Fsc Trigonometric Formulas

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Fsc Trigonometric Formulas as PDF for free.

More details

  • Words: 748
  • Pages: 1
MathCity.org Merging man and maths

Important Trigonometric Formulas Textbook of Algebra and Trigonometry for Class XI Available online @ http://www.mathcity.org, Version: 1.0.2

● sin 2 θ + cos2 θ = 1 ● sin(−θ ) = − sin θ

● 1 + tan 2 θ = sec2 θ ● cos(−θ ) = cosθ

● 1 + cot 2 θ = csc2 θ ● tan( −θ ) = − tan θ

………………………………………………………………………………………………………………………………………

● sin (α + β ) = sin α cos β + cosα sin β

● sin (α − β ) = sin α cos β − cosα sin β

● cos (α + β ) = cosα cos β − sin α sin β ● tan (α + β ) =

● cos (α − β ) = cosα cos β + sin α sin β

tan α + tan β 1 − tan α tan β

● tan (α − β ) =

tan α − tan β 1 + tan α tan β

………………………………………………………………………………………………………………………………………

● sin 2θ = 2sinθ cosθ

● cos 2θ = cos2 θ − sin 2 θ

● tan 2θ =

2 tanθ 1 − tan 2 θ

………………………………………………………………………………………………………………………………………

● sin 2 ●

θ 1 − cosθ = 2 2

● cos 2

θ 1 + cosθ = 2 2

● tan 2

θ 1 − cosθ = 2 1 + cosθ

……………………………………………………………………………………………………………………………………… 3tan θ − tan 3 θ 3 3 ● cos3θ = 4cos θ − 3cosθ ● tan 3θ = sin 3θ = 3sin θ − 4sin θ 2

1 − 3tan θ

……………………………………………………………………………………………………………………………………… 2

● sin 2θ =

2tan θ 1 + tan 2 θ

● cos 2θ =

1 − tan θ 1 + tan 2 θ

………………………………………………………………………………………………………………………………………

● sin (α + β ) + sin (α − β ) = 2sin α cos β

● cos (α + β ) + cos (α − β ) = 2cosα cos β

● sin (α + β ) − sin (α − β ) = 2cosα sin β

● cos (α + β ) − cos (α − β ) = −2sin α sin β

………………………………………………………………………………………………………………………………………

θ +φ θ −φ cos 2 2 θ +φ θ −φ cos ● cosθ + cosφ = 2cos 2 2

θ +φ θ −φ sin 2 2 θ +φ θ −φ ● cosθ − cos φ = −2sin sin 2 2

● sin θ + sin φ = 2sin

● sin θ − sin φ = 2cos

………………………………………………………………………………………………………………………………………

( ( A 1− B

) − B 1− A )

● sin −1 A + sin −1 B = sin −1 A 1 − B 2 + B 1 − A2 ● sin −1 A − sin −1 B = sin −1

 ● cos −1 A + cos −1 B = cos−1  AB −   ● cos −1 A − cos −1 B = cos−1  AB +  ● tan −1 A + tan −1 B = tan −1

A+ B 1 − AB

2

2

(1 − A )(1 − B )  2

2

(1 − A )(1 − B )  2

2

● tan −1 A − tan −1 B = tan −1

A− B 1 + AB

………………………………………………………………………………………………………………………………………

 

Three Steps to solve sin  n ⋅

π  ±θ  2 

Step I: First check that n is even or odd Step II: If n is even then the answer will be in sin and if the n is odd then sin will be converted to cos and vice virsa (i.e. cos will be converted to sin). Step III: Now check in which quadrant n ⋅

π ± θ is lying if it is in Ist or IInd quadrant the answer 2

will be positive as sin is positive in these quadrants and if it is in the IIIrd or IVth quadrant the answer will be negative. e.g. sin 667 o = sin ( 7(90) + 37 ) Since n = 7 is odd so answer will be in cos and 667 is in IVth quadrant and sin is –ive in IVth o o quadrant therefore answer will be in negative. i.e sin 667 = − cos37 Similar technique is used for other trigonometric ratios. i.e tan € cot and sec € csc . ……………………………………………………………………………………………………………………………………… Made By: Atiq ur Rehman Email: [email protected] Corrected by: Salman Zaidi

h t t p :/ /w w w.m at h ci t y . o rg

Related Documents

Fsc
November 2019 11
Trigonometric)
October 2019 18
Formulas
May 2020 26