﻭﻝ ﻳﻚ ﻭﺍﺣﺪ ﺍﺯ ﻋﻨﺼﺮ ﺩﻭﻡ ﺑﺰﺭﮔﺘﺮ ﺑﺎﺷﺪ":
})C ( a ,b ) = {(1, 0) , (2 ,1
ﺑﻨﺎﺑﺮﺍﻳﻦ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﻣﺠﻤﻮﻋﻪ Cﺑﺼﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪ: B 0 1 0 0
1 0 1 0
µc 1 2 3
A
١
-١ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ
ﻓﺮﺽ ﻛﻨﻴﺪ ' Aﻭ ' Bﺩﻭ ﻣﺠﻤﻮﻋﻪ ﺑﺎﺷﻨﺪ: }A′ = {San Francisco , Hong Kong , Tokyo }B ′ = {Boston , Hong Kong
ﺣﺎﻝ ﻣﻲﺧﻮﺍﻫﻴﻢ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ ﺧﻴﻠﻲ ﺩﻭﺭ Qﺭﺍ ﺑﻴﻦ ﺍﻳﻦ ﺩﻭ ﻣﺠﻤﻮﻋﻪ ﺑﻨﻮﻳﺴﻴﻢ: 'B
HK 0.9 0 0.1
µQ
Boston 0.3 SF 1 HK Tokyo 0.95
'A
ﻛﻪ ﻣﻲﺗﻮﺍﻥ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ Qﺭﺍ ﺑﻔﺮﻡ ﺯﻳﺮ ﻧﻴﺰ ﻧﻤﺎﻳﺶ ﺩﺍﺩ: 0.3 1 0.95 0.9 0 0.1 Q= , , , , , ( SF , Boston) ( HK , Boston) (Tokyo , Boston) ( SF , HK ) ( HK , HK ) (Tokyo , HK )
٢
-٢ﺗﺼﺎﻭﻳﺮ
ﺗﺼﻮﻳﺮ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ Qﺑﺮ ﺭﻭﻱ ' Aﺑﺼﻮﺭﺕ Q1ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ: 1 - Fuzzy Relation 2 - Projections
٢١
)µ Q1 (a ′) = max µ Q (a ′, b ′ b′∈B′
0.9 1 0.95 + + SF HK Tokyo
= Q1
ﺗﺼﻮﻳﺮ ﺍﻳﻦ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ ﺑﺮ ﺭﻭﻱ ' Bﺑﺼﻮﺭﺕ Q2ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ: )µ Q2 (b ′) = max µ Q (a ′, b ′ a′∈ A′
1 0.9 + Boston HK
= Q2
١
-٣ﺗﺮﻛﻴﺐ ﺭﻭﺍﺑﻂ ﻓﺎﺯﻱ
ﻓﺮﺽ ﻛﻨﻴﺪ )' Q(A',Bﻭ )' P(B',Cﺩﻭ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ ﺑﺎﺷﻨﺪ ﻛﻪ ﻣﺠﻤﻮﻋﻪ ' Bﺩﺭ ﺁﻧﻬﺎ ﻣﺸﺘﺮﻙ ﻣﻲﺑﺎﺷﺪ: }A′ = {San Francisco , Hong Kong , Tokyo }B ′ = {Boston , Hong Kong }C ′ = {NYC , Beijing 0.3 1 0.95 0.9 0 0.1 Q( A′, B ′) = , , , , , ( SF , Boston) ( HK , Boston) (Tokyo , Boston) ( SF , HK ) ( HK , HK ) (Tokyo , HK ) 0.95 0.1 0.1 0.9 P( B ′, C ′) = , , , ( HK , NYC ) ( HK , Beijing ) ) ( Boston , NYC ) ( Boston , Beijing
ﻛﻪ )' Q(A',Bﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ ﺧﻴﻠﻲ ﺩﻭﺭ ﺑﻴﻦ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ' Aﻭ ' Bﻭ )' P(B',Cﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ ﺧﻴﻠﻲ ﻧﺰﺩﻳﻚ ﺑﻴﻦ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ 'B
ﻭ ' Cﻣﻲﺑﺎﺷﺪ. P o Qﺗﺮﻛﻴﺐ )' Q(A',Bﻭ )' P(B',Cﺍﺳﺖ ﺍﮔﺮ ﻭ ﻓﻘﻂ ﺍﮔﺮ: ])µ PoQ (a ′, c ′) = max t [ µ P (b′, c ′) , µ Q (a ′ , b ′ b′∈B ′
ﺩﺭ ﺍﻳﻨﺠﺎ ﺩﻭ ﻧﻮﻉ ﺗﺮﻛﻴﺐ ﺭﺍ ﻣﻌﺮﻓﻲ ﻣﻲﻛﻨﻴﻢ: ٢
-١ﺗﺮﻛﻴﺐ ﻣﺎﻛﺰﻳﻤﻢ-ﻣﻴﻨﻴﻤﻢ
])µ PoQ (a ′, c ′) = max min [ µ P (b ′, c ′) , µ Q (a ′ , b ′ b′∈B ′
٣
-٢ﺗﺮﻛﻴﺐ ﻣﺎﻛﺰﻳﻤﻢ-ﺣﺎﺻﻠﻀﺮﺏ
])µ PoQ (a ′, c ′) = max [ µ P (b ′, c ′) . µ Q (a ′ , b′ b′∈B′
ﻣﺜﺎﻝ :ﺍﮔﺮ )' P(B',Cﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ ﺧﻴﻠﻲ ﻧﺰﺩﻳﻚ ﺑﻴﻦ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ' Bﻭ ' Cﻭ )' Q(A',Bﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ ﺧﻴﻠﻲ ﺩﻭﺭ ﺑﻴﻦ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ' Aﻭ ' Bﺑﺎﺷﺪ ﺗﺮﻛﻴﺐ ﻣﺎﻛﺰﻳﻤﻢ-ﻣﻴﻨﻴﻤﻢ ﻭ ﺗﺮﻛﻴﺐ ﻣﺎﻛﺰﻳﻤﻢ-ﺣﺎﺻﻠﻀﺮﺏ ﺑﻴﻦ Pﻭ Qﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﻳﺪ:
1 - Composition of Fuzzy Relation 2 - Max-Min Composition 3 - Max-Product Composition
٢٢
0.3 1 0.95 0.9 0 0.1 Q( A′, B ′) = , , , , , ( SF , Boston) ( HK , Boston) (Tokyo , Boston) ( SF , HK ) ( HK , HK ) (Tokyo , HK ) 0.95 0.1 0.1 0.9 P( B ′, C ′) = , , , ( HK , NYC ) ( HK , Beijing ) ( Boston , NYC ) ( Boston , Beijing )
A′ × C ′ = {( SF , NYC ) , ( SF , Beijing ) , ( HK , NYC ) , ( HK , Beijing ) , (Tokyo , NYC ) , ( Tokyo , Beijing )}
: ﻣﻲﺑﺎﺷﺪA′ × C ′ ﺩﺭ ﺍﻳﻦ ﻣﺮﺣﻠﻪ ﻫﺪﻑ ﺗﻌﻴﻴﻦ ﻣﻴﺰﺍﻥ ﻋﻀﻮﻳﺖ ﻫﺮ ﻋﻀﻮ ﻣﺠﻤﻮﻋﻪ ﺑﺮﺍﻱ ﻣﺤﺎﺳﺒﻪ ﺗﺮﻛﻴﺐMax-Min ﻋﻤﻠﮕﺮ:ﺍﻟﻒ 1 : µ P oQ ( SF , NYC ) = max{min[µ P ( SF , Boston) , µ Q ( Boston, NYC )] , min[ µ P ( SF , HK ) , µ Q ( HK , NYC )]} ⇒ µ P oQ ( SF , NYC ) = max{min[0.3,0.95] , min[0.9,0.1]} = 0.3 2 : µ P oQ ( SF , Beijing ) = max{min[µ P ( SF , Boston) , µ Q ( Boston, Beijing )] , min[ µ P ( SF , HK ) , µ Q ( HK , Beijing )]} ⇒ µ P oQ ( SF , Beijing ) = max{min[0.3,0.1] , min[0.9,0.9]} = 0.9
M
: ﺑﺼﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪmin-max ﺑﻨﺎﺑﺮﺍﻳﻦ ﻧﺘﻴﺠﻪ ﺗﺮﻛﻴﺐ 0.3 0.9 0.95 0.1 0.95 0.1 PoQ = , , , , , ( SF , NYC ) ( SF , Beijing ) ( HK , NYC ) ( HK , Beijing ) (Tokyo , NYC ) ( Tokyo , Beijing )
ﺑﺮﺍﻱ ﻣﺤﺎﺳﺒﻪ ﺗﺮﻛﻴﺐMax-Product ﻋﻤﻠﮕﺮ:ﺏ 1 : µ P oQ ( SF , NYC ) = max{[µ P ( SF , Boston).µ Q ( Boston, NYC )] , [ µ P ( SF , HK ). µ Q ( HK , NYC )]} ⇒ µ P oQ ( SF , NYC ) = max{[0.3 × 0.95] , [0.9 × 0.1]} = 0.285 2 : µ P oQ ( SF , Beijing ) = max{[µ P ( SF , Boston).µ Q ( Boston, Beijing )] , [ µ P ( SF , HK ) . µ Q ( HK , Beijing )]} ⇒ µ P oQ ( SF , Beijing ) = max{[0.3 × 0.1] , [0.9 × 0.9]} = 0.81
M
: ﺑﺼﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪMax-Product ﺑﻨﺎﺑﺮﺍﻳﻦ ﻧﺘﻴﺠﻪ ﺗﺮﻛﻴﺐ 0.285 0.81 0.95 0.1 0.9025 0.095 PoQ= , , , , , ( SF , NYC ) ( SF , Beijing ) ( HK , NYC ) ( HK , Beijing ) (Tokyo , NYC ) ( Tokyo , Beijing )
ﺍﺑﺘﺪﺍ ﺩﻭ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺭﺍ ﻛﻪ ﻣﻲﺧﻮﺍﻫﻴﻢ ﺗﺮﻛﻴﺐ ﻛﻨﻴﻢ ﺑﺼﻮﺭﺕ ﻣﺎﺗﺮﻳﺲ ﻧﻮﺷﺘﻪ ﻭ ﻣﺜﻞ ﺿﺮﺏMax-Min ﺑﺮﺍﻱ ﺗﺮﻛﻴﺐ:١ ﻧﺘﻴﺠﻪ : ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﻛﻨﻴﻢmin ﻭ ﺑﻪ ﺟﺎﻱ ﺿﺮﺏ ﺍﺯMax ﺩﻭ ﻣﺎﺗﺮﻳﺲ ﻋﻤﻠﻴﺎﺕ ﺭﺍ ﺍﻧﺠﺎﻡ ﻣﻲﺩﻫﻴﻢ ﺑﺎ ﺍﻳﻦ ﺗﻔﺎﻭﺕ ﻛﻪ ﺑﻪ ﺟﺎﻱ ﺟﻤﻊ ﺍﺯ 0.3 0.9 0.3 0.9 0 . 95 0 . 1 1 0 o = 0.95 0.1 0 . 1 0 . 9 0.95 0.1 0.95 0.1
٢٣
ﻧﺘﻴﺠﻪ :٢ﺑﺮﺍﻱ ﺗﺮﻛﻴﺐ Max-Productﺩﻭ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺭﺍ ﻛﻪ ﻣﻲﺧﻮﺍﻫﻴﻢ ﺗﺮﻛﻴﺐ ﻛﻨﻴﻢ ﺑﺼﻮﺭﺕ ﻣﺎﺗﺮﻳﺲ ﻧﻮﺷﺘﻪ ﻭ ﻣﺜﻞ ﺿﺮﺏ ﺩﻭ ﻣﺎﺗﺮﻳﺲ ﻋﻤﻠﻴﺎﺕ ﺭﺍ ﺍﻧﺠﺎﻡ ﻣﻲﺩﻫﻴﻢ ﺑﺎ ﺍﻳﻦ ﺗﻔﺎﻭﺕ ﻛﻪ ﺑﻪ ﺟﺎﻱ ﺟﻤﻊ ﺍﺯ Maxﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﻛﻨﻴﻢ: 0.3 0.9 0.285 0.81 0.95 0.1 1 0 o 0.1 = 0.95 0 . 1 0 . 9 0.9025 0.095 0.95 0.1
ﺗﻤﺮﻳﻦ :ﺳﻪ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ ﺗﻮﺳﻂ ﻣﺎﺗﺮﻳﺲﻫﺎﻱ ﺭﺍﺑﻄﻪﺍﻱ ﺯﻳﺮ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﻧﺪ .ﺗﺮﻛﻴﺐﻫﺎﻱ ﻣﺎﻛﺰﻳﻤﻢ-ﻣﻴﻨﻴﻤﻢ ﻭ ﻣﺎﻛﺰﻳﻤﻢ- ﺣﺎﺻﻠﻀﺮﺏ Q1 o Q2
,
Q1 o Q3
1 0 0.7 Q3 = 0 1 0 0.7 0 1
Q1 o Q2 o Q3ﺭﺍ ﻣﺤﺎﺳﺒﻪ ﻧﻤﺎﻳﻴﺪ.
, ,
0.6 0.6 0 Q2 = 0 0.6 0.1 0 0.1 0
٢۴
,
0 0.7 1 Q1 = 0.3 0.2 0 0 0.5 1
-٦ﻣﺘﻐﻴﺮﻫﺎﻱ ﺯﺑﺎﻧﻲ ﻭ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ
١
IF THEN
ﻣﺜﺎﻝ :ﻓﺮﺽ ﻛﻨﻴﺪ ﺳﺮﻋﺖ ﻳﻚ ﺧﻮﺩﺭﻭ ﺩﺭ ﻣﺤﺪﻭﺩﻩ [0,110]mphﺑﺎﺷﺪ ﻣﻲﺧﻮﺍﻫﻴﻢ ﺳﺮﻋﺖ ﺧﻮﺩﺭﻭ ﺭﺍ ﺑﺼﻮﺭﺕ ﻣﺘﻐﻴﺮ ﺯﺑﺎﻧﻲ ﻛﻪ ﺩﺍﺭﺍﻱ ﺳﻪ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ Medium ،Fastﻭ Slowﻣﻲﺑﺎﺷﺪ ﺩﺭﺁﻭﺭﻳﻢ: Fast
)Speed(mph
110
Medium
75
Slow
35
55
0
ﺗﻌﺮﻳﻒ :ﻳﻚ ﻣﺘﻐﻴﺮ ﺯﺑﺎﻧﻲ ﺑﻮﺳﻴﻠﻪ ﭼﻬﺎﺭ ﭘﺎﺭﺍﻣﺘﺮ ) (X, T, U, Mﻣﺸﺨﺺ ﻣﻲﮔﺮﺩﺩ: Xﻧﺎﻡ ﻣﺘﻐﻴﺮ ﺯﺑﺎﻧﻲ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﻣﺜﺎﻝ ﺳﺮﻋﺖ ﺧﻮﺩﺭﻭ Tﻣﺠﻤﻮﻋﻪ ﻣﻘﺎﺩﻳﺮ ﺯﺑﺎﻧﻲ ﻣﺮﺑﻮﻃﻪ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﻣﺜﺎﻝ } ﺁﻫﺴﺘﻪ ،ﻣﺘﻮﺳﻂ ،ﺳﺮﻳﻊ{ Uﺩﺍﻣﻨﻪ ﻭﺍﻗﻌﻲ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﻣﺜﺎﻝ [0,110]mph
Mﻳﻚ ﻗﺎﻋﺪﻩ ﻟﻐﻮﻱ ﺍﺳﺖ ﻛﻪ ﻫﺮ ﻣﻘﺪﺍﺭ ﺯﺑﺎﻧﻲ Tﺭﺍ ﺑﻪ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺩﺭ Uﻣﺮﺗﺒﻂ ﻣﻲﻛﻨﺪ. ٢
ﻗﻴﻮﺩ ﺯﺑﺎﻧﻲ
• ﺍﺻﻄﻼﺣﺎﺕ ﭘﺎﻳﻪ :ﻣﺎﻧﻨﺪ
Slow, Medium, Fast
• ﻣﻜﻤﻞ ﻛﻨﻨﺪﻩ :ﻣﺎﻧﻨﺪ
Not
• ﻣﺘﺼﻞ ﻛﻨﻨﺪﻩ :ﻣﺎﻧﻨﺪ
And, Or
• ﻗﻴﻮﺩ :ﻣﺎﻧﻨﺪ
Very, Slightly, More or less
• ﻋﻼﻣﺖ :ﻣﺎﻧﻨﺪ
Positive, Negative 1
µ More or less A ( x) = [ µ A ( x)] 2
µVery A ( x) = [ µ A ( x)]2
ﻣﺜﺎﻝ :ﺍﮔﺮ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ Aﺑﺼﻮﺭﺕ ﺯﻳﺮ ﺗﻌﺮﻳﻒ ﺷﻮﺩ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ Very very A ، Very Aﻭ More or less Aﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﻳﺪ: 1 0.8 0.6 0.4 0.2 + + + A= + 1 2 3 4 5 1 0.64 0.36 0.16 0.04 + + + Very A = + 1 2 3 4 5 1 0.4096 0.1296 0.0256 0.0016 + + + Very very A = + 1 2 3 4 5
1 - Linguistic Variables and Fuzzy IF-THEN Rules 2 - Linguistic Hedge
٢۵
ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ IF-THEN
ﻓﺮﻡ ﻛﻠﻲ ﻳﻚ ﻗﺎﻋﺪﻩ ﻓﺎﺯﻱ ﺑﺼﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪ: > ﻋﺒﺎﺭﺕ ﻓﺎﺯﻱ <
> THENﻋﺒﺎﺭﺕ ﻓﺎﺯﻱ < IF
ﺣﺎﻝ ﺑﻪ ﺑﺮﺭﺳﻲ ﻋﺒﺎﺭﺕ ﻓﺎﺯﻱ ﻣﻲﭘﺮﺩﺍﺯﻳﻢ: ١
ﻋﺒﺎﺭﺕ ﻓﺎﺯﻱ
ﺩﻭ ﻧﻮﻉ ﻋﺒﺎﺭﺕ ﻓﺎﺯﻱ ﻭﺟﻮﺩ ﺩﺍﺭﺩ :ﺳﺎﺩﻩ ﻭ ﻣﺮﻛﺐ.
ﻣﺜﺎﻝ :ﺳﻪ ﻋﺒﺎﺭﺕ ﻓﺎﺯﻱ ﺳﺎﺩﻩ ﻭ ﺳﻪ ﻋﺒﺎﺭﺕ ﻓﺎﺯﻱ ﻣﺮﻛﺐ:
M
X is
is S is M is F is S or X is not M is not S or X is not F is S and X is not F) or
X X X X X (X
ﻛﻪ Sﻭ Mﻭ Fﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ Medium ، Slowﻭ Fastﻣﻲﺑﺎﺷﻨﺪ ﻭ Xﻳﻚ ﻣﺘﻐﻴﺮ ﺯﺑﺎﻧﻲ ﻣﻲﺑﺎﺷﺪ. ﻣﺜﺎﻝ :ﺳﻴﺴﺘﻤﻲ ﺭﺍ ﺑﺎ ﺳﻪ ﻭﺭﻭﺩﻱ X3 ، X2 ، X1ﻭ ﻳﻚ ﺧﺮﻭﺟﻲ Yﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ:
ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ
Y
ﻓﺎﺯﻱﺯﺩﺍ
ﻓﺎﺯﻱﮔﺮ
ﻣﺠﻤﻮﻋﻪ ﻏﻴﺮ ﻓﺎﺯﻱ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ
ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻓﺎﺯﻱ
X1 X2 X3 ﻣﺠﻤﻮﻋﻪ ﻏﻴﺮ ﻓﺎﺯﻱ
ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ
ﻼ ﺫﻛﺮﺷﺪ ﺩﺭ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﺍﺑﺘﺪﺍ ﺳﻪ ﻭﺭﻭﺩﻱ ﻏﻴﺮ ﻓﺎﺯﻱ X3 ، X2 ، X1ﺗﻮﺳﻂ ﻓﺎﺯﻱﮔﺮ ﺗﺒﺪﻳﻞ ﺑﻪ ﻣﺘﻐﻴﺮﻫﺎﻱ ﻓﺎﺯﻱ ﻫﻤﺎﻧﻄﻮﺭ ﻛﻪ ﻗﺒ ﹰ ﻣﻲﺷﻮﻧﺪ. ﻓﺮﺽ ﻛﻨﻴﺪ X1ﺩﺍﺭﺍﻱ ٧ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺑﺼﻮﺭﺕ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ NL ،NM ،NS ،Z ،PS ،PM ،PLﻣﻲﺑﺎﺷﺪ X2 ،ﺩﺍﺭﺍﻱ ٥ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺑﺼﻮﺭﺕ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ NL ،NS ،Z ،PS ،PLﻣﻲﺑﺎﺷﺪ ﻭ X3ﺩﺍﺭﺍﻱ ٣ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺑﺼﻮﺭﺕ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ N ،Z ،Pﻣﻲﺑﺎﺷﺪ .ﺍﺯ ﻃﺮﻓﻲ ﺧﺮﻭﺟﻲ Yﻧﻴﺰ ﺩﺍﺭﺍﻱ ٥ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺍﺳﺖ ﻛﻪ ﺑﺼﻮﺭﺕ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ 1 - Fuzzy Proposition
٢۶
NL ،NS ،Z ،PS ،PLﻫﺴﺘﻨﺪ. ﻧﻜﺘﻪ :ﻫﺮ ﻛﺪﺍﻡ ﺍﺯ ﻣﺘﻐﻴﺮﻫﺎﻱ ﻏﻴﺮ ﻓﺎﺯﻱ ﻳﻚ ﺩﺍﻣﻨﻪ ﺗﻐﻴﻴﺮﺍﺕ ﺩﺍﺭﻧﺪ ﻛﻪ ﺍﻳﻦ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺩﺭ ﺍﻳﻦ ﻣﺤﺪﻭﺩﻩ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﻧﺪ. . ﺗﺬﻛﺮ :ﺣﺪﺍﻛﺜﺮ ﺗﻌﺪﺍﺩ ﻗﻮﺍﻋﺪ ﺯﺑﺎﻧﻲ ﺑﺮﺍﻱ ﺳﻴﺴﺘﻢ ﺑﺎ Nﻭﺭﻭﺩﻱ ﺍﺯ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ: )ﺗﻌﺪﺍﺩ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻣﺘﻐﻴﺮ Nﺍﻡ ( * … * )ﺗﻌﺪﺍﺩ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻣﺘﻐﻴﺮ ﺍﻭﻝ(= )ﺣﺪﺍﻛﺜﺮ ﺗﻌﺪﺍﺩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ (IF-THEN ﺑﻨﺎﺑﺮﺍﻳﻦ ﺣﺪﺍﻛﺜﺮ ﺗﻌﺪﺍﺩ ﻗﻮﺍﻋﺪ ﺯﺑﺎﻧﻲ ﺑﺮﺍﻱ ﺳﻴﺴﺘﻢ ﻣﺬﺑﻮﺭ ١٠٥ﻣﻲﺑﺎﺷﺪ .ﻓﺮﺽ ﻛﻨﻴﺪ ﻳﻜﻲ ﺍﺯ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﺑﻪ ﻓﺮﻡ ﺯﻳﺮ ﺑﺎﺷﺪ: Y is NS
THEN
}is Z
X3
PS) and
X2 is
or
IF {(X1 is NL
ﺍﮔﺮ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﺑﻜﺎﺭ ﺭﻓﺘﻪ ﺩﺭ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻛﻼﺳﻴﻚ )ﻏﻴﺮ ﻓﺎﺯﻱ( ﺑﻮﺩﻧﺪ ،ﻣﺸﻜﻠﻲ ﻧﺒﻮﺩ ﻭﻟﻲ ﭼﻮﻥ ﺍﻳﻦ ﻣﺠﻤﻮﻋﻪﻫﺎ ﻓﺎﺯﻱ ﻣﻲﺑﺎﺷﻨﺪ ﺑﻨﺎﺑﺮﺍﻳﻦ: ﺑﻪ ﺟﺎﻱ notﺍﺯ ﻣﻜﻤﻞﻫﺎﻱ ﻓﺎﺯﻱ ﺑﻪ ﺟﺎﻱ orﺍﺯ ﺍﺟﺘﻤﺎﻉ ﻓﺎﺯﻱ ﺑﻪ ﺟﺎﻱ andﺍﺯ ﺍﺷﺘﺮﺍﻙ ﻓﺎﺯﻱ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ.
٢٧
-٧ﺗﻔﺴﻴﺮ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ
١
IF-THEN
ﺩﺭ ﺗﻔﺴﻴﺮ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ IF-THENﺍﮔﺮ ﻋﺒﺎﺭﺍﺕ ﻛﻼﺳﻴﻚ ﺑﺎﺷﻨﺪ ﺩﺍﺭﻳﻢ: )q ﺟﺪﻭﻝ ﺻﺤﺖ q
p
q T F T T ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﻌﺎﺩﻝ )q
IF p THEN q
(p
p
q
p
T F T F
T T F F
(pﻣﻲﺗﻮﺍﻧﺪ ﻳﻜﻲ ﺍﺯ ﺟﻤﻼﺕ ﺯﻳﺮ ﺑﺎﺷﺪ: p → q ≡ p∨ q p → q ≡ ( p ∧ q) ∨ p
ﻛﻪ ∧ , ∨ ,−ﺑﺘﺮﺗﻴﺐ or ، notﻭ andﻣﻲﺑﺎﺷﻨﺪ .ﺍﺯ ﺍﻳﻦ ﻣﻌﺎﺩﻝﻫﺎ ﺩﺭ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ IF-THENﻧﻴﺰ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﻛﻨﻴﻢ ﺑﺎ ﺍﻳﻦ ﺗﻔﺎﻭﺕ ﻛﻪ ﺑﻪ ﺟﺎﻱ or ،notﻭ andﺍﺯ ﻣﻜﻤﻞ ﻓﺎﺯﻱ ،ﺍﺟﺘﻤﺎﻉ ﻓﺎﺯﻱ ﻭ ﺍﺷﺘﺮﺍﻙ ﻓﺎﺯﻱ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ. ﺑﺮﺍﻱ ﺗﻌﻴﻴﻦ ﻧﻮﻉ ﻣﻜﻤﻞ ﻓﺎﺯﻱ ،ﺍﺟﺘﻤﺎﻉ ﻓﺎﺯﻱ ﻭ ﺍﺷﺘﺮﺍﻙ ﻓﺎﺯﻱ ﺍﺯ ﺍﺳﺘﻠﺰﺍﻡ ﻓﺎﺯﻱ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ.
ﺍﺳﺘﻠﺰﺍﻡ ﻓﺎﺯﻱ
٢ ٣
-١ﺍﺳﺘﻠﺰﺍﻡ ﺩﻧﻴﺲ-ﺭﺷﺮ
ﺩﺭ ﺍﻳﻦ ﺍﺳﺘﻠﺰﺍﻡ ﺍﺯ ﻣﻌﺎﺩﻝ p → q ≡ p ∨ qﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ ﻭ ﺑﻪ ﺟﺎﻱ ﻋﻤﻠﮕﺮ notﺍﺯ ﻣﻜﻤﻞ ﻓﺎﺯﻱ ﺍﺳﺎﺳﻲ ﻭ ﺑﻪ ﺟﺎﻱ orﺍﺯ ﺍﺟﺘﻤﺎﻉ ﻓﺎﺯﻱ ﻣﺎﻛﺰﻳﻤﻢ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﮔﺮﺩﺩ: 〉 IF 〈 FP1〉 THEN 〈 FP 2
ﺑﻨﺎﺑﺮﺍﻳﻦ ﻗﺎﻋﺪﻩ ﻓﺎﺯﻱ ﻓﻮﻕ ﺑﺼﻮﺭﺕ ﻳﻚ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ QDﺑﺎ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺯﻳﺮ ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ: ]) µ QD ( x, y ) = max [1 − µ FP1 ( x) , µ FP 2 ( y
ﻛﻪ xﻭ yﻣﺘﻐﻴﺮﻫﺎﻱ ﻓﺎﺯﻱ FP1ﻭ FP2ﻣﻲﺑﺎﺷﻨﺪ. ٤
-٢ﺍﺳﺘﻠﺰﺍﻡ ﻟﻮﻛﺎﺯﻭﻳﭻ
ﺩﺭ ﺍﻳﻦ ﺍﺳﺘﻠﺰﺍﻡ ﺍﺯ ﻣﻌﺎﺩﻝ p → q ≡ p ∨ qﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ ﻭ ﺑﻪ ﺟﺎﻱ ﻋﻤﻠﮕﺮ notﺍﺯ ﻣﻜﻤﻞ ﻓﺎﺯﻱ ﺍﺳﺎﺳﻲ ﻭ ﺑﻪ ﺟﺎﻱ orﺍﺯ 1 - Interpretation of Fuzzy IF-THEN Rules 2 - Fuzzy Implication 3 - Dienes Rescher Implication 4 - Lukasiewicz Implication
٢٨
S-normﻳﺎﮔﺮ ﺑﺎ w=1ﺍﺳﺘﻔﺎﺩﻩ ﻣﻴﮕﺮﺩﺩ: 〉 IF 〈 FP1〉 THEN 〈 FP 2
ﺑﻨﺎﺑﺮﺍﻳﻦ ﻗﺎﻋﺪﻩ ﻓﺎﺯﻱ ﻓﻮﻕ ﺑﺼﻮﺭﺕ ﻳﻚ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ QLﺑﺎ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺯﻳﺮ ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ: ]) µ QL ( x, y ) = min [1 , 1 − µ FP1 ( x) + µ FP 2 ( y
١
-٣ﺍﺳﺘﻠﺰﺍﻡ ﺯﺍﺩﻩ
ﺩﺭ ﺍﻳﻦ ﺍﺳﺘﻠﺰﺍﻡ ﺍﺯ ﻣﻌﺎﺩﻝ p → q ≡ ( p ∧ q) ∨ pﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ ﻭ ﺑﻪ ﺟﺎﻱ ﻋﻤﻠﮕﺮ notﺍﺯ ﻣﻜﻤﻞ ﻓﺎﺯﻱ ﺍﺳﺎﺳﻲ ﻭ ﺑﻪ ﺟﺎﻱ orﺍﺯ ﺍﺟﺘﻤﺎﻉ ﻓﺎﺯﻱ ﻣﺎﻛﺰﻳﻤﻢ ﻭ ﺑﻪ ﺟﺎﻱ andﺍﺯ ﺍﺷﺘﺮﺍﻙ ﻓﺎﺯﻱ ﻣﻴﻨﻴﻤﻢ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ: 〉 IF 〈 FP1〉 THEN 〈 FP 2
ﺑﻨﺎﺑﺮﺍﻳﻦ ﻗﺎﻋﺪﻩ ﻓﺎﺯﻱ ﻓﻮﻕ ﺑﺼﻮﺭﺕ ﻳﻚ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ QZﺑﺎ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺯﻳﺮ ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ: } )µ QZ ( x, y ) = max{min [ µ FP1 ( x) , µ FP 2 ( y )] , 1 − µ FP1 ( x ٢
-٤ﺍﺳﺘﻠﺰﺍﻡ ﮔﻮﺩﻝ
〉 IF 〈 FP1〉 THEN 〈 FP 2
ﺑﻨﺎﺑﺮﺍﻳﻦ ﻗﺎﻋﺪﻩ ﻓﺎﺯﻱ ﻓﻮﻕ ﺑﺼﻮﺭﺕ ﻳﻚ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ QGﺑﺎ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺯﻳﺮ ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ: ) µ FP1 ( x) ≤ µ FP 2 ( y otherwise
if 1 µ QG ( x, y ) = ) µ FP 2 ( y
٣
-٥ﺍﺳﺘﻠﺰﺍﻡ ﻣﻤﺪﺍﻧﻲ
ﺩﺭ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﻣﻌﺎﺩﻝ ) p → q ≡ ( p ∧ qﺍﺳﺘﻔﺎﺩﻩ ﻛﺮﺩ ﻭ ﺑﻪ ﺟﺎﻱ ﻋﻤﻠﮕﺮ andﺍﺯ minﻳﺎ ﺿﺮﺏ ﺟﺒﺮﻱ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ: ]) µ QMM ( x, y ) = min [ µ FP1 ( x) , µ FP 2 ( y ) µ QMP ( x, y ) = µ FP1 ( x) . µ FP 2 ( y
ﻣﺜﺎﻝ :ﻓﺮﺽ ﻛﻨﻴﺪ x1ﺳﺮﻋﺖ ﻳﻚ ﻣﺎﺷﻴﻦ x2 ،ﺷﺘﺎﺏ ﻭ yﻧﻴﺰ ﻧﻴﺮﻭﻱ ﺍﻋﻤﺎﻟﻲ ﺑﻪ ﭘﺪﺍﻝ ﮔﺎﺯ ﺑﺎﺷﺪ .ﻗﺎﻋﺪﻩ ﺯﻳﺮ ﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ: 〉 IF 〈 x1 is slow and x 2 is small 〉 THEN 〈 y is l arg e
ﻛﻪ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ small ، slowﻭ largeﺑﺼﻮﺭﺕ ﺯﻳﺮ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﻧﺪ: )µ(x1
Slow
1 x1
100
75
55
35
x1 ≤ 35
if 35 < x1 ≤ 55 x1 > 55
0
if if
1 55 − x1 µ slow ( x1 ) = 20 0
1 - Zadeh Implication 2 - Godel Implication 3 - Mamdani Implication
٢٩
µ(x2)
10 − x 2 µ small ( x 2 ) = 10 0
if if
x 2 > 10
0
10
20
x2
30
µ(y)
if y ≤ 1 if 1 < y ≤ 2 if y > 2
0 µ l arg e ( y ) = y − 1 1
Small
1
0 ≤ x 2 ≤ 10
Large
1
0
1
2
y
3
. ﺑﺎﺷﺪV = [0,3] , U 2 = [0,30] , U 1 = [0,100] ﺑﺘﺮﺗﻴﺐy ﻭx2 ، x1 ﻓﺮﺽ ﻛﻨﻴﺪ ﺩﺍﻣﻨﻪ ﻣﺘﻐﻴﺮﻫﺎﻱ ﺯﺑﺎﻧﻲ . ﻋﻼﻭﻩ ﺑﺮ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﻮﻕ ﺩﺍﺭﺍﻱ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﺩﻳﮕﺮﻱ ﻧﻴﺰ ﻣﻲﺑﺎﺷﻨﺪy ﻭx2 ، x1 ﺩﻗﺖ ﺷﻮﺩ ﻛﻪ ﻣﺘﻐﻴﺮﻫﺎﻱ:ﺗﺬﻛﺮ . ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﻳﺪµ Q ( x1 , x 2 , y ) ﺭﺷﺮ- ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﺳﺘﻠﺰﺍﻡ ﺩﻧﻴﺲand ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺣﺎﺻﻠﻀﺮﺏ ﺟﺒﺮﻱ ﺑﻪ ﺟﺎﻱ D
FP1 = x1 is slow and x 2 is small 0 10 − x 2 µ FP1 ( x1 , x 2 ) = µ slow ( x1 ) µ small ( x 2 ) = 10 (55 − x1 )(10 − x 2 ) 200
if
x1 > 55
if
x1 ≤ 35
if
35 < x1 ≤ 55 and x 2 ≤ 10
or
x 2 > 10
and x 2 ≤ 10
x2
10
Small µ(x2) 1
0
µ(x1)
Slow
1
0
35
55
x1
:ﺭﺷﺮ-ﺑﺎ ﺍﺳﻠﺰﺍﻡ ﺩﻧﻴﺲ µ QD ( x1 , x 2 , y ) = max [1 − µ FP1 ( x1 , x 2 ) , µ l arg e ( y )] 1 x 1 − µ FP1 ( x1 , x 2 ) = 2 10 1 − (55 − x1 )(10 − x 2 ) 200
if
x1 > 55
or
if
x1 ≤ 35
and x 2 ≤ 10
if
35 < x1 ≤ 55 and x 2 ≤ 10
٣٠
x 2 > 10
if x1 > 55 or x2 > 10 or y > 2 1 x2 if x1 ≤ 35 and x2 ≤ 10 and y ≤ 1 10 1− (55− x1 )(10− x2 ) if 35 < x1 ≤ 55 and x2 ≤ 10 and y ≤ 1 µQD (x1, x2 , y) = 200 x2 if x1 ≤ 35 and x2 ≤ 10 and 1 < y < 2 max[y −1, ] 10 max[y −1,1− (55− x1 )(10− x2 ) ] if 35 < x1 ≤ 55 and x2 ≤ 10 and 1 < y < 2 200 y>2 1< y ≤ 2 y ≤1 x1 > 55 or x 2 > 10
x1 < 35 and 35 < x1 ≤ 55 x 2 < 10 and x 2 < 10
. ﻣﺜﺎﻝ ﻓﻮﻕ ﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﺳﺘﻠﺰﺍﻡ ﻟﻮﻛﺎﺯﻭﻳﭻ ﻭ ﻣﻤﺪﺍﻧﻲ ﺍﻧﺠﺎﻡ ﺩﻫﻴﺪ:ﺗﻤﺮﻳﻦ
٣١
١
ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﻭ ﺍﺳﺘﺪﻻﻝ ﺗﻘﺮﻳﺒﻲ-٨ :ﺳﻪ ﻧﻤﻮﻧﻪ ﺍﺯ ﻗﻮﺍﻋﺪ ﺍﺳﺘﻨﺘﺎﺝ ﺑﺼﻮﺭﺕ ﺯﻳﺮﻧﺪ ٢
ﻣﻮﺩﺱ ﭘﻮﻧﻨﺲ-١
: ﻧﺘﻴﺠﻪ ﮔﺮﻓﺘﻪ ﻣﻲﺷﻮﺩq ﺩﺭﺳﺘﻲ ﻋﺒﺎﺭﺕp → q , p ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺩﻭ ﻋﺒﺎﺭﺕ ( p ∧ ( p → q)) → q Premise 1: x is A Premise 2: IF x is A THEN Conclusion: y is B
y is B
٣
ﻣﻮﺩﺱ ﺗﻮﻟﻨﺲ-٢
: ﻧﺘﻴﺠﻪ ﮔﺮﻓﺘﻪ ﻣﻲﺷﻮﺩp ﺩﺭﺳﺘﻲ ﻋﺒﺎﺭﺕp → q , q ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺩﻭ ﻋﺒﺎﺭﺕ (q ∧ ( p → q)) → p Premise 1: y is not B Premise 2: IF x is A THEN Conclusion: x is not A
y is B
٤
ﻗﻴﺎﺱ ﻓﺮﺿﻲ-٣
: ﻧﺘﻴﺠﻪ ﮔﺮﻓﺘﻪ ﻣﻲﺷﻮﺩp → r ﺩﺭﺳﺘﻲ ﻋﺒﺎﺭﺕq → r , p → q ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺩﻭ ﻋﺒﺎﺭﺕ (( p → q) ∧ (q → r ) → ( p → r ) Premise 1: IF x is A THEN y is B Premise 2: IF y is B THEN z is C Conclusion: IF x is A THEN z is C
:ﺣﺎﻝ ﺍﻳﻦ ﻗﻮﺍﻋﺪ ﺍﺳﺘﻨﺘﺎﺝ ﺭﺍ ﺑﺮﺍﻱ ﻋﺒﺎﺭﺍﺕ ﻓﺎﺯﻱ ﺗﻌﻤﻴﻢ ﻣﻲﺩﻫﻴﻢ ٥
ﻣﻮﺩﺱ ﭘﻮﻧﻨﺲ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ-١
Premise 1: x is A' Premise 2: IF x is A THEN Conclusion: y is B'
y is B
1 - Fuzzy Logic and Approximate Reasoning 2 - Modus Ponens 3 - Modus Tollens 4 - Hypothetical Syllogism 5 - Generalized Modus Ponens
٣٢
ﻫﺮ ﭼﻘﺪﺭ ' Aﺑﻪ Aﻧﺰﺩﻳﻜﺘﺮ ﺑﺎﺷﺪ ' Bﻧﻴﺰ ﺑﻪ Bﻧﺰﺩﻳﻜﺘﺮ ﺧﻮﺍﻫﺪ ﺑﻮﺩ. ١
-٢ﻣﻮﺩﺱ ﺗﻮﻟﻨﺲ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ
y is B
Premise 1: 'y is B Premise 2: IF x is A THEN 'Conclusion: x is A
ﻫﺮ ﭼﻘﺪﺭ ﺍﺧﺘﻼﻑ' Bﻭ Bﺯﻳﺎﺩﺗﺮ ﺑﺎﺷﺪ ﺍﺧﺘﻼﻑ' Aﻭ Aﻧﻴﺰ ﺑﻴﺸﺘﺮ ﺧﻮﺍﻫﺪ ﺑﻮﺩ. ٢
-٣ﻗﻴﺎﺱ ﻓﺮﺿﻲ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ
Premise 1: IF x is A THEN y is B Premise 2: IF y is B' THEN z is C 'Conclusion: IF x is A THEN z is C
ﻫﺮ ﭼﻘﺪﺭ Bﺑﻪ ' Bﻧﺰﺩﻳﻜﺘﺮ ﺑﺎﺷﺪ Cﻧﻴﺰ ﺑﻪ ' Cﻧﺰﺩﻳﻜﺘﺮ ﻣﻲﺑﺎﺷﺪ.
٣
ﻗﻮﺍﻋﺪ ﺗﺮﻛﻴﺒﻲ ﺍﺳﺘﻨﺘﺎﺝ
ﺣﺎﻝ ﻣﻲ ﺧﻮﺍﻫﻴﻢ ﺑﺎ ﺩﺍﺷﺘﻦ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻗﺴﻤﺖ ﻣﻘﺪﻣﻪ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻗﺴﻤﺖ ﻧﺘﻴﺠﻪ ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﻳﻢ: -١ﻣﻮﺩﺱ ﭘﻮﻧﻨﺲ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ ]) µ B′ ( y ) = SUP t [ µ A′ ( x), µ A→ B ( x, y x∈U
-٢ﻣﻮﺩﺱ ﺗﻮﻟﻨﺲ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ ]) µ A′ ( x) = SUP t [ µ B′ ( y ), µ A→ B ( x, y y∈V
-٣ﻗﻴﺎﺱ ﻓﺮﺿﻲ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ ]) µ A→C ′ ( x, z ) = SUP t [ µ A→ B ( x, y ), µ B′→C ( y, z y∈V
1 - Generalizes Modus Tollens 2 - Generalized Hypothetical Syllogism 3 - The Compositional Rule of Inference
٣٣
-٩ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﻭ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻓﺎﺯﻱ
١
-١ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﺑﺎﻳﺪ ﺗﻤﺎﻣﻲ ﺩﺍﺩﻩﻫﺎﻱ ﻭﺭﻭﺩﻱ ﺭﺍ ﭘﻮﺷﺶ ﺩﻫﺪ: ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﻛﺎﻣﻞ :ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻗﻮﺍﻋﺪ IF-THENﻓﺎﺯﻱ ﺭﺍ ﻛﺎﻣﻞ ﮔﻮﻳﻨﺪ ﺍﮔﺮ ﺑﺮﺍﻱ ﻫﺮ x ∈ Uﺣﺪﺍﻗﻞ ﻳﻚ ﻗﺎﻋﺪﻩ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﻭﺟﻮﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ. ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﺳﺎﺯﮔﺎﺭ :ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻗﻮﺍﻋﺪ IF-THENﻓﺎﺯﻱ ﺭﺍ ﺳﺎﺯﮔﺎﺭ ﮔﻮﻳﻨﺪ ﺍﮔﺮ ﻗﻮﺍﻋﺪﻱ ﻳﺎﻓﺖ ﻧﺸﻮﻧﺪ ﻛﻪ ﺑﺨﺶﻫﺎﻱ ﺍﮔﺮ ﻳﻜﺴﺎﻥ ﻭ ﺑﺨﺶﻫﺎﻱ ﺁﻧﮕﺎﻩ ﻣﺘﻔﺎﻭﺕ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ. ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﭘﻴﻮﺳﺘﻪ :ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻗﻮﺍﻋﺪ IF-THENﻓﺎﺯﻱ ﺭﺍ ﭘﻴﻮﺳﺘﻪ ﮔﻮﻳﻨﺪ ﺍﮔﺮ ﻗﻮﺍﻋﺪ ﻫﻤﺴﺎﻳﻪﺍﻱ ﻭﺟﻮﺩ ﻧﺪﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ ﻛﻪ ﺍﺷﺘﺮﺍﻙ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﻗﺴﻤﺖ THENﺁﻧﻬﺎ ﺗﻬﻲ ﺑﺎﺷﺪ. ﻣﺜﺎﻝ :ﻓﺮﺽ ﻛﻨﻴﺪ ﻳﻚ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺷﺎﻣﻞ ﺩﻭ ﻭﺭﻭﺩﻱ ﻭ ﻳﻚ ﺧﺮﻭﺟﻲ ﺑﺎﺷﺪ ﻛﻪ ﻭﺭﻭﺩﻱ ﺍﻭﻝ x1ﺷﺎﻣﻞ ﺳﻪ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ S1
M1 ،ﻭ L1ﻭ ﻭﺭﻭﺩﻱ ﺩﻭﻡ x2ﺷﺎﻣﻞ ﺩﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ L2 ، S2ﺑﺎﺷﺪ ﻣﻲﺗﻮﺍﻥ ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﺭﺍ ﺑﻪ ﻓﺮﻡ ﺯﻳﺮ ﻧﻮﺷﺖ: B1 B2 B3 B4 B5 B6
is is is is is is
y y y y y y
THEN THEN THEN THEN THEN THEN
S2 L2 S2 L2 S2 L2
is is is is is is
x2 x2 x2 x2 x2 x2
and and and and and and
S1 S1 M1 M1 L1 L1
is is is is is is
IF IF IF IF IF IF
x1 x1 x1 x1 x1 x1
-٢ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻓﺎﺯﻱ ﺑﺮﺭﺳﻲ ﭼﮕﻮﻧﮕﻲ ﻧﺘﻴﺠﻪﮔﻴﺮﻱ ﺍﺯ ﺭﻭﻱ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻗﻮﺍﻋﺪ: ٢
-١ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﺗﺮﻛﻴﺐ ﻗﻮﺍﻋﺪ
ﺗﻤﺎﻣﻲ ﻗﻮﺍﻋﺪ ﻣﻮﺟﻮﺩ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﺩﺭ ﻳﻚ ﺭﺍﺑﻄﻪ ﻓﺎﺯﻱ ﺗﺮﻛﻴﺐ ﺷﺪﻩ ﻭ ﺁﻧﮕﺎﻩ ﺑﺪﻳﺪﻩ ﻳﻚ ﻗﺎﻋﺪﻩ IF-THENﻓﺎﺯﻱ ﺗﻨﻬﺎ ﻧﮕﺮﻳﺴﺘﻪ ﻣﻲﺷﻮﺩ. ﻣﺮﺍﺣﻞ ﻣﺤﺎﺳﺒﺎﺕ ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﺗﺮﻛﻴﺐ ﻗﻮﺍﻋﺪ: ﻣﺮﺣﻠﻪ ﺍﻭﻝ :ﺑﺮﺍﻱ Mﻗﺎﻋﺪﻩ ﻓﺎﺯﻱ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺭﺍ ﻣﺤﺎﺳﺒﻪ ﻣﻲﻛﻨﻴﻢ l = 1, 2 , K , M
) µ Al ×K× Al ( x1 ,L, xn ) = µ Al ( x1 ) ∗ L ∗ µ Al ( xn n
1
n
1
ﻛﻪ ﻋﻼﻣﺖ * ﻧﻤﺎﻳﺎﻧﮕﺮ -tﻧﺮﻡ ﻭ nﺗﻌﺪﺍﺩ ﻭﺭﻭﺩﻱ ﻣﻲﺑﺎﺷﺪ. 1 - Fuzzy Rule Base & Fuzzy Inference Engine 2 - Composition Based Inference
٣۴
ﻣﺮﺣﻠﻪ ﺩﻭﻡ:
l
× K × An
A1lﺭﺍ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﻘﺪﻣﻪ ) (FP1ﻭ Blﺭﺍ ﺑﻪ ﻋﻨﻮﺍﻥ ﻧﺘﻴﺠﻪ ) (FP2ﺩﺭ ﺍﺳﺘﻠﺰﺍﻡﻫﺎﻱ ﮔﻔﺘﻪ ﺷﺪﻩ ﺩﺭ ﻧﻈﺮ
ﻣﻲﮔﻴﺮﻳﻢ ﻭ ﺩﺍﺭﻳﻢ: ) µ Ru ( l ) ( x1 , L , x n , y ) = µ Al ×K× Al → B ( x1 , L , x n , y
l = 1, 2 , K , M
n
1
ﻣﺮﺣﻠﻪ ﺳﻮﻡ :ﻣﺤﺎﺳﺒﻪ ) µ Q ( x, yﻳﺎ ) ) µ Q ( x, yﺑﺘﺮﺗﻴﺐ ﺗﺮﻛﻴﺐ ﻣﻤﺪﺍﻧﻲ ﻳﺎ ﮔﻮﺩﻝ(: G
M
•
•
) µ QM ( x, y ) = µ Ru (1) ( x, y ) + L + µ Ru ( M ) ( x, y
⇒
) µ QM ( x, y ) = µ Ru (1) ( x, y ) ∗ L ∗ µ Ru ( M ) ( x, y
⇒
M
) QM = U Ru ( l l =1
M
) QG = I Ru (l l =1
•
ﻛﻪ ﻋﻼﻣﺖ * ﻧﻤﺎﻳﺎﻧﮕﺮ -tﻧﺮﻡ ﻭ +ﻧﻤﺎﻳﺎﻧﮕﺮ -Sﻧﺮﻡ ﺍﺳﺖ. ﻣﺮﺣﻠﻪ ﭼﻬﺎﺭﻡ :ﺑﺮﺍﻱ ﻳﻚ ﻭﺭﻭﺩﻱ ﺩﺍﺩﻩ ﺷﺪﻩ ' Aﺧﺮﻭﺟﻲ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺭﺍ ﻛﻪ ﻫﻤﺎﻥ ' Bﺍﺳﺖ ﺍﺯ ﺭﻭﺍﺑﻂ ﺯﻳﺮ ﻣﺤﺎﺳﺒﻪ ﻣﻲﻛﻨﻴﻢ: ﺑﺮﺍﻱ ﺗﺮﻛﻴﺐ ﻣﻤﺪﺍﻧﻲ
]) µ B′ ( y ) = SUP t [ µ A′ ( x), µ QM ( x, y
ﺑﺮﺍﻱ ﺗﺮﻛﻴﺐ ﮔﻮﺩﻝ
]) µ B′ ( y ) = SUP t [ µ A′ ( x), µ QG ( x, y
x∈U
x∈U
١
-٢ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﻗﻮﺍﻋﺪ ﺟﺪﺍﮔﺎﻧﻪ
ﻫﺮ ﻗﺎﻋﺪﻩ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﻳﻚ ﺧﺮﻭﺟﻲ ﻓﺎﺯﻱ ﺭﺍ ﻣﻌﻴﻦ ﻛﺮﺩﻩ ﻭ ﺧﺮﻭﺟﻲ ﻧﻬﺎﻳﻲ ﺗﺮﻛﻴﺐ Mﺧﺮﻭﺟﻲ ﺟﺪﺍﮔﺎﻧﻪ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﺧﻮﺍﻫﺪ ﺑﻮﺩ. ﻣﺮﺍﺣﻞ ﻣﺤﺎﺳﺒﺎﺕ ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﻗﻮﺍﻋﺪ ﺟﺪﺍﮔﺎﻧﻪ: ﻣﺮﺣﻠﻪ ﺍﻭﻝ ﻭ ﺩﻭﻡ :ﻣﺸﺎﺑﻪ ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﺗﺮﻛﻴﺐ ﻗﻮﺍﻋﺪ ﻣﺮﺣﻠﻪ ﺳﻮﻡ :ﺑﺮﺍﻱ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺩﺍﺩﻩ ﺷﺪﻩ ' Aﺩﺭ ، Uﺧﺮﻭﺟﻲ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ' Blﺩﺭ Vﺭﺍ ﺑﺮﺍﻱ ﻫﺮ ﻗﺎﻋﺪﻩ ﺟﺪﺍﮔﺎﻧﻪ )Ru(l
ﻣﻄﺎﺑﻖ ﺑﺎ ﻣﻮﺩﺱ ﭘﻮﻧﻨﺲ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ ﻣﺤﺎﺳﺒﻪ ﻣﻲﻛﻨﻴﻢ: l = 1, 2 ,K, M
]) µ Bl′ ( y ) = SUP t [ µ A′ ( x), µ Ru ( l ) ( x, y x∈U
ﻣﺮﺣﻠﻪ ﭼﻬﺎﺭﻡ :ﺧﺮﻭﺟﻲ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻓﺎﺯﻱ ،ﺗﺮﻛﻴﺐ ﺧﺮﻭﺟﻲ ﻓﺎﺯﻱ }' {B1' , B2' , ..., BMﺧﻮﺍﻫﺪ ﺑﻮﺩ: •
•
ﺑﺼﻮﺭﺕ ﺍﺟﺘﻤﺎﻉ:
) µ B′ ( y ) = µ B ′ ( y ) + L + µ B ′ ( y
ﺑﺼﻮﺭﺕ ﺍﺷﺘﺮﺍﻙ:
) µ B′ ( y ) = µ B ′ ( y ) ∗ L ∗ µ B ′ ( y
M
M
1
1
1 - Individual Rule Based Inference
٣۵
ﺟﺰﺋﻴﺎﺕ ﭼﻨﺪ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ -١ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺣﺎﺻﻠﻀﺮﺏ ﻣﻤﺪﺍﻧﻲ ﺩﺭ ﺍﻳﻦ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺍﺯ: •
ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﻗﻮﺍﻋﺪ ﺟﺪﺍﮔﺎﻧﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﺟﺘﻤﺎﻉ
•
ﺍﺳﺘﻠﺰﺍﻡ ﺣﺎﺻﻠﻀﺮﺏ ﻣﻤﺪﺍﻧﻲ
•
ﺿﺮﺏ ﺟﺒﺮﻱ ﺑﺮﺍﻱ tﻧﺮﻡﻫﺎ ﻭ maxﺑﺮﺍﻱ sﻧﺮﻡﻫﺎ
ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ. n M µ B′ ( y ) = max SUP( µ A′ ( x)∏ ( µ Al ( xi )) µ B l ( y )) i l =1 i =1 x∈U
-٢ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻣﻴﻨﻴﻤﻢ ﻣﻤﺪﺍﻧﻲ ﺩﺭ ﺍﻳﻦ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺍﺯ: •
ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﻗﻮﺍﻋﺪ ﺟﺪﺍﮔﺎﻧﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﺟﺘﻤﺎﻉ
•
ﺍﺳﺘﻠﺰﺍﻡ ﻣﻴﻨﻴﻤﻢ ﻣﻤﺪﺍﻧﻲ
•
minﺑﺮﺍﻱ tﻧﺮﻡﻫﺎ ﻭ maxﺑﺮﺍﻱ sﻧﺮﻡﻫﺎ
ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ.
]
[
M
)) µ B′ ( y ) = max SUP min(µ A′ ( x), µ Al ( x1 ),..., µ Al ( xn ), µ B l ( y n
1
x∈U
l =1
-٣ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻟﻮﻛﺎﺯﻭﻳﺞ ﺩﺭ ﺍﻳﻦ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺍﺯ: •
ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﻗﻮﺍﻋﺪ ﺟﺪﺍﮔﺎﻧﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﺷﺘﺮﺍﻙ
• ﺍﺳﺘﻠﺰﺍﻡ ﻟﻮﻛﺎﺯﻭﻳﺞ •
minﺑﺮﺍﻱ tﻧﺮﻡﻫﺎ
ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ.
)
(
n M µ B′ ( y ) = min SUP min µ A′ ( x),1 − min µ Al ( xi ) + µ B l ( y ) i = i l =1 1 x∈U
-٤ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺯﺍﺩﻩ ﺩﺭ ﺍﻳﻦ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺍﺯ: •
ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﻗﻮﺍﻋﺪ ﺟﺪﺍﮔﺎﻧﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﺷﺘﺮﺍﻙ
• ﺍﺳﺘﻠﺰﺍﻡ ﺯﺍﺩﻩ •
minﺑﺮﺍﻱ tﻧﺮﻡﻫﺎ
ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ.
٣۶
)
(
M n ) µ B′ ( y ) = min SUP min µ A′ ( x), max min( µ Al ( x1 ),..., µ Al ( xn ), µ B l ( y )),1 − min µ Al ( xi n i 1 l =1 i =1 x∈U
-٥ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺩﻧﻴﺲ -ﺭﺷﺮ ﺩﺭ ﺍﻳﻦ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺍﺯ: •
ﺍﺳﺘﻨﺘﺎﺝ ﻣﺒﺘﻨﻲ ﺑﺮ ﻗﻮﺍﻋﺪ ﺟﺪﺍﮔﺎﻧﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﺷﺘﺮﺍﻙ
• ﺍﺳﺘﻠﺰﺍﻡ ﺩﻧﻴﺲ -ﺭﺷﺮ •
minﺑﺮﺍﻱ tﻧﺮﻡﻫﺎ
ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ.
)
(
M n µ B′ ( y ) = min SUP min µ A′ ( x), max1 − min µ Al ( xi ) , µ B l ( y ) i l =1 i =1 x∈U
ﻛﻪ ﺩﺭ ﺭﻭﺍﺑﻂ ﻓﻮﻕ Mﺗﻌﺪﺍﺩ ﻗﻮﺍﻋﺪ ﻣﻮﺟﻮﺩ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﻗﻮﺍﻋﺪ ﻣﻲﺑﺎﺷﺪ ﻭ nﺗﻌﺪﺍﺩ ﻛﻞ ﻭﺭﻭﺩﻳﻬﺎ ﻣﻲﺑﺎﺷﺪ. ﺩﺭ ﺍﻳﻦ ﺭﻭﺍﺑﻂ ) µ A′ (xﺑﻪ ﻳﻜﻲ ﺍﺯ ﺳﻪ ﻓﺮﻡ ﺯﻳﺮ ﻣﻌﺮﻓﻲ ﻣﻲﮔﺮﺩﺩ: •
ﻣﻨﻔﺮﺩ ﻓﺎﺯﻱ *X = X otherwise
1 µ A′ ( x) = 0
if
ﻛﻪ ] X = [ x1 x 2 L x nﻭ ] * X * = [ x1* x 2* L x nﻣﻲﺑﺎﺷﺪ. •
ﮔﻮﺳﻴﻦ 2
* x − x − n n an
2
*L* e ﻛﻪ aiﻫﺎ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﻣﺜﺒﺖ ﻭ * ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩ tﻧﺮﻡ ﻣﻲﺑﺎﺷﺪ ﻭ ﻣﻌﻤﻮ ﹰﻻ ﺍﺯ ﻧﻮﻉ ﺿﺮﺏ ﻳﺎ minﺍﻧﺘﺨﺎﺏ ﻣﻲﮔﺮﺩﺩ. •
* x − x − 1 1 a 1
µ A′ ( x ) = e
ﻣﺜﻠﺜﻲ
x1 − x1* x n − x n* 1− *L * 1 − * if X = X µ A′ ( x) = b1 bn 0 otherwise ﻛﻪ biﻫﺎ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﻣﺜﺒﺖ ﻭ * ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩ tﻧﺮﻡ ﻣﻲﺑﺎﺷﺪ ﻭ ﻣﻌﻤﻮ ﹰﻻ ﺍﺯ ﻧﻮﻉ ﺿﺮﺏ ﻳﺎ minﺍﻧﺘﺨﺎﺏ ﻣﻲﮔﺮﺩﺩ.
ﺍﺯ ﻣﻴﺎﻥ ﺍﻧﺘﺨﺎﺑﻬﺎﻱ ﻓﻮﻕ ﺑﺮﺍﻱ ) µ A′ (xﻧﻮﻉ ﻣﻨﻔﺮﺩ ﻓﺎﺯﻱ ﻣﺤﺎﺳﺒﺎﺕ ﺭﺍ ﺑﺴﻴﺎﺭ ﺳﺎﺩﻩ ﻛﺮﺩﻩ ﻭ ﺑﻨﺎﺑﺮﺍﻳﻦ ﺑﺴﻴﺎﺭ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﻣﻲﮔﻴﺮﺩ. ﻭﻟﻲ ﺍﺯ ﻃﺮﻓﻲ ﺗﻮﺍﻧﺎﻳﻲ ﺣﺬﻑ ﻧﻮﻳﺰ ﺭﺍ ﻧﺪﺍﺭﺩ.
٣٧
: ﻣﻮﺗﻮﺭﻫﺎﻱ ﺍﺳﺘﻨﺘﺎﺝ ﺫﻛﺮ ﺷﺪﻩ ﺑﺼﻮﺭﺕ ﺯﻳﺮ ﺳﺎﺩﻩ ﻣﻲﺷﻮﻧﺪµ A′ (x) ﺑﺎ ﺍﻧﺘﺨﺎﺏ ﻣﻨﻔﺮﺩ ﻓﺎﺯﻱ
ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺣﺎﺻﻠﻀﺮﺏ ﻣﻤﺪﺍﻧﻲ
(
)
M n µ B′ ( y ) = max ∏ µ Al ( xi* ) µ B l ( y ) i l =1 i =1
M
[
µ B′ ( y ) = max min(µ Al ( x1* ),..., µ Al ( x n* ), µ Bl ( y )) l =1
n
1
ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻣﻴﻨﻴﻤﻢ ﻣﻤﺪﺍﻧﻲ
]
ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻟﻮﻛﺎﺯﻭﻳﺞ
(
)
M n µ B ′ ( y ) = min 1,1 − min µ Al ( xi* ) + µ B l ( y ) i l =1 i =1
ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺯﺍﺩﻩ
(
)
M n µ B ′ ( y ) = min max min( µ Al ( x1* ),..., µ Al ( xn* ), µ B l ( y )),1 − min µ Al ( xi* ) 1 n i 1 = l =1 i
ﺭﺷﺮ-ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺩﻧﻴﺲ
(
)
M n µ B ′ ( y ) = min max1 − min µ Al ( xi* ) , µ B l ( y ) i l =1 i =1
٣٨
ﻓﺎﺯﻱ ﺳﺎﺯﻫﺎ ﻭ ﻓﺎﺯﻱ ﺯﺩﻫﺎ
-١٠
١
-١ﻓﺎﺯﻱﺳﺎﺯﻫﺎ ﺩﺭ ﻗﺴﻤﺖ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺍﻧﻮﺍﻉ ﺁﻧﻬﺎ ﻣﻄﺮﺡ ﺷﺪ ﺍﺯ ﻫﺮ ﻛﺪﺍﻡ ﺍﺯ ﺍﻳﻦ ﻧﻤﻮﻧﻪﻫﺎ ﻣﻲﺗﻮﺍﻥ ﺑﻌﻨﻮﺍﻥ ﻓﺎﺯﻱ ﺳﺎﺯ ﺍﺳﺘﻔﺎﺩﻩ ﻛﺮﺩ.
-٢ﻓﺎﺯﻱ ﺯﺩﺍﻫﺎ ٢
-١ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻣﺮﻛﺰ ﺛﻘﻞ
( y ) dy
B′
∫ y.µ
V
( y ) dy V
B′
∫µ
∗
= y
V
*y ٣
-٢ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻣﻴﺎﻧﮕﻴﻦ ﻣﺮﺍﻛﺰ
W1
M
∑ yˆ l wl
W2
l =1 M
∑w
l
yˆ1
yˆ 2
= ∗y
l =1
ﻛﻪ yˆ lﻣﺮﻛﺰ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ lﺍﻡ wl ،ﺩﺭﺟﻪ ﺍﺭﺗﻔﺎﻉ ﺁﻥ ﻭ Mﺗﻌﺪﺍﺩ ﻛﻞ ﻣﺠﻤﻮﻋﻪﻫﺎﻱ ﻓﺎﺯﻱ ﻣﻲﺑﺎﺷﺪ. ٤
-٣ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻣﺎﻛﺰﻳﻤﻢ
1 - Fuzzifiers & Defuzzifiers 2 - Center of Gravity Defuzzifier 3 - Center Average Defuzzifier 4 - Maximum Defuzzifier
٣٩
}
{
) y ∗ = hgt ( B′) = y ∈ V | µ B ′ ( y ) = SUP µ B′ ( y
ﺍﮔﺮ )' hgt(Bﻳﻚ ﻧﻘﻄﻪ ﺑﺎﺷﺪ
y∈V
ﺩﺭ ﻏﻴﺮ ﺍﻳﻦ ﺻﻮﺭﺕ ﺍﺯ ﻳﻜﻲ ﺍﺯ ﻣﻮﺍﺭﺩ ﺯﻳﺮ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﻛﻨﻴﻢ: ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻛﻮﭼﻜﺘﺮﻳﻦ ﻣﺎﻛﺰﻳﻤﺎ
})y ∗ = inf {y ∈ hgt ( B ′
ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﺑﺰﺭﮔﺘﺮﻳﻦ ﻣﺎﻛﺰﻳﻤﺎ
})y ∗ = SUP{y ∈ hgt (B ′
∫ ∫
y dy
ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻣﻴﺎﻧﮕﻴﻦ ﻣﺎﻛﺰﻳﻤﺎ
dy
) hgt ( B′
= ∗y
) hgt ( B ′
ﻣﺜﺎﻝ :ﻓﺮﺽ ﻛﻨﻴﺪ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ' Bﺍﺟﺘﻤﺎﻉ ﺩﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﻱ ﺯﻳﺮ ﺑﺎﺷﺪ .ﺣﺎﻝ ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻣﻴﺎﻧﮕﻴﻦ ﻣﺮﺍﻛﺰ ،ﻣﺮﻛﺰ ﺛﻘﻞ ﻭ )µB'(y
ﻣﺎﻛﺰﻳﻤﻢ ﺭﺍ ﻣﺤﺎﺳﺒﻪ ﻛﻨﻴﺪ(w1>w2) :
W1 W2
y
1
2
0
0.8
-0.8
-١ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻣﻴﺎﻧﮕﻴﻦ ﻣﺮﺍﻛﺰ yˆ 1 w1 + yˆ 2 w2 w2 = w1 + w2 w1 + w2
=
wl
l
2
ˆ∑ y l =1 2
∑w
l
∗
yˆ = 1
= y
2
yˆ = 0 1
l =1
-٢ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻣﺮﻛﺰ ﺛﻘﻞ yw2 (2 − y) dy
2
∫y(w2 y) dy +
1
w1
1 w1
∫y( 0w.18 y + w1 ) dy +∫ w2 + 0w.18 y(w1 − 0w.18 y) dy + 0
w w2 + 0.18
0.8 w1 w2 w2 + 0w.18
0
∫
−0.8
=
∫ y.µ B′ ( y) dy ∫ µ B′ ( y) dy
0.8w1 + w2 − 12
y∗ = V
V
-٣ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻣﺎﻛﺰﻳﻤﻢ y ∗ = hgt ( B ′) = 0
ﻣﺜﺎﻝ :ﺩﺭ ﺷﻜﻞﻫﺎﻱ ﺯﻳﺮ ﻓﺎﺯﻱ ﺯﺩﺍﻱ ﻣﺎﻛﺰﻳﻤﻢ ﺭﺍ ﻣﺸﺨﺺ ﻧﻤﻮﺩﻩ ﻭ ﺍﮔﺮ ﺑﻴﺶ ﺍﺯ ﻳﻚ ﻧﻘﻄﻪ ﻣﻲﺑﺎﺷﺪ ﺑﺎ ﺗﻌﻴﻴﻦ ﻧﻮﻉ ﺁﻥ ﻫﺮ ﺳﻪ ﻧﻮﻉ ﺁﻧﺮﺍ ﻣﺸﺨﺺ ﻧﻤﺎﻳﻴﺪ:
V
V
*y
V
*y *y y* Largest of Maxima Mean of Maxima
۴٠
*y
Smallest of Maxima
ﻣﺜﺎﻝ :ﻳﻚ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺑﺎ ﺩﻭ ﻭﺭﻭﺩﻱ X1ﻭ X2ﻭ ﻳﻚ ﺧﺮﻭﺟﻲ Yﺑﺎ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺯﻳﺮ ﻣﻔﺮﻭﺽ ﺍﺳﺖ .ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ ﺁﻥ ﻧﻴﺰ ﺩﺭ ﺟﺪﻭﻝ ﺯﻳﺮ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﺑﻪ ﺍﺯﺍﺀ ﻣﻘﺎﺩﻳﺮ X1=20ﻭ X2=8.5ﻣﻘﺪﺍﺭ ﺧﺮﻭﺟﻲ Yﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺣﺎﺻﻠﻀﺮﺏ ﻣﻤﺪﺍﻧﻲ ،ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻣﻴﻨﻴﻤﻢ ﻣﻤﺪﺍﻧﻲ ،ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻟﻮﻛﺎﺯﻭﻳﺞ ،ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺯﺍﺩﻩ ﻭ ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﺩﻧﻴﺲ -ﺭﺷﺮ ﺑﺎ ﻓﺮﺽ ﻓﺎﺯﻱ ﮔﺮ ﻣﻨﻔﺮﺩ ﺑﺪﺳﺖ ﺁﻭﺭﻳﺪ.
ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻭﺭﻭﺩﻱ ﺍﻭﻝ
ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻭﺭﻭﺩﻱ ﺩﻭﻡ
ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺧﺮﻭﺟﻲ ﺟﺪﻭﻝ ﻗﻮﺍﻋﺪ ﻓﺎﺯﻱ L2 My Ly Ly
X2 S2 Sy Sy My
S1 M1 L1
۴١
X1
µ S 1 ( X 1 = 20) = 0.6 µ M 1 ( X 1 = 20) = 0.4 µ L1 ( X 1 = 20) = 0
µ S 2 ( X 2 = 8.5) = 0.15 µ L 2 ( X 2 = 8.5) = 0.85
ﻣﻮﺗﻮﺭ ﺍﺳﺘﻨﺘﺎﺝ ﻣﻴﻨﻴﻤﻢ ﻣﻤﺪﺍﻧﻲ µ S 1× S 2 ( X 1* , X 2* ) = min[ µ S 1 ( X 1* ), µ S 2 ( X 2* )] = min [0.6,0.15] = 0.15 µ S 1× L 2 ( X 1* , X 2* ) = min[ µ S 1 ( X 1* ), µ L 2 ( X 2* )] = min [0.6,0.85] = 0.6 µ M 1× S 2 ( X 1* , X 2* ) = min[ µ M 1 ( X 1* ), µ S 2 ( X 2* )] = min [0.4,0.15] = 0.15 µ M 1× L 2 ( X 1* , X 2* ) = min[ µ M 1 ( X 1* ), µ L 2 ( X 2* )] = min [0.4,0.85] = 0.4 µ L1× S 2 ( X 1* , X 2* ) = min[ µ L1 ( X 1* ), µ S 2 ( X 2* )] = min [0,0.15] = 0 µ L1× L 2 ( X 1* , X 2* ) = min[ µ L1 ( X 1* ), µ L 2 ( X 2* )] = min [0,0.85] = 0
۴٢
۴٣
۴۴
Fuzzy Logic and Systems
Contents: 1. Introduction to fuzzy logic 1.1. The history of fuzzy logic 1.2. Configuration of fuzzy systems 1.3. some applications of fuzzy systems
2. Fuzzy sets 2.1. A comparison between classic and fuzzy sets 2.2. Introduction to basic concepts associated with fuzzy sets 3. Operation on fuzzy sets 3.1. Equal 3.2. Containment 3.3. Complement 3.4. Union 3.5. Intersection 3.6. Average 4. Fuzzy relations and the extension principle 4.1. Composition of fuzzy relations 5. Linguistic variable and fuzzy IF-THEN rules 5.1. Linguistic hedges 6. Fuzzy rule base & fuzzy inference engine 7. Fuzzifiers & Defuzzifiers 8. Using fuzzy toolbox in MATLAB 9. Some examples with fuzzy toolbox References: A course in fuzzy system and control
by:Li-Xin Wang
۴۵