MathCity.org Merging man and maths
Important Trigonometric Formulas Textbook of Algebra and Trigonometry for Class XI Available online @ http://www.mathcity.org, Version: 1.0.2
● sin 2 θ + cos2 θ = 1 ● sin(−θ ) = − sin θ
● 1 + tan 2 θ = sec2 θ ● cos(−θ ) = cosθ
● 1 + cot 2 θ = csc2 θ ● tan( −θ ) = − tan θ
………………………………………………………………………………………………………………………………………
● sin (α + β ) = sin α cos β + cosα sin β
● sin (α − β ) = sin α cos β − cosα sin β
● cos (α + β ) = cosα cos β − sin α sin β ● tan (α + β ) =
● cos (α − β ) = cosα cos β + sin α sin β
tan α + tan β 1 − tan α tan β
● tan (α − β ) =
tan α − tan β 1 + tan α tan β
………………………………………………………………………………………………………………………………………
● sin 2θ = 2sinθ cosθ
● cos 2θ = cos2 θ − sin 2 θ
● tan 2θ =
2 tanθ 1 − tan 2 θ
………………………………………………………………………………………………………………………………………
● sin 2 ●
θ 1 − cosθ = 2 2
● cos 2
θ 1 + cosθ = 2 2
● tan 2
θ 1 − cosθ = 2 1 + cosθ
……………………………………………………………………………………………………………………………………… 3tan θ − tan 3 θ 3 3 ● cos3θ = 4cos θ − 3cosθ ● tan 3θ = sin 3θ = 3sin θ − 4sin θ 2
1 − 3tan θ
……………………………………………………………………………………………………………………………………… 2
● sin 2θ =
2tan θ 1 + tan 2 θ
● cos 2θ =
1 − tan θ 1 + tan 2 θ
………………………………………………………………………………………………………………………………………
● sin (α + β ) + sin (α − β ) = 2sin α cos β
● cos (α + β ) + cos (α − β ) = 2cosα cos β
● sin (α + β ) − sin (α − β ) = 2cosα sin β
● cos (α + β ) − cos (α − β ) = −2sin α sin β
………………………………………………………………………………………………………………………………………
θ +φ θ −φ cos 2 2 θ +φ θ −φ cos ● cosθ + cosφ = 2cos 2 2
θ +φ θ −φ sin 2 2 θ +φ θ −φ ● cosθ − cos φ = −2sin sin 2 2
● sin θ + sin φ = 2sin
● sin θ − sin φ = 2cos
………………………………………………………………………………………………………………………………………
( ( A 1− B
) − B 1− A )
● sin −1 A + sin −1 B = sin −1 A 1 − B 2 + B 1 − A2 ● sin −1 A − sin −1 B = sin −1
● cos −1 A + cos −1 B = cos−1 AB − ● cos −1 A − cos −1 B = cos−1 AB + ● tan −1 A + tan −1 B = tan −1
A+ B 1 − AB
2
2
(1 − A )(1 − B ) 2
2
(1 − A )(1 − B ) 2
2
● tan −1 A − tan −1 B = tan −1
A− B 1 + AB
………………………………………………………………………………………………………………………………………
Three Steps to solve sin n ⋅
π ±θ 2
Step I: First check that n is even or odd Step II: If n is even then the answer will be in sin and if the n is odd then sin will be converted to cos and vice virsa (i.e. cos will be converted to sin). Step III: Now check in which quadrant n ⋅
π ± θ is lying if it is in Ist or IInd quadrant the answer 2
will be positive as sin is positive in these quadrants and if it is in the IIIrd or IVth quadrant the answer will be negative. e.g. sin 667 o = sin ( 7(90) + 37 ) Since n = 7 is odd so answer will be in cos and 667 is in IVth quadrant and sin is –ive in IVth o o quadrant therefore answer will be in negative. i.e sin 667 = − cos37 Similar technique is used for other trigonometric ratios. i.e tan € cot and sec € csc . ……………………………………………………………………………………………………………………………………… Made By: Atiq ur Rehman Email:
[email protected] Corrected by: Salman Zaidi
h t t p :/ /w w w.m at h ci t y . o rg